Mahler measures and multiple Eisenstein values

François Brunault UMPA – ENS Lyon ´

23 February 2024

Definition (Mahler, 1962) For $P \in \mathbb{C}[x_1, \ldots, x_n] \setminus \{0\}$, define

$$
m(P)=\frac{1}{(2\pi i)^n}\int_{T^n}\log|P(x_1,\ldots,x_n)|\frac{dx_1}{x_1}\ldots\frac{dx_n}{x_n}
$$

where $T^n: |x_1| = \ldots = |x_n| = 1$ is the *n*-torus.

- ▸ The integral converges absolutely.
- If P has coefficients in \overline{Q} then $m(P)$ should be a period in the sense of Kontsevich–Zagier.
- ▶ $m(P)$ measures the "size" of a polynomial in $\mathbf{Z}[x_1, \ldots, x_n]$.
- ► Lehmer's problem (1933): For $P \in \mathbb{Z}[x]$ monic irreducible, not cyclotomic, can $m(P) > 0$ be arbitrarily small?

[Definition](#page-1-0) [Jensen's formula](#page-2-0) [Identities](#page-3-0)

Theorem (Jensen, 1899) For $P \in \mathbb{C}[x] \setminus \{0\}$, $P = a_d \prod_{i=1}^d (x - \alpha_i)$, we have

$$
m(P) = \log |a_d| + \sum_{\substack{k=1\\|\alpha_k|\geq 1}}^d \log |\alpha_k|.
$$

- ▸ Jensen's formula is still useful for multivariate polynomials: it reduces an *n*-dimension integral to an $(n-1)$ -dimensional one.
- Example: using Jensen's formula with respect to y , we have

$$
m(1+x+y)=\frac{1}{2\pi i}\int_{\substack{|x|=1\\ |1+x|\geq 1}}\log|1+x|\frac{dx}{x}=\frac{1}{2\pi}\int_{-2\pi/3}^{2\pi/3}\log|1+e^{i\theta}|d\theta
$$

▸ How to evaluate further?

Timeline of identities

Smyth (1981):
$$
m(1+x+y) = \frac{3\sqrt{3}}{4\pi}L(\chi_3, 2)
$$

Here $L(\chi_3, s) = \sum_{n=1}^{\infty} \chi_3(n)/n^s$ is the Dirichlet *L*-function for

$$
\chi_3(n) = \begin{cases} 1 & \text{if } n \equiv 1 \mod 3 \\ -1 & \text{if } n \equiv 2 \mod 3 \\ 0 & \text{if } n \equiv 0 \mod 3 \end{cases}
$$

The proof uses the series expansion

$$
\log|1+e^{i\theta}|=-\mathrm{Re}\sum_{n=1}^{\infty}\frac{(-1)^ne^{in\theta}}{n}.
$$

and then integration from $\theta = -2\pi/3$ to $2\pi/3$.

Timeline of identities

Smyth (1981):
$$
m(1+x+y+z) = \frac{7}{2\pi^2} \zeta(3)
$$

Boyd and Deninger (1997):

$$
m\Big(x+\frac{1}{x}+y+\frac{1}{y}+1\Big)\overset{?}{=}\frac{15}{4\pi^2}L(E,2)=L'(E,0)
$$

where $L(E, s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ is the *L*-function of the elliptic curve

$$
E: x + \frac{1}{x} + y + \frac{1}{y} + 1 = 0.
$$

- \triangleright Discovered using numerical experiments $+$ theoretical insights.
- ▶ Proved by Rogers and Zudilin (2011).

Boyd (1998): Families of conjectural identities, such as

$$
m(x + \frac{1}{x} + y + \frac{1}{y} + k) \stackrel{?}{=} c_k L'(E_k, 0) \qquad (k \in \mathbf{Z}, k \neq 0, \pm 4)
$$

for some rational number $c_k \in \mathbf{Q}^{\times}$.

- ▶ Generalises to other families $m(P(x, y) + k)$ where the Newton polygon of $P(x, y)$ has $(0, 0)$ as the only interior point.
- ▶ Only finitely many such identities are proved.
- Exteembata Related to the algebraic K-group $K_2(E_k)$ and the Bloch-Beilinson regulator map $K_2(E_k) \rightarrow \mathbf{R}$.

Conjecture (Boyd and Rodriguez Villegas, 2003):

$$
m((1+x)(1+y)+z) \stackrel{?}{=} \frac{15^2}{4\pi^4}L(E,3) = -2L'(E,-1)
$$

where E is an elliptic curve of conductor 15.

- \blacktriangleright There are several other $L(E, 3)$ identities, but they do not seem to come in families.
- ▸ Why does an elliptic curve appear here?
- ▸ Because

$$
E: \begin{cases} (1+x)(1+y)+z=0\\ (1+\frac{1}{x})(1+\frac{1}{y})+\frac{1}{z}=0. \end{cases}
$$

▶ Note that $\{(1+x)(1+y) + z = 0\} \cap T^3 \subset E$.

In this talk, we will consider L-functions of *modular forms*. If $f(\tau) = \sum_{n=0}^{\infty} a_n e^{2\pi i n \tau}$ is a modular form on a congruence subgroup of $SL_2(\mathbb{Z})$, its *L*-function is defined by

$$
L(f,s)=\sum_{n=1}^{\infty}\frac{a_n}{n^s}
$$

- ▸ Integral representation: $(2\pi)^{-s}\Gamma(s)L(f,s) = \int_0^\infty$ $\int_0^\infty (f(iy) - a_0) y^s \frac{dy}{y}$ $\frac{dy}{y}$.
- \triangleright Meromorphic continuation to C and functional equation.

Theorem (B. 2023) We have $m((1+x)(1+y)+z) = -2L'(E,-1)$.

- Now related to the K-group $K_4(E)$.
- \triangleright Uses joint work with Zudilin on K_4 regulators.
- ▸ Key tool: Multiple modular values

$$
\int_0^{\infty} f_1(iy_1) y_1^{s_1-1} dy_1 \int_{y_1}^{\infty} f_2(iy_2) y_2^{s_2-1} \dots \int_{y_{n-1}}^{\infty} f_n(iy_n) y_n^{s_n-1} dy_n
$$

where f_1, \ldots, f_n are modular forms.

[Deninger's method](#page-9-0) [Multiple Eisenstein values](#page-14-0)

Let
$$
P = (1+x)(1+y) + z
$$
.

Step 1: Deninger's method

Use Jensen's formula with respect to z.

$$
\rightsquigarrow \quad m(P) = \frac{1}{(2\pi i)^2} \int_{\Gamma} \eta(x, y, z)
$$

where:

- \triangleright η is an explicit closed 2-form on $V_P = \{P(x, y, z) = 0\}.$
- $\blacktriangleright \Gamma = \{(x, y, z) \in V_P : |x| = |y| = 1, |z| \geq 1\}.$

[Deninger's method](#page-9-0) [Multiple Eisenstein values](#page-14-0)

Step 2: Stokes's theorem

In our case, the form η happens to be *exact*. Writing $\eta = d\rho$, we have by Stokes's theorem

$$
m(P)=\frac{1}{(2\pi i)^2}\int_{\Gamma}d\rho=\frac{1}{(2\pi i)^2}\int_{\gamma}\rho
$$

with

$$
\gamma = \partial \Gamma = \{ (x, y, z) \in V_P : |x| = |y| = |z| = 1 \}.
$$

$$
\triangleright \ \gamma = V_P \cap T^3 \ \text{is contained in } E.
$$

- \blacktriangleright ρ is a closed 1-form on E.
- \triangleright So we now have a 1-dimensional integral on E.

[Deninger's method](#page-9-0) [Multiple Eisenstein values](#page-14-0)

For any two functions f, g on E , define

$$
\rho(f,g) = -D(f)\operatorname{darg}(g) + \frac{1}{3}\log|g|(\log|1-f|\operatorname{dlog}|f|-\log|f|\operatorname{dlog}|1-f|)
$$

where $D: \mathsf{P}^1(\mathsf{C}) \to \mathsf{R}$ is the Bloch-Wigner dilogarithm

$$
D(z) = \mathrm{Im}\Big(\sum_{n=1}^{\infty} \frac{z^n}{n^2}\Big) + \log|z| \arg(1-z).
$$

Theorem (Lalín, 2015)

$$
\rho = \rho(-y, x) - \rho(-x, y).
$$

 $\blacktriangleright \gamma$ is a generator of $H_1(E(C), Z)^+$.

[Deninger's method](#page-9-0) [Multiple Eisenstein values](#page-14-0)

Step 3: Translate in the modular world

The elliptic curve E is isomorphic to the modular curve $X_1(15)$.

 $X_1(N) = \Gamma_1(N) \backslash \mathcal{H} \cup {\text{cusps}}$

where

$$
\Gamma_1(N) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathrm{SL}_2(\mathbf{Z}) : a, d \equiv 1 \bmod N, c \equiv 0 \bmod N \right\}.
$$

Nice feature: the functions x and y on E correspond to *modular* units on $X_1(15)$, that is, all their zeros and poles are at the cusps.

Key fact: if u is a modular unit, then $d\log(u) = E_2(z)dz$ where E_2 is an Eisenstein series of weight 2.

[Deninger's method](#page-9-0) [Multiple Eisenstein values](#page-14-0)

We want to understand

$$
\rho(u,v)=-D(u)\mathrm{darg}(v)+\frac{1}{3}\log|v|\big(\log|1-u|\mathrm{dlog}|u|-\log|u|\mathrm{dlog}|1-u|\big).
$$

when u and v are modular units on $X_1(N)$.

- \blacktriangleright dlog(u) and dlog(v) are Eisenstein series, so the log terms of the formula are well-understood.
- \triangleright The challenging piece is $D(u)$. We use

 $d(D(u)) = log |u| diag(1-u) - log |1-u| diag(u)$

► If u and $1 - u$ are modular units, then $D(u)$ is an *iterated* integral of Eisenstein series.

[Deninger's method](#page-9-0) [Multiple Eisenstein values](#page-14-0)

Definition

For $k \ge 1$ and $\mathbf{x} = (x_1, x_2) \in (\mathbf{Z}/N\mathbf{Z})^2$, define the Eisenstein series

$$
E_{\mathbf{x}}^{(k)}(\tau) = \sum_{m,n\in\mathbf{Z}} \frac{\exp\left(\frac{2\pi i}{N}(mx_2 - nx_1)\right)}{(m\tau + n)^k} \in M_k(\Gamma(N))
$$

For $x, y, z \in (\mathsf{Z}/N\mathsf{Z})^2$, define the *multiple Eisenstein values*
(Manin, Braum) (Manin, Brown)

$$
\Lambda(\mathbf{x}, \mathbf{y}) \coloneqq \int_0^{i\infty} E_{\mathbf{x}}^{(2)}(\tau_1) d\tau_1 \int_{\tau_1}^{i\infty} E_{\mathbf{y}}^{(2)}(\tau_2) d\tau_2
$$

$$
\Lambda(\mathbf{x}, \mathbf{y}, \mathbf{z}) \coloneqq \int_0^{i\infty} E_{\mathbf{x}}^{(2)}(\tau_1) d\tau_1 \int_{\tau_1}^{i\infty} E_{\mathbf{y}}^{(2)}(\tau_2) d\tau_2 \int_{\tau_2}^{i\infty} E_{\mathbf{z}}^{(2)}(\tau_3) d\tau_3.
$$

 \rightarrow The Mahler measure of P can be written as an explicit linear combination of multiple Eisenstein values.

[Mahler measures](#page-1-0) [Outline of the proof](#page-9-0) [Motivic story](#page-19-0) [Deninger's method](#page-9-0) [Multiple Eisenstein values](#page-14-0)

Theorem (B.–Zudilin, 2023) Let $x, y, z \in (\mathbb{Z}/N\mathbb{Z})^2$ such that $x + y + z = 0$. If all the coordinates of $x \times y$ z are non-zero, then of x, y, z are non-zero, then

$$
\operatorname{Re}(\Lambda(x, y, y) - \Lambda(z, y, y) + \Lambda(y, x, x) - \Lambda(z, x, x) + \Lambda(z, y, x) + \Lambda(z, x, y) - (\Lambda(y) - \Lambda(x))(\Lambda(x, y) + \Lambda(y, z) + \Lambda(z, x))) = L'(F_{x,y}, -1) + c_{x,y}\zeta(3)
$$

for some explicit $F_{x,y} \in M_2(\Gamma(N))$, and $c_{x,y} \in \mathbf{Q}$.

Proving this formula requires two ingredients:

- ▸ Interpolate the multiple Eisenstein values to continuous parameters, viewing $(Z/NZ)^2$ inside $(R/Z)^2$ using $(x_1, x_2) \mapsto \left(\frac{x_1}{N}, \frac{x_2}{N}\right).$
- ▸ Differentiate with respect to these parameters to reduce the length of the iterated integrals.

[Deninger's method](#page-9-0) [Multiple Eisenstein values](#page-14-0)

Key lemma For $\mathbf{x} = (x_1, x_2) \in (\mathbf{R}/\mathbf{Z})^2$, we have

$$
\frac{d}{dx_2}E_{\mathbf{x}}^{(2)}(\tau)=\frac{d}{d\tau}E_{\mathbf{x}}^{(1)}(\tau).
$$

So for example

$$
\frac{d}{dy_2}\Lambda(\mathbf{x}, \mathbf{y}) = \int_0^{i\infty} E_{\mathbf{x}}^{(2)}(\tau_1) d\tau_1 \int_{\tau_1}^{i\infty} \frac{d}{dy_2} E_{\mathbf{y}}^{(2)}(\tau_2) d\tau_2
$$

$$
= \int_0^{i\infty} E_{\mathbf{x}}^{(2)}(\tau_1) d\tau_1 \int_{\tau_1}^{i\infty} \frac{d}{d\tau_2} E_{\mathbf{y}}^{(1)}(\tau_2) d\tau_2
$$

$$
= \int_0^{i\infty} E_{\mathbf{x}}^{(2)}(\tau_1) (E_{\mathbf{y}}^{(1)}(i\infty) - E_{\mathbf{y}}^{(1)}(\tau_1)) d\tau_1.
$$

This reduces a double integral to a single integral.

[Mahler measures](#page-1-0) [Outline of the proof](#page-9-0) [Motivic story](#page-19-0) [Deninger's method](#page-9-0) [Multiple Eisenstein values](#page-14-0)

To prove the formula

$$
\operatorname{Re}(\Lambda(x, y, y) - \Lambda(z, y, y) + \Lambda(y, x, x) - \Lambda(z, x, x) + \Lambda(z, y, x) + \Lambda(z, x, y) - (\Lambda(y) - \Lambda(x))(\Lambda(x, y) + \Lambda(y, z) + \Lambda(z, x))) = L'(F_{x,y}, -1) + c_{x,y}\zeta(3)
$$

we differentiate the LHS with respect to x_2 . We get a sum of double integrals of the form

$$
\int_0^{i\infty} E_{\mathbf{a}}^{(2)}(\tau_1) d\tau_1 \int_{\tau_1}^{i\infty} E_{\mathbf{b}}^{(2)}(\tau_2) E_{\mathbf{c}}^{(1)}(\tau_2) d\tau_2.
$$

Miracle: The (complicated) linear combination of products $E_{\bf h}^{(2)}$ $b^{(2)}E_{c}^{(1)}$ is actually an Eisenstein series of weight 3! This means that we have a double Eisenstein value.

[Deninger's method](#page-9-0) [Multiple Eisenstein values](#page-14-0)

The double Eisenstein values can be computed using the Rogers-Zudilin method. We get

$$
\frac{d}{dx_2}(\text{LHS}) = \text{sum of } L\text{-values } L'(G_a^{(1)}G_b^{(2)}, 0)
$$

for some (other) Eisenstein series $G^{(1)}$ and $G^{(2)}$.

This can be integrated to

LHS = sum of
$$
L
$$
-values $L'(G^{(1)}_{\mathbf{a}}G^{(1)}_{\mathbf{b}},-1)$

We arrive at our *L*-value $L'(F_{\mathbf{x},\mathbf{y}},-1)$.

Remark

We have no good understanding of the $\zeta(3)$ term in the formula.

The proof of the theorem also builds on:

- ► The Siegel modular units g_x for $x \in (Z/NZ)^2$ on the modular
surve $Y(N) = F(N)/2I$ curve $Y(N) = \Gamma(N)\backslash H$
- ► Milnor symbols $\{g_{x}, g_{v}\}\$ in $K_2(Y(N))\otimes\mathbf{Q}$
- Three-term relations: if $x + y + z = 0$ then

$$
\{g_{x},g_{y}\}+\{g_{y},g_{z}\}+\{g_{z},g_{x}\}=0.
$$

▸ We can actually find a "triangulation"

$$
g_{\mathbf{x}} \wedge g_{\mathbf{y}} + g_{\mathbf{y}} \wedge g_{\mathbf{z}} + g_{\mathbf{z}} \wedge g_{\mathbf{x}} = \sum_i m_i \cdot u_i \wedge (1 - u_i)
$$

where u_i and $1 - u_i$ are modular units, and $m_i \in \mathbf{Q}$.

► This triangulation leads to an element of $K_4(Y(N))\otimes\mathbf{Q}$.

This should extend in higher weight: for $k \ge 0$ and $\mathbf{x} \in (\mathbf{Z}/N\mathbf{Z})^2$, there is the Eisenstein sumbol there is the Eisenstein symbol

$$
Eis^{k}(\mathbf{x}) \in K_{k+1}(E(N)^{k}) \otimes \mathbf{Q}
$$

where $E(N)^k$ is the k-fold fibre product of the universal elliptic curve $E(N)$ over the modular curve $Y(N)$.

Definition

For $k, \ell \ge 0$ and $\mathbf{x}, \mathbf{y} \in (\mathbf{Z}/N\mathbf{Z})^2$, define

 $X^k Y^\ell(\mathbf{x}, \mathbf{y}) = p_1^* \text{Eis}^k(\mathbf{x}) \cup p_2^* \text{Eis}^{\ell}(\mathbf{y}) \in K_{k+\ell+2}(E(N)^{k+\ell}) \otimes \mathbf{Q},$

where $p_1: E^{k+\ell} \to E^k$ and $p_2: E^{k+\ell} \to E^{\ell}$ are the projections.

Conjecture

Let $k, \ell \ge 0$ and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in (\mathbf{Z}/N\mathbf{Z})^2$ with $\mathbf{x} + \mathbf{y} + \mathbf{z} = 0$. Then

$$
X^{k}Y^{\ell}(\mathbf{x},\mathbf{y})+X^{\ell}(-X-Y)^{k}(\mathbf{y},\mathbf{z})+Y^{k}(-X-Y)^{\ell}(\mathbf{z},\mathbf{x})=0.
$$

- ▸ One should be able to prove this in Deligne cohomology.
- ▸ Induction on the weight, using differentiation with respect to the parameters of the Eisenstein symbols.
- ▸ Open question: what is the triangulation?
- ▸ In this range, Deligne cohomology is just de Rham cohomology, so this amounts to say that a particular differential form is exact. Can we make explicit a primitive?

Beyond the reach of current technology

Conjecture (Rodriguez Villegas, 2003)

$$
m(1+x_1+x_2+x_3+x_4) = -L'(f,-1)
$$

$$
m(1+x_1+x_2+x_3+x_4+x_5) = -8L'(g,-1)
$$

for modular forms $f \in S_3(\Gamma_1(15))$ and $g \in S_4(\Gamma_0(6))$.

Conjecture (B.–Pengo, 2023) $m(xyt + xzt + yzt + xy + xz - yz - yt + zt - y + z - t + 1) = \frac{1}{6}$ $\frac{1}{6}L'(E,-2)$ where $E = 32a2$ is an elliptic curve of conductor 32.

How we found the polynomial

Take $P(x, y, z, t)$ of the form

$$
P = a(x, y) + b(x, y)z + c(c, y)t + d(x, y)zt.
$$

Eliminating t in $P(x, y, z, t) = P(\frac{1}{x})$ $\frac{1}{x}, \frac{1}{y}$ $\frac{1}{y}, \frac{1}{z}$ $\frac{1}{z}$, $\frac{1}{t}$ $\frac{1}{t}$) = 0 gives

$$
W_P: A(x,y)z^2 + B(x,y)z + C(x,y) = 0.
$$

Want: $\Delta = B^2 - 4AC$ is a square $\delta(x, y)^2$ in $\mathbf{Q}(x, y)$. Then $W_P = W_1 \cup W_2$ with

$$
W_1\cap W_2:\delta(x,y)=0.
$$

We look for a, b, c, d such that $W_1 \cap W_2$ is an elliptic curve.

Numerical computation of $m(P)$

Rodriguez Villegas: $2m(P) = \log k - \int_0^{1/k}$ $\int_{0}^{\pi/\kappa} \phi_P(u) du$ where k is the constant coefficient of $P(x, y, z, t) P(\frac{1}{x})$ $\frac{1}{x}, \frac{1}{y}$ $\frac{1}{y}, \frac{1}{z}$ $\frac{1}{z}$, $\frac{1}{t}$ $\frac{1}{t}$) and

$$
\phi_P(u) = \frac{1}{(2\pi i)^n} \int_{T^n} \frac{Q}{1 - uQ} \cdot \frac{dx}{x} \frac{dy}{y} \frac{dz}{z} \frac{dt}{t}
$$

with $Q = P(x, y, z, t) P(\frac{1}{x})$ $\frac{1}{x}, \frac{1}{y}$ $\frac{1}{y}, \frac{1}{z}$ $\frac{1}{z}$, $\frac{1}{t}$ $(\frac{1}{t}) - k.$

Pengo–Ringeling: Using creative telescoping, one can find a polynomial ODE satisfied by ϕ_P . This takes a long time, but then $m(P)$ can be computed quickly with high precision.