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Abstract. — It is well-known that every elliptic curve over the rationals admits a parametrization
by means of modular functions. In this short note, we show that only finitely many elliptic curves
over Q can be parametrized by modular units. This answers a question raised by Zudilin in a
recent work on Mahler measures. Further, we give the list of all elliptic curves E of conductor up
to 1000 parametrized by modular units supported in the rational torsion subgroup of E. Finally,
we raise several open questions.

Since the work of Boyd [3], Deninger [6] and others, it is known that there is a close rela-

tionship between Mahler measures of polynomials and special values of L-functions. Although

this relationship is still largely open, some strategies have been identified in several instances.

Specifically, let P ∈ Q[x, y] be a polynomial whose zero locus defines an elliptic curve E. If

the polynomial P is tempered, then the Mahler measure of P can be expressed in terms of a

regulator integral

(1) ∫
γ

log ∣x∣darg(y) − log ∣y∣darg(x)

where γ is a (non necessarily closed) path on E (see [6, 12]). If the curve E happens to have

a parametrization by modular units x(τ), y(τ), then we may change to the variable τ in (1)

and try to compute the regulator integral using [12, Thm 1]. In favourable cases, this leads to

an identity between the Mahler measure of P and L(E,2): see for example [12, §3] and the

references therein. The following natural question, raised by Zudilin, thus arises:

Which elliptic curves can be parametrized by modular units?

We show in Section 1 that only finitely many elliptic curves over Q can be parametrized

by modular units. The proof uses Watkins’ lower bound on the modular degree of elliptic

curves. Further, we give in Section 2 the list of all elliptic curves E of conductor up to 1000

parametrized by modular units supported in the rational torsion subgroup of E. It turns out

that there are 30 such elliptic curves. Finally, we raise in Section 3 several open questions.

1. A finiteness result

Definition 1. — Let E/Q be an elliptic curve of conductor N . We say that E can be

parametrized by modular units if there exist two modular units u, v ∈ O(Y1(N))× such that

the function field Q(E) is isomorphic to Q(u, v).

Theorem 2. — There are only finitely many elliptic curves over Q which can be parametrized

by modular units.
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Let E/Q be an elliptic curve of conductor N . Assume that E can be parametrized by two

modular units u, v on Y1(N). Then there is a finite morphism ϕ ∶X1(N)→ E and two rational

functions f, g ∈ Q(E)× such that ϕ∗(f) = u and ϕ∗(g) = v.

Let E1 be the X1(N)-optimal elliptic curve in the isogeny class of E, and let ϕ1 ∶X1(N)→ E1

be an optimal parametrization. By [9, Prop 1.4], there exists an isogeny λ ∶ E1 → E such that

ϕ = λ ○ ϕ1. Consider the functions f1 = λ∗(f) and g1 = λ∗(g). Note that u = ϕ∗1(f1) and

v = ϕ∗1(g1). Theorem 2 is now a consequence of the following result.

Theorem 3. — If N is sufficiently large, then ϕ∗1(Q(E1)) ∩O(Y1(N)) = Q.

Proof. — Let C1(N) be the set of cusps of X1(N). Let f ∈ Q(E1)/Q be such that ϕ∗1(f) ∈

O(Y1(N)). Let P be a pole of f . Then ϕ−1
1 (P ) must be contained in C1(N), and we have

degϕ1 = ∑
Q∈ϕ−11 (P )

eϕ1(Q) ≤ ∑
Q∈C1(N)

eϕ1(Q).

Let gN be the genus of X1(N). By the Riemann-Hurwitz formula for ϕ1, we have

2gN − 2 = ∑
Q∈X1(N)

(eϕ1(Q) − 1).

It follows that

degϕ1 ≤ #C1(N) + ∑
Q∈C1(N)

(eϕ1(Q) − 1)

≤ #C1(N) + 2gN − 2.

By the classical genus formula [8, Prop 1.40], and since X1(N) has no elliptic points for N ≥ 4,

we have

#C1(N) + 2gN − 2 =
1

12
[SL2(Z) ∶ Γ1(N)] =

φ(N)ν(N)

12
(N ≥ 4)

where φ(N) denotes Euler’s function, and ν(N) is defined by

ν(N) = N
k

∏
i=1

(1 +
1

pi
) if N =

k

∏
i=1

pαi
i .

We thus get

(2) degϕ1 ≤
φ(N)ν(N)

12
.

We are now going to show that (2) contradicts lower bounds of Watkins [11] on the modular

degree if N is sufficiently large. Let E0 be the strong Weil curve in the isogeny class of E. We

have a commutative diagram

(3)

X1(N) X0(N)

E1 E0.

ϕ1

π

ϕ0

λ0

We deduce that

degϕ1 =
degπ ⋅ degϕ0

degλ0

.

We have degπ =
φ(N)

2 . For every α ∈ (Z/NZ)×/±1, there exists a unique point A(α) ∈ E1(Q)tors

such that ϕ1 ○ ⟨α⟩ = tA(α) ○ ϕ1, where tA(α) denotes translation by A(α). The map α ↦ A(α)

is a morphism of groups and its image is ker(λ0). It follows that deg(λ0) ≤ #E1(Q)tors ≤ 16.

By [11], we have degϕ0 ≫ N7/6−ε for any ε > 0. It follows that degϕ1 ≫ φ(N)N7/6−ε. Since

ν(N) ≪ N1+ε for any ε > 0, this contradicts (2) for N sufficiently large.
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Remark 4. — It would be interesting to determine the complete list of elliptic curves over

Q parametrized by modular units. Unfortunately, the bound on the conductor N provided by

Watkins’ result, though effective, is too large to permit an exhaustive search. However, we

observed numerically in [4] that the ramification index of ϕ0 at a cusp of X0(N) seems to be

always a divisor of 24. If this observation is true, then we can replace (2) by the better bound

degϕ1 ≤ 12φ(N)∑d∣N φ((d,N/d)). Combining this with known linear lower bounds on degϕ0

(see [11]), this yields a better (but still large) bound on N . Furthermore, if we restrict to

semistable elliptic curves, then ϕ0, π and ϕ1 are unramified at the cusps; in this case we get

that N has at most 6 prime factors and N ≤ 233310 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 101.

2. Preimages of torsion points under modular parametrizations

In order to find elliptic curves parametrized by modular units, we consider the following

related problem. Let E be an elliptic curve over Q of conductor N , and let ϕ ∶ X1(N) → E

be a modular parametrization sending the 0-cusp to 0. By the Manin-Drinfeld theorem, the

image by ϕ of a cusp of X1(N) is a torsion point of E. Conversely, given a point P ∈ Etors,

when does the preimage of P under ϕ consist only of cusps? The link between this question

and parametrizations by modular units is given by the following easy lemma.

Lemma 5. — Suppose that there exists a subset S of E(Q)tors satisfying the following two

conditions:

(1) We have ϕ−1(S) ⊂ C1(N).

(2) There exist two functions f, g on E supported in S such that Q(E) = Q(f, g).

Then E can be parametrized by modular units.

Proof. — By condition (1), the functions u = ϕ∗(f) and v = ϕ∗(g) are modular units of level

N , and by condition (2), we have Q(E) ≅ Q(u, v).

We are therefore led to search for elliptic curves E/Q admitting sufficiently many torsion

points P such that ϕ−1(P ) ⊂ C1(N).

We first give an equivalent form of condition (2) in Lemma 5.

Proposition 6. — Let S be a subset of E(Q)tors. Let FS be the set of nonzero functions f on

E which are supported in S. The following conditions are equivalent:

(a) There exist two functions f, g ∈ FS such that Q(E) = Q(f, g).

(b) The field Q(E) is generated by FS.

(c) We have #S ≥ 3, and there exist two points P,Q ∈ S such that P −Q has order ≥ 3.

In order to prove Proposition 6, we show the following lemma.

Lemma 7. — Let P ∈ E(Q)tors be a point of order n ≥ 2. Let fP be a function on E such

that div(fP ) = n(P ) − n(0). Then the extension Q(E)/Q(fP ) has no intermediate subfields.

Moreover, if P,P ′ ∈ E(Q)tors are points of order n ≥ 4 such that Q(fP ) = Q(fP ′), then P = P ′.

Proof. — Let K be a field such that Q(fP ) ⊂ K ⊂ Q(E). If K has genus 1, then K is the

function field of an elliptic curve E′/Q and fP factors through an isogeny λ ∶ E → E′. Then

div(fP ) must be invariant under translation by ker(λ). This obviously implies ker(λ) = 0,

hence K = Q(E). If K has genus 0, then we have K = Q(h) for some function h on E,

and we may factor fP as g ○ h with g ∶ P1 → P1. We may assume h(P ) = 0 and h(0) = ∞.

Then g−1(0) = {0} and g−1(∞) = {∞}, which implies g(t) = atm for some a ∈ Q× and m ≥ 1.



4 F. BRUNAULT

Thus div(f) = mdiv(h). Since div(h) must be a principal divisor, it follows that m = 1 and

K = Q(fP ).

Let P,P ′ ∈ E(Q) be points of order n ≥ 4 such that Q(fP ) = Q(fP ′) and P ≠ P ′. Then

fP ′ = (afP + b)/(cfP +d) for some (
a b

c d
) ∈ GL2(Q). Considering the divisors of fP and fP ′ , we

must have fP ′ = afP + b for some a, b ∈ Q×. Then the ramification indices of fP ∶ E → P1 at P ,

P ′, 0 are equal to n, which contradicts the Riemann-Hurwitz formula for fP .

Proof of Proposition 6. — It is clear that (a) implies (b). Let us show that (b) implies (c). If

#S ≤ 2, then FS/Q× has rank at most 1 and cannot generate Q(E). Assume that for every

points P,Q ∈ S, we have P −Q ∈ E[2]. Translating S if necessary, we may assume 0 ∈ S. It

follows that S ⊂ E[2] and FS ⊂ Q(x) ⊊ Q(E).

Finally, let us assume (c). Translating S if necessary, we may assume 0 ∈ S. Let us first

assume that S contains a point P of order 2. Then Q(fP ) = Q(x) has index 2 in Q(E)

and is the fixed field with respect to the involution σ ∶ p ↦ −p on E. By assumption, there

exist two points Q,R ∈ S such that Q − R has order n ≥ 3. Let g be a function on E such

that div(g) = n(Q) − n(R). Then it is easy to see that div(g) is not invariant under σ. It

follows that g /∈ Q(fP ) and Q(fP , g) = Q(E). Let us now assume that S ∩ E[2] = {0}. By

assumption, S contains two distinct points P,Q having order ≥ 3. If P or Q has order ≥ 4,

then Lemma 7 implies that Q(fP , fQ) = Q(E). If P and Q have order 3, then we must have

Q = −P because Q(E[3]) contains Q(ζ3). It follows that the function g on E defined by

div(g) = (P ) + (−P ) − 2(0) has degree 2, so we have g /∈ Q(fP ) and Q(fP , g) = Q(E).

Let E/Q be an elliptic curve of conductor N . Fix a Néron differential ωE on E, and let fE
be the newform of weight 2 and level N associated to E. We define ωfE = 2πifE(z)dz. Let

ϕE ∶ X1(N)→ E be a modular parametrization of minimal degree. We have ϕ∗EωE = cEωfE for

some integer cE ∈ Z − {0} [9, Thm 1.6], and we normalize ϕE so that cE > 0. Conjecturally, we

have cE = 1 [9, Conj. I].

We now describe an algorithm to compute the set SE of points P ∈ E(Q)tors such that

ϕ−1
E (P ) ⊂ C1(N). Let P ∈ E(Q)tors. We define an integer eP by

eP = ∑
x∈C1(N)
ϕE(x)=P

eϕE
(x).

It is clear that ϕ−1
E (P ) ⊂ C1(N) if and only if eP = degϕE. Let d be a divisor of N , and let Cd

be the set of cusps of X1(N) of denominator d (that is, the set of cusps a
b satisfying (b,N) = d).

Every cusp x ∈ Cd can be written (non uniquely) as x = ⟨α⟩σ(1
d) with α ∈ (Z/NZ)×/ ± 1 and

σ ∈ Gal(Q(ζd)/Q). Since eϕE
(x) = eϕ1(x) = eϕ1(1/d), we get

eP =∑
d∣N

eϕ1(1/d) ⋅#{x ∈ Cd ∶ ϕE(x) = P}.

Recall that for each α ∈ (Z/NZ)×, there exists a unique point A(α) ∈ E(Q)tors such that

ϕE ○ ⟨α⟩ = tA(α) ○ ϕE, where tA(α) denotes translation by A(α). We let AE ⊂ E(Q)tors be

the image of the map α ↦ A(α). Note that the set {x ∈ Cd ∶ ϕE(x) = P} is empty unless

ϕE(1/d) ∈ P +AE, in which case we have ϕE(Cd) = P +AE and the number of cusps x ∈ Cd such

that ϕE(x) = P is given by #Cd/#AE. Thus we get

eP =
1

#AE
∑
d∣N

ϕE(1/d)∈P+AE

eϕ1(1/d) ⋅#Cd.
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Furthermore, let π ∶ X1(N) → X0(N) and ϕ0 ∶ X0(N) → E0 be the maps as in (3). The

ramification index of π at 1
d is equal to (d,N/d). Thus eϕ1(1/d) = (d,N/d) ⋅ eϕ0(1/d). The

quantity eϕ0(1/d) is equal to the order of vanishing of ωfE at the cusp 1/d, and may be computed

numerically (see [4, §7]). Moreover, the number of cusps of X0(N) of denominator d is given

by φ((d,N/d)). It follows that #Cd = φ((d,N/d)) ⋅ φ(N)/(2(d,N/d)) and we get

(4) eP =
φ(N)

2#AE
∑
d∣N

ϕE(1/d)∈P+AE

eϕ0(1/d) ⋅ φ((d,N/d)).

Finally, using notations from Section 1, the modular degree of E may be computed as

(5) degϕE =
φ(N)

2
⋅
covol(ΛE0)

covol(ΛE)
⋅ degϕ0

where ΛE0 and ΛE denote the Néron lattices of E0 and E. We read off the modular degree

degϕ0 from Cremona’s tables [5, Table 5]. Formulas (4) and (5) lead to the following algorithm.

(1) Compute generators α1, . . . , αr of (Z/NZ)×.

(2) For each j, compute numerically ∫
⟨αj⟩z0
z0

ωfE for z0 = (−αj + i)/N .

(3) Deduce Aj = A(αj) ∈ E(Q)tors.

(4) Compute the subgroup AE generated by A1, . . . ,Ar.

(5) Compute the list (P1, . . . , Pn) of all rational torsion points on E.

(6) Initialize a list (eP1 , . . . , ePn) = (0, . . . ,0).

(7) For each d dividing N , do the following:

(a) Compute numerically zd = ∫
1/d

0 ωfE .

(b) Check whether the point Qd = ϕE(1/d) is rational or not.

(c) If Qd is rational, then do the following:

(i) Compute numerically eϕ0(1/d).

(ii) For each B ∈ AE, do eQd+B ← eQd+B + eϕ0(1/d)φ((d,N/d)).

(8) Output SE = {P ∈ E(Q)tors ∶ eP = #AE ⋅
covol(ΛE0

)
covol(ΛE) ⋅ degϕ0}.

The following table gives all elliptic curves E of conductor ≤ 1000 such that SE satisfies

condition (c) of Proposition 6. Computations were done using Pari/GP [10] and the Modular

Symbols package of Magma [2].

Remarks 8. — (1) In order to compute the points Aj in step (3) and Qd in step (7b), we

implicitly make use of Stevens’ conjecture that cE = 1. This conjecture is known for all elliptic

curves of conductor ≤ 200 [9].

(2) Of course, steps (2), (7a) and (7ci) are done only once for each isogeny class.

(3) If x is a cusp of X1(N), then the order of ϕE(x) is bounded by the exponent of the

cuspidal subgroup of J1(N). Hence we may ascertain that ϕE(x) is rational or not by a finite

computation.

(4) We compute eϕ0(
1
d) by a numerical method. It would be better to use an exact method.

3. Further questions

Note that in Lemma 5, we considered functions on E which are supported in E(Q)tors.

In general, the image by ϕE of a cusp of X1(N) is only rational over Q(ζN), and we may

use functions on E supported in these non-rational points. In fact, let S′E denote the set of

points P ∈ E(Q(ζN))tors such that ϕ−1
E (P ) ⊂ C1(N). The set S′E is stable under the action of

Gal(Q(ζN)/Q). Then E can be parametrized by modular units if and only if there exist two
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E E(Q)tors SE
11a3 Z/5Z E(Q)tors

14a1 Z/6Z {0, (9,23), (1,−1), (2,−5)}

14a4 Z/6Z E(Q)tors

14a6 Z/6Z {0, (2,−2), (2,−1)}

15a1 Z/4Z ×Z/2Z {0, (−2,3), (−1,0), (8,18)}

15a3 Z/4Z ×Z/2Z {0, (0,1), (1,−1), (0,−2)}

15a8 Z/4Z E(Q)tors

17a4 Z/4Z E(Q)tors

19a3 Z/3Z E(Q)tors

20a1 Z/6Z E(Q)tors

20a2 Z/6Z E(Q)tors

21a1 Z/4Z ×Z/2Z {0, (−1,−1), (−2,1), (5,8)}

24a1 Z/4Z ×Z/2Z E(Q)tors

24a3 Z/4Z E(Q)tors

24a4 Z/4Z E(Q)tors

E E(Q)tors SE
26a3 Z/3Z E(Q)tors

27a3 Z/3Z E(Q)tors

27a4 Z/3Z E(Q)tors

30a1 Z/6Z {0, (3,4), (−1,0), (0,−2)}

32a1 Z/4Z E(Q)tors

32a4 Z/4Z E(Q)tors

35a3 Z/3Z E(Q)tors

36a1 Z/6Z E(Q)tors

36a2 Z/6Z E(Q)tors

40a3 Z/4Z E(Q)tors

44a1 Z/3Z E(Q)tors

54a3 Z/3Z E(Q)tors

56a1 Z/4Z E(Q)tors

92a1 Z/3Z E(Q)tors

108a1 Z/3Z E(Q)tors

Table 1. Some elliptic curves parametrized by modular units

functions f, g ∈ Q(E)× supported in S′E such that Q(E) = Q(f, g). As the next example shows,

this yields new elliptic curves parametrized by modular units.

Example 9. — Consider the elliptic curve E = X0(49) = 49a1 ∶ y2 + xy = x3 − x2 − 2x − 1. The

group E(Q)tors has order 2 and is generated by the point Q = (2,−1), which is none other

than the cusp ∞ (recall that the cusp 0 is the origin of E). The set S′E consists of all cusps of

X0(49). Let P be the cusp 1
7 . It is defined over Q(ζ7) and its Galois conjugates are given by

{P σ}σ = {P,3P +Q,−5P,−P +Q,−3P,5P +Q}. There exists a function v ∈ Q(E) of degree 7

such that div(v) = ∑(P σ) + (Q) − 7(0). Since x − 2 and v have coprime degrees, the curve E

can be parametrized by the modular units u = x − 2 and v.

Example 10. — Consider the elliptic curve E = 64a1 ∶ y2 = x3 − 4x. Its rational torsion

subgroup is given by E(Q)tors ≅ Z/2Z ×Z/2Z. There is a degree 2 morphism ϕ0 ∶X0(64)→ E,

and we have SE = E(Q)tors. However, the image of the cusp 1
8 is given by P = ϕ0(

1
8) =

(2i,−2
√

2 + 2i
√

2). This point is defined over Q(ζ8) and we have S′E = SE ∪ {P σ}σ. We

can check that FS′E/Q
× is generated by x, x ± 2 and x2 + 4, hence it cannot generate Q(E).

However, if we base change to the field Q(
√

2), then we find that the function v = y−
√

2x+2
√

2

is supported in S′E and has degree 3. Hence E/Q(
√

2) can be parametrized by the modular

units u = x and v.

Example 10 suggests the following question : which elliptic curves E/Q of conductor N can

be parametrized by modular units defined over Q(ζN)? The argument in Section 1, which is of

geometrical nature, shows that S′E is empty if N is sufficiently large; however, it crucially uses

the fact that the modular parametrization X1(N)→ E is defined over Q.

Finally, here are several questions to which I don’t know the answer.

Question 11. — Let E/Q be an elliptic curve of condutor N . Assume E can be parametrized

by modular units of some level N ′ (not necessarily equal to N). Then we have a non-constant

morphism X1(N ′) → E and N must divide N ′. Does it necessarily follow that E admits a

parametrization by modular units of level N? In other words, does it make a difference if we
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allow modular units of arbitrary level in Definition 1? Similarly, does it make a difference if we

replace Y1(N) by Y (N) or Y (N ′) in Definition 1?

Question 12. — Does it make a difference if we allow the function field of E to be generated

by more than two modular units in Definition 1?

Question 13. — What about elliptic curves over C? It is not hard to show that if E/C can

be parametrized by modular functions, then E must be defined over Q. In fact, by the proof

of Serre’s conjecture due to Khare and Wintenberger, it is known that the elliptic curves over

Q which can be parametrized by modular functions are precisely the Q-curves [7]. Which

Q-curves can be parametrized by modular units?

Question 14. — It is conjectured in [1] that only finitely many smooth projective curves over

Q of given genus g ≥ 2 can be parametrized by modular functions. Is it possible to prove, at

least, that only finitely many smooth projective curves over Q of given genus g ≥ 2 can be

parametrized by modular units?

Question 15. — According to [1], there are exactly 213 curves of genus 2 over Q which are

new and modular, and they can be explicitly listed. Which of them can be parametrized by

modular units?

Question 16. — Let u and v be two multiplicatively independent modular units on Y1(N).

Assume that u and v do not come from modular units of lower level. Can we find a lower bound

for the genus of the function field generated by u and v?
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