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The elliptic polylogarithm I and II

David Blottière and François Brunault

Introduction

The aim of these two talks is to introduce an elliptic analogue of Zagier’s con-
jecture. We follow the article of J. Wildeshaus [W3].

In the first one, we define a formalism for an elliptic polylogarithm in a general
setting. Then we prove that such an elliptic polylogarithm exists in the context of
admissible and graded polarizable variations of mixed Hodge structures (VMHS).
After having explained the notion of polylogarithm value at torsion points of a com-
plex elliptic curve, we give an expression for this in terms of Eisenstein-Kronecker
series.

In the second talk, we state an elliptic analogue of Zagier’s conjecture. Broadly
speaking, it gives a recipe for contructing nonzero elements in specific motivic
cohomology groups attached to an elliptic curve, and predicts that their images
under Beilinson’s regulator are polylogarithms. We explain how this is implied by
the existence of a suitable category of smooth motivic sheaves, admitting amongst
other things the formalism of an elliptic polylogarithm.

1. The elliptic polylogarithm I - Hodge realization

1.1. A formalism for an elliptic polylogarithm. In this section, we define
the notion of a formalism for an elliptic polylogarithm as a system of data which
satisfies seven axioms. We note that there is another but equivalent way to define
the elliptic polylogarithm in the l-adic or Hodge context (e.g. [Ki2, 1.1]). Our
approach is useful for discussing Zagier’s conjecture for elliptic curves.

We fix some data. Let S be a connected base scheme and F a field of character-
istic 0. For each quasi projective and smooth scheme B over S, we have a F -linear
abelian category T (B) with an associative, commutative and unitary (we write
F (0) for the neutral element) tensor product, such that B 7→ T (B) is natural in a
contravariant way.

These data satisfy the following seven axioms.

(A) For B connected, T (B) is a neutral abelian F -linear Tannakian category
and for f : B1 → B2, f

∗ : T (B2) → T (B1) is exact.
(B) T (B) is a tensor category with weights ([W3, Def. 2.4]).
(C) There is an object F (1) of rank 1 and weight -2 in T (S). For a scheme

B over S, we still denote by F (1) the pullback of F (1) by the structural
morphism of B. For V ∈ T (B), V (1) := V ⊗ F (1).

(D) For any elliptic curve π : E → B, there exist an object R1π∗F of rank 2

and weight 1 in T (B), and an isomorphism ∪π :
2

Λ R1π∗F
∼
→ F (−1) (the

dual of F (1)) compatible with base change.
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(E) For any elliptic curve π : E → B, we have a morphism [ ] : E(B) ⊗Z F →
Ext1T (B)(F (0), R1π∗F (1)).

(F) For any elliptic curve π : E → B, form the base change
pr1 : E ×B E → E , and consider [∆] ∈ Ext1T (E)(F (0), π∗R1π∗F (1)) and

SymN−1[∆]. (SymN−1[∆])N≥1 forms a projective system (the transition
morphisms are induced by [∆] → F (0)), the logarithmic pro-sheaf Log on
E . Moreover there exists a projective system (the (small) polylogarithmic
extension)

Pol = (PolN)N∈N ∈ lim
←−

N∈N

Ext1
T (eE)

(π∗R1π∗F (1)|eE , SymN−1[∆](1)|eE)

where Ẽ is the complement of the zero section in E , such that

Pol1 ∈ Ext1
T (eE)

(F (0), (π∗R1π∗F (1)|eE)∨(1))

coincides with the pushout of [∆]|eE under the isomorphism induced by ∪π ,

R1π∗F (1)|eE

∼
→ (R1π∗F (1)|eE)∨(1), v 7→ ∪π(v, ).

(G) Let ψ : E1 → E2 be an isogeny between two elliptic curves over B. Then
ψ∗LogE2

= LogE1
.

1.2. An elliptic polylogarithm for VMHS. We consider the following data.
Let S := Spec(C), F = Q or R, T (B) := VMHSF (B). Then f : B1 → B2 induces
f∗ : VMHSF (B2) → VMHSF (B1) given by the pullback at the level of local sys-
tems. We explain briefly why the axioms (A) - (G) are fulfilled in this setting.

(A) Let b ∈ B(C). To V ∈ VMHSF (B), one associates Vb, where V is the local
system underlying to V. This defines a fibre functor.

(B) V ∈ VMHSF (B) has a weight filtration compatible with ⊗.
(C) F (1) ∈ MHSF is first Tate’s twist.
(D) Consider the (topological) first higher direct image under π of the constant

sheaf F on E(C). Its fibre at b ∈ B(C) is H1(Eb(C), F ). By classical Hodge
theory, H1(Eb(C), F ) is equipped with a pure Hodge structure of weight
1. The collection (H1(Eb(C), F ))b∈B(C) forms an object of VMHSF (B) of

rank 2 and weight 1 which is, by definition, R1π∗F . ∪π is induced by the
fibrewise cup product.

(E) The map [ ] is constructed by using Saito’s theory of mixed Hodge modules
([W3, 3.2]).

(F) Let π̃ : Ẽ → B be the restriction of π to Ẽ . A fundamental property ([Ki2,
Prop. 1.1.3 b)]) of the Log pro-sheaf is

Rnπ̃∗ Log =

{ ∏
k>0

Symk(R1π∗F (1)) (−1) if n = 1

0 else.

Now, the Leray spectral sequence for RHom((R1π∗F (1)), ) o Rπ̃∗ and
weight considerations give an isomorphism :
Res : Ext1eE(π̃∗R1π∗F (1), R1π̃∗ Log(1))

∼
→ HomB(R1π∗F (1), R1π∗F (1)).
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We define Pol by Res(Pol) = Id. The compatibility between Pol1 and
[∆] is satisfied ([W2, Prop. 2.4, Prop. 2.5]).

(G) For the compatibility of Log with respect to isogenies, we refer to [BL,
1.2.10.(vi)].

Remark 1. : The fibre of Log at x ∈ Ẽ(C) can be described in terms of relative
homology groups ([Le, 2.4.4]).

1.3. Values of the polylogarithm at torsion points (real coefficients).
Let (E/C, 0) be an elliptic curve over C, x a nonzero torsion point of E and
F = R. In this context, R1π∗F (1) = H1(E(C),R)(1) =: H1. First, we pre-
cise the notion of value of the polylogarithm at x. It is obvious that 0∗Log =∏
k≥0

SymkH1. Using (G), we prove x∗Log =
∏

k≥0

SymkH1. So x∗Pol lies in

Ext1MHSR
(R(0),

∏
k≥0

SymkH1 ⊗H∨
1 (1)). The k-th value of Pol at x, [x∗Pol]k, is

the pushout of x∗Pol under the composition of the contraction map∏
k≥0

SymkH1 ⊗H∨
1 (1) →

∏
k≥0

Symk−1H1(1) with the projection on the (k− 2)-th

factor. So [x∗Pol]k ∈ Ext1MHSR
(R(0), Symk−2H1 (1)).

Let V ∈ MHSR, V of weight ≤ −1. Then we have an isomorphism

V ⊗ R(−1)
∼
→ V C/V

∼
→ Ext1MHSR

(R(0), V )

which associates to h ∈ V ⊗ R(−1) ⊂ V C the following 1-extension : we put the di-
agonal weight and Hodge filtrations on C⊕V C and we take < 1−h, V >R⊂ C⊕V C

as real structure. Applying this result to V = Symk−2H1 (1) one identifies

Symk−2H1 and Ext1MHSR
(R(0), Symk−2H1(1)).

Now, we introduce the Eisenstein-Kronecker series. Fix an isomorphism η :
E(C) → C/L where L is a lattice in C and let ω(L) := η∗dz. Recall the definition
of the Pontryagin product : (z, γ)L = exp(π.V ol(L)−1.(zγ−zγ)), z ∈ C/L, γ ∈ L.
The Eisenstein-Kronecker series Ka,b,L : C − L→ C, for a, b ≥ 1 is defined by

Ka,b,L(z) :=
∑

γ∈L−{0}

(z, γ)L

γaγb
.

We are now able to give an explicit formula for [x∗Pol]k viewed as an element of

Symk−2H1.

Theorem. [W2, Prop. 1.3, Cor. 4.10 (a)]

(1) For k ≥ 2, GE,k(x) :=
∑

a+b=k−2

Ka+1,b+1,L(η(x)) ω(L)aω(L)
b
, which is an

element of Symk−2H1C, lies actually in Symk−2H1 and does not depend
on any choice.

(2) [x∗Pol]k = GE,k(x).
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2. The elliptic polylogarithm II - Zagier’s conjecture

We begin by stating the so-called weak version of Zagier’s conjecture for elliptic
curves. It is of inductive nature : there is a statement for each k ≥ 2, and the k-th
step can only be formulated if all previous steps are true.

We will use the following notation for motivic cohomology. For any scheme X
and any integers i, j ∈ Z, we put

H i
M(X,Q(j)) := K

(j)
2j−i(X),

the j-th Adams eigenspace of Quillen’s K-group tensorized with Q.

Let K be a number field and B a smooth, quasi-projective, connected scheme
over K or OK . Let π : E → B be an elliptic curve. For any integer k ≥ 2, we wish
to construct explicit elements in

Hk−1
M (E(k−2),Q(k − 1))sgn,

where E(k−2) := ker(
∑

: Ek−1 → E) and the subscript (·)sgn denotes the signature-

eigenspace determined by the action of the symmetric group Sk−1 on E(k−2).

For any k ≥ 1, let L]
k be the Q-vector space with basis elements ({s}]

k, s ∈
E(B), s 6= 0). Let

φ1 : L]
1 → E(B) ⊗Z Q

{s}]
1 7→ s⊗ 1.

Put L1 := L]
1/ kerφ1

∼= E(B) ⊗Z Q and define {s}1 := class of {s}]
1 = s⊗ 1.

Conjecture. There exist quotients Lk of L]
k (for all k ≥ 2) with the following

properties. Denoting the class of {s}]
k in Lk by {s}k, we define the differential

dk : L]
k → Lk−1 ⊗Q L1

{s}]
k 7→ {s}k−1 ⊗ {s}1.

Then there exists a homomorphism

φk : ker dk → Hk−1
M (E(k−2),Q(k − 1))sgn

such that

(1) φk is compatible with base change B′ → B and with isogenies ψ : E1 → E2

satisfying kerψ ⊂ E1(B).
(2) (B = SpecK). Let r∞ be the regulator of Deligne and Beilinson
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r∞ : Hk−1
M (E(k−2),Q(k − 1))sgn →

(
⊕

σ:K↪→C

Symk−2H1
B(Eσ(C),R(1))

)+

,

where H1
B indicates Betti cohomology and (·)+ denotes the fixed subspace

for the complex conjugation acting both on the set {σ : K ↪→ C} and on
the coefficients R(1). Then

r∞(φk(S)) =
(
GEσ(C),k(Sσ)

)
σ

for all S ∈ ker dk,

where GEσ(C),k(Sσ) is defined by linearity.
(3) (B = SpecK). This condition, which we do not give explicitely here, is

an integrality criterion. It gives a necessary and sufficient condition on
S ∈ ker dk in order that φk(S) belongs to the integral subspace of motivic
cohomology (this Q-subspace is defined using the Néron model of E).

If the conjecture at step k is true, define Lk := L]
k/ kerφk and go to step k+ 1.

Remark 2. Condition (2) ensures that the homomorphism φk isn’t trivial.

Remark 3. If s ∈ E(B) is a nonzero torsion point of E, then {s}]
k belongs to

ker dk, as it can be seen from the definition of L1. Thus (rational) torsion points
of E always yield elements of the motivic cohomology group of interest.

Remark 4. We have the following chain of inclusions

kerφk ⊂ ker dk ⊂ L]
k.

The group on the left should come from the functional equations of the elliptic poly-
logarithm. The quotient ker dk/ kerφk can be identified, via φk, with a subspace

of Hk−1
M (E(k−2),Q(k − 1))sgn. This subspace is strict in general (there are elliptic

curves with trivial Mordell-Weil group).

We now briefly indicate how the formalism of an elliptic polylogarithm allows
us to interpret the conjecture in a convenient way.

By Jannsen’s lemma [Ja, Lemma 9.2], the target space of the regulator map r∞
is given by the (·)+ part of the following 1-extension group

Ext1VMHS(B)(R(0), Symk−2V2,R(1))

where V2,R := R1π∗R(1) is pure of weight -1 and rank 2. We hope that the motivic

cohomology groups we are interested in are described by similar Ext1-groups in
a suitable category T (B) of smooth motivic sheaves over B. More precisely, we
require that

(1) T (B) satisfies axioms (A) - (G).
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(2) Put V2 := R1π∗Q(1). Then, there is a canonical isomorphism

Ext1T (B)(Q(0), Symk−2V2(1)) ∼= Hk−1
M (E(k−2),Q(k − 1))sgn

which is compatible with base change B′ → B and with isogenies E1 → E2.
(3) There is an (exact) Hodge realization T (B) → VMHS(B ⊗Q C) which is

compatible with axioms (A) - (G) and with r∞.

Since we work in a category with the formalism of an elliptic polylogarithm,

we use the existence of Pol ∈ T (Ẽ) to construct the map φk. For any section
s ∈ E(B), s 6= 0, we consider s∗Pol ∈ T (B). Using the Tannakian formalism,
it turns out that suitable formal linear combinations of s∗Pol (varying s) yield

extensions in Ext1T (B)(Q(0), Symk−2V2(1)). In order to carry out this task, one
considers the graded Q-vector space underlying s∗Pol. It is equipped with a Lie
algbera representation which can be described by a pro-matrix. The coefficients
of the latter give the desired extensions.

Thus the existence of a “good” category of smooth motivic sheaves implies the
elliptic Zagier conjecture. For the details we refer to [W3].

Finally we give the known results on the conjecture. We restrict to the case
where E is an elliptic curve defined over a number field K. In the case k = 2, the
weak version of Zagier’s conjecture is already proved in [W3]. In the case k = 3
and K = Q, it has been proved by Goncharov and Levin [GL], together with a
certain surjectivity property of φk. In the case where k = 3 and K is any number
field, the conjecture and the surjectivity property have been proved by Rolshausen
and Schappacher [RS].
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