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FRANÇOIS BR U N A U L T (*)

Zagier’s conjectures on special values of L-functions (**)

I’ll use the following notations through the text. For any set X , the free abe-
lian group with basis X will be denoted by Z[X]. I’ll also use the symbol AQ* to
express the fact that two numbers equal up to a multiplicative factor in Q*.

1 - Number fields

Let F be a number field and OF be the ring of integers of F . Let
s 1 , s 2 , R , s r112r2

be the embeddings of F into C (with r1 12r2 4 [F : Q]), such
that s 1 , s 2 , R , s r1

are real and s r111 , R , s r11r2
are nonreal and pairwise ine-

quivalent under complex conjugation. Let D F be the discriminant of F .
Let z F (s) be the Dedekind zeta function of F , that is

z F (s) 4 !
I% OF

( NI)2s (D(s) D1) ,(1)

where the sum is taken over all nonzero ideals I of OF , and NI4N OF /IN is the
norm of the ideal I . We wish to investigate the special values of z F (s) at s4m ,
where m is an integer F2. We start with the case m42.

D e f i n i t i o n 1 (The classical polylogarithm function). For any integer kF1,
the k-th polylogarithm function Lik is defined by

Lik (z) 4 !
nF1

z n

n k
(z�C , NzNE1) .(2)
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The function Lik can be extended to a multivalued function on C0]0, 1(. This
means that Lik can be defined (at least) on the universal covering of C0]0, 1(. We
have for example

Li2 (z) 4Li2g 1

2
h2�

g

log (12z)

z
dz (z�C0]0, 1() ,(3)

which depends on a continuous path g from
1

2
to z in C0]0, 1(. We now define

the Bloch-Wigner function, a single-valued version of Li2 .

D e f i n i t i o n 2 (The Bloch-Wigner function). Let D be the function defined by

D : P1 (C) K

z O

R

.
/
´

4(Li2 (z) )1 logNzNarg (12z)

0

if z� ]0, 1 , Q(

if z� ]0, 1 , Q(,

(4)

where Li2 (z) (resp. arg(12z) ) is defined using (2) (resp. using the principal
branch of the logarithm) for NzNE1.

It can be checked that D is indeed single-valued. It is easy to see that D is
continuous on P1 (C) and real-analytic on C0]0, 1(. The function D has many in-
teresting properties, among which

D(z) 4D g 1

z
h4D(12z) 42D(z) (z�P1 (C) ) .(5)

By linearity, the function D extends to a homomorphism D : Z[P1 (C) ] KR ,
where Z[P1 (C) ] is the group of divisors on P1 (C).

Now comes an algebraic construction. For any field K , we define following
Bloch and Suslin an abelian group B(K) called the Bloch group of K . In order to
do this we consider the free abelian group Z[K *] on K * and we put [0] 4 [Q]
40 in Z[K *]. Let b be the map

b : Z[K *] K

[x] O

(K *RZ K *)7Z Z k 1

2
l

.
/
´

xR (12x)

0

if xc1

if x41 .

(6)
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Define subgroups A(K) and C(K) of Z[K *] by

A(K) 4ker b ,(7)

(8) C(K)4o[x]1[y]1k 12x

12xy
l1[12xy]1k 12y

12xy
l , (x , y) �K 2 0](1 , 1 )(p .

We can check that C(K) % A(K).

D e f i n i t i o n 3 (The Bloch group). For any field K , let B(K) be the abelian
group defined by

B(K) 4
A(K)

C(K)
.(9)

The following proposition can be seen as a functional equation for the Bloch-
Wigner function D . It is a consequence of the classical 5-term functional equation
of Li2 , which is known since the nineteenth century [O], p. 10.

P r o p o s i t i o n 4. In the case K4C , we have D(C(C) ) 40.

Proposition 4 can be proved by differentiation. Now we return to the special
case of a number field F . We define a dilogarithmic map on the Bloch group B(F)
as follows.

D e f i n i t i o n 5 (The map DF). Let DF be the homomorphism defined by

DF : B(F) K

[x] O

Rr2

(D(s r11 i (x) ) )1 G iGr2
.

(10)

The map DF is well-defined thanks to Proposition 4. Note that we use only the
nonreal embeddings of F (the relation D(z)42D(z) implies that D vanishes on R).

The fundamental theorem is the following.

T h e o r e m 6. Let F be a number field. The kernel of DF is the finite sub-
group B(F)tors of torsion elements in B(F). The image DF (B(F) ) is a full lattice
of Rr2 whose covolume equals up to a nonzero rational factor

z F (2)ND FN1/2

p 2(r11r2 )
.(11)
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C o r o l l a r y 7 (Zagier’s conjecture for z F (2)). For any number field F , the-
re exists a family of divisors x1 , x2 , R , xr2

�Z[F *] such that

z F (2) AQ*
p 2(r11r2 )

ND FN1/2
det (D(s r11 i (xj ) ))1 G iGr2

1 G jGr2

.(12)

Note that Theorem 6 also implies that for any family of divisors x1 , x2 , R , xr2

� A(F), we have

p 2(r11r2 )

ND FN1/2
det (D(s r11 i (xj ) ))1 G iGr2

1 G jGr2

�Q Qz F (2) .(13)

It is not clear who proved Theorem 6. The main ingredient of the proof is the con-
struction of a homomorphism f F : B(F) KK3 (F) fitting the following diagram

(14)

where K3 (F) is Quillen’s K-group and rBorel denotes Borel’s regulator.
Bloch first constructed a map f F : B(F) KK3 (F) (see [Bl2], Section 7.2). Then

Suslin proved that f F has finite kernel and cokernel (see [Su1], [Su2]). It is not
clear to me who proved the commutativity of the diagram (14) (but see the ideas
in [Bl2], Section 5.1, Section 7.4). According to Borel’s theorem, the kernel of rBorel

is the finite group K3 (F)tors , and the image of rBorel is a full lattice of Rr2 whose co-
volume is proportional to (11). Putting everything together yields Theorem 6. For
another proof of the theorem, we refer to [Go3], Theorem 2.1, p. 250.

Zagier [Z] gave a beautiful conjectural generalization of Theorem 6 to the case
of z F (m) where m is any integer F2. In analogy with the case m42, Zagier
constructed subgroups

Cm (F) % Am (F) %Z[F *] .(15)

He defined the m-th Bloch group of F as

Bm (F) 4
Am (F)

Cm (F)
,(16)
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together with a polylogarithmic map Pm , F :

Pm , F : Bm (F) K
.
/
´

Rr2

Rr11r2

if m is even,

if m is odd.
(17)

His conjecture can be stated as follows.

C o n j e c t u r e 8 (Zagier’s conjecture for z F (m)). Let F be a number field
and mF2 be an even (resp. odd) integer. The kernel of Pm , F is the subgroup
Bm (F)tors of torsion elements in Bm (F). The image Pm , F (Bm (F) ) is a full lattice
of Rr2 (resp. Rr11r2) whose covolume equals up to a nonzero rational factor

z F (m)ND FN1/2

p m(r11r2 )
gresp.

z F (m)ND FN1/2

p mr2
h .(18)

Beı̆linson and Deligne (unpublished) and de Jeu [dJ] constructed a homomorphi-
sm f m , F : Bm (F) KK2m21 (F)7Z Q fitting the following commutative diagram

(19)

where K2m21 (F) is Quillen’s K-group, rBorel is Borel’s regulator, and r4r2 or r1

1r2 depending on whether m is even or odd. De Jeu also proved [dJ, Remark
5.4] that there exists an integer Nm F1 depending only on m such that
Nm f m , F (Bm (F) ) is contained in the image of K2m21 (F) in K2m21 (F)7Z Q . In
particular f m , F (Bm (F) ) is a finitely generated abelian group. Together with Bo-
rel’s theorem [Bo], this implies that the first (resp. second) part of Conjecture 8
reduces to the injectivity (resp. surjectivity) of

f m , F 7Z Q : Bm (F)7Z QKK2m21 (F)7Z Q .(20)

The injectivity of f m , F 7Z Q seems to be a difficult problem. It amounts to fin-
ding all functional equations of the polylogarithm function Pm , F . Examples of
functional equations are known only in the cases 2 GmG7. We refer to [O],
[Wo], [Ga1], [Ga2] for more details.

Now what is known about the surjectivity of f m , F 7Z Q? In the case m43,
Goncharov has proved [Go3] that f 3, F 7Z Q is surjective for any number field F
(see also [Go1], [Go2]). It should be also pointed out that for an explicitely given
number field F and a given integer mF2, the surjectivity of f m , F 7Z Q can be
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proved «by hand». It suffices indeed to find elements x1 , x2 , R , xr � Am (F) who-
se images Pm , F (x1 ), Pm , F (x2 ), R , Pm , F (xr ) �Rr are linearly independant over
R . This amounts to showing that some determinant is nonzero and therefore can
be ascertained by a finite computation. From this we can deduce a formula for
z F (m) up to a rational factor. However, proving that this rational factor is the
one suggested by the computer is hard. In fact, it relies on knowing explicitly the
rational factor occurring in Borel’s theorem (or at least, on bounding its denomi-
nator). The rational factors are predicted by the conjectures of Lichtenbaum and
Bloch-Kato.

2 - Elliptic curves

Let E be an elliptic curve which is defined over Q . We now recall the defini-
tion of the Hasse-Weil zeta function L(E , s) which is associated to E .

For any prime number p , choose a Weierstraß equation for E which is mini-
mal at p [Si], Chapter 7, § 1. Let Ep be its reduction mod p . Put ap 4p11
2NEp (Fp )N . By definition, E has good reduction at p if and only if Ep is an ellip-
tic curve over Fp . In this case we define

Lp (E , s) 4
1

12ap p 2s 1p 122s gs�C , D(s) D
1

2
h .(21)

In the other case, we have ap � ]21, 0 , 1( and we define

Lp (E , s) 4
1

12ap p 2s
(s�C , D(s) D0) .(22)

D e f i n i t i o n 9 (The Hasse-Weil zeta function of E). Let L(E , s) be the fun-
ction defined by

L(E , s) 4 »
p prime

Lp (E , s) gs�C , D(s) D
3

2
h .(23)

The infinite product defining L(E , s) converges for D(s) D
3

2
and defines the-

re an holomorphic function of s . Now it is known that L(E , s) has an holomorphic
continuation to the whole complex plane.

The elliptic analogue of the Bloch-Wigner function was discovered by Bloch
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[Bl2]. It is called the elliptic dilogarithm. In order to define it, we choose an
isomorphism

h : E(C) K
`

C

Z1tZ
,(24)

with t�C satisfying 4(t) D0. Composing h with the map z O exp (2piz) yields an
isomorphism E(C) `C* /q Z , where q is defined by q4exp (2pit).

D e f i n i t i o n 10 (The elliptic dilogarithm). Let DE be the function defined
by

DE : E(C) `

C*

q Z
K

[x] O

R

!
n�Z

D(xq n ) .

(25)

R e m a r k 11. The definition works for any elliptic curve over C but depends
on the choice of t and h . Since E is defined over R , we can make the function DE

well-defined up to sign by choosing

t4
s

g 2

v

s
g 1

v
and h : P O y s

0

P

v

s
g 1

v
z ,(26)

where (g 1 , g 2 ) is any oriented basis of H1 (E(C), Z) such that g 1 generates
H1

1 (E(C), Z), and v is any nonzero holomorphic 1-form on E(C). The sign de-
pends only on an orientation of E(R).

The series (25) defining DE converges absolutely and gives rise to a function
which is continuous on E(C) and real-analytic on E(C)0]0(. The function DE also
satisfies

DE (P) 4DE (P) DE (2P) 42DE (P) (P�E(C) )(27)

DE (nP) 4n !
Q�E[n]

DE (P1Q) (P�E(C), nF1)(28)

where E[n] denotes the subgroup of n-torsion points of E(C). By linearity, the
function DE induces a homomorphism DE : Z[E(Q) ]Gal(Q /Q) KR (this does not de-
pend on the embedding Q %KC).
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The main theorem reads as follows.

T h e o r e m 12 (Goncharov, Levin [GL]). Let E be a modular elliptic curve
defined over Q . There exists a divisor l4!

i
ni [Pi ] �Z[E(Q) ]Gal (Q /Q) such that the

following conditions are fulfilled

1. We have L(E , 2 ) AQ* pDE (l);

2. We have !
i

ni Pi
3 40 in Sym3

Z E(Q);

3. For every non-trivial absolute value v of Q, we have

!
i

ni hv (Pi )7Pi 40 in R7Z E(Q)(29)

where hv : E(Q) KR denotes the canonical local height at v [Si], Appendix C,
§ 18;

4. Last but not least, the divisor l satisfies an integrality condition at every
prime p where E has split multiplicative reduction [Wi], condition (iii) of Exam-
ples 1.11. (a), p. 376.

We refer to [ZG], pp. 605-606 for a sketch of the proof of Theorem 12. At the
bottom of [ZG], p. 606, Q[Etors ] should be replaced by Q[E] (see the example of
the curve E437A discussed in [SS]). We note that Beı̆linson’s theorem on modu-
lar curves [SS] already implies that for every modular elliptic curve E over Q ,
there is a divisor l�Z[E(Q) ]Gal (Q /Q) satisfying condition 1.

Now we let

A(E) 4 ]l�Z[E(Q) ]Gal (Q /Q) satisfying conditions 2 . , 3 . and 4 .( .(30)

Since the conditions 2., 3. and 4. are linear in l , A(E) is a subgroup of
Z[E(Q) ]Gal (Q /Q) . It is the analogue of the group A(K) defined by (7). It is possible
to define a subgroup C(E) % A(E) using the functional equations of DE (see [ZG],
p. 603). In accordance with the first section, we define the Bloch group of E by

B(E) 4
A(E)

C(E)
.

Using the minimal proper regular model of E over Z , it is possible to define a
subgroup K2 (E)Z of Quillen’s K-group K2 (E). Beı̆linson’s regulator can be seen as
a map rE : K2 (E)Z KR . Theorem 12 and results of Wildeshaus [Wi] and Rolshau-
sen and Schappacher [RS] imply the following theorem.

T h e o r e m 13. There is a homomorphism of abelian groups f E : B(E)
KK2 (E)Z 7Z Q such that
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l The following diagram commutes.

(31)

l The map f E 7Z Q : B(E)7Z QKK2 (E)Z 7Z Q is an isomorphism.

C o n j e c t u r e 14 (Zagier’s conjecture for L(E , 2 )). Let E be an elliptic curve
over Q . The kernel of DE : B(E) KR is the subgroup B(E)tors of torsion elements
in B(E). The image DE (B(E) ) is the lattice in R which is generated, up to a non-

zero rational factor, by
L(E , 2 )

p
.

Theorem 13 reduces the proof of Conjecture 14 to the proof of the following
statements.

l The analogue of Borel’s theorem holds for rE . In other words, rE 7Z R is in-
jective (note that the surjectivity of rE 7Z R follows from Beı̆linson’s theorem
[SS]).

l There is an integer NF1 such that Nf E (B(E) ) is contained in the image of
K2 (E)Z in K2 (E)Z 7Z Q (this should not be difficult to prove).

R e m a r k 15. In order to show the analogue of Borel’s theorem for
rE : K2 (E)Z KR , it suffices to show that the abelian group K2 (E)Z is of finite type
and has rank 1. This problem seems to be very difficult: it is not even known that
K2 (E)Z 7Z Q is finite-dimensional over Q .

3 - Towards a generalization

We wish to generalize the statement of Zagier’s conjecture to the case of cur-
ves of higher genus.

Let X be a smooth projective curve of genus gF1, which is defined over Q
and geometrically irreducible. It is known that the homology group H1 (X(C), Z)
is free abelian of rank 2g . Since X is defined over R , the complex conjugation c
acts on X(C) and therefore on H1 (X(C), Z). The subgroup

H1
1 (X(C), Z) 4 ]g�H1 (X(C), Z); c* g4g((32)



174 FRANÇOIS BRUNAULT [10]

is free abelian of rank g . Beı̆linson’s regulator can be seen as a map

rX : K2 (X)Z KH1
1 (X(C), R) .(33)

We’ll denote by L(H 1 (X), s) the L-function associated to the jacobian variety of X
(see [R, pp. 73-74] for the definition of the L-function associated to an abelian va-
riety over Q).

C o n j e c t u r e 16 (Beı̆linson’s conjecture for L(H 1 (X), 2 )). The image
rX (K2 (X)Z ) of Beı̆linson’s regulator is a full lattice of H1

1 (X(C), R) whose covo-
lume with respect to H1

1 (X(C), Z) equals up to a nonzero rational factor

L(H 1 (X), 2 )

p 2g
.(34)

The theory we outlined in the first two sections makes the following question
natural. Is it possible to construct an abelian group B(X) (preferably the most
explicit) and a dilogarithmic map

DX : B(X) KH1
1 (X(C), R)(35)

such that there is a commutative diagram

(36)

with the property that

f X 7Z Q : B(X)7Z QKK2 (X)Z 7Z Q(37)

is an isomorphism?
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A b s t r a c t

A conjecture of Zagier links special values of Dedekind zeta functions to special
values of polylogarithms. In this article we give a short account of recent results towards
this conjecture. We also describe its analogue for the special value L(E , 2 ), where E is an
elliptic curve over Q . Finally we discuss the possibility of replacing E by a smooth projec-
tive curve over Q .

* * *


