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FrANCOIS BRUNAULT (%)

Zagier’s conjectures on special values of L-functions (**)

T'll use the following notations through the text. For any set X, the free abe-
lian group with basis X will be denoted by Z[X]. I'll also use the symbol ~ ¢« to
express the fact that two numbers equal up to a multiplicative factor in Q%*.

1 - Number fields

Let F be a number field and Op be the ring of integers of F. Let
01,03, ..., 04 42y, be the embeddings of F' into C (with r, + 27, = [F : Q]), such
that 04, 03, ..., 0, are real and 0, 44, ..., 0, +,, are nonreal and pairwise ine-
quivalent under complex conjugation. Let 4 be the diseriminant of F'.

Let Cr(s) be the Dedekind zeta function of F', that is

@ Cr(s) = 1% (N~ (R(s)>1),

where the sum is taken over all nonzero ideals I of Oy, and NI = | Op/I| is the
norm of the ideal /. We wish to investigate the special values of  (s) at s =m,
where m is an integer =2. We start with the case m = 2.

Definition 1 (The classical polylogarithm function). For any integer k =1,
the k-th polylogarithm function Li, is defined by

@) Li,(z) = 2, z—k (zeC, |z| <1).

n=zlmn
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The function Li; can be extended to a multivalued function on C\{0, 1}. This
means that Lij, can be defined (at least) on the universal covering of C\{0, 1}. We
have for example

) Liz(z)=Liz(%)—jmdz (zeC\{0,1]),
2z

v

1
which depends on a continuous path y from > to z in C\{0, 1}. We now define

the Bloch-Wigner function, a single-valued version of Li,.
Definition 2 (The Bloch-Wigner function). Let D be the function defined by

D:PY(C)—R

4) [ S(Liy(2)) +log|z|arg(1—2z) if 2¢{0,1, o}

>

0 if z€{0,1, w},

where Liy(z) (resp. arg(1 —z)) is defined using (2) (resp. using the principal
branch of the logarithm) for |z| <1.

It can be checked that D is indeed single-valued. It is easy to see that D is
continuous on P'(C) and real-analytic on C\{0, 1}. The function D has many in-
teresting properties, among which

®) D(§)=D(l)=D(1—z)= -D(z) (zePY(C)).
2

By linearity, the function D extends to a homomorphism D : Z[P'(C)] =R,
where Z[P!(C)] is the group of divisors on P!(C).

Now comes an algebraic construction. For any field K, we define following
Bloch and Suslin an abelian group B(K) called the Bloch group of K. In order to
do this we consider the free abelian group Z[K*] on K* and we put [0] =[]
=0 in Z[K*]. Let B be the map

1
B Z[K*] > (K* Nz K*)Q,Z 3

(6) .
eN(1—x) fae=zl

0 if x=1.
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Define subgroups A(K) and C(K) of Z[K*] by

@) A(K) =kerf,

1-x 1-y

+[1—ayl+

® K= <[9C] +lyl+

], @, ) e K\, 1>}>.

We can check that C(K)c A(K).

Definition 3 (The Bloch group). For any field K, let B(K) be the abelian
group defined by

9 B(K) = A
¢ = @(K) .

The following proposition can be seen as a functional equation for the Bloch-
Wigner function D. It is a consequence of the classical 5-term functional equation
of Li,, which is known since the nineteenth century [O], p. 10.

Proposition 4. In the case K= C, we have D(C(C)) =0.

Proposition 4 can be proved by differentiation. Now we return to the special
case of a number field F'. We define a dilogarithmic map on the Bloch group B(F")
as follows.

Definition 5 (The map Dy). Let Dy be the homomorphism defined by

Dyp: B(F)—>R™

L] = (D(0,, 4 i (@)1 <i<r,

(10)

The map Dy is well-defined thanks to Proposition 4. Note that we use only the
nonreal embeddings of F' (the relation D(z) = — D(z) implies that D vanishes on R).
The fundamental theorem is the following.

Theorem 6. Let F be a number field. The kernel of Dy is the finite sub-
group B(F )i of torsion elements in B(F). The image Dp(B(F)) is a full lattice
of R™ whose covolume equals up to a nonzero rational factor

Er(2)|Ap |
2t )

(11)
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Corollary 7 (Zagier’s conjecture for ¢ (2)). For any number field F, the-
re exists a family of divisors xy, s, ..., x,, € Z[F *] such that

2(ry + 1)

(12) Lp(2) ~¢r Wdet (D(o,, i@ <izn.

<j<nr

Note that Theorem 6 also implies that for any family of divisors x;, ®s, ..., @,
e A(F'), we have

2(ry +1p)

(13) W det(D(UrlJri(xj)))%z;z:;EQ'@F(Z)-

It is not clear who proved Theorem 6. The main ingredient of the proof is the con-
struction of a homomorphism ¢ z: B(F)— K3(F) fitting the following diagram

"Borel

Ky(F) " R,
(14) ol
B

where K;(F') is Quillen’s K-group and 7g,. denotes Borel’s regulator.

Bloch first constructed a map ¢ p: B(F) — K3 (F) (see [BI2], Section 7.2). Then
Suslin proved that ¢ » has finite kernel and cokernel (see [Sul], [Su2]). It is not
clear to me who proved the commutativity of the diagram (14) (but see the ideas
in [BI12], Section 5.1, Section 7.4). According to Borel’s theorem, the kernel of g,
is the finite group Ks(F)i.s, and the image of g, is a full lattice of R whose co-
volume is proportional to (11). Putting everything together yields Theorem 6. For
another proof of the theorem, we refer to [Go3], Theorem 2.1, p. 250.

Zagier [Z] gave a beautiful conjectural generalization of Theorem 6 to the case
of {r(m) where m is any integer =2. In analogy with the case m = 2, Zagier
constructed subgroups

(15) C,(FcAa, (F)cZF*].
He defined the m-th Bloch group of F' as

a,,(F)
G?’ﬂ (F )

(16) B (F) =

’
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together with a polylogarithmic map P, g:

R™ if m is even,

a1 P, r: $m(F)_){
R if m is odd.

His conjecture can be stated as follows.

Conjecture 8 (Zagier’s conjecture for Cr(m)). Let F be a number field
and m =2 be an even (resp. odd) integer. The kernel of P,, p is the subgroup
By (Fyors Of torsion elements in B, (F). The tmage P, p(B,,(F)) is a full lattice
of R™ (resp. R™""™) whose covolume equals up to a nonzero rational factor

1/2 1/2
(18) Ep(m) |AF| (resp. Cp(m) |AF| )

m(ry +712) mry

T Ja

Beilinson and Deligne (unpublished) and de Jeu [dJ] constructed a homomorphi-
sm @, p: By (F) > Ky, —1(F) ®4Q fitting the following commutative diagram

TBorel

Koy 1(F)®,Q@ — R,

(19) (/)MYF T PW,F

By (F)

where K, _1(F) is Quillen’s K-group, 1. is Borel’s regulator, and » =1, or 7,
+ 7, depending on whether m is even or odd. De Jeu also proved [dJ, Remark
5.4] that there exists an integer N,,=1 depending only on m such that
Ny @, p(B,,(F)) is contained in the image of Ky, _(F) in Ky,,_;(I") ®zQ. In
particular ¢, »(3B,,(F)) is a finitely generated abelian group. Together with Bo-
rel’s theorem [Bo], this implies that the first (resp. second) part of Conjecture 8
reduces to the injectivity (resp. surjectivity) of

(20) ¢m,F®ZQ:$m(F)®ZQHK2m—1(F)®ZQ-

The injectivity of ¢ ,,, r ® 2@ seems to be a difficult problem. It amounts to fin-
ding all functional equations of the polylogarithm function P, p. Examples of
functional equations are known only in the cases 2 <m <7. We refer to [O],
[Wol, [Gal], [Ga2] for more details.

Now what is known about the surjectivity of ¢,, r®,@Q? In the case m =3,
Goncharov has proved [Go3] that ¢ 3 r®,@Q is surjective for any number field /'
(see also [Gol], [Go2]). It should be also pointed out that for an explicitely given
number field /' and a given integer m = 2, the surjectivity of ¢,, » ®,Q can be
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proved «by hand». It suffices indeed to find elements x;, s, ..., x,€ d,,(F) who-
se images P, p(xy), P, p(®2), ..., Py, p(x,) eR" are linearly independant over
R. This amounts to showing that some determinant is nonzero and therefore can
be ascertained by a finite computation. From this we can deduce a formula for
Cr(m) up to a rational factor. However, proving that this rational factor is the
one suggested by the computer is hard. In fact, it relies on knowing explicitly the
rational factor occurring in Borel’s theorem (or at least, on bounding its denomi-
nator). The rational factors are predicted by the conjectures of Lichtenbaum and
Bloch-Kato.

2 - Elliptic curves

Let E be an elliptic curve which is defined over @. We now recall the defini-
tion of the Hasse-Weil zeta function L(F, s) which is associated to E.

For any prime number p, choose a Weierstraf3 equation for £ which is mini-
mal at p [Si], Chapter 7, § 1. Let E, be its reduction mod p. Put a,=p+1
— |E,(F,) | . By definition, £ has good reduction at p if and only if £, is an ellip-
tic curve over F,. In this case we define

1
1—a,p *+p'~

(21) L,(E,s)= seC, N(s) > % .

2s

In the other case, we have a,e {—1,0,1} and we define

(22) L,(E,s)= ;9 (seC, N(s)>0).

— app e

Definition 9 (The Hasse-Weil zeta function of E). Let L(E, s) be the fun-
ction defined by

(23) LE,s)= [l L,(E, s) seC, N(s) > % .

p prime 2

3
The infinite product defining L(E, s) converges for Ji(s) > E and defines the-

re an holomorphic function of s. Now it is known that L(¥, s) has an holomorphic
continuation to the whole complex plane.
The elliptic analogue of the Bloch-Wigner function was discovered by Bloch
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[B12]. It is called the elliptic dilogarithm. In order to define it, we choose an
isomorphism

24 : B(C) > ,
&) 1O

with 7 e C satisfying J(r) > 0. Composing # with the map z — exp (27iz) yields an
isomorphism E(C) = C*/q?, where q is defined by q = exp (27i7).

Definition 10 (The elliptic dilogarithm). Let Dy be the function defined
by

*

Dy B = ¢

A

—R

(25)
[x] — >, D(xq").

neZ

Remark 11. The definition works for any elliptic curve over C but depends
on the choice of T and n. Since E is defined over R, we can make the function Dg
well-defined up to sign by choosing

Jo

f

w

(26) T="2 and n: P—| 22— |,
Jo
71

w
71

where (y1, y2) 18 any oriented basis of H,(E(C), Z) such that y, generates
H(EC), Z), and w is any nonzero holomorphic 1-form on E(C). The sign de-
pends only on an orientation of E(R).

The series (25) defining Dy converges absolutely and gives rise to a function
which is continuous on E(C) and real-analytic on £(C)\{0}. The function Dy also
satisfies

@7) Dy(P) =Dg(P)  Dg(—P)=—Dg(P) (PeE(C))

(28) Dg(nP) = nQ EE:[ ]DE(P +Q) PeE(lC),n=1)

where E[n] denotes the subgroup of n-torsion points of E(C). By linearity, the
function Dy induces a homomorphism Dy: Z[E(Q)]°®® — R (this does not de-
pend on the embedding @ < C).
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The main theorem reads as follows.

Theorem 12 (Goncharov, Levin [GL]). Let E be a modul_ow elliptic curve
defined over Q. There exists a diwisor 1 = X n;[P;] e ZIE@)1% QP such that the
Sfollowing conditions are fulfilled '

1. We have L(E, 2) ~ gDy (1);
2. We have 2 n; P =0 in SymyE@Q);

3. For every non-trivial absolute value v of Q, we have
(29) 2 nih,(P)®P;=0 in RQ,EQ)

where h,: E@Q) — R denotes the canonical local height at v [Sil, Appendix C,
§ 18;

4. Last but not least, the divisor [ satisfies an integrality condition at every
prime p where E has split multiplicative reduction [Wil, condition (iii) of Exam-
ples 1.11. (a), p. 376.

We refer to [ZG], pp. 605-606 for a sketch of the proof of Theorem 12. At the
bottom of [ZG], p. 606, Q[E,.] should be replaced by Q[E] (see the example of
the curve £ = 37A discussed in [SS]). We note that Beilinson’s theorem on modu-
lar curves [SS] already implies that for every modular elliptic curve £ over @,
there is a divisor [ e Z[E(@Q)]°@@ gatisfying condition 1.

Now we let

(30) AE) = {le ZIE@)]1°" @@ satisfying conditions 2., 3. and 4.}.

Since the conditions 2., 3. and 4. are linear in [, A(K) is a subgroup of
ZIE@)]%@@ Tt is the analogue of the group QA(K) defined by (7). It is possible
to define a subgroup C(£)c A(£) using the functional equations of Dy (see [ZG],

p- 603). In accordance with the first section, we define the Bloch group of E by

A(E)
BE)= ——.
C(E)
Using the minimal proper regular model of E over Z, it is possible to define a

subgroup K,(E), of Quillen’s K-group K,(E). Beilinson’s regulator can be seen as
amap r5: Ky(E);— R. Theorem 12 and results of Wildeshaus [Wi] and Rolshau-
sen and Schappacher [RS] imply the following theorem.

Theorem 13. There is a homomorphism of abelian groups ¢ g: B(E)
—K,(E),®,@Q such that
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® The following diagram commutes.

K, (E);®,Q —%R
31) o5 T
B(E)

Dg

® The map ¢ppQ,Q : B(E)Q,Q—Ky(E);Q,Q s an isomorphism.

Conjecture 14 (Zagier’s conjecture for L(E, 2)). Let E be an elliptic curve
over Q. The kernel of Dg: B(E)— R is the subgroup B(E )iy of torsion elements

m B(E). The image Dy (B(E)) is the lattice in R which is generated, up to a non-

. L(E, 2)
zero rational factor, by .
b4

Theorem 13 reduces the proof of Conjecture 14 to the proof of the following
statements.

® The analogue of Borel’s theorem holds for 7. In other words, ry ®,R is in-
jective (note that the surjectivity of 5 Q,R follows from Beilinson’s theorem
[SSD.

® There is an integer N = 1 such that N¢ 5 (B(E)) is contained in the image of
K,(E); in K,(F);®z@Q (this should not be difficult to prove).

Remark 15. In order to show the analogue of Borel’s theorem for
rg: Ko (B);— R, it suffices to show that the abelian group K,(E)y is of finite type
and has rank 1. This problem seems to be very difficult: it is not even known that
K,(E);®,Q is finite-dimensional over Q.

3 - Towards a generalization

We wish to generalize the statement of Zagier’s conjecture to the case of cur-
ves of higher genus.

Let X be a smooth projective curve of genus g =1, which is defined over Q
and geometrically irreducible. It is known that the homology group H,(X(C), Z)
is free abelian of rank 2¢. Since X is defined over R, the complex conjugation ¢
acts on X(C) and therefore on H{(X(C), Z). The subgroup

32) H" (X(C), Z) = {y e H\(X(C), Z); ¢y = v}
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is free abelian of rank g. Beilinson’s regulator can be seen as a map
(33) ry: K3 (X);— H{" (X(C), R).

We'll denote by L(H '(X), s) the L-function associated to the jacobian variety of X
(see [R, pp. 73-74] for the definition of the L-function associated to an abelian va-
riety over @).

Conjecture 16 (Beilinson’s conjecture for L(H'(X),2)). The image
ry(Ky(X)y) of Beilinson’s requlator is a full lattice of H," (X(C), R) whose covo-
lume with respect to H," (X(C), Z) equals up to a nonzero rational factor

L(H'(X), 2)

w29

(34)

The theory we outlined in the first two sections makes the following question
natural. Is it possible to construct an abelian group B(X) (preferably the most
explicit) and a dilogarithmic map

(35) Dx: B(X) —Hy" (X(0), R)
such that there is a commutative diagram
Ky(X); ®,Q—>H" (X(C), R)

(36) ox T Dy
B(X)

with the property that
(87 Px®2Q: BX)R®zQ—Kx(X)z,®,Q

is an isomorphism?
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Abstract

A conjecture of Zagier links special values of Dedekind zeta functions to special
values of polylogarithms. In this article we give a short account of recent results towards
this conjecture. We also describe its analogue for the special value L(E, 2), where E is an
elliptic curve over Q. Finally we discuss the possibility of replacing E by a smooth projec-
tive curve over Q.



