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Phase Transitions in Rotating Tank Experiments
The rotation as an ordering field (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on reversal paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another often
occur through a predictable path.
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Kramers’ Equation and Overdamped Dynamics

Langevin dynamics{
dx
dt = p
dp
dt = − dV

dx (x)−αp+
√
2αkBTη (t)

with E
(
η (t)η

(
t ′
))

= δ (t− t ′)

Kramers’ equation describes the evolution of the Probability
Density Function (PDF).
Overdamped Langevin dynamics

dx

dt
=−dV

dx
(x) +

√
2kBTη (t)

Stationary PDF:
PS (x) = Ce−

V (x)
kBT
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Kramers’ Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of Arrhenius’ law for
a bistable mechanical system with stochastic noise

dx

dt
=−dV

dx
(x) +

√
2kBTη (t) Rate : λ =

1
τ
exp
(
− ∆V

kBT

)
.
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The problem was solved by Kramers (30’). Modern approach: path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin-Wentzell, mathematicians).
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Kramers’ Problem: Kinetic Approach

dx

dt
=−dV

dx
(x) +

√
2kBTη (t) . Rate : λ =

1
τ
exp
(
− ∆V

kBT

)
.

P−1 is the probability for the particle to be in the basin of
attraction of x−1.
Time scales τi =

(
d2V
dx2 (xi )

)−1
. If λ � 1/maxi (τi ), we expect a

sequence of uncorrelated jumps (Markovian).
Then if kBT�∆V, we have for t�maxi (τi ), the kinetic eq.

dP−1
dt

= λ (1−P−1)−λP−1 = 1−2λP−1.

The transition probabilities. P(x−1,T ;x1,0) is the solution
P−1(T ) with initial conditions P1(0) = 1.

P(x−1,T ;x1,0) =
1
2

(
1− e−2λT

)
.

P(x−1,T ;x1,0) '
maxi (τi )�t�1/λ

λT =
T

τ
exp
(
− ∆V

kBT

)
.
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Gaussian White Noise

What is a Gaussian white noise?
We consider a Gaussian vector η = {ηi}0≤i≤N with zero mean
E(ηi ) = 0 and covariance E

(
ηiηj

)
= δij . Its PDF is

P(η) =
1

(2π)N/2 e−
1
2 ∑

N
i=1 η2

i

N

∏
i=1

dηi .

A Gaussian stochastic process η(t) with correlation function〈
η(t)η(t ′)

〉
= δ (t− t ′).

has a Probability Density Functional

PWN [η] = e−
1
2
∫ T
0 η2(t)dtD [η] .

The notation D [η] hides the mathematical difficulties related
to the continuous time limit.
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Probability Measure Over Paths

What is the probability for the path {x(t)}0≤t≤T , solution of

dx

dt
=−dV

dx
(x) +

√
2kBTη(x ,t).

We start from the white noise probability

PWN [η] = e−
1
2
∫ T
0 η2(t)dtD [η] .

We make a change of variables in order to get the probability
for a path {x(t)}0≤t≤T . It is

PP [x ] = e
− 1

4kBT

∫ T
0 [ẋ+ dV

dx (x)]
2

(t)dt
J [η |x ]D [x ] ,

where J [η |x ] is the Jacobian of the change of variables.
If we assume Ito convention, then J[η |x ] = 1, and

PP [x ] = e
− 1

4kBT

∫ T
0 [ẋ+ dV

dx (x)]
2
(t)dt

D [x ] .
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Path Integrals for ODE – Onsager Machlup (50’)

Path integral representation of transition probabilities:

P (xT ,T ;x0,0) =
∫ x(T )=xT

x(0)=x0
e
−AT [x]

2kBT D [x]

with AT [x] =
∫ T

0
L [x , ẋ] dt and L [x , ẋ] =

1
2

[
ẋ +

dV
dx

(x)

]2
.

The most probable path from x0 to xT is the minimizer of

AT (x0,xT ) = min
{x(t)}

{AT [x ] |x(0) = x0 and x(T ) = xT } .

We may consider the low temperature limit, using a saddle
point approximation (WKB), Then we obtain the large
deviation result

logP (xT ,T ;x0,0) ∼
kBT
∆V →0

−AT (x0,xT )

2kBT
.
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Relaxation Paths Minimize the Action

AT [x] =
∫ T

0
L [x , ẋ] dt and L [x , ẋ] =

1
2

[
ẋ +

dV
dx

(x)

]2
.

A relaxation path {xr (t)}0≤t≤T is a solution of

ẋ =−dV
dx

.

Then we see that
AT [xr ] = 0.

Interpretation: if one follows the deterministic dynamics, no noise
is needed and the cost is zero.

Because for any path AT [xr ]≥ 0, any relaxation path
minimizes the action.
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Fluctuation Paths and Instantons

The most probable path from an attractor of the system x0 to
a state x is called a fluctuation path. It solves

A∞(x0,x) = min
{x(t)}

{A∞ [x ] |x(−∞) = x0 and x(0) = x } .

When the WKB limit is justified (low temperature), most of
the paths leading to a rare fluctuation x concentrate close to
the fluctuation path. The probability to observe x is

P(x)∼ Ce−
A∞(x)
2kBT .

In bistable systems (more than one attractor), fluctuation
paths from one attractor x1 to a saddle point xs play an
important role. They lead to a change of basin of attraction.
They are called instantons. The transition rate is

P(x−1,T ;x1,0)∼ Ce
− A(x−1 ,x1)

2kBT ,

with A(x−1,x1) = min
{x(t)}

{A∞ [x] |x(−∞) = x1 and x(+∞) = xs } .
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Time Reversal and Action Symmetry

AT [x ] =
∫ T

0
L [x , ẋ ] dt with L [x , ẋ ] =

1
2

[
ẋ +

dV
dx

]2
.

We consider a path x = {x(t)}0≤t≤T and the reversed path
R [x ] = {x(T − t)}0≤t≤T . We have

L [R [x , ẋ ]] =
1
2

[
−ẋ +

dV
dx

]2
=

1
2

[
ẋ +

dV
dx

]2
−2ẋ

dV
dx

.

Then, using ẋ dVdx = d
dtV (x),

AT [R [x ]] = AT [x ] +2V (x(T ))−2V (x(0))

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Action Symmetry and Detailed Balance

We start from

P (xT ,T ;x0,0) =
∫ x(T )=xT

x(0)=x0
e−

AT [x]

2kBT D [x ] .

We perform the change of variables x → R [x ] in the path
integral. We use

AT [R [x ]] = AT [x ] +2V (x(T ))−2V (x(0))

Then

P (xT ,T ;x0,0) = e−
V (xT )

kBT +
V (x0)
kBT

∫ x(T )=x0

x(0)=xT
e−

AT [x]

2kBT D [x ] .

Using that the stationary distribution is Ps(x) = Ce−
V (x)
kBT we thus

conclude

P (xT ,T ;x0,0)PS (x0) = P (x0,T ;xT ,0)PS (xT ).

This is the statement of detailed balance.
F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Basics of instanton theory and rare events
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.)

Non-equilibrium instantons

The Overdamped Kramers’ problem
Path integral representation of transition probabilities
Time reversal symmetry, relaxation and fluctuation paths

Time Reversed Relaxation Paths Minimize the Action

We have the symmetry relation

AT [R [x ]] = AT [x ]+2V (x(T ))−2V (x(0))

We conclude that the time
reversed relaxation paths also
minimizes the action.

The minimizer of the action from an attractor of the system to
any point of its basin of attraction is the reversed of the
relaxation path.
This is an extended Onsager-Machlup relation. For time
reversible systems, the most probable way to get a fluctuation
is through the reversal of the relaxation path from this
fluctuation.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Instantons are Time Reversed Relaxation Paths

We have the symmetry relation

AT [R [x ]] = AT [x ] +2V (x(T ))−2V (x(0))

Using this equation, we can conclude that instantons are time
reversed relaxation paths from a saddle to an attractor. Then
we obtain the large deviation result

logP (x1,T ;x−1,0) ∼
kBT
∆V →0

−∆V

kBT
.

The computation of the prefactor is more tricky

P(x−1,T ;x1,0) '
t�1/λ

T

τ
exp
(
− ∆V

kBT

)
with τ = 2π

(
d2V

dx2 (x0)
d2V

dx2 (x−1)

)−1/2

.

This is the subject of Langer theory (70’), see also Caroli, Caroli, and
Roulet, J. Stat. Phys., 1981, for a computation through path integrals.
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Time Reversal and Action Symmetry: Conclusions

We consider a path x = {x(t)}0≤t≤T and its reversed path
R [x ] = {x(T − t)}0≤t≤T . We have

AT [R [x ]] = AT [x ] +2V (x(T ))−2V (x(0)).

This implies detailed balance.
This implies that the most probable path to reach a state x (a
fluctuation) is the time reversal of a relaxation path starting
from x (dissipation).
This is a generalized Onsager-Machlup relation, that explains
quite easily and naturally fluctuation-dissipation relations.
For dynamics symmetric by time reversal, instantons are time
reversed relaxation paths.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Kramers’ Equation Without the Overdamped Assumption

Langevin dynamics{
dx
dt = p
dp
dt = − dV

dx (x)−αp+
√
2αkBTη (t)

with E
(
η (t)η

(
t ′
))

= δ (t− t ′)

We note a state X = (x ,p). Transition probabilities and path
integrals:

P (XT ,T ;X0,0) =
∫ X (T )=XT

X (0)=X0
e
−AT [X ]

2kBT D [X ]

with AT [X ] =
∫ T

0
L
[
X , Ẋ

]
dt.

and L
[
X , Ẋ

]
=

{
1
2α

[
ṗ+ dV

dx (x) + αp
]2

if ẋ=p
−∞ otherwise

.
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Action Symmetry for Kramers Dynamics

Temporal symmetry of the Hamiltonian system{
dx
dt = p
dp
dt = − dV

dx (x) .

We define the involution I [(x ,p)] = (x ,−p) (velocity
inversion). The reversibility of the Hamiltonian equations
means that if X = (x(t),p(t)) is a solution, then the reversed
path Xr = I (x(T − t),p(t−T )) is also a solution.
Action symmetry: we easily check that

AT [Xr ] = AT [X ] +2V (X (T ))−2V (X (0)).

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Fluctuation Paths and Reversed Relaxation Paths

AT [Xr ] = AT [X ] +2V (X (T ))−2V (X (0)).

We need to invert the velocity in order to define the relaxation path.
F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Langevin Dynamics In a General Framework

∂q

∂ t
= F [q] (r)−α

∫
D
C (r,r′)

δG

δq(r′)
[q]dr′+

√
2αγη ,

Assumptions: i) F verifies a Liouville theorem

∇.F ≡
∫

D

δF

δq(r)
dr = 0

(
Generalization of ∇.F ≡

N

∑
i=1

∂F

∂qi
= 0

)
,

ii) The potential G is a conserved quantity of ∂q
∂ t = F [q] (r):∫

D
F [q] (r)

δG

δq(r)
[q]dr = 0.

iii) η a Gaussian process, white in time, with covariance

E
[
η(r, t)η(r′, t ′)

]
= C (r,r′)δ (t− t ′).

For most classical Langevin dynamics:

F [q] (r) = {q,H } and G = H .

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Time Reversal and Action Duality

A [q,T ] =
∫ T

0
L

[
q(t),

∂q

∂ t
(t)

]
dt, with

L

[
q,

∂q

∂ t

]
=

1
2α

∫
D

∫
D

P(r′,t)C−1(r,r′)P(r′,t)drdr′ with P(r,t)≡ ∂q

∂ t
−F [q] (r) + α

∫
D

C(r,r2)
δG

δq(r2)
[q]dr2.

Consider any involution I [q] (such that I 2 = Id). Then

A [q,T ] = Ar [qr ,T ] +2(G [q(T )]−G [q(0)]) ,

with Lr

[
q,

∂q

∂ t

]
=

1
2α

∫
D

∫
D

Pr (r′,t)C−1(r,r′)Pr (r′,t)drdr′ with Pr (r,t)≡ ∂q

∂ t
−Fr [q] (r)+α

∫
D

Cr (r,r2)
δGr

δq(r2)
[q]dr2 .

with Fr =−IoFoI , Cr = I+CI , and Gr [q] = G [I [q]] ,

where I+ is the adjoint of I for the L2 scalar product.
The action is equal, up to the potential values, to the action
of a reversed path in a conjugated dynamics.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Relaxation Paths and Fluctuation Paths

The fluctuation paths of the direct dynamics are the reversed of the
relaxation paths of the dual dynamics, and vice versa (temporal
symmetry breaking).
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Time Reversal and Action Duality: Conclusions

We consider a path q = {q(t)}0≤t≤T and its reversed path
qr = {I [q(T − t)]}0≤t≤T . We have

AT [qr ] = AT [q] +2V (q(T ))−2V (q(0)).

Transition probabilities of the direct process are related to
transition probabilities of the dual process (a generalization of
detailed balance).
This implies that the most probable path to reach a state x (a
fluctuation) is the time reversal of a relaxation path starting
from I [x ] for the dual process (dissipation).
This is a generalized Onsager-Machlup relation, that justifies
generalization of fluctuation-dissipation relations.
Instantons are the time reversed relaxation paths of the dual
process.
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Langevin Dynamics for the Quasi-Geostrophic Eq.

∂q

∂ t
= v [q−h] .∇q−α

∫
D
C (r,r′)

δG

δq(r′)
[q]dr′+

√
2αγη ,

Assumptions: i) F =−v [q−h] .∇q verifies a Liouville theorem.
ii) The potential G is a conserved quantity of ∂q

∂ t
= F [q] (r)

with
G =C + βE ,

with a Casimir functionals

Cc =
∫

D
drc(q),

and energy

E =−1
2

∫
D
dr [q−H cos(2y)]ψ =

1
2

∫
D
dr∇ψ

2.
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The Dual Quasi-Geostrophic Dynamics

For the 2D-Euler or quasi-geostrophic equations, the potential
vorticity (vorticity) fields are changed through q→−q by a
time reversal. Hence I [q] =−q.
The direct dynamics for the Quasi-Geostrophic dynamics is

∂q

∂ t
= v [q−h] .∇q,

while the dual one is

∂q

∂ t
= v [q+h] .∇q.

The dual dynamics is the one where h is replaced by −h.
The Langevin Quasi-Geostrophic dynamics does not satisfy
detailed balance. The Langevin 2D Euler dynamics satisfies
detailed balance if c(ω) =−c(ω).
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Tricritical Points
Bifurcation from a second order to a first order phase transition

a

b

4a=b

16a=3b

E

λ

2

2

Tricritical point corresponding to the normal form
s(m) =−m6-3b2 m4−3am2.
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A Quasi-Geostrophic Potential with A Tricritical Point

G = (1−ε)
1
2

∫
D

dr [q−H cos(2y)]ψ +
∫
D

dr
[
q2

2
−a4

q4

4
+a6

q6

4

]
with h(y) =H cos(2y).

There is a tricritical transition (transition from first order to
second order) close to ε = 0 and a4 = 0 for small H.
Close to the transition the stochastic dynamics can be reduced
to a two-degrees of freedom stochastic dynamics, which is a
gradient dynamics with potential

G(A,B) =−H2

3
+ε
[
A2 +B2]− 3a4

2
[
A2 +B2]2+

a6
6

γ
[
A2 +B2]3+

5π

144
a6H

2 (A2−B2)2 .
And the potential vorticity field is

q(y)' Acos(y) +B sin(y).
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The Reduced Potential

The reduced potential
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One Attractor and One Saddle

The streamfunction for one of
the attractors and the
topography (red).

A saddle.
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The Reduced Potential and the Instanton

The reduced potential and one instanton/relaxation path.
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The Instanton/Relaxation Dynamics

5 streamfunction for an instanton/relaxation path (attractor,
intermediate, saddle, intermediate, attractor).
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Quasi-Geostrophic Tricritical Point

For this turbulent dynamics, we can predict the phase diagram
(a tricritial point). For a range of parameter, we have first
order phase transitions.
Using large deviations, we can compute transition probabilities.
We can compute the transition rate between two attractors.
Most transitions concentrate close to the optimal one, it is
describe by an instanton that is easily computed.
Sufficiently close to the tricritical point, the dynamics reduces
to a two degrees of freedom stochastic dynamics.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Basics of instanton theory and rare events
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.)

Non-equilibrium instantons

Langevin dynamics with potential G
Equilibrium instantons for the quasi-geostrophic dynamics
Examples of first order phase transitions and instantons.

Bistability Between Horizontal and Vertical Parallel Flows
A further example for the 2D Navier-Stokes equations

The reduced potential and one instanton/relaxation path.
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Non-Equilibrium Phase Transitions in Real Flows
Rotating tank experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states:

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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2D Stochastic Navier-Stokes Eq. and 2D Euler Steady
States

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs

Time scale separation: magenta terms are small.
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Statistical Equilibria for the 2D-Euler Eq. (doubly periodic)

A second order phase transition.
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Non-Equilibrium Phase Transition (2D Navier–Stokes Eq.)
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫
dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7

F. Bouchet and E. Simonnet, PRL, 2009.
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The Action of the 2D Stochastic Navier-Stokes

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs with

〈
fs(x, t), fs(x′, t ′)

〉
= C (x−x′)δ (t− t ′).

S [T ,x ] =
1
2

∫ T

0
dt
∫

D
dxdx′ p(x,t)C (x−x′)p(x′,t),

with p =
∂ω

∂ t
+v.∇ω + αω−ν∆ω.

We can compute explicitly and study the stability of many
instantons (parallel flows to parallel flows, spatial white noise,
Laplacian eigenmodes, etc.).
Definition: Ck =

∫
D dxexp(ik.x)C (x). If Ck = 0 for some k,

the force is called degenerate, non-degenerate otherwise.
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An Algorithm for Action Minimization
A variational approach

We discretize action integral both in time and space (time
using the central differencing scheme, and space using
pseudo-spectral decomposition)
Fix the initial and final states throughout the minimization
Newton or quasi-Newton methods are prohibitively expensive
to implement (Hessian)
We implement a gradient method or steepest descent method:
Then iteratively minimize an initial guess (simultaneously over
space and time) in the direction of the anti-gradient:

ω
n+1 = ω

n− cn
δS(ωn)

δωn
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Instantons from Dipole to Parallel Flows
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Comparison of numerical
instantons with analytical ones
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Instantons are close to the set
of attractors

In the limit of weak forces and dissipations, instantons follows the
set of attractors of the 2D Euler equations.
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Degenerate Forces Prevent Bistability
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Order parameter : z1 =
∫
dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7.
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The 2D Stochastic Navier-Stokes Eq. and Freidlin–Wentzell
Framework

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs .

Time scale separation: magenta terms are small.
At first order, the dynamics is nearly a 2D Euler dynamics.
The flow self organizes and converges towards steady solutions
of the Euler Eq.:

v.∇ω = 0 or equivalently ω = f (ψ)

where the Stream Function ψ is given by: v = ez ×∇ψ .
It looks like an underdamped dynamics, but the right hand
side actually has an infinite number of attractors.
The 2D Navier-Stokes equations does not enter in the
Freidlin–Wentzell framework.
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The Set of Attractors of the 2D Euler Eq. is Connected
A trivial consequence of the 2D Euler equation scale invariance

∂ω

∂ t
+v.∇ω = 0

If ω(x, t) is a solution of the 2D Euler Eq., then for any λ > 0,
λω(x,λ t) is also a solution (nonlinearity is homogeneous of
degree 2).
Then any steady solutions ω is connected to zero through the
path sω(st), 0≤ s ≤ 1.
Any two steady states ω0 and ω1 are connected through a
continuous path Ω(s), 0≤ s ≤ 1 among the set of steady state.
The set of steady states of the 2D Euler equations is
connected (please see section 3.3).

F. BOUCHET, and H. TOUCHETTE, 2012, Non-classical large deviations for a
noisy system with non-isolated attractors, J. Stat. Mech., P05028.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Basics of instanton theory and rare events
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.)

Non-equilibrium instantons

Non-Eq. phase transitions - 2D Navier-Stokes Eq. (F.B., H.M., and E.S.)
Other bifurcations in turbulent flows (F.B., M.M, E.S., and J.S.)
Non classical large deviations (F.B., and H.T)

Outline
1 Basics of instanton theory and rare events

The Overdamped Kramers’ problem
Path integral representation of transition probabilities
Time reversal symmetry, relaxation and fluctuation paths

2 Instantons for Langevin quasi-geostrophic dynamics (F.B., J.
Laurie, and O. Zaboronski)

Langevin dynamics with potential G
Equilibrium instantons for the quasi-geostrophic dynamics
Examples of first order phase transitions and instantons.

3 Non-Equilibrium phase transitions and Instantons.
Non-Equilibrium phase transitions for the 2D Navier-Stokes
Eq. (F.B., H. Morita, and E. Simonnet)
Other bifurcations in turbulent flows (F.B., M. Mathur, E.
Simonnet, and J. Sommeria)
Non classical large deviations for models with connected
attractors (F.B. and H. Touchette)

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Basics of instanton theory and rare events
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.)

Non-equilibrium instantons

Non-Eq. phase transitions - 2D Navier-Stokes Eq. (F.B., H.M., and E.S.)
Other bifurcations in turbulent flows (F.B., M.M, E.S., and J.S.)
Non classical large deviations (F.B., and H.T)

Bistability in the 2D Navier–Stokes Eq. in a Channel
“Predicted” from equilibrium statistical mechanics

Simulations by E. Simonnet
A. VENAILLE, and F. BOUCHET, 2011, J. Stat. Phys.; M. CORVELLEC and
F. BOUCHET, 2012, condmat.
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Bistability in a Rotating Tank Experiment
Rotating tank with a single-bump topography

Bistability (hysteresis) in rotating tank experiments

M. MATHUR, and J. SOMMERIA, to be submitted to J. Geophys. Res., M.
MATHUR, J. SOMMERIA, E. SIMONNET, and F. BOUCHET, in preparation.
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Non-Equilibrium Phase Transitions for the Stochastic Vlasov
Eq.
with a theoretical prediction based on non-equilibrium kinetic theory

Time series for the order parameter for the 1D stochastic Vlasov Eq.

C. NARDINI, S. GUPTA, S. RUFFO, T. DAUXOIS, and F. BOUCHET, 2012,
J. Stat. Mech., L01002, and 2012 J. Stat. Mech., P12010.
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The Stochastic A-B Model
A toy model in order to illustrate averaging and large deviations in models with connected
attractors

A huge number of Hamiltonian PDEs have connected
attractors {

dA
dt = −AB
dB
dt = A2

A quadratic nonlinearity. Conservation of energy

E = A2 +B2

A connected set of steady states. For any B , A = 0 is an
equilibrium
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Phase Space of the A-B Model
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The Stochastic A-B Model
The limit of weak forces and dissipation

{
dA = (−AB−νA)dt +

√
νσ1dW1

dB =
(
A2−νB

)
dt +

√
νσ2dW2

Stationary measure in the limit ν → ∞
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The Typical States of the A-B Model
Averaging in the limit of weak forces and dissipation

First step of the adiabatic treatment : understand the
evolution of the rapid variable A, for a fixed value of the slow
variable B .
At first order, for small v , A is a Ornstein–Uhlenbeck process.
dA = (−AB−νA)dt +

√
νσ1dW1. Locally Gaussian :

P(A) = C (B)exp
(
−BA2

νσ2
1

)

P(A,B) = C1 exp
(
−BA2

νσ2
1

)
B

σ2
1

σ2
2

+ 1
2 exp

(
−B2

σ2
2

)
; P(E) = C1E

σ2
1

σ2
2 exp

(
−E2

σ2
2

)

A non trivial distribution
The PDF is not concentrated. The weak forces and dissipation
do not select a single equilibrium energy E .
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Classical Large Deviations
Freidlin–Wentzell theory or Onsager Machlup formalism

dx = f (x)dt +
√

νdW

Hypothesis: the deterministic dynamics has isolated attractors.
Large deviation results:

P(X )∼ exp
(
−V (X )

ν

)
to mean lim

ν→0
ν logP =−V

with V (X ) = inf
t>0

inf
{x(t)|x(0)∈0 and x(t)=X}

L [x ]

and L [x ] =
1
2

∫ t

0
ds (ẋ− f (x))2

Because of the connected attractors, the AB model does not
fulfill the hypothesis of the Freidlin–Wentzell theorems
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Non Classical Rate for the Large Deviations of the A-B
Model

Large deviation result:

P(A,B)∼ exp
(
−V (A,B)√

ν

)
to mean lim

ν→0

√
ν logP =−V

with V (A,B) = 0 if A= 0,B > 0 and V (A,B) =
2
√
2

3
(
A2 +B2)3/4 otherwise

A

B

Stable

Unstable

{s

{u
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Non Classical Large Deviations of the A-B Model
Diffusion along the connected set of unstable steady states

L [x ] =
1
2

∫ t

0
ds (ẋ− f (x))2

The action is zero for paths along the set of steady states and
along a deterministic trajectory.

-4 -2 0 2 4

-4

-2

0

2

4

A

B
Excited

Decay

Indirect

P (x = x1,t = 0;x = x2,t = T ) =
∫ x(T )=x2

x(0)=x1
D [x ]exp

(
− 1
2ν

L [x ]

)
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Non Classical Large Deviations of the A-B Model
Diffusion along the connected set of unstable steady states

lim
ν→0

√
ν logP(A,B) =−V

with V (A,B) = 0 if A= 0,B > 0 and V (A,B) =
2
√
2

3
(
A2 +B2)3/4 otherwise
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Non-Eq. Phase Transitions and Instantons: Conclusions

We predicted and observed non-equilibrium phase transitions
for the 2D Navier-Stokes equations and in experiments.
We can numerically compute instantons for simple turbulent
flows.
The 2D Navier-Stokes equations does not enter in the
Freidlin-Wentzell framework.
In the inertial limit, instantons follow the connected set of
attractors.
There is no large deviations for transitions between attractors
for non-degenerate forces (no bistability).

F. BOUCHET, and H. TOUCHETTE, 2012, Non-classical large deviations for a
noisy system with non-isolated attractors, J. Stat. Mech., P05028., F.
Bouchet, J. Laurie, E. Simonnet, and O. Zaboronski, to be submitted to PRL,
J. Laurie and F. Bouchet, to be submitted to Phys. Rev. E.
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