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Global Outline

I) Introduction to geophysical fluid dynamics and the
quasi-geostrophic model
II) Equilibrium Statistical mechanics of geostrophic turbulence
III) Non-equilibrium phase transitions, path integrals and instanton
theory
IV) Kinetic theory (stochastic averaging) of zonal jet dynamics
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Earth and Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter atmosphere
Jupiter Zonal wind (Voyager and
Cassini, from Porco et al 2003)

How to theoretically predict such a velocity profile?
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Far From Equilibrium Problems

In the previous lectures, we have discussed the dynamics of
phase transitions for turbulent flows in an equilibrium setup
(Langevin dynamics).
We have shown that those results are useful to predict
non-equilibrium phase transitions.
The dynamics of the transition, for instance the instanton, can
then be calculated (numerically, ...).
All these examples involve the dynamics of the largest scales of
the flow only (at first approximation), and the action of the
noise directly on the largest scales only.
However, this is not always the correct phenomenology. For
instance the evolution of the coherent structure may be due
cumulative effects of independent noises acting on much
smaller scales (entropic effects). This is what we will study
now.
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

where ω = (∇∧v) .ez is the vorticity, q = ω + βdy is the Potential
Vorticity (PV), fs is a random force, α is the Rayleigh friction
coefficient.
Quasi-Gestrophic models: the basic models for midlatitude
large scale turbulence.
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Outline

1 Stochastic averaging and jet formation in geostrophic turbulence.
The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

2 Inviscid relaxation of the 2D Euler equations
Irreversibility in turbulence
Large Time Asymptotics of the linearized 2D Euler Eq.
The Kolmogorov flow
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Validity of this approach, and the main technical points.

The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = νd∆ω−λω +

√
2εfs ,

where ω = (∇∧v) .ez is the vorticity, q = ω + βy is the Potential
Vorticity (PV), fs is a random Gaussian field with correlation
〈fS(x, t)fS(x′, t ′)〉= C (x−x′)δ (t− t ′), ε is the average energy input
rate, λ is the Rayleigh friction coefficient.
4 parameters: ε , λ , β and L

2 independent non-dimensional parameters: spatial scale unit
such that L = 2π, temporal scale such that the average total
energy is one.
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The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Energy Balance

dE(E )

dt
=−2λE(E )−νdE(Z ) + ε

Then, in the turbulent regime, where viscous energy
dissipation is negligible

ES(E )' ε

2λ

We will work with the time scale unit that ε

2λ
= 1.
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The Barotropic Quasi-Geostrophic Equations

The non-dimensional version of the barotropic QG equation
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

with q = ω + β ′y

The relation with the dimensional parameters is:

α = L2
√

2λ 3

ε
.

β
′ = L3β

√
2λ

ε
=

(
L

LRhines

)2

Spin up or spin down time = 1/α� 1 = jet inertial time scale.
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The 2D Stochastic Navier-Stokes Equations

∂ω

∂ t
+u.∇ω = ν∆ω +

√
νfs

Some recent mathematical results: Bricmont, Debussche,
Hairer, Kuksin, Kupiainen, Mattingly, Shirikyan, Sinai, ...

Existence of a stationary measure µν . Existence of limν→0 µν ,
In this limit, almost all trajectories are solutions of the 2D
Euler equations.

Kuksin, S. B., & Shirikyan, A. (2012). Mathematics of two-dimensional
turbulence. Cambridge University Press.

We would like to describe the invariant measure:
Is it concentrated close to steady solutions of the 2D Euler
(quasi-geostrophic) equations?
Can we describe the dynamics among these states?
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The Barotropic Quasi-Geostrophic Equations
The limit of weak forces and dissipation

The non-dimensional version of the barotropic QG equation
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

with q = ω + β ′y

Spin up or spin down time = 1/α� 1 = jet inertial time scale.
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Weak Fluctuations around Jupiter’s Zonal Jets

Jupiter’s atmosphere
Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003)

We will treat those weak fluctuations perturbatively.
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Jet Formation in the Barotropic QG Model
In the weak forces and dissipation limit
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Figure by P. Ioannou (Farrell and Ioannou)
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The Barotropic Quasi-Geostrophic Equations

At leading order, the inertial equations is an Hamiltonian
system.
Quasi-Geostrophic equations with no forces and dissipation

∂q

∂ t
+v.∇q = 0

with q = ω + β ′y .
It conserves energy

E =
1
2

∫
D

v2dx,

enstrophy, and an infinite number of Casimir invariants.
We want to use that zonal jets of the inertial dynamics are
attractors.
Orbital stability? How is this possible for Hamiltonian systems?
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Averaging out the Turbulence

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs .

P [q] is the PDF for the Potential Vorticity field q (a
functional). Fokker–Planck equation:

∂P

∂ t
=
∫

dr
δ

δq(r)

{[
v.∇q−ν∆ω + αω +

∫
dr′C (r,r′)

δ

δq(r)

]
P

}
.

Time scale separation. We decompose into slow (zonal flows)
and fast variables (eddy turbulence)

qz(y) = 〈q〉 ≡ 1
2π

∫
D
dx q(x ,y) and q(x ,y) = qz(y) +

√
αqm(x ,y).

Stochastic reduction (Van Kampen, Gardiner, ...) using the
time scale separation.
We average out the turbulent degrees of freedom.
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The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

A New Fokker–Planck Equation for the Zonal Jets
The averaged equation describes the evolution of slow variables only

R [qz ] is the PDF to observe the Zonal Potential Vorticity qz .

1
α

∂R

∂ t
=
∫
dy1

δ

δqz (y1)

{[
∂

∂y
Eqz

〈
vm,yqm

〉
+ωz (y1)−

ν

α

∂2qz
∂y2 (y1)+

+
∫
dy2Cz (y1,y2)

δ

δqz (y2)

]
R

}
.

This new Fokker–Planck equation is equivalent to the
stochastic dynamics

1
α

∂qz
∂ t

=− ∂

∂y
Eqz 〈vm,yqm〉−ωz +

ν

α

∂ 2qz
∂y2

+ηz ,

with 〈ηz(y , t)ηz(y ′, t ′)〉= Cz(y ,y ′)δ (t− t ′).
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The stochastic quasi-geostrophic equations.
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The Deterministic Part and the Quasilinear Approximation

1
α

∂qz
∂ t

= F [qz ]−ωz +
ν

α

∂ 2qz
∂y2

.

F [qz ] =− ∂

∂yEqz 〈vm,yqm〉. The average of the Reynolds stress
is over the statistics of the quasilinear inertial dynamics:

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

= fs

and
〈vm,yqm〉=

1
Ly

∫
dy Eqz [vm,yqm] .

We identify SSST by Farrell and Ioannou (JAS, 2003); quasilinear
theory by Bouchet (PRE, 2004); CE2 by Marston, Conover and
Schneider (JAS, 2008); Sreenivasan and Young (JAS, 2011).
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The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Dynamics of the Relaxation to the Averaged Zonal Flows
The turbulence has been averaged out
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Figure by P. Ioannou (Farrell and Ioannou)

Extremely efficient numerical simulation of the averaged jet
dynamics.
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The Stochastic Dynamics of the Zonal Jet
The turbulence has been averaged out

We can now go further. What is the effect of the noise term?

1
α

∂qz
∂ t

= F [qz ]−ωz +
ν

α

∂ 2qz
∂y2

+ηz .

R [qz ] is the PDF to observe the Zonal Potential Vorticity qz .

1
α

∂R

∂ t
=
∫
dy1

δ

δqz (y1)

{[
∂

∂y
Eqz

〈
vm,yqm

〉
+ωz (y1)−

ν

α

∂2qz
∂y2 (y1)+

+
∫
dy2Cz (y1,y2)

δ

δqz (y2)

]
R

}
.

This equation describes the zonal jet statistics and not only
the mean zonal flow.
This statistics can be nearly Gaussian, but can also be strongly
non-Gaussian.
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Rare Transitions in Real Flows?
Rotating tank experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states:

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)

Do multiple attractors and rare transitions exist for geostrophic
turbulence?
Theory based on non-equilibrium statistical mechanics?
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Multiple Attractors Do Exist for the Barotropic QG Model
Two attractors for the same set of parameters
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Figure by P. Ioannou (Farrell and Ioannou)

Two attractors for the mean zonal flow for one set of
parameters.
What is the dynamics for the transition? What is the rate?
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The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Work in Progress : Zonal Flow Instantons
Onsager Machlup formalism (50’). Statistical mechanics of histories

1
α

∂qz
∂ t

= F [qz ]−ωz +
ν

α

∂ 2qz
∂y2

+ηz .

Path integral representation of transition probabilities:

P(qz ,0,qz ,T ,T ) =
∫ q(T )=qz ,T

q(0)=qz ,0
D [qz ]exp(−S [qz ]) with

S [qz ]=
1
2

∫ T

0
dt
∫
dy1dy2

[
∂qz
∂ t
−F [qz ]+ωz −

ν

α

∂2qz
∂y2

]
(y1)CZ (y1,y2)

[
∂qz
∂ t
−F [qz ]+ωz −

ν

α

∂2qz
∂y2

]
(y2).

Instanton (or Freidlin-Wentzel theory): the most probable path
with fixed boundary conditions

S(qz,0,qz,T ,T ) = min
{qz |qz (0)=qz ,0 and qz (T )=qz ,T }

{S [qz ]} .
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Validity of this approach, and the main technical points.

The Real Issue was to Cope with UltraViolet Divergences
We will prove that they are no such divergences

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

= fs

We need to prove that the Gaussian process has an invariant
measure, even when ν = 0, and α = 0.
This is true because the linearized Quasi-Geostrophic or Euler
dynamics is non-normal.
g(r,r′, t) = Eqz (qm (r, t)qm (r′, t)) solves a Lyapunov equation

∂g

∂ t
+L

0(1)
U g +L

0(2)
U g = ekl +C .C . with ekl(x ,y) = ei(kx+ly)

That can be solved in terms of the linearized Hamiltonian Eq.:

gkl(r1,r2, t) =
∫ t

0
e−t1L

0
U [ekl ] (x1,y1)e−t1L

0
U [e∗kl ] (x2,y2)dt1+C.C..
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Inviscid Damping of the Linearized Hamiltonian Eq.
This proves that they are no ultraviolet divergences

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

= 0 with qm(t = 0) = qm(0)

The velocity field for the linearized Hamiltonian equation
decreases algebraically at large times

vm,x (y ,t) ∼
t→∞

vm,x ,∞ (y)

t
exp(−ikU(y)t) and vm,y (y ,t) ∼

t→∞

vm,y ,∞ (y)

t2
exp(−ikU(y)t) .

F. Bouchet and H. Morita, 2010, Physica D.

This result proves that the velocity-velocity two point
correlation functions of the Gaussian process have an
asymptotic solution independent on dissipation.
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Stat. Mech. of Zonal Jets: Conclusion

Stochastic averaging for the barotropic Quasi-Geostrophic
equation leads to a non-linear Fokker-Planck equation.
This Fokker-Planck equation predicts the Reynolds stress and
jet statistics. Related to Quasilinear theory and SSST.
For some parameters, multiple attractors are observed.
Path integral, instanton and large deviation theories can
predict rare transitions between attractor
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The Kolmogorov flow

Irreversibility in Fluid Mechanics and in Turbulence
Do we need viscosity to explain irreversible behavior of turbulent flows ?

In many fluid mechanics or turbulence textbooks, it is stated,
for example, that “Viscosity, whatever small, is necessary to
explain the irreversible behavior of turbulent flows”.
Based on “D’Alembert’s Paradox” (Euler and Lagrange
theorems) (about potential flows) and Prandtl boundary layer
analysis.
The reversibility paradox of very small Reynolds number flows.
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Irreversibility in Fluid Mechanics and in Turbulence
Do we need viscosity to explain irreversible behavior of turbulent flows?

In many fluid mechanics or turbulence textbooks, it is stated,
for example, that “Viscosity, whatever small, is necessary to
explain the irreversible behavior of turbulent flows”.
Such statements and explanations of irreversibility of turbulent
flows are misleading. More precisely, they may be right in
some cases and they actually correctly describe some of
important processes, for instance for fluid described by the
Navier-Stokes equations, but they miss the point.
Irreversibility of turbulent flows should be explained
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The 2D Euler Eq.: a Hamiltonian Reversible Dynamical
System

2D Euler equations
∂ Ω

∂ t
+V.∇Ω = 0

Vorticity Ω = (∇∧V) .ez . Ω = ∆ψ

The 2D Euler Eq. are symmetric under time reversal
symmetry:

Ω(r, t)→ Ω(r, t) and V (r, t)→−V (r,−t)

The 2D Euler Eq. has a irreversible macroscopic behavior:
relaxation of the largest scales towards equilibrium
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Nonlinear Landau Damping
Clément Mouhot, and Cédric Villani, 2010

Vlasov equation (dynamics of electrons in a plasma). µ-space
density f (x ,p, t):

∂ f

∂ t
+p

∂ f

∂x
− dV

dx

∂ f

∂p
= 0.

Hamiltonian and time reversible. A transport equation by a
non-divergent flow, like the 2D Euler equations.
Base state: a steady state f = f0 (p) . Understanding of the
linearized equation by Landau (1946)
Proof of the irreversible convergence, for large times, of f
(weak topology) and ρ (strong topology) towards
homogeneous densities (Mouhot, and Villani, 2010)
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Outline

1 Stochastic averaging and jet formation in geostrophic turbulence.
The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

2 Inviscid relaxation of the 2D Euler equations
Irreversibility in turbulence
Large Time Asymptotics of the linearized 2D Euler Eq.
The Kolmogorov flow
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The 2D Linearized Euler Eq.

2D Euler equations

∂ Ω

∂ t
+V.∇Ω = 0

Base state : a stable steady state v0 = U (y)ex , with vorticity
ω0: v0.∇ω0 = 0
The 2D Euler equation, linearized close to v0, Ω = ω0(y) + ω

and V = v +U (y)ex

∂ω

∂ t
−U ′′ (y)vy +U (y)

∂ω

∂x
= 0

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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The Case of a Constant Shear in a Channel
Easily solvable (trivial) – For pedagogical purpose

∂ω

∂ t
−U ′′ (y)vy +U (y)

∂ω

∂x
= 0

U (y) = sy . −l ≤ y ≤ l . Then ω ′0 =−U ′′ (y) = 0. A drastic
simplification.

∂ω

∂ t
+ sy

∂ω

∂x
= 0

Fourier series for the spatial variable
ω(x ,y , t) = ω (y , t)exp(ikx):

∂ω

∂ t
+ iksyω = 0 then ω(y , t) = ω(y ,0)exp(−iksyt)

The solution for the vorticity is trivial in that case

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Vorticity Evolution in the Case of Constant Shear
Deterministic evolution - The Orr mechanism - Base flow U (y) = sy

Evolution of the perturbation vorticity ω(t), advected by a constant
shear s
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Velocity Asymptotics in the Case of Constant Shear
The Orr mechanism - Base flow U (y) = sy

ω(y , t) = ω(y ,0)exp(−iksyt)

We look at the solution for the velocity v(y , t):

v(y ,t) =
∫

dy Gk(y ,y
′)ω(y ′,0)exp

(
−iksy ′t

)

We have an oscillating integral. For large times:

vx (y ,t)∼ ∼
t→∞

vx ,∞ (y)

t
exp(−iksyt) and vy (y ,t) ∼

t→∞

vy ,∞ (y)

t2
exp(−iksyt)

The velocity decreases algebraically
Orr mechanism-Case (1969)
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The Case of a Constant Shear in a Channel
Deterministic evolution - The Orr mechanism - Base flow U (y) = sy

Evolution of the perturbation kinetic energy for the transverse and
longitudinal components of the velocity v(t)

The shear acts as an effective dissipation (Phase mixing)
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Stochastic averaging for geostrophic jets
Large Time Asymptotics of the 2D Euler Eq.

Irreversibility
Large Time Asymptotics of the 2D Euler Eq.
The Kolmogorov flow

The Linearized Euler Eq. close to Shear Flows

Base flow : v0 (r) = U (y)ex . The linearized Euler equation:
∂ω

∂ t
+ ikU (y)ω−ikψU ′′ (y) = 0 (1)

with ω(x ,y , t) = ω (y , t)exp(ikx) and ω = d2ψ

dy2
−k2ψ

Laplace transform: φ (y ,c ,ε) =
∫

∞

0 dtΨ(y , t)exp(ik(c + iε)t)(
d2

dy2
−k2

)
φ − U ′′(y)

U(y)− c− iε
φ =

ω (y ,0)

ik (U(y)− c− iε)
(2)

This is the celebrated Rayleigh equation. A one century old
classical problem in fluid mechanics, applied mathematics and
mathematics. Rayleigh (1842-1919)

Large time asymptotic is related to the limit ε → 0
Singularity of the equation : critical layer U(yc) = c

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Stochastic averaging for geostrophic jets
Large Time Asymptotics of the 2D Euler Eq.

Irreversibility
Large Time Asymptotics of the 2D Euler Eq.
The Kolmogorov flow

The Linearized Euler Eq. close to Shear Flows

Base flow : v0 (r) = U (y)ex . The linearized Euler equation:
∂ω

∂ t
+ ikU (y)ω−ikψU ′′ (y) = 0 (1)

with ω(x ,y , t) = ω (y , t)exp(ikx) and ω = d2ψ

dy2
−k2ψ

Laplace transform: φ (y ,c ,ε) =
∫

∞

0 dtΨ(y , t)exp(ik(c + iε)t)(
d2

dy2
−k2

)
φ − U ′′(y)

U(y)− c− iε
φ =

ω (y ,0)

ik (U(y)− c− iε)
(2)

This is the celebrated Rayleigh equation. A one century old
classical problem in fluid mechanics, applied mathematics and
mathematics. Rayleigh (1842-1919)

Large time asymptotic is related to the limit ε → 0
Singularity of the equation : critical layer U(yc) = c

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Stochastic averaging for geostrophic jets
Large Time Asymptotics of the 2D Euler Eq.

Irreversibility
Large Time Asymptotics of the 2D Euler Eq.
The Kolmogorov flow

The Linearized Euler Eq. close to Shear Flows

Base flow : v0 (r) = U (y)ex . The linearized Euler equation:
∂ω

∂ t
+ ikU (y)ω−ikψU ′′ (y) = 0 (1)

with ω(x ,y , t) = ω (y , t)exp(ikx) and ω = d2ψ

dy2
−k2ψ

Laplace transform: φ (y ,c ,ε) =
∫

∞

0 dtΨ(y , t)exp(ik(c + iε)t)(
d2

dy2
−k2

)
φ − U ′′(y)

U(y)− c− iε
φ =

ω (y ,0)

ik (U(y)− c− iε)
(2)

This is the celebrated Rayleigh equation. A one century old
classical problem in fluid mechanics, applied mathematics and
mathematics. Rayleigh (1842-1919)

Large time asymptotic is related to the limit ε → 0
Singularity of the equation : critical layer U(yc) = c

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Stochastic averaging for geostrophic jets
Large Time Asymptotics of the 2D Euler Eq.

Irreversibility
Large Time Asymptotics of the 2D Euler Eq.
The Kolmogorov flow

Asymptotic Behavior of the Linearized Euler Eq.
Historical results

1) Base flows without stationary points: for any y , U ′(y) 6= 0
(monotonic profile)

Rayleigh (1880) Mode equation
Case (Phys. Fluid. 1960) Algebraic laws for the velocity field
in the case of constant shear (wrong)
Rosencrans and Sattinger (J. Math. Phys 1966) v =

t→0
O (1/t)

(Laplace transform tools)
Brown,Stewartson (JFM 1980), Lundgren (Phys. Fluid. 1982)
Ansatz for the asymptotic expansion, for large time
Friedlander Howard (Comm. Math. Phys. 2004)

2) Base flows with one or several stationary streamlines: U ′(y0) = 0

No results!
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Base Flows with Stationary Streamlines
Most of geophysical flows have points such that U ′ (y0) = 0

Most of geophysical jets have stationary
streamlines (they do not verify the Rayleigh or

Rayleigh-Kuo stability criteria)

Stationary streamlines: U ′(y0) = 0. Velocity extrema - No
shear - No Orr mechanism
The Case velocity asymptotics (Brown and Stewartson
asymptotic expansion) is not self-consistent
v(y ,t) =

∫
dy Gk(y ,y

′)ω(y ′,0)exp(−ikU (y)t). Stationary phase
approximation: v ∝

t→∞
C/
√
t

The analytic continuation in the Laplace method is no more
possible

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary streamlines: U ′(y0) = 0

Mathematical methods : Laplace transform and detailed
analysis of the singularities due to the critical layers and
stationary streamlines
By contrast with what was previously believed, we can deal
with the difficulty related to the stationary streamlines

Theory : a) Asymptotic oscillatory vorticity field

ω (y , t) ∼
t→∞

ω∞ (y)exp(ikU(y)t) +O

(
1
tα

)
b) DEPLETION OF THE VORTICITY PERTURBATION:
For any stationary streamline of the flow (y0 such that U ′ (y0) = 0)

ω∞ (y0) = 0

+ Prediction of the asymptotic vorticity ω∞ (y)

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Outline

1 Stochastic averaging and jet formation in geostrophic turbulence.
The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

2 Inviscid relaxation of the 2D Euler equations
Irreversibility in turbulence
Large Time Asymptotics of the linearized 2D Euler Eq.
The Kolmogorov flow
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An Example: the Kolmogorov Flow

U(y) = cos(y) in the doubly periodic domain (0,2π/δ )x (0,2π) ; δ

is the aspect ratio

Two stationary streamlines U ′(y0) = 0, for y0 = 0 or y0 = π

Usual criteria for stability (Rayleigh, Arnold) do not apply
The Kolmogorov flow is stable for δ > 1 (Lyapunov stability),
spectrally and linearly stable (easily proved)
This flow has no neutral modes

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary streamlines: depletion of the vorticity perturbation at the
stationary streamlines

Evolution of the perturbation vorticity ω(t), advected by a shear flow
U(y) = cos(y) with stationary points in y = 0 and y = π
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Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary streamlines : the velocity field

Theorem: algebraically decaying asymptotic velocity field

vx(y , t) ∼
t→∞

vx ,∞ (y)

t
exp(−ikU(y)t) (3)

vy (y , t) ∼
t→∞

vy ,∞ (y)

t2
exp(−ikU(y)t) (4)

What about stationary streamlines? They should give
contributions of order 1/t1/2 !
No contribution from the stationary streamlines thanks to the
depletion of the vorticity perturbation at stationary streamlines

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary points: the velocity field

Evolution of the perturbation velocity, components vx(t) and vy (t),
advected by a constant shear flow U(y) with stationary streamlines
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Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary streamlines : the velocity field

Evolution of the perturbation velocity, components vx(t) and vy (t),
advected by a constant shear flow U(y) with stationary streamlines

The velocity perturbation converges to zero (asymptotic stability)
even without dissipation
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Asymptotic Behavior of the Linearized Euler Eq.:
Conclusions

Asymptotically oscillating vorticity fields
Algebraic decay of the velocity field with 1/t or 1/t2 laws,
whatever the cases (except at stationary streamlines).
All cases of base flow with any type of shear have been treated
Depletion of the vorticity perturbation at the stationary
streamlines
Axisymmetric vortices should behave the same way
The perturbation converges (weak topology) towards a Young
measure
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Summary and Perspectives

Non-equilibrium statistical mechanics and large deviations can
be applied to geophysical turbulence and climate.

Ongoing projects and perspectives:
Large deviations and non-equilibrium free energies for particles
with long range interactions (with K. Gawedzki).
Microcanonical measures for the Shallow Water equations
(with M. Potters and A. Venaille) and for the 3D axisymmetric
Euler equations (with S. Thalabard).
Instantons for zonal jets in the quasi-geostrophic dynamics
(with C. Nardini, T. Tangarife and O. Zaboronski).
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