
Equilibrium statistical mechanics
Non-equilibrium phase transitions and large deviations

Stochastic averaging for geostrophic jets

Large Deviations, Instantons, and the Statistical
Mechanics of Atmosphere Jets

F. BOUCHET (CNRS) – ENS-Lyon and CNRS

January 2013 - Statistical mechanics and climate - Reading

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Equilibrium statistical mechanics
Non-equilibrium phase transitions and large deviations

Stochastic averaging for geostrophic jets

Collaborators

Equilibrium statistical mechanics of ocean jets and vortices:
A. Venaille (PHD student, now in post doc in Princeton)
Equilibrium statistical mechanics of the Great Red Spot of
Jupiter: J. Sommeria (LEGI-Coriolis, Grenoble)
Random changes of flow topology in the 2D Navier-Stokes
equations: E. Simonnet (INLN-Nice) (ANR Statocean)
Asymptotic stability and inviscid damping of the 2D-Euler
equations: H. Morita (Tokyo university) (ANR Statflow)

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Equilibrium statistical mechanics
Non-equilibrium phase transitions and large deviations

Stochastic averaging for geostrophic jets

Collaborators

Invariant measures of the 2D Euler and Vlasov equations:
M. Corvellec (PHD student, INLN Nice, CNLS Los Alamos
and ENS-Lyon)
Instantons and large deviations for the 2D Navier-Stokes
equations: J. Laurie (Post-doc ANR Statocean), O.
Zaboronski (Warwick Univ.)
Large deviations for systems with connected attractors: H.
Touchette (Queen Mary Univ, London)
Stochastic Averaging and Jet Formation in Geostrophic
Turbulence: C. Nardini and T. Tangarife (ENS-Lyon)

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Equilibrium statistical mechanics
Non-equilibrium phase transitions and large deviations

Stochastic averaging for geostrophic jets

Earth and Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter atmosphere
Jupiter Zonal wind (Voyager and
Cassini, from Porco et al 2003)

How to theoretically predict such velocity profile?
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Phase Transitions in Rotating Tank Experiments
The rotation as an ordering field (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q
∂ t

+v.∇q = ν∆ω−αω +
√
2αfs ,

where ω = (∇∧v) .ez is the vorticity, q = ω + βdy is the Potential
Vorticity (PV), fs is a random force, α is the Rayleigh friction
coefficient.
Quasi-Gestrophic models: the basic models for midlatitude
large scale turbulence.
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The 2D Stochastic-Navier-Stokes (SNS) Equations

The simplest model for two dimensional turbulence
Navier Stokes equations with random forces

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
σ fs

where ω = (∇∧v) .ez is the vorticity, fs is a random force, α is the
Rayleigh friction coefficient.
An academic model with experimental realizations (Sommeria
and Tabeling experiments, rotating tanks, magnetic flows, and
so on). Analogies with geophysical flows (Quasi Geostrophic
and Shallow Water layer models)
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Equilibrium: the 2D Euler Equations

2D Euler equations:

∂ω

∂ t
+v.∇ω = 0

Vorticity ω = (∇∧v) .ez . Stream function ψ : v = ez ×∇ψ ,
ω = ∆ψ

Conservative dynamics - Hamiltonian (non canonical) and time
reversible
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The Main Issues for Physicists

What makes the dynamics of geophysical flows so peculiar?
Why does the large scales of geophysical flows self-organize?
Can we predict the statistics of the large scales of geophysical
flows?
Can we predict phase transitions for geophysical turbulent
flows and their statistics?
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Non-Equilibrium Stat. Mech.

1 Stochastic averaging technics (kinetic theory in a stochastic
framework).

2 Large deviation for transition probabilities for rare events (through
path integrals).

3 Tools from field theory in statistical physics.
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The Main Mathematical Challenges

Can we define microcanonical measures for the 2D Euler and
Quasi-Geostrophic equations?
Are those microcanonical measures invariant measures?
Can we treat close to equilibria dynamics in the framework of
kinetic theory?
What are the properties of the kinetic equations?
Would the Freidlin-Wentzell theory generalize to the stochastic
Navier-Stokes equations?
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Large deviations and path integrals
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The microcanonical measure
Mean field - Sanov theorem
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Equilibrium: the 2D Euler Equations

2D Euler equations:

∂ω

∂ t
+v.∇ω = 0

Vorticity ω = (∇∧v) .ez . Stream function ψ : v = ez ×∇ψ ,
ω = ∆ψ

Conservative dynamics - Hamiltonian (non canonical) and time
reversible
Invariants:

Energy: E [ω] =
1
2

∫
D
d2x v2 ==−1

2

∫
D
d2x ωψ

Casimir’s functionals: Cs [ω] =
∫

D
d2x s(ω)

Vorticity distribution: D (σ) =
dA
dσ

with A(σ) =
∫
D
d2x χ{ω(x)≤σ}

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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The microcanonical measure
Mean field - Sanov theorem
Applications of equilibrium statistical mechanics

Consequences of Multiple Invariants of 2D flows I)
Multiple steady solutions – Multiple stable steady solutions

Any non degenerate minimum of a conserved quantity is a
stable steady solution (think to mechanics and energy).
Energy-Casimir functionals (Arnold 1966)
Multiple invariants imply degeneracy of steady solutions to the
2D Euler Eq.:

ω = ∆ψ = f (ψ)⇒ v.∇ω = (∇ψ×∇ω) .ez = 0

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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The microcanonical measure
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PV-Psi Relation for Jupiter’s Great Red Spot
From Dowling and Ingersoll empirical analysis (1989)
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Consequences of Multiple Invariants of 2D flows I)
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Many steady solutions of 2D Euler equations are attractors.
Degeneracy: what does select f ?
f can be predicted using classical equilibrium statistical
mechanics, or kinetic theory.
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Microstates for the 2D Euler Eq.
The case with 2 levels of vorticity (for pedagogical purpose)

We discuss the case D (σ) = 1
2δ (σ +1) + 1

2δ (σ −1),
(ω(r) ∈ {−1,1} with ± 1 values occupying equal areas).
Vorticity points on a lattice of size NxN (used for instance as
weight in a finite elements approximations of 2D fields)

XN =

{
ω =

(
ωij
)
1≤i ,j≤N | ∀i , j ωij ∈ {−1,1} ,

N2

∑
i ,j=1

ωij = 0

}
.

ω ∈ XN : microstate. XN is the set of microstates

Vorticity on a NxN lattice.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Microcanonical Measures for the 2D Euler Eq.
The case with 2 levels of vorticity (for pedagogical purpose)

Vorticity points on a lattice of size NxN

XN =

{
ω =

(
ωij
)
1≤i ,j≤N | ∀i , j ωi ,j ∈ {−1,1} ,

N2

∑
i ,j=1

ωij = 0

}
ΓN (E0,∆E) = {ω ∈ XN | E0 ≤ E [ω]≤ E0 + ∆E} , ΩN (E0,∆E) = ]{ΓN (E0,∆E)} .

Finite dimensional approximate measures : equiprobability of
all microstates with given energy

< µN (E0,∆E) , A [ω] >=
1

ΩN (E0,∆E) ∑
ω∈ΓN(E0,∆E)

A [ω] .

Microcanonical measures for the 2D Euler equations:

µ (E0) = lim
N→∞

µN(E0,∆E) and S(E0)=limN→∞

1
N2 ln(ΩN (E0,∆E)) .

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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A Typical Vorticity Field for the Microcanonical Measure
A two vorticity level case: ω ∈ {−1,1}, E = 0.6Emax , NxN = 128x128

Creutz’s algorithm: a generalization of Metropolis-Hasting’s
algorithm that samples microcanonical measures.

Vorticity field
Stream function Coarse-grained-vorticity

vs stream function
F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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How to Deal with the Microcanonical Measure

Finite dimensional approximate measures : equiprobability of
all microstates with given energy

< µN (E0,∆E) , A [ω] >=
1

ΩN (E0,∆E) ∑
ω∈ΓN(E0,∆E)

A [ω] .

Microcanonical measures for the 2D Euler equations:

µ (E0) = lim
N→∞

µN(E0,∆E) and S(E0)=limN→∞

1
N2 ln(ΩN (E0,∆E)) .

The limit N → ∞ is rather simple.
The 2D-Euler has a mean-filed behavior. The microcanonical
measure is a Young measure, with local probabilities which are
determined by maximization of a mean-field entropy. This is a
large deviations result, proven by generalization of Sanov’s
theorem.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Macrostates Through Coarse-Graining

Coarse-graining: we divide the N×N lattice into
(N/n)× (N/n) boxes (n2 sites per box).
These boxes are centered on sites (In,Jn). (I ,J) label the
boxes (0≤ I ,J ≤ N/n−1).
F±IJ is the frequency to find the value ±1 in the box (I ,J)
(F +

IJ +F−IJ = 1)

F±IJ (ω) =
1
n2 ∑

(i ,j)∈(I ,J)

δd(ωij − (±1)).

A macrostate PN =
{
p±IJ
}
0≤I ,J≤N/n−1, is the set of all

microstates
{

ωN ∈ XN
∣∣ for all I ,J, F±IJ (ωN) = p±IJ

}
.

Macrostate entropy = logarithm of the cardinal of the macrostate

SN [pN ] =
1

N2 log ]
(
PN) .

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Large Deviations for the Microcanonical Measure

The probability to observe a macrostate p is

P [p] ∼
N�n�1

eNS [p/peq ], with

S [p/peq]≡−
∫

D
dr
[
p log

(
p
peq

)
+ (1−p) log

(
1−p
1−peq

)]
.

This was obtained through a generalization of Sanov’s
theorem.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Robert-Sommeria-Miller (RSM) Theory
The most probable vorticity field (for D(σ) = 1

2δ (σ +1) + 1
2δ (σ −1))

A probabilistic description of the vorticity field ω : p (x) is the
local probability to have ω (x) = 1 at point x.
A measure of the number of microscopic field ω corresponding
to a probability p (Liouville and Sanov theorems):

Mean−field entropy : S [p]≡−
∫

D
dr [p logp+ (1−p) log(1−p)] .

The microcanonical RSM variational problem (MVP):

S(E0) = sup
{p|N [p]=1}

{
S [p] | Ē [ω] = E0

}
(MVP).

Critical points are steady solutions of the 2D Euler equations:

ω = tanh(βψ).
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S [p] | Ē [ω] = E0

}
(MVP).

Critical points are steady solutions of the 2D Euler equations:

ω = tanh(βψ).

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Equilibrium statistical mechanics
Non-equilibrium phase transitions and large deviations

Stochastic averaging for geostrophic jets

The microcanonical measure
Mean field - Sanov theorem
Applications of equilibrium statistical mechanics

Robert-Sommeria-Miller (RSM) Theory
The most probable vorticity field (for D(σ) = 1

2δ (σ +1) + 1
2δ (σ −1))

A probabilistic description of the vorticity field ω : p (x) is the
local probability to have ω (x) = 1 at point x.
A measure of the number of microscopic field ω corresponding
to a probability p (Liouville and Sanov theorems):

Mean−field entropy : S [p]≡−
∫

D
dr [p logp+ (1−p) log(1−p)] .

The microcanonical RSM variational problem (MVP):

S(E0) = sup
{p|N [p]=1}

{
S [p] | Ē [ω] = E0
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Large Deviations for the Microcanonical Measure

The probability to observe a macrostate p is

P [p] ∼
N�n�1

eNS [p/peq ], with

S [p/peq]≡−
∫

D
dr
[
p log

(
p
peq

)
+ (1−p) log

(
1−p
1−peq

)]
.

This was obtained through a generalization of Sanov’s
theorem.
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1 Equilibrium statistical mechanics
The microcanonical measure
Sanov’s theorem and the mean field variational problem
Applications of equilibrium statistical mechanics

2 Non-equilibrium phase transitions and large deviations
Random changes of flow topology in the 2D stochastic
Navier–Stokes Eq. (F. B., E. Simonnet and H. Morita)
Large deviations and path integrals
Instantons for the 2D stochastic Navier–Stokes equations
(F.B. and J. Laurie)

3 Stochastic averaging and jet formation in geostrophic turbulence
The stochastic quasi-geostrophic equations
Stochastic averaging
Bistability for zonal jet dynamics
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Great Red Spot of Jupiter
Real flow and statistical mechanics predictions (1-1/2 layer QG model)

Observation data (Voyager) Statistical equilibrium

A very good agreement. A simple model, analytic description,
from theory to observation + New predictions.
F. BOUCHET and J. SOMMERIA 2002 JFM (QG model)

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Ocean Rings (Mesoscale Ocean Vortices)
Gulf Stream rings - Agulhas rings - Meddies - etc ...

Hallberg–Gnanadesikan Chelton and co. - GRL 2007

Both cyclonic and anticyclonic rings drift westward with a
velocity β̃R2

Statistical mechanics explains the ring qualitative shape, and
their observed drifts.
A. Venaille, and F. Bouchet, JPO, 2011

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Statistical Equilibria for the 2D-Euler Eq. (torus)

A second order phase transition.

Z. Yin, D. C. Montgomery, and H. J. H. Clercx, Phys. Fluids (2003)

F. Bouchet, and E. Simonnet, PRL, (2009) (Lyapunov Schmidt
reduction, normal form analysis)

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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What about Dynamics?

Are microcanonical measures invariant measures of the 2D
Euler or Quasi-Geostrophic equations?

F. Bouchet and M. Corvellec, J. Stat. Mech. 2010, Invariant measures of
the 2D Euler and Vlasov equations.

What about weakly forced and dissipated systems?

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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2D Stochastic Navier-Stokes Eq. and 2D Euler Steady
States

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
2αfs (1)

Time scale separation: magenta terms are small.
At first order, the dynamics is nearly a 2D Euler dynamics.
The flow self organizes and converges towards steady solutions
of the Euler Eq.:

u.∇ω = 0 or equivalently ω = f (ψ)

where the Stream Function ψ is given by: u = ez ×∇ψ .

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Numerical Simulation of the 2D Stochastic NS Eq.

Very long relaxation times. 105 turnover times.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Vorticity-Streamfunction Relation

Conclusion: we are close to steady states of the Euler Eq.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Equilibrium: Conclusions

We can perform equilibrium statistical mechanics in a
completely standard way for the class of the 2D Euler eq. and
the quasi-geostrophic model class.
For the microcanonical measures (or the canonical measures),
the probability of a macrostate (a local probability to observe a
vorticity value) is given by a large deviation rate function.
The most probable macrostate verifies a mean-field variational
problem.
This is relevant for some applications (which ones ?) and give
a very good qualitative understanding of weakly forced and
dissipated systems.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Non-Equilibrium Phase Transitions in Real Flows
Rotating tank experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states:

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on reversal paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another often
occur through a predictable path

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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2D Stochastic Navier-Stokes Eq. and 2D Euler Steady
States

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs

Time scale separation: magenta terms are small.
At first order, the dynamics is nearly a 2D Euler dynamics.
The flow self organizes and converges towards steady solutions
of the Euler Eq.:

v.∇ω = 0 or equivalently ω = f (ψ)

where the Stream Function ψ is given by: v = ez ×∇ψ .
Steady states of the Euler equation will play a crucial role.
Degeneracy : what does select f ?

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Equilibrium statistical mechanics
Non-equilibrium phase transitions and large deviations

Stochastic averaging for geostrophic jets

Random change of flow topology (E.S., H.M. and F.B.)
Large deviations
Instantons for the 2D S Navier–Stokes Eq.

Steady States for the 2D-Euler Eq. (doubly periodic)

A second order phase transition.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Non-Equilibrium Phase Transition
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫

dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7

F. Bouchet and E. Simonnet, PRL, 2009.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Bistability in Rotating Tank Experiments
M. Mathur, J. Sommeria (LEGI)

Bistability (hysteresis) in rotating tank experiments

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Path Integrals And Large Deviations In Non-Equilibrium
Statistical Mechanics

Aim: Entropy and free energy are extremely useful in
equilibrium statistical mechanics: they encode all the statistics
of the system. How to compute similar quantity for out of
equilibrium systems?
Answer: Large deviations for ensembles of dynamical paths =
out of equilibrium and dynamical free energies. How to
compute these?

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Kramer’s Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of the Arrhenius law
for a bistable mechanical system with stochastic noise

dx
dt

=−dV
dx

(x) +
√
2Dη (t) Rate : λ = Aexp

(
−∆V

RT

)
with RT ∝ 2D.
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< τ > = 36.2

The problem was solved by Kramers (30’). Modern approach: path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin-Wentzell, mathematicians).
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Path Integrals for ODE – Onsager Machlup (50’)

dx
dt

= f (x) +
√
2Dη(x ,t).

Path integral representation of transition probabilities:

P(x0,xT ,T ) = P (x = x0,t = 0;x = xT ,t = T ) =
∫ x(T )=xT

x(0)=x0
D [x]exp

(
−S [T ,x]

2D

)
with S [T ,x] =

1
2

∫ T

0
dt
{

[ẋ− f (x)]2−2Df ′(x)
}
.

Instanton: the most probable path with fixed boundary
conditions

S(T ,x0,xT ) = min
x(t)
{S [T ,x ] |x(0) = x0 and x(T ) = xT } .

Saddle point approximation (WKB) gives large deviations results:

logP(x0,xT ,T ) ∼
D→0
−S(T ,x0,xT )

2D
.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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What to Do with Path Integrals ?

Solving the equations in the saddle point approximation using
theory or numerical optimization (gradient methods).
Transition rates and transition trajectories are given by minima
and minimizers of the action.
It explains why most transition trajectories concentrate close
to a single one (instanton trajectory).
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 0  2  4  6  8  10  12  14  16  18  20

x

t

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Path Integrals And Turbulence Problems

It has never been developed before
Aim: compute extremely rare but essential events like
transitions paths between attractors and transition rates
This is unfeasible using conventional tools (direct numerical
simulation)
The main issue: Is it feasible for turbulence problems? For
which class of models (in terms of complexity)?
The route to follow:

1 Determine attractors
2 Study instantons between attractors

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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The Action of the 2D Stochastic Navier-Stokes

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs with

〈
fs(x, t), fs(x′, t ′)

〉
= C (x−x′)δ (t− t ′)

S [T ,x ] =
1
2

∫ T

0
dt
∫

D
dxdx′ p(x,t)C (x−x′)p(x′,t)

with p =
∂ω

∂ t
+v.∇ω + αω−ν∆ω

We can compute explicitly and study the stability of many
instantons (parallel to parallel flows, spatial white noise,
Laplacian eigenmodes, etc.)
Definition: Ck =

∫
D dxexp(ik.x)C (x). If Ck = 0 for some k,

the force is called degenerate, non-degenerate otherwise.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Algorithm for Action Minimization
A variational approach

We discretize action integral both in time and space (time
using the central differencing scheme, and space using
pseudo-spectral decomposition)
Fix the initial and final states throughout the minimization
Newton or quasi-Newton methods are prohibitively expensive
to implement (Hessian)
We implement a gradient method or steepest descent method:
Then iteratively minimize an initial guess (simultaneously over
space and time) in the direction of the anti-gradient:

ω
n+1 = ω

n− cn
δS(ωn)

δωn

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Instanton from Dipole to Parallel Flows
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S = 40 α

Scaling of S with α shows no
large deviation

logP(ω0,ωT ,T ) ∼
α→0
−S(T ,ω0,ωT )

2α
. This is not a large number. The

stationary distribution or the transition probabilities are not
concentrated. No large deviation. No bistability.
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Degenerate Forces Prevent Bistability
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Order parameter : z1 =
∫

dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7.
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The 2D Stochastic Navier-Stokes Eq. and Freidlin–Wentzell
Framework

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs (2)

Time scale separation: magenta terms are small.
At first order, the dynamics is nearly a 2D Euler dynamics.
The flow self organizes and converges towards steady solutions
of the Euler Eq.:

v.∇ω = 0 or equivalently ω = f (ψ)

where the Stream Function ψ is given by: v = ez ×∇ψ .
It looks like an underdamped dynamics, but the right hand
side actually has attractors.
The 2D Navier-Stokes equations does not enter in the
Freidlin–Wentzell framework.
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The Set of Attractors of the 2D Euler Eq. is Connected
A trivial consequence of the 2D Euler equation scale invariance

∂ω

∂ t
+v.∇ω = 0

If ω(x, t) is a solution of the 2D Euler Eq., then for any λ > 0,
λω(x,λ t) is also a solution (nonlinearity is homogeneous of
degree 2).
Then any steady solutions ω is connected to zero through the
path sω(st), 0≤ s ≤ 1.
Any two steady states ω0 and ω1 are connected through a
continuous path Ω(s), 0≤ s ≤ 1 among the set of steady state.
The set of steady states of the 2D Euler equations is
connected.

F. BOUCHET, and H. TOUCHETTE, 2012, Non-classical large deviations for a
noisy system with non-isolated attractors, J. Stat. Mech., P05028.
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Non-Eq. Phase Transitions and Instantons: Conclusions

We predicted and observed non-equilibrium phase transitions
for the 2D Navier-Stokes equations and in experiments.
We can numerically compute instantons for simple turbulent
flows.
The 2D Navier-Stokes equations does not enter in the
Freidlin-Wentzell framework.
In the inertial limit, instantons follow the connected set of
attractors.
There is no large deviations for transitions between attractors
for non-degenerate forces (no bistability).

F. BOUCHET, and H. TOUCHETTE, 2012, Non-classical large deviations for a
noisy system with non-isolated attractors, J. Stat. Mech., P05028., F.
Bouchet, J. Laurie, E. Simonnet, and O. Zaboronski, to be submitted to PRL,
J. Laurie and F. Bouchet, to be submitted to Phys. Rev. E.
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q
∂ t

+v.∇q = ν∆ω−αω +
√
2αfs ,

where ω = (∇∧v) .ez is the vorticity, q = ω + βdy is the Potential
Vorticity (PV), fs is a random force, α is the Rayleigh friction
coefficient.
Turbulence : time scale separation.
Spin up or spin down time = 1/α� 1 = jet inertial time scale.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Averaging out the Turbulence

∂q
∂ t

+v.∇q = ν∆ω−αω +
√
2αfs .

PT [q] is the PDF for the Potential Vorticity field q (a
functional)

∂PT

∂ t
=
∫

dr
δ

δq(r)

{[
v.∇q−ν∆ω + αω +

∫
dr′C (r,r′)

δ

δq(r)

]
PT

}
.

Time scale separation. We decompose into slow (zonal flows)
and fast variables (eddy turbulence)

Q0(y) =
1
2π

∫
D
dx q and q = Q0 +

√
αδq.

Stochastic reduction (Van Kampen, Gardiner, ...) using the
time scale separation.
We average out the turbulent degrees of freedom.
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A New Fokker–Planck Equation for the Zonal Jets

PZ [Q0] is the PDF to observe the Zonal Potential Vorticity
Q0.

∂PZ
∂τ

=
∫
dy1

δ

δQ0(y1)

{[
∂

∂y
〈δvzδq〉+ Ω0(y1) +

ν

α
∆Q0(y1)+

+
∫
dy2 CZ (y1,y2)

δ

δQ0(y2)

]
PZ

}
.

This new Fokker–Planck equation is equivalent to the
stochastic dynamics

1
α

∂Q0

∂ t
=− ∂

∂y
〈δvyδq〉−Ω0−

ν

α
∆Q0 + ηz ,

with 〈ηZ (y , t)ηZ (y ′, t ′)〉= CZ (y ,y ′)δ (t− t ′).
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The Deterministic Part and the Quasilinear Approximation

1
α

∂Q0

∂ t
=−F [Q0]−Ω0−

ν

α
∆Q0.

F [Q0] =− ∂

∂y 〈δvyδq〉. The average of the Reynolds stress is
over the quasilinear dynamics statistics:

∂tδq +U(y)
∂δq
∂x

+ δvy
∂ Ω0

∂y
= ν∆δω−αδω +

√
2αfs

and
〈δvyδq〉=

1
LZ

∫
dzE [δvyδq] .

We identify SSST by Farrell and Ioannou (JAS, 2003); quasilinear
theory by Bouchet (PRE, 2004); CE2 by Marston, Conover and
Schneider (JAS, 2008); Sreenivasan and Young (JAS, 2011).
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Dynamics of the Relaxation to the Averaged Zonal Flows
The turbulence has been averaged out
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Figure by P. Ioannou (Farrell and Ioannou)

We can now go further. What is the effect of the noise term ?
1
α

∂Q0

∂ t
=−F [Q0]−Ω0−

ν

α
∆Q0 + ηz .
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Rare Transitions in Real Flows
Rotating tank experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states:

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)

Can such multiple attractors and rare transitions exists for
geostrophic turbulence?
Theory based on non-equilibrium statistical mechanics?

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Rare Transitions for the 2D Navier-Stokes Eq.
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫

dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7.

F. Bouchet and E. Simonnet, PRL, 2009.
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Multiple Attractors Do Exist for the Barotropic QG Model
Two attractors for the same set of parameters
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Figure by P. Ioannou (Farrell and Ioannou)

Two attractors for the mean zonal flow for one set of
parameters.
What is the dynamics for the transition? What is the rate?F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Work in Progress : Zonal Flow Instantons
Onsager Machlup formalism (50’). Statistical mechanics of histories

∂Q0

∂τ
=−F [Q0]−Ω0 +

ν

α
∆Q0 + ηz .

Path integral representation of transition probabilities:

P(Q0,QT ,T ) =
∫ q(T )=QT

q(0)=Q0
D [Q]exp(−S [Q]) with

S [Q] =
1
2

∫ T

0
dt
∫
dy1dy2

[
∂Q
∂t

+F [Ω] + Ω +
ν

α
∆Q

]
(y1)CZ (y1,y2)

[
∂Q
∂t

+F [Q] + Ω +
ν

α
∆Q

]
(y2).

Instanton: the most probable path with fixed boundary
conditions

S(T ,Ω0,ΩT ) = min
{ω|ω(0)=Ω0 and ω(T )=ΩT }

{S [ω]} .

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Stat. Mech. of Zonal Jets: Conclusion

Stochastic averaging for the barotropic Quasi-Geostrophic
equation leads to a non-linear Fokker-Planck equation.
This Fokker-Planck equation predicts the Reynolds stress and
jet statistics. Related to Quasilinear theory and SSST.
For some parameters, multiple attractors are observed.
Path integral, instanton and large deviations theories can
predict the rare transition between attractors.
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Summary and Perspectives

Non-equilibrium statistical mechanics and large deviations can
be applied to geophysical turbulence and climate.

Ongoing projects and perspectives:
Large deviations and non-equilibrium free energies for particles
with long range interactions (with K. Gawedzki).
Microcanonical measures for the Shallow Water equations
(with M. Potters and A. Venaille) and for the 3D axisymmetric
Euler equations (with S. Thalabard).
Instantons for zonal jets in the quasi-geostrophic dynamics
(with C. Nardini and T. Tangarife).

F. Bouchet, and A. Venaille, Physics Reports, 2012, Statistical mechanics of

two-dimensional and geophysical flows
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