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Earth and Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter’s atmosphere
Jupiter’s Zonal wind (Voyager and
Cassini, from Porco et al 2003)

How to theoretically predict such velocity profile?
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Phase Transitions in Rotating Tank Experiments
The rotation as an ordering field (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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Non-Equilibrium Stat. Mech.

1 Stochastic averaging technics (kinetic theory in a stochastic
framework).

2 Large deviation for transition probabilities for rare events (through
path integrals).

3 Tools from field theory and statistical physics.
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

where ω = (∇∧v) .ez is the vorticity, q = ω + βdy is the Potential
Vorticity (PV), fs is a random force with autocorrelation function
C (r,r′)δ (t− t ′), α is the Rayleigh friction coefficient.
Turbulence and time scale separation.
Spin up or spin down time = 1/α� 1 = jet inertial time scale.
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Weak Fluctuations around Jupiter’s Zonal Jets

Jupiter’s atmosphere
Jupiter’s Zonal wind (Voyager and
Cassini, from Porco et al 2003)

We will treat those weak perturbations perturbatively.
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Averaging out the Turbulence

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs .

P [q] is the PDF for the Potential Vorticity field q (a
functional). Fokker–Planck equation:

∂P

∂ t
=
∫

dr
δ

δq(r)

{[
v.∇q−ν∆ω + αω +

∫
dr′C (r,r′)

δ

δq(r)

]
P

}
.

Time scale separation. We decompose into slow (zonal flows)
and fast variables (eddy turbulence)

qz(y) =
1
2π

∫
D
dx q and q = qz +

√
αqm.

Stochastic reduction (Van Kampen, Gardiner, ...) using the
time scale separation.
We average out the turbulent degrees of freedom.
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A New Fokker–Planck Equation for the Zonal Jets

R [qz ] is the PDF to observe the Zonal Potential Vorticity qz .

1
α

∂R

∂ t
=
∫
dy1

δ

δqz (y1)

{[
∂

∂y

〈
vm,yqm

〉
+ωz (y1)−

ν

α

∂2qz
∂y2 (y1)+

+
∫
dy2Cz (y1,y2)

δ

δqz (y2)

]
R

}
.

This new Fokker–Planck equation is equivalent to the
stochastic dynamics

1
α

∂qz
∂ t

=− ∂

∂y
〈vm,yqm〉−ωz +

ν

α

∂ 2qz
∂y2

+ ηz ,

with 〈ηz(y , t)ηz(y ′, t ′)〉= Cz(y ,y ′)δ (t− t ′).
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The Deterministic Part and the Quasilinear Approximation

1
α

∂qz
∂ t

= F [qz ]−ωz +
ν

α

∂ 2qz
∂y2

.

F [qz ] =− ∂

∂y 〈vm,yqm〉. The average of the Reynolds stress is
over the statistics of the quasilinear dynamics:

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

= ν∆qm−αωm +
√
2αfs

and
〈vm,yqm〉=

1
Ly

∫
dy Eqz [vm,yqm] .

We identify SSST by Farrell and Ioannou (JAS, 2003); quasilinear
theory by Bouchet (PRE, 2004); CE2 by Marston, Conover and
Schneider (JAS, 2008); Sreenivasan and Young (JAS, 2011).
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Dynamics of the Relaxation to the Averaged Zonal Flows
The turbulence has been averaged out
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Figure by P. Ioannou (Farrell and Ioannou)

Extremely efficient numerical simulation of the average jet
dynamics.
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The Real Issue was to Cope with UltraViolet Divergences
We have proven that they are no such divergences

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

= ν∆qm−αωm +
√
2αfs

We need to prove that the Guassian process has an invariant
measure which is well behaved in the limit ν → 0, and α → 0.

This is true because the linearized Quasi-Geostrophic or Euler
dynamics is non-normal.
The result is based on asymptotics of the linearized equations:

vm,x (y ,t) ∼
t→∞

vm,x ,∞ (y)

t
exp(−ikU(y)t) and vm,y (y ,t) ∼

t→∞

vm,y ,∞ (y)

t2
exp(−ikU(y)t) .

F. Bouchet and H. Morita, 2010, Physica D.
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Dynamics of the Relaxation to the Averaged Zonal Flows
The turbulence has been averaged out
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Figure by P. Ioannou (Farrell and Ioannou)

We can now go further. What is the effect of the noise term?
1
α

∂qz
∂ t

= F [qz ]−ωz +
ν

α

∂ 2qz
∂y2

+ηz .
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Rare Transitions in Real Flows?
Rotating tank experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states:

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)

Can such multiple attractors and rare transitions exist for
geostrophic turbulence?
Theory based on non-equilibrium statistical mechanics?

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.
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Multiple Attractors Do Exist for the Barotropic QG Model
Two attractors for the same set of parameters

t
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Figure by P. Ioannou (Farrell and Ioannou)

Two attractors for the mean zonal flow for one set of
parameters.
What is the dynamics for the transition? What is the rate?
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Work in Progress : Zonal Flow Instantons
Onsager Machlup formalism (50’). Statistical mechanics of histories

1
α

∂qz
∂ t

= F [qz ]−ωz +
ν

α

∂ 2qz
∂y2

+ηz .

Path integral representation of transition probabilities:

P(qz ,0,qz ,T ,T ) =
∫ q(T )=qz ,T

q(0)=qz ,0
D [qz ]exp(−S [qz ]) with

S [qz ]=
1
2

∫ T

0
dt
∫
dy1dy2

[
∂qz
∂ t
−F [qz ]+ωz −

ν

α

∂2qz
∂y2

]
(y1)CZ (y1,y2)

[
∂qz
∂ t
−F [qz ]+ωz −

ν

α

∂2qz
∂y2

]
(y2).

Instanton (or Freidlin-Wentzel theory): the most probable path
with fixed boundary conditions

S(qz,0,qz,T ,T ) = min
{qz |qz (0)=qz ,0 and qz (T )=qz ,T }

{S [qz ]} .
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Stat. Mech. of Zonal Jets: Conclusion

Stochastic averaging for the barotropic Quasi-Geostrophic
equation leads to a non-linear Fokker-Planck equation.
This Fokker-Planck equation predicts the Reynolds stress and
jet statistics. Related to Quasilinear theory and SSST.
For some parameters, multiple attractors are observed.
Path integral, instanton and large deviations theories can
predict the rare transitions between attractors.
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Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on reversal paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another often
occur through a predictable path.
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Non-Equilibrium Phase Transition for the 2D Navier-Stokes
Eq., Path Integrals and Instantons
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫
dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7

F. Bouchet and E. Simonnet, PRL, 2009.
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The Action of the 2D Stochastic Navier-Stokes

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs with

〈
fs(x, t), fs(x′, t ′)

〉
= C (x−x′)δ (t− t ′).

S [T ,x ] =
1
2

∫ T

0
dt
∫

D
dxdx′ p(x,t)C (x−x′)p(x′,t),

with p =
∂ω

∂ t
+v.∇ω + αω−ν∆ω.

We can compute explicitly and study the stability of many
instantons (parallel to parallel flows, spatial white noise,
Laplacian eigenmodes, etc.).
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Instantons from Dipole to Parallel Flows
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In the limit of weak forces and dissipations, instantons follows the
set of attractors of the 2D Euler equations.
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Bistability in the 2D Navier–Stokes Eq. in a Channel
“Predicted” from equilibrium statistical mechanics

Simulations by E. Simonnet
A. VENAILLE, and F. BOUCHET, 2011, J. Stat. Phys.; M. CORVELLEC and
F. BOUCHET, 2012, condmat.

F. Bouchet CNRS–ENSL Stat. Mech. of geostrophic turbulence.



Stochastic averaging for geostrophic jets
Non-equilibrium phase transitions and large deviations

Bistability in Rotating Tank Experiments
Rotating tank with a single-bump topography

Bistability (hysteresis) in rotating tank experiments

M. MATHUR, and J. SOMMERIA, to be submitted to J. Geophys. Res., M.
MATHUR, J. SOMMERIA, E. SIMONNET, and F. BOUCHET, in preparation.
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Summary and Perspectives

Non-equilibrium statistical mechanics, field theory and large
deviations techniques can be applied to geophysical turbulence.
A theory for the statistics of jets and vortices in statistically
stationary states, and for non-equilibrium phase transitions.

Ongoing projects and perspectives:
Microcanonical measures for the Shallow Water equations
(with M. Potters and A. Venaille) and for the 3D axisymmetric
Euler equations (with S. Thalabard).
Instantons for zonal jets in the quasi-geostrophic dynamics
(with C. Nardini, T. Tangarife and O. Zaboronski).

F. Bouchet, and A. Venaille, Physics Reports, 2012, Statistical mechanics of

two-dimensional and geophysical flows
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