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Introduction

1 Equilibrium statistical mechanics
Microcanonical measures of the 2D Euler Eq.
Sanov’s theorem and the mean field variational problem

2 Applications of equilibrium statistical mechanics
Jupiter’s Great Red Spot (F.B. and J. Sommeria)
Equilibrium statistical mechanics of large scale ocean
dynamics (A. Venaille and F.B.)

3 Young measures and invariant measures to the 2D Euler
equations

How to prove the invariance of the microcanonical measure ?
Invariant Young measures (F.B. and Marianne C.)
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Statistical Mechanics for 2D and Geophysical Flows

Equilibrium mechanics is not relevant for turbulent flows,
except for few exceptions
2D-Euler or some classes of models for geophysical flows are
proper conservative systems (no anomalous dissipation of
energy)
Statistical equilibrium: A very old idea, some famous contributions
Onsager (1949), Joyce and Montgomery (1970), Caglioti
Marchioro Pulvirenti Lions (1990), Robert (1990), Miller
(1990), Robert et Sommeria (1991), Eyink and Spohn (1994),
Kiessling and Lebowitz (1994), Bodineau and Guionnet
(1999), Boucher, Ellis and Turkington (1999)
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Equilibrium: the 2D Euler Equations

2D Euler equations:

∂ω

∂ t
+v.∇ω = 0

Vorticity ω = (∇∧v) .ez . Stream function ψ : v = ez ×∇ψ ,
ω = ∆ψ

Conservative dynamics - Hamiltonian (non canonical) and time
reversible
Invariants:

Energy: E [ω] =
1
2

∫
D
d2x v2 =−1

2

∫
D
d2x ωψ

Casimir’s functionals: Cs [ω] =
∫

D
d2x s(ω)

Vorticity distribution: D (σ) =
dA
dσ

with A(σ) =
∫
D
d2x χ{ω(x)≤σ}

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics



Equilibrium Stat. Mech.
Geophysical Applications

Young measures and invariant measures

Microcanonical measures
Mean field - Sanov theorem

Microstates for the 2D Euler Eq.
The case with 2 levels of vorticity (for pedagogical purpose)

We discuss the case D (σ) = 1
2δ (σ +1) + 1

2δ (σ −1),
(ω(r) ∈ {−1,1} with ± 1 values occupying equal areas).
Vorticity points on a lattice of size NxN (used for instance as
weight in a finite elements approximations of 2D fields)

XN =

{
ω =

(
ωij
)
1≤i ,j≤N | ∀i , j ωij ∈ {−1,1} ,

N2

∑
i ,j=1

ωij = 0

}

ω ∈ XN : microstate. XN is the set of microstates

Vorticity on a NxN lattice
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Microcanonical Measures for the 2D Euler Eq.
The case with 2 levels of vorticity (for pedagogical purpose)

Vorticity points on a lattice of size NxN

XN =

{
ω =

(
ωij
)
1≤i ,j≤N | ∀i , j ωi ,j ∈ {−1,1} ,

N2

∑
i ,j=1

ωij = 0

}
ΓN (E0,∆E) = {ω ∈ XN | E0 ≤ E [ω]≤ E0 + ∆E} , ΩN (E0,∆E) = ]{ΓN (E0,∆E)}

Finite dimensional approximate measures : equiprobability of
all microstates with given energy

< µN (E0,∆E) , A [ω] >=
1

ΩN (E0,∆E) ∑
ω∈ΓN(E0,∆E)

A [ω] .

Microcanonical measures for the 2D Euler equations:

µ (E0) = lim
N→∞

µN(E0,∆E) and S(E0)=limN→∞

1
N2 ln(ΩN (E0,∆E)) .
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A Typical Vorticity Field for the Microcanonical Measure
A two vorticity level case: ω ∈ {−1,1}, E = 0.6Emax , NxN = 128x128

Creutz’s algorithm: a generalization of Metropolis-Hasting’s
algorithm that samples microcanonical measures.

Vorticity field
Stream function Coarse-grained-vorticity

vs stream function
F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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How to Deal with the Microcanonical Measure

Finite dimensional approximate measures : equiprobability of
all microstates with given energy

< µN (E0,∆E) , A [ω] >=
1

ΩN (E0,∆E) ∑
ω∈ΓN(E0,∆E)

A [ω] .

Microcanonical measures for the 2D Euler equations:

µ (E0) = lim
N→∞

µN(E0,∆E) and S(E0)=limN→∞

1
N2 ln(ΩN (E0,∆E))

The limit N → ∞ is rather simple
The 2D-Euler has a mean-filed behavior. The microcanonical
measure is a Young measure, with local probabilities which are
determined by maximization of a mean-field entropy. This is a
large deviations result, proven by generalization of Sanov’s
theorem

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Macrostates Through Coarse-Graining

Coarse-graining: we divide the N×N lattice into
(N/n)× (N/n) boxes (n2 sites per box)
These boxes are centered on sites (In,Jn). (I ,J) label the
boxes (0≤ I ,J ≤ N/n−1)
F±IJ is the frequency to find the value ±1 in the box (I ,J)
(F +

IJ +F−IJ = 1)

F±IJ (ω) =
1
n2 ∑

(i ,j)∈(I ,J)

δd(ωij − (±1))

A macrostate PN =
{
p±IJ
}

0≤I ,J≤N/n−1, is the set of all

microstates
{

ωN ∈ XN
∣∣ for all I ,J, F±IJ (ωN) = p±IJ

}
Macrostate entropy = logarithm of the cardinal of the macrostate

SN [pN ] =
1

N2 log ]
(
PN)

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Asymptotic Entropy with No Energy Constraint

Macrostate entropy = logarithm of the cardinal of the macrostate

SN [pN ] =
1

N2 log ]
(
PN)=

1
N2 log ]

{
ω

N ∈ XN
∣∣ for all I ,J, F±IJ (ω

N) = p±IJ
}

Boltzmann (combinatorics and the Stirling formula) proved

SN [PN ] ∼
N�n�1

{
SN [PN ]≡− n2

N2 ∑I ,J
(
p+
IJ logp+

IJ +p−IJ logp−IJ
)

if p+
IJ +p−IJ = 1

−∞ otherwise,

Analogy with Sanov’s theorem (this is a large deviation result
with N2 the large deviation parameter)

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Energy Fluctuations over the Macrostate pN

E [ω] =−1
2

∫
D

d2xωψ =
1
2

∫
D

∫
D

d2xd2x′G (x,x′)ω(x)ω(x′)

EN [ω] =
1

2N4

N−1

∑
i ,j=0

N−1

∑
i ′,j ′=0

Gij ,i ′j ′ωi ′j ′ωij

Not all microstates ω ∈ PN have the same energy. The energy
constraint can thus not be recast as a simple constraint on the
macrostate PN

We use GIJ,I ′J ′ the average value of the coupling constants
Gij ,i ′j ′ over the box (I ,J)

Gij ,i ′j ′ = GIJ,I ′J ′+o
(
1
n

)
then EN [ω] =

1
2N4

N−1

∑
i ,j=0

N−1

∑
i ′,j ′=0

GIJ,I ′J ′ωi ′j ′ωij +o
(
1
n

)

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Macrostate Energy

EN [ω] =
1

2N4

N−1

∑
i ,j=0

N−1

∑
i ′,j ′=0

GIJ,I ′J ′ωi ′j ′ωij +o
(
1
n

)
Coarse-grained vorticity is defined as an average over boxes

ω IJ =
1
n2 ∑

(i ,j)∈(I ,J)

ωij = p+
IJ −p−IJ

Macrostate energy

ĒN [ω]≡ n2

2N2 ∑
I ,J

∑
I ′,J ′

GIJ,I ′J ′ω IJω I ′J ′

For any microstate ω ∈ PN

EN [ω] = ĒN [ω] +o
(
1
n

)
More precisely, for large n the distribution of the microstate
energies concentrate close to the macrostate energy

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Entropy of a Macrostate with Energy Constraint

A new macrostate (PN ,E0): the set of ω ∈ PN with
E0 ≤ EN [ω]≤ E0 + ∆E . Or (PN ,E0) = PN ∩ΓN(E ,∆E)

ΩN (E0,∆E) = ]{ΓN (E0,∆E)} and S(E0)=limN→∞

1
N2 ln(ΩN (E0,∆E))

The Boltzmann entropy of (PN ,E0) is 1
N2 log ]

(
PN ,E0

)
SN [(PN ,E0)] ∼

N�n�1

{
SN [PN ] if p+

IJ +p−IJ = 1 and EN [ωN
IJ ] = E0

−∞ otherwise

Because of the exponential concentration, for N � n� 1, the
ensemble Boltzmann entropy and the Boltzmann entropy of
the most probable macrostate are equal

S(E0) = max
{p|N [p]=1}

{
−
∫
D

dr [p logp + (1−p) log(1−p)] | Ē [ω̄] = E0

}
F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Robert-Sommeria-Miller (RSM) Theory
The most probable vorticity field (for D(σ) = 1

2δ (σ +1) + 1
2δ (σ −1))

A probabilistic description of the vorticity field ω : p (x) is the
local probability to have ω (x) = 1 at point x
A measure of the number of microscopic field ω corresponding
to a probability p (Liouville and Sanov theorems):

Mean−field entropy : S [p]≡−
∫

D
dr [p logp+ (1−p) log(1−p)]

The microcanonical RSM variational problem (MVP):

S(E0) = sup
{p|N [p]=1}

{
S [p] | Ē [ω] = E0

}
(MVP).

Critical points are steady solutions of the 2D Euler equations:

ω = tanh(βψ)

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Robert-Sommeria-Miller (RSM) Theory
With a general vorticity distribution

A probabilistic description of the vorticity field q: ρ (x,σ) is
the local probability to have ω (x) = σ at point x
A measure of the number of microscopic field q corresponding
to a probability ρ :

Boltzmann-Gibbs Entropy: S [ρ]≡−
∫

D
dx
∫ +∞

−∞

dσ ρ logρ

The microcanonical RSM variational problem (MVP):

S(E0,d) = sup
{ρ|N[ρ]=1}

{S [ρ] | E [q] = E0 ,D [ρ] = d } (MVP).

Critical points are steady flows of the 2D Euler Eq.:

ω = f (ψ)

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Statistical Equilibria for the 2D-Euler Eq. (torus)

A second order phase transition.

Z. Yin, D. C. Montgomery, and H. J. H. Clercx, Phys. Fluids (2003)

F. Bouchet, and E. Simonnet, PRL, (2009) (Lyapunov Schmidt
reduction, normal form analysis)
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Young Measures

Young measures are product measures: the probability
distribution of the vorticity field at an arbitrary number of
points {rk} is given by the product of the independent
measures ρ(σ ,rk) at each point rk
The set of vorticity fields ω (r) is a special class of Young
measures with ρ (σ ,r) = δ (σ −ω (r))

The set of microcanonical measures is a special class of Young
measures

ρβ ,α (σ ,r) =
1

Z (βψ (r))
eβσψ(r)−α(σ)
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Jupiter applications
Ocean applications

Outline

1 Equilibrium statistical mechanics
Microcanonical measures of the 2D Euler Eq.
Sanov’s theorem and the mean field variational problem

2 Applications of equilibrium statistical mechanics
Jupiter’s Great Red Spot (F.B. and J. Sommeria)
Equilibrium statistical mechanics of large scale ocean
dynamics (A. Venaille and F.B.)

3 Young measures and invariant measures to the 2D Euler
equations

How to prove the invariance of the microcanonical measure ?
Invariant Young measures (F.B. and Marianne C.)
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Equilibrium Statistical Mechanics for Geophysical Flows
The Robert-Sommeria-Miller theory

Statistical mechanics of the Potential Vorticity mixing:
emergence from random initial conditions, stability,
predictability of the flow organization
Gulf Stream and Kuroshio currents as statistical equilibria
Ocean mesoscale vortices as statistical equilibria
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The Simplest Model: the 1-1/2 Layer Quasi-Geostrophic
Model

We describe Jupiter’s troposphere by the Quasi Geostrophic model
(one and half layer):

∂q
∂ t

+v ·∇q = 0 ; v = ez ×∇ψ ; q = ∆ψ− ψ

R2 −h(y)

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Variational Problem for The Statistical Equilibria
(The case of the 1-1/2 layer Quasi Geostrophic model)

Variational problem: limit R → 0. (φ = ψ/R2).{
min{FR [φ ] |with A [φ ] given}

with FR [φ ] =
∫
D dr

[
R2(∇φ)2

2 + f (φ)−Rφh0(y)
]

and A [φ ] =
∫
D drφ .

The function f : two minima Phase coexistence
An analogy with first order phase transitions.
Modica (90’), function with bounded variations.

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Reduction to a One Dimensional Variational Problem
An isoperimetrical problem balanced by the effect of the deep flow

A variational problem for the jet shape (interface)

FR [φR ] = 2RecL−2Ru
∫
A1

drh0(y) +o (R) . (1)

Laplace equation:

ec

r
=−u (α1−h0 (y)) . (2)
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Jovian Vortex Shape: Phase Coexistence
An isoperimetrical problem balanced by the effect of the deep flow

Left: analytic results.
Below left: the Great Red Spot and a

White Ovals.
Below right: Brown Barges.

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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A Phase Diagram for Jovian Vortices and Jets

E is the energy and B measures the asymmetry of the initial PV distribution

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Great Red Spot of Jupiter
Real flow and statistical mechanics predictions (1-1/2 layer QG model)

Observation data (Voyager) Statistical equilibrium

A very good agreement. A simple model, analytic description,
from theory to observation + New predictions.
F. BOUCHET and J. SOMMERIA 2002 JFM (QG model)
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1 Equilibrium statistical mechanics
Microcanonical measures of the 2D Euler Eq.
Sanov’s theorem and the mean field variational problem

2 Applications of equilibrium statistical mechanics
Jupiter’s Great Red Spot (F.B. and J. Sommeria)
Equilibrium statistical mechanics of large scale ocean
dynamics (A. Venaille and F.B.)

3 Young measures and invariant measures to the 2D Euler
equations

How to prove the invariance of the microcanonical measure ?
Invariant Young measures (F.B. and Marianne C.)
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Is the Map of Ocean Currents a Statistical Equilibrium ?

North Atlantic sea height

Map of ocean currents
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Strong Eastward Jets are Statistical Equilibria
Statistical equilibria of the QG 1-1/2 layer in a closed basin

The states with negative PV to the north (eastward jet), and
positive PV to the south (westward jet) are equivalent.
The beta effect h(y) = β̃y breaks the symmetry between
westward and eastward jets.

A. Venaille, and F. Bouchet, J. Phys. Oceanography, 2011.
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Ocean Rings (Mesoscale Ocean Vortices)
Gulf Stream rings - Agulhas rings - Meddies - etc ...

Hallberg–Gnanadesikan Chelton and co. - GRL 2007

Both cyclonic and anticyclonic rings drift westward with a
velocity β̃R2

Statistical mechanics explains the ring qualitative shape, and
their observed drifts.
A. Venaille, and F. Bouchet, JPO, 2011
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Invariance of Microcanonical Measures

For finite dimensional Hamiltonian systems, invariance of
microcanonical measures is trivial (Liouville theorem,
conservation of the phase space volume)
The 2D Euler Eq. are a Hamiltonian system with Lie-Poisson
brackets for the vorticity variables. This provides detailed
Liouville theorems.
A uniform discretization of the vorticity field is thus a good
starting point
However proving invariance of the limit measure is not trivial,
but contrast with finite dimensional Hamiltonian systems

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics



Equilibrium Stat. Mech.
Geophysical Applications

Young measures and invariant measures

Proof of invariance ?
Invariant Young measures

Why Classical Route Fails ?

A classical route (Bourgain, Non Linear Schrödinger
equations) is to use finite dimensional approximate dynamics
with invariant measures and to study the limit measure
This route does not work for the 2D Euler Eq., because of the
multiplicity of invariants
There exist N2-dimensional approximations of the 2D Euler
equations with N conserved Casimirs (Zeitlin–Gallagher). But
statistical mechanics of this model seems intractable
From a statistical mechanics point of view, the good
framework is local discretization of vorticity field (mean field
behavior). However, there is then no finite dimensional
approximation with conservation laws and natural invariant
measures
Another route : direct a-posteriori proof of the invariance of
the microcanonical measures

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Hopf’s Equation for the 2D Euler Eq.

2D Euler equations
∂ω

∂ t
+v.∇ω = 0

Characteristic functional and moment generating functional

F [λ , t] =
〈

ei
∫

λ(r)ω(r,t)dr
〉

and H[λ , t] = logF [λ , t]

Hopf’s equation: each realization is a solution to the 2D Euler
equations

∂F
∂ t

+ i
∫∫

dr′ dr ∇λ (r) ·G(r,r′)
δ 2F

δλ (r)δλ (r′)
= 0 ,

where G is the Laplacian Green function.

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Young Measures

Young measures are product measures: the probability
distribution of the vorticity field at an arbitrary number of
points {rk} is given by the product of the independent
measures ρ(σ ,rk) at each point rk
The set of deterministic vorticity fields ω (r) is a special class
of Young measures with ρ (σ ,r) = δ (σ −ω (r))

The set of microcanonical measures is a special class of Young
measures

ρβ ,α (σ ,r) =
1

Z (βψ (r))
eβσψ(r)−α(σ)
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The 2D Euler Dynamics of Young Measures

The cumulant-generating function of ω at point r

h (λ ,r) = log f (λ ,r) with f (λ ,r) =
∫ +∞

−∞

dσ eiλσ
ρ(σ ,r)

Lemma (a consequence of the law of large numbers):

1 For Young measures, the velocity field is independent of the
vorticity field

2 At each point, it has a Dirac distribution functions

P (v,r) = δ (v− v̄) with ω̄(r) =
∫ +∞

−∞

dσ σρ(σ ,r) =
∂h
∂λ

(0,r)

Then, for Young measures, the evolution of the moment
generating functional is equivalent to

∂h
∂ t

+ v̄ ·∇h = 0

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Invariant Young Measures

∂h
∂ t

+ v̄ ·∇h = 0

A Young measure is invariant if h is invariant over any
streamline of the average velocity v̄.
A class of invariant Young measures. If h depends on the
streamfunction only h = h(σ , ψ̄ (r)). (equivalently
ρ = ρ(σ , ψ̄ (r))) and verify a self-consistency relation

ω̄ = ∆ψ̄ =
∫

dσ σρ(σ , ψ̄ (r))

All Young measures built on steady solutions of the 2D Euler
equations are invariant Young measures
Microcanonical measures is a subset of the set of invariant
measures

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Invariant Young Measures

All Young measures built on steady solutions of the 2D Euler
equations are invariant Young measures
Microcanonical measures is only a small subset of the set of
invariant measures
The 2D Euler equations are not ergodic (in this sense)
Need for understanding of the stability of those invariant
measures
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Dynamics of the 2D Euler and Young Measures
Large Time Asymptotics

Perturbations of the 2D Euler equations close to parallel flows
converge, for large times, to invariant Young measures
Weak perturbations of the Vlasov equation close to
homogeneous dynamical equilibrium converge towards
invariant Young measures
Two conjectures:

1 Weak perturbations of the 2D Euler equations close to
dynamical equilibria converge to invariant Young measures

2 The 2D Euler equations converge to invariant Young measures

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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The program of equilibrium statistical mechanics

1 Has the limit measure µm,n a simpler expression ? Mean field
behavior ?
Sanov’s theorem justifies the microcanonical RSM variational
problem and relates µm,n to Young measures.
J. Michel and R. Robert, Comm. Math. Phys. (1994),
R.S. Boucher, C. Ellis and B. Turkington, Annals Prob. (1999).

2 Is µm,n an invariant measure of the 2D Euler equations ?
Dynamics of Young measures: Formal proof.
F. Bouchet and M. Corvellec J. Stat. Mech. (2011).

3 Are the 2D Euler equations ergodic ?
No they are not. The set of invariant Young measure is much
larger that the set of microcanonical measures. F. Bouchet and
M. Corvellec J. Stat. Mech. (2011).
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Summary

Messages :
We can built microcanonical measures for the 2D Euler
equations and similar models
They are Young measures, with local probabilities maximizing
a mean-field variational problem (large deviation result)
Jupiter vortices, ocean vortices and ocean eastward jets as
statistical equilibria
The dynamics and dynamical stability of Young measures
seems an essential problem to understand

F. Bouchet, and A. Venaille, Physics Reports, 2011, Statistical mechanics of
two-dimensional and geophysical flows
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