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Kinetic Theory of Earth and Jupiter’s Zonal Jets
These jets does not seem to be maximum entropy states

Jupiter atmosphere
Jupiter Zonal wind (Voyager and
Cassini, from Porco et al 2003)

How far are we to reproduce such phenomena in numerical
simulations ? How to theoretically predict such velocity profile ?

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics



Large Time Asymptotics of the 2D Euler Eq.
Kinetic theory of particle systems

Kinetic theory of the stochastic Navier-Stokes equations

The 2D Stochastic-Navier-Stokes (SNS) Equations

The simplest model for two dimensional turbulence
Navier Stokes equation with random forces

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
σ fs

where ω = (∇∧u) .ez is the vorticity, fs is a random force, α is the
Rayleigh friction coefficient.
An academic model with experimental realizations (Sommeria
and Tabeling experiments, rotating tanks, magnetic flows, and
so on). Analogies with geophysical flows (Quasi Geostrophic
and Shallow Water layer models)
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Kinetic theory of the 2D Euler and Navier-Stokes equations

1 Inviscid relaxation of the 2D Euler equations
Irreversibility in turbulence
Large Time Asymptotics of the linearized 2D Euler Eq.
The Kolmogorov flow

2 Kinetic theory of systems with long range interactions
Beyond the Vlasov equation
Plasma and self-gravitating systems with stochastic forces
The Lenard-Balescu equation and aging correlations

3 Kinetic theory of the stochastic Navier-Stokes equations
The 2D Stochastic Navier–Stokes Equations
The kinetic approach
The 2D linearized Euler Eq. with random forces
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Irreversibility in Fluid Mechanics and in Turbulence
Do we need viscosity to explain irreversible behavior of turbulent flows ?

In many fluid mechanics or turbulence textbooks, it is stated,
for example, that “Viscosity, whatever small, is necessary to
explain the irreversible behavior of turbulent flows”.
Based on “D’Alembert’s Paradox” (Euler and Lagrange
theorems) (about potential flows) and Prandtl boundary layer
analysis.
The reversibility paradox of very small Reynolds number flows.
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Irreversibility in Fluid Mechanics and in Turbulence
Do we need viscosity to explain irreversible behavior of turbulent flows?

In many fluid mechanics or turbulence textbooks, it is stated,
for example, that “Viscosity, whatever small, is necessary to
explain the irreversible behavior of turbulent flows”.
Such statements and explanations of irreversibility of turbulent
flows are misleading. More precisely, they may be right in
some cases and they actually correctly describe some of
important processes, for instance for fluid described by the
Navier-Stokes equations, but they miss the point.
Irreversibility of turbulent flows should be explained
independently of microscopic irreversible phenomena.
Today the case of 2D turbulent flows and the irreversible
behavior of the 2D Euler equations
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The 2D Euler Eq.: a Hamiltonian Reversible Dynamical
System

2D Euler equations
∂ Ω

∂ t
+V.∇Ω = 0

Vorticity Ω = (∇∧V) .ez . Ω = ∆ψ

The 2D Euler Eq. are symmetric under time reversal
symmetry:

Ω(r, t)→ Ω(r, t) and V (r, t)→−V (r,−t)

The 2D Euler Eq. has a irreversible macroscopic behavior:
relaxation of the largest scales towards equilibrium
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Nonlinear Landau Damping
Clément Mouhot, and Cédric Villani, 2010

Vlasov equation (dynamics of electrons in a plasma). µ-space
density f (x ,p, t):

∂ f
∂ t

+p
∂ f
∂x
− dV

dx
∂ f
∂p

= 0.

Hamiltonian and time reversible. A transport equation by a
non-divergent flow, like the 2D Euler equations.
Base state: a steady state f = f0 (p) . Understanding of the
linearized equation by Landau (1946)
Proof of the irreversible convergence, for large times, of f
(weak topology) and ρ (strong topology) towards
homogeneous densities (Mouhot, and Villani, 2010)
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The 2D Linearized Euler Eq.

2D Euler equations

∂ Ω

∂ t
+V.∇Ω = 0

Base state : a stable steady state v0 = U (y)ex , with vorticity
ω0: v0.∇ω0 = 0
The 2D Euler equation, linearized close to v0, Ω = ω0(y) + ω

and V = v +U (y)ex

∂ω

∂ t
−U ′′ (y)vy +U (y)

∂ω

∂x
= 0

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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The Case of a Constant Shear in a Channel
Easily solvable (trivial) – For pedagogical purpose

∂ω

∂ t
−U ′′ (y)vy +U (y)

∂ω

∂x
= 0

U (y) = sy . −l ≤ y ≤ l . Then ω ′0 =−U ′′ (y) = 0. A drastic
simplification.

∂ω

∂ t
+ sy

∂ω

∂x
= 0

Fourier series for the spatial variable
ω(x ,y , t) = ω (y , t)exp(ikx):

∂ω

∂ t
+ iksyω = 0 then ω(y , t) = ω(y ,0)exp(−iksyt)

The solution for the vorticity is trivial in that case
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Vorticity Evolution in the Case of Constant Shear
Deterministic evolution - The Orr mechanism - Base flow U (y) = sy

Evolution of the perturbation vorticity ω(t), advected by a constant
shear s
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Velocity Asymptotics in the Case of Constant Shear
The Orr mechanism - Base flow U (y) = sy

ω(y , t) = ω(y ,0)exp(−iksyt)

We look at the solution for the velocity v(y , t):

v(y ,t) =
∫

dy Gk(y ,y ′)ω(y ′,0)exp
(
−iksy ′t

)

We have an oscillating integral. For large times:

vx (y ,t)∼ ∼t→∞

vx ,∞ (y)
t

exp(−iksyt) and vy (y ,t) ∼t→∞

vy ,∞ (y)
t2

exp(−iksyt)

The velocity decreases algebraically
Orr mechanism-Case (1969)
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The Case of a Constant Shear in a Channel
Deterministic evolution - The Orr mechanism - Base flow U (y) = sy

Evolution of the perturbation kinetic energy for the transverse and
longitudinal components of the velocity v(t)

The shear acts as an effective dissipation (Phase mixing)
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The Linearized Euler Eq. close to Shear Flows

Base flow : v0 (r) = U (y)ex . The linearized Euler equation:
∂ω

∂ t
+ ikU (y)ω−ikψU ′′ (y) = 0 (1)

with ω(x ,y , t) = ω (y , t)exp(ikx) and ω = d2ψ

dy2 −k2ψ

Laplace transform: φ (y ,c ,ε) =
∫

∞

0 dt Ψ(y , t)exp(ik(c + iε)t)(
d2

dy2
−k2

)
φ − U ′′(y)

U(y)− c− iε
φ =

ω (y ,0)

ik (U(y)− c− iε)
(2)

This is the celebrated Rayleigh equation. A one century old
classical problem in fluid mechanics, applied mathematics and
mathematics. Rayleigh (1842-1919)

Large time asymptotic is related to the limit ε → 0
Singularity of the equation : critical layer U(yc) = c

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Asymptotic Behavior of the Linearized Euler Eq.
Historical results

1) Base flows without stationary points: for any y , U ′(y) 6= 0
(monotonic profile)

Rayleigh (1880) Mode equation
Case (Phys. Fluid. 1960) Algebraic laws for the velocity field
in the case of constant shear (wrong)
Rosencrans and Sattinger (J. Math. Phys 1966) v =

t→0
O (1/t)

(Laplace transform tools)
Brown,Stewartson (JFM 1980), Lundgren (Phys. Fluid. 1982)
Ansatz for the asymptotic expansion, for large time
Friedlander Howard (Comm. Math. Phys. 2004)

2) Base flows with one or several stationary streamlines: U ′(y0) = 0

No results!
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Base Flows with Stationary Streamlines
Most of geophysical flows have points such that U ′ (y0) = 0

Most of geophysical jets have stationary
streamlines (they do not verify the Rayleigh or

Rayleigh-Kuo stability criteria)

Stationary streamlines: U ′(y0) = 0. Velocity extrema - No
shear - No Orr mechanism
The Case velocity asymptotics (Brown and Stewartson
asymptotic expansion) is not self-consistent
v(y ,t) =

∫
dy Gk(y ,y ′)ω(y ′,0)exp(−ikU (y)t). Stationary phase

approximation: v ∝
t→∞

C/
√

t

The analytic continuation in the Laplace method is no more
possible
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Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary streamlines: U ′(y0) = 0

Mathematical methods : Laplace transform and detailed
analysis of the singularities due to the critical layers and
stationary streamlines
By contrast with what was previously believed, we can deal
with the difficulty related to the stationary streamlines

Theory : a) Asymptotic oscillatory vorticity field

ω (y , t) ∼
t→∞

ω∞ (y)exp(ikU(y)t) +O

(
1
tα

)
b) DEPLETION OF THE VORTICITY PERTURBATION:
For any stationary streamline of the flow (y0 such that U ′ (y0) = 0)

ω∞ (y0) = 0

+ Prediction of the asymptotic vorticity ω∞ (y)
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1 Inviscid relaxation of the 2D Euler equations
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2 Kinetic theory of systems with long range interactions
Beyond the Vlasov equation
Plasma and self-gravitating systems with stochastic forces
The Lenard-Balescu equation and aging correlations

3 Kinetic theory of the stochastic Navier-Stokes equations
The 2D Stochastic Navier–Stokes Equations
The kinetic approach
The 2D linearized Euler Eq. with random forces
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Irreversibility

An Example: the Kolmogorov Flow

U(y) = cos(y) in the doubly periodic domain (0,2π/δ )x (0,2π) ; δ

is the aspect ratio

Two stationary streamlines U ′(y0) = 0, for y0 = 0 or y0 = π

Usual criteria for stability (Rayleigh, Arnold) do not apply
The Kolmogorov flow is stable for δ > 1 (Lyapunov stability),
spectrally and linearly stable (easily proved)
This flow has no neutral modes
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Irreversibility

Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary streamlines: depletion of the vorticity perturbation at the
stationary streamlines

Evolution of the perturbation vorticity ω(t), advected by a shear flow
U(y) = cos(y) with stationary points in y = 0 and y = π
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Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary streamlines : the velocity field

Theorem: algebraically decaying asymptotic velocity field

vx(y , t) ∼
t→∞

vx ,∞ (y)

t
exp(−ikU(y)t) (3)

vy (y , t) ∼
t→∞

vy ,∞ (y)

t2
exp(−ikU(y)t) (4)

What about stationary streamlines? They should give
contributions of order 1/t1/2 !
No contribution from the stationary streamlines thanks to the
depletion of the vorticity perturbation at stationary streamlines
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Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary points: the velocity field

Evolution of the perturbation velocity, components vx(t) and vy (t),
advected by a constant shear flow U(y) with stationary streamlines
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Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary streamlines : the velocity field

Evolution of the perturbation velocity, components vx(t) and vy (t),
advected by a constant shear flow U(y) with stationary streamlines

The velocity perturbation converges to zero (asymptotic stability)
even without dissipation
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Asymptotic Behavior of the Linearized Euler Eq.:
Conclusions

Asymptotically oscillating vorticity fields
Algebraic decay of the velocity field with 1/t or 1/t2 laws,
whatever the cases (except at stationary streamlines).
All cases of base flow with any type of shear have been treated
Depletion of the vorticity perturbation at the stationary
streamlines
Axisymmetric vortices should behave the same way
The perturbation converges (weak topology) towards a Young
measure
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Systems with Long Range Interactions

Long range interactions = non-integrable potential

H =
1
2

N

∑
k=1

p2k +
1
2N

N

∑
k,l=1

V (qk −ql )

In the algebraic case V (r) ∝r→∞ 1/rα ; non integrable when
α < d
2D Euler G (r) ∝r→∞ log(r):

E =
1
2

∫
D

d2xd2y G (x−y)ω (x)ω (y)' 1
2N2

N

∑
i ,j ,k,l=1

Gij ,klωijωkl

Examples: self-gravitating stars, 2D and geophysical flows,
plasma, cold atoms, etc ?
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Kinetic Theory for Systems with Long Range Interactions
A classical and fascinating framework

H =
1
2

N

∑
k=1

p2k +
1
2N

N

∑
k,l=1

V (qk −ql )

We will assume V smooth and x ∈D with D bounded. For
instance D a d -dimensional torus.
A common framework for many systems: plasma physics, self
gravitating systems, point vortex model
Classical approach: BBGKY hierarchy, small parameter,
chaotic hypothesis, derivation of kinetic equations
Vlasov equation (40’s), Landau equation, Lenard–Balescu
equation (60’s,70’s)
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The Mean Field Limit and the Vlasov Equation

H =
1
2

N

∑
k=1

p2k +
1
2N

N

∑
k,l=1

V (qk −ql )

Dynamics of the empirical measure
fe(q,p, t) = 1

N ∑k δ (q−qk(t),p−pk(t))

The mean field limit: N → ∞ for times t� C log(N). fe
remain close to the solution of the Vlasov equation :

∂ f
∂ t

+p
∂ f
∂q
− ∂ Φ[f ]

∂q
∂ f
∂p

= 0

With φ the mean field potential

Φ[f ](q)≡
∫

dq1dp1V (q−q1)f (q1,p1, t)
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Beyond the Mean Field Limit

H =
1
2

N

∑
k=1

p2
k +

1
2N

N

∑
k,l=1

V (qk −ql)

Dynamics of the empirical measure

∂ fe
∂ t

+p
∂ fe
∂q
− ∂ Φ[fe ]

∂q
∂ fe
∂p

= 0

We see the Vlasov equation as a consequence of the law of
large numbers limN→∞ fe = f
Beyond the law of large numbers: Gaussian fluctuations (of
order 1/

√
N). fe = f + δ f /

√
N

What is the dynamics of those fluctuations ?
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Rough Ideas About Corrections to the Vlasov
EquationsFluctuation Dynamics

∂ fe
∂ t

+p
∂ fe
∂q
− ∂ Φ[fe ]

∂q
∂ fe
∂p

= 0

Formal asymptotic expansion fe = f + δ f /
√

N

∂ f
∂ t

+p
∂ f
∂q
− ∂ Φ[f ]

∂q
∂ f
∂p

=
1
N

〈
∂ Φ[δ f ]

∂q
∂δ f
∂p

〉

∂δ f
∂ t

+Lf [δ f ] = 0

At leading order the fluctuations are transported by the
linearized Vlasov equation
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Rough Ideas About Fluctuation Dynamics

∂δ f
∂ t

+Lf [δ f ] = 0

Second order correlation function
g(q1,p1,q2,p2, t) = 〈δ f (q1,p1, t)δ f (q2,p2, t)〉

∂g
∂ t

+L1
f [g ] +L2

f [g ] = S

Fluctuations dynamics is governed by a Lyapunov equation
(the equation for the two-points correlation of an
Ornstein-Uhlenbeck process). This is a general rule. See for
instance fluctuating hydrodynamics.
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The Lenard-Balescu Equation

After solving the Lyapunov equations for the second order
correlation function we obtain the Lenard-Balescu equation:

∂ f
∂ t

+Vlasov [f ] =
1
N

〈
∂ Φ[δ f ]

∂q
∂δ f
∂p

〉
=

1
N

L B [f ]

The Vlasov equation is an approximation of the
Lenard-Balescu equation. In plasma, the Vlasov operator is a
good approximation of the Lenard-Balescu one for scales much
larger than the Debye length.
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Mean Field Hamiltonian and Stochastic Forces
A simpler framework from a mathematical point of view

H =
1
2

N

∑
k=1

p2
k +

1
2N

N

∑
k,l=1

V (qk −ql)

Hamiltonian dynamics plus stochastic forces

q̇i =
∂H
∂pi

, and ṗi =−∂H
∂qi
−αpi +

√
α F (qi , t)

α : friction constant. F (q, t) is a homogeneous Gaussian
process with zero mean and variance

〈F (q, t)F (q′, t ′)〉= C (|q−q′|)δ (t− t ′)

Force spectrum: ck ≡ 1
2π

∫ 2π

0 dq C (q)e−ikq > 0
We expect fluctuations of order

√
α due to the stochastic

force and 1/
√

N due to the potential
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Energy Balance

H =
1
2

N

∑
k=1

p2
k +

1
2N

N

∑
k,l=1

V (qk −ql)

q̇i =
∂H
∂pi

, and ṗi =−∂H
∂qi
−αpi +

√
α F (qi , t)

A close equation for the average specific energy e = H/N〈
de
dt

〉
=−2α 〈κ〉+ α

2
C (0)

κ = ∑
N
i=1 p2

i /(2N) is the kinetic energy per particle
Average kinetic energy, for the stationary state

〈κ〉ss = C (0)/4
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N-particle Fokker-Planck Equation

Evolution of the N-particle distribution function
fN(q1, ...,qN ,p1, ...,pN , t) (after averaging over the noise
realization)

∂ fN
∂ t

+
N

∑
i=1

pi
∂ fN
∂qi

+
1
2N

N

∑
i ,j=1

V ′(qi −qj )

[
∂

∂pi
− ∂

∂pj

]
fN = ...

...= α

N

∑
i=1

∂ (pi fN)

∂pi
+

α

2

N

∑
i ,j=1

C(qi −qj )
∂2fN

∂pi∂pj

With α = 0, we get the Liouville equation for the Hamiltonian
dynamics
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The BBGKY Hierarchy

The n particle distribution function

fn(q1,p1, ...,qn,pn, t) =
∫ N

∏
i=n+1

dqidpi fN(q1,p1, ...,qN ,pN , t)

We denote f (q,p, t) = f1(q,p, t)

We anticipate that at leading order we expect loss of
correlation (Stosszahl ansatz)

fn(q1,p1, ...,qn,pn, t) =
N

∏
i=1

f (qi ,pi , t) + αgn(q1,p1, ...,qn,pn, t)

Each gn is governed by an equation involving (f ,g2, ...,gn+1).
This is called the BBGKY hierarchy
g2 is denoted g
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The Two First Equation of the BBGKY Hierarchy

For pedagogical reasons, we assume an homogenous state:
f (q,p) = f (p) and g(q1,q2,p1,p2) = g(q1−q2,p1,p2)

∂ f
∂ t

+Vlasov [f ] =α

[
∂

∂p
(pf )+

C(0)
2

∂2f
∂p2 +

∂

∂p

∫
dq2dp2 V ′(q2)g(q2,p,p2,t)

]
∂g
∂ t

+

[
p1

∂g
∂q1
− ∂ f

∂p
(p1)

∫
dq3dp3 V ′(q1−q3)g(q3−q2,p3,p2,t)

]
+{1↔ 2}= ...

...= C(q1−q2)
∂ f
∂p

(p1)
∂ f
∂p

(p2)+
α

N
N2(f ,g)+αN3 (f ,g ,g3)

The hierarchy appears as an ordered expansion both in powers
of α and 1/N

We discuss for instance the mean-field stochastic regime
1/N � α � 1 (the limit limα→0 limN→∞)
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Truncation at First Non Trivial Order

∂ f
∂ t

+Vlasov [f ] = α

[
∂

∂p
(pf )+

C(0)
2

∂2f
∂p2 +

∂

∂p

∫
dq2dp2 V ′(q2)g(q2,p,p2,t)

]
∂g
∂ t

+L1
f [g ]+L2

f [g ] = C(q1−q2)
∂ f
∂p

(p1)
∂ f
∂p

(p2)

We assume that f (p) is a stable steady solution of the Vlasov
equation, in order for f to evolve over a slow time scale (for
instance 1/α)
We assume, that for fixed f , the Lyapunov equation converge for
large times to g∞[f ]

Bogolyubov hypothesis: the kinetic equation is

∂ f
∂ t

+Vlasov [f ] =α

[
∂

∂p
(pf )+

C(0)
2

∂2f
∂p2 +

∂

∂p

∫
dq2dp2 V ′(q2)g∞[f ](q2,p,p2)

]

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics



Large Time Asymptotics of the 2D Euler Eq.
Kinetic theory of particle systems

Kinetic theory of the stochastic Navier-Stokes equations

Beyond the Vlasov equation
Stochastic plasma and globular clusters
Lenard-Balescu – Aging correlations

Kinetic Equation

All computations can be performed explicitly. Then

∂ f
∂ t

+Vlasov [f ] = α

[
∂ (pf )

∂p
+

∂

∂p

(
D[f ]

∂ f
∂p

)]

D[f ](p)=
1
2
C(0)+2π

∞

∑
k=1

Vkck

∫ ∗
dp1

[
1

|ε(k,kp)|2
+

1
|ε(k,kp1)|2

]
1

p1−p
∂ f
∂p

∣∣∣∣
p1∫ ∗ indicates the Cauchy principal value of the integral, and the

dielectric function ε is

ε(k,ω) = lim
η→0+

[
1−2π ivkk

∫
dp

1
−i(ω + iη)+ ikp

∂ f
∂p

]

The equation correctly predicts the energy balance
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Kinetic Evolution from Numerical Simulation

Kinetic energy 〈κ〉 as a function of αt
〈p4〉 as a function of αt

(C(0) = 1.5, and c1 = 0.75)

This is an evidence of kinetic evolution over a time scale 1/α
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Kinetic Equation Predicts the Stationary Distribution

Stationary distribution (α = 0.01,
C(0) = 1.5, and c1 = 0.75) Stationary diffusion

coefficient
Very good agreement between kinetic theory and N-particle
numerical simulations
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Mathematical Study of the Kinetic Equation ?

All computations can be performed explicitly. Then

∂ f
∂ t

+Vlasov [f ] = α

[
∂ (pf )

∂p
+

∂

∂p

(
D[f ]

∂ f
∂p

)]

D[f ](p)=
1
2
C(0)+2π

∞

∑
k=1

Vkck

∫ ∗
dp1

[
1

|ε(k,kp)|2
+

1
|ε(k,kp1)|2

]
1

p1−p
∂ f
∂p

(p1)

∫ ∗ indicates the Cauchy principal value of the integral, and the
dielectric function ε is

ε(k,ω) = lim
η→0+

[
1−2π ivkk

∫
dp

1
−i(ω + iη)+ ikp

∂ f
∂p

]

The equation correctly predicts the energy balance
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Kinetic Theory for Systems with Long Range Interactions
A classical and fascinating framework

H =
1
2

N

∑
k=1

p2k +
1
N

N

∑
k,l=1

V (xk − xl )

For instance a plasma in the weak coupling limit.
A common framework for many systems: plasma physics, self
gravitating systems, point vortex model
Classical approach: BBGKY hierarchy, small parameter,
chaotic hypothesis, derivation of kinetic equations
Vlasov equation (40’s), Landau equation, Lenard Balescu
equation (60’s,70’s)
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Kinetic Theory: Diluted Gases Versus Long Range Systems
Two opposite limits but strong analogies for the kinetic theories

Short-ranged (gases) Long-range
Small parameter a/l = 1/

(
πa2n

)
1/N

Initial evolution Collisionless Boltzmann Vlasov equation
Late relaxation Boltzmann equation Lenard-Balescu
Vanishing correlations Yes Yes
Boltzmann entropy Yes Yes
Stosszahl Ansatz Yes Yes
Steady states of Local thermal equilibrium Quasistationary
the initial evolution states
Relaxation time scale ∝ l/v̄ or larger ∝ N or larger
Long temporal correlations Yes ?
and algebraic decays Yes ?

Anomalous diffusion ?
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Algebraic Decays and Anomalous Diffusion
Long range system : the relaxation of a test particle in a bath

Using kinetic theory, we derive a Fokker-Planck equation for a
particle in a bath. Rapidly decaying diffusion coefficient.
The Fokker Planck equation has a continuous spectrum
Algebraic decay for large times of correlation functions
We compute analytically the exponent using matched
asymptotic expansions

F. Bouchet, T. Dauxois (2004) Phys. Rev. E,
Y. Yamaguchi, F. Bouchet, and T. Dauxois (2007) J. Stat. Mech.
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The Lenard–Balescu Equation

After solving the Lyapunov equations for the second order
correlation function we obtain the Lenard-Balescu equation:

∂ f
∂ t

+Vlasov [f ] =
1
N

〈
∂ Φ[δ f ]

∂q
∂δ f
∂p

〉
=

1
N

L B [f ]

Valid when f is close to a stable steady state of the Vlasov
equation
What are the limits of the Vlasov and Lenard–Balescu
equations ?
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What are the Limits of Kinetic Theory ?
How long are the Vlasov equation valid, or the Lenard-Balescu equation valid ?

The C log(N) upper bound for the validity of the Vlasov
equation is optimal K. Jain, F. Bouchet, and D. Mukamel (2007), J.Stat.
Mech.

τ ∝ N1.7. This is not consistent with simple use of kinetic theory

Y.Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois and S. Ruffo, (2004) Physica A,
F. Bouchet, T. Dauxois (2004) Phys. Rev. E
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The 2D Stochastic Navier–Stokes (SNS) Equations

Navier Stokes equation with a random force

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
σ fs

where ω = (∇∧u) .ez is the vorticity, α is the Rayleigh friction
coefficient
fs is a random Gaussian field〈

fS(x, t)fS(x′, t ′)
〉

= C (x,x′)δ (t− t ′)

An academic model with experimental realizations (Sommeria,
Tabeling, Ecke experiments, rotating tanks, magnetic flows,
soap films, and so on). Analogies with geophysical flows
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The 2D Stochastic Navier-Stokes Equations

∂ω

∂ t
+v.∇ω = ν∆ω +

√
νfs

Some recent mathematical results: Kuksin, Sinai, Shirikyan,
Bricmont, Kupiainen, Hairer, etc;

Existence of a stationary measure µν . Existence of limν→0 µν ,
In this limit, almost all trajectories are solutions of the Euler
equation.

We would like to obtain more physical results:

What is the link of this limit ν → 0 with the RSM theory?
Will we stay close to some steady solutions of the Euler
equation?
Can we describe these statistically stationary states and their
properties?

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics



Large Time Asymptotics of the 2D Euler Eq.
Kinetic theory of particle systems

Kinetic theory of the stochastic Navier-Stokes equations

The 2D S. Navier–Stokes equations.
Linearized Eq. with random forces
Linearized Eq. with random forces

Balance Relations (Energy Conservation)

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
σ fs

Energy conservation

d 〈E 〉
dt

=−2α 〈E 〉−ν 〈Ω2〉+ σ

In a statistically stationary regime:

〈E 〉S =
σ

2α
− ν

2α
〈Ω2〉S

Time unit change, in order to fix an energy of order one (the
turnover time will be of order one):
t ′ =

√
σ/2αt ; ω ′ =

√
2α/σω ; α ′ = (2α)3/2 /

(
2σ1/2

)
and ν ′ = ν (2α/σ)1/2
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Large Time Asymptotics of the 2D Euler Eq.
Kinetic theory of particle systems

Kinetic theory of the stochastic Navier-Stokes equations

The 2D S. Navier–Stokes equations.
Linearized Eq. with random forces
Linearized Eq. with random forces

Balance Relations (Energy Conservation)

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
σ fs

Energy conservation

d 〈E 〉
dt

=−2α 〈E 〉−ν 〈Ω2〉+ σ

In a statistically stationary regime:

〈E 〉S =
σ

2α
− ν

2α
〈Ω2〉S

Time unit change, in order to fix an energy of order one (the
turnover time will be of order one):
t ′ =

√
σ/2αt ; ω ′ =

√
2α/σω ; α ′ = (2α)3/2 /

(
2σ1/2

)
and ν ′ = ν (2α/σ)1/2

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics



Large Time Asymptotics of the 2D Euler Eq.
Kinetic theory of particle systems

Kinetic theory of the stochastic Navier-Stokes equations

The 2D S. Navier–Stokes equations.
Linearized Eq. with random forces
Linearized Eq. with random forces

The 2D Stochastic Navier-Stokes Equations

The 2D Stochastic Navier Stokes equations:

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs ,

where fs is a random force (white in time, smooth in space). We
study the limit ν → 0.
The time unit has been chosen such that E = 1−O(ν/α).
1/α = U/αL is a Reynolds’ number based on the large scale
friction.
Two main regimes

1 α � 1: the flow is not much affected by the box. The energy
is dissipated before reaching the box size. Cascade regime
(possibly)

2 α � 1: most of the energy will stand at the box scale. Regime
of large scale coherent flows
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The 2D Stochastic Navier-Stokes Equations

The 2D Stochastic Navier Stokes equations:

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs

We use very small Rayleigh friction, to observe large scale
energy condensation (this is not the inverse cascade regime).
We study the limit: limα→0 limν→0 (ν � α) (Re� Rα � 1)
(Weak forces and dissipation).
We have time scale separations:

turnover time = 1�1/α = forcing or dissipation time.
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Large Scale Structures and Euler Eq. Steady States

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs (5)

Time scale separation: magenta terms are small.
At first order, the dynamics is nearly a 2D Euler dynamics.
The flow self organizes and converges towards steady solutions
of the Euler Eq.:

v.∇ω = 0 or equivalently ω = f (ψ)

where the Stream Function ψ is given by: v = ez ×∇ψ .
Steady states of the 2D Euler equations will play a crucial role.
Degeneracy : what does select f ?
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Steady States of Euler Eq. as Maxima of Variational
Problems
Energy-Casimir Variational Problems

S(E ) = max
ω

{∫
D

dr s (ω)
∣∣∣1
2

∫
D

dr
v2

2
= E

}
.

Numerical results : Z. Yin, D. C. Montgomery, and H. J. H.
Clercx, Phys. Fluids (2003).

Maxima: ω = ∆ψ =
(
s
′
)−1

(βψ) (stable steady states of the
Euler Eq.).
In the following, normal form analysis with
s (ω) =−ω2

2 +a4 ω4

4 + ...

Geometry parameter g = E (λ1−λ2) ∝ (Lx −Ly ).
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Steady States for the 2D-Euler Eq. (doubly periodic)

Bifurcation analysis : degeneracy removal, either by the domain
geometry (g) or by the nonlinearity of the vorticity-stream function

relation (f , parameter a4).

Derivation: normal form for an Energy-Casimir variational problem.
A general degeneracy removal mechanism.

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics



Large Time Asymptotics of the 2D Euler Eq.
Kinetic theory of particle systems

Kinetic theory of the stochastic Navier-Stokes equations

The 2D S. Navier–Stokes equations.
Linearized Eq. with random forces
Linearized Eq. with random forces

Numerical Simulation of the 2D Stochastic NS Eq.

Very long relaxation times. 105 turnover times.
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Out of Equilibrium Stationary States: Dipoles

Are we close to some steady states of the Euler Eq.?
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Vorticity-Streamfunction Relation

Conclusion: we are close to steady states of the Euler Eq.
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Leading Order: 2D Euler Steady States

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs

At leading order we expect a 2D Euler steady state V0 with
vorticity Ω0: V0.∇Ω0 = 0
We assume for simplicity a stable parallel base flow Ω0(y) and
V0 = U (y)ex

The linearized 2D Euler equations
∂tδω +LΩ0 [δω] = 0 with L [δω] = V0.∇δω + δv ·∇Ω0
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Projection over Slow and Fast Variables

∂ω

∂ t
+v.∇ω =−αω +

√
2αfs

We decompose the field into slow (parallel flows) and fast
variables

Ω0(y) = P [ω] =
1
2π

∫
D
dx ω and

√
αδω = ω−Ω0

Projected equations (exact)

∂tΩ0 =−αΩ0−αP [δv ·∇δω] +
√
2αP [fS(x, t)]

∂tδω +LΩ0 [δω] =−
√

αδω +
√
2(1−P) [fS(t,x)]−

√
α(1−P) [δv ·∇δω]

Kinetic (or quasilinear approach)
√

α(1−P) [δv ·∇δω] is
neglected
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The Quasilinear Approximation

∂tΩ0 =−αΩ0−αP [δv ·∇δω]+
√
2αP [fS(x, t)]

∂tδω +LΩ0 [δω] =−
√

αδω+
√
2(1−P) [fS(x, t)]

The unforced quasilinear approximation conserves energy and
enstrophy
For fixed Ω0 the second equation is an Ornstein Uhlenbeck
process that can be studied precisely
We will study the quasilinear approximation and discuss if this
approximation is self-consistent in the limit α → 0
In the limit α → 0, we have a two time-scale problem, that we
treat adiabatically
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The Lyapunov Equation

∂tδω +LΩ0 [δω] =−
√

αδω +
√
2(1−P) [fS(x, t)]

The statistics of this Gaussian process is characterized by the
two-points correlation function g(x1,x2, t)≡ 〈δω(x1, t)δω(x2, t)〉

∂g
∂ t

+L1
Ω0

[g ]+L2
Ω0

[g ] =−
√

αg +2CP(x1,x2)

We will prove that this equation has a limit

g(x1,x2, t) →
t→∞

g∞ [Ω0] (x1,x2)

Any two point correlation function has a limit. For instance

P 〈δv(x, t) ·∇δω(x, t)〉 →
t→∞

N L [Ω0] (x)
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The Kinetic Equation

∂tΩ0 =−αΩ0−αP [δv ·∇δω] +
√
2αP [fS(x, t)]

For instance, we look at the evolution of the average

∂tΩ0 =−α (Ω0 +N L [Ω0])
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The 2D Stochastic Linearized Euler Equations
General considerations

∂tω +v.∇Ω0 +V0.∇ω =
√

σ fS(x, t) with
〈
fS(x, t)fS(x′, t ′)

〉
= C (x,x′)δ (t−t ′)

Linear: Gaussian process (two point correlations, Lyapunov
equation)
Theoretical difficulty : the deterministic linearized operator is
non normal (no mode decomposition)
Infinite dimensional linear operator : non trivial
non-exponential behaviors
Landau damping or Orr mechanism
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Linear SDE: Brownian Motion and Ornstein Uhlenbeck
Process
Some trivial remarks

First case: without dissipation. Ex : Brownian motion

dx =
√

σdWt with x(0) = 0〈
x2
〉

(t) = σ t

Second case: with dissipation. A simple 1-d Ornstein
Uhlenbeck process (with dissipation)

dx =−αxdt +
√

σdWt with x(0) = 0〈
x2
〉
S =

σ

2α

A linear stochastic differential equation with dissipation leads to a
statistically stationary process
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x2
〉

(t) = σ t

Second case: with dissipation. A simple 1-d Ornstein
Uhlenbeck process (with dissipation)

dx =−αxdt +
√

σdWt with x(0) = 0〈
x2
〉
S =

σ

2α

A linear stochastic differential equation with dissipation leads to a
statistically stationary process

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics



Large Time Asymptotics of the 2D Euler Eq.
Kinetic theory of particle systems

Kinetic theory of the stochastic Navier-Stokes equations

The 2D S. Navier–Stokes equations.
Linearized Eq. with random forces
Linearized Eq. with random forces

The 2D Linearized Stochastic Euler Equation
Linearized close to a stable steady state

∂tω +v.∇Ω0 +V0.∇ω =
√

σ fS(x, t) and ω(t = 0) = 0

Lyapunov equation for g(x1,x2, t)≡ 〈ω(x1, t)ω(x2, t)〉

∂g
∂ t

+L1
Ω0

[g ]+L2
Ω0

[g ] = σC(x1,x2)

In which case are we? A linear variance growth or the
stabilization to a stationary process?
There is no dissipation (reversible conservative dynamics), we
should be in the first case. We expect a linear growth
The result will depend on which functional space is g .
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The 2D Linearized Stochastic Euler Eq.
Stochastic Orr mechanism

〈v(r , t + τ)v(r ′, t)〉 → 〈v(r ,τ)v(r ′,0)〉S 〈v(r , t)v(r ′, t)〉= O (σ).
(The velocity autocorrelation function has a finite limit)

The velocity vx variance (base flow v0 (y) = σy)

Even without dissipation, the velocity process converges
towards a stationary process (Stochastic Orr mechanism)
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A Simple Explanation

∂g
∂ t

+L1Ω0
[g ] +L2Ω0

[g ] = σ ∑
k

Ck(x1)Ck(x2)

Solution in terms of the deterministic solutions of the
linearized equation

g(x1,x2, t) = σ ∑
k

∫ t

0
du exp(LΩ0u) [Ck ] (x1)exp(LΩ0u) [Ck ] (x2)

For the 2D linearized Euler Eq., for velocity variables, even
without dissipation [exp(Lu)] →

u→∞
0 and the integral converges

Thanks to both the Orr mechanism and the depletion of the
perturbation vorticity, for the velocity, L converges to zero
even without dissipation or friction
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Asymptotic Behavior of the Linearized Euler Eq.
Base flow with stationary streamlines : the velocity field

Theorem: algebraically decaying asymptotic velocity field

vx(y , t) ∼
t→∞

vx ,∞ (y)

t
exp(−ikU(y)t)

vy (y , t) ∼
t→∞

vy ,∞ (y)

t2
exp(−ikU(y)t)

What about stationary streamlines? They should give
contributions of order 1/t1/2 !
No contribution from the stationary streamlines thanks to the
depletion of the vorticity perturbation at stationary streamlines
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The 2D Linearized Stochastic Euler Eq.: Conclusions
The results for shear flows should also hold for axisymmetric vortex

〈v(y , t + τ)v(y ′, t)〉 → 〈v(y ,τ)v(y ′,0)〉S 〈v(y , t)v(y ′, t)〉= O (σ).
(The velocity autocorrelation function has a finite limit)
R.m.s. value of the vorticity and vorticity gradient:√
〈∇ω2〉 ∼

t→∞
σ
1/2C (r) t3/2 and

√
〈ω2〉 ∼

t→∞
σ
1/2C (r) t1/2

〈ω(y , t)ω(y ′, t)〉= ∼
t→∞

σS(y)δ (y −y ′) (Resonance over
streamlines for the vorticity autocorrelation function)
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The Lyapunov Equation

∂tδω +LΩ0 [δω] =−
√

αδω +
√
2(1−P) [fS(x, t)]

Gaussian : the statistics is characterized by the two-points
correlation function g(x1,x2, t)≡ 〈δω(x1, t)δω(x2, t)〉

∂g
∂ t

+L1
Ω0

[g ]+L2
Ω0

[g ] =−
√

αg +2CP(x1,x2)

This equation has a limit

g(x1,x2, t) →
t→∞

g∞ [Ω0] (x1,x2)

Any two point correlation function has a limit. For instance

P 〈δv(x, t) ·∇δω(x, t)〉 →
t→∞

N L [Ω0] (x)
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The Kinetic Equation

The kinetic equation for the 2D Stochastic Navier-Stokes
equations is a well defined object

∂tΩ0 =−α (Ω0 +N L [Ω0])

Ongoing work : study of this nonlinear Fokker-Planck
equation, at a mathematical and physical level
Comparison with experiments and direct numerical simulations
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Kinetic Theory of Earth and Jupiter’s Zonal Jets
These jets does not seem to be maximum entropy states

Jupiter atmosphere
Jupiter Zonal wind (Voyager and
Cassini, from Porco et al 2003)

How far are we to reproduce such phenomena in numerical
simulations ? How to theoretically predict such velocity profile ?
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Summary

Messages :
For the 2D Euler equations, the equivalent of the Landau
damping is the Orr mechanism
For perturbations of any stable shear flows, the decay of the
velocity perturbation is asymptotically algebraic
We propose a kinetic theory for stochastic mean field
Hamiltonians. The kinetic equation describes the relaxation
towards the stationary momentum distribution
A similar kinetic approach is proposed for the 2D stochastic
Navier-Stokes equations
We have thoroughly studied the Ornstein-Uhlenbeck process
for the 2D linearized Euler equations and its asymptotics

F. Bouchet, and A. Venaille, Physics Reports, 2011, Statistical mechanics of
two-dimensional and geophysical flowsF. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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