JOVIAN JETS AND VORTICES AS STATISTICAL EQUILIBRIA

Freddy BOUCHET, Pierre Henri CHAVANIS and Joel SOMMERIA

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Self Organization of Large Scales of Geophysical Flows

itut non linéaire de **N**ice

Jupiter : The Great Red Spot

Jupiter : A Brown Barge

- Geophysical flows have the property to self-organize at large scale.
 - This is a general property (all planet atmospheres, oceans ...)
- These flows also have a turbulent nature. More quantitatively : the Reynolds' number or the number of exited degrees of freedom $R_e = \frac{UL}{\nu} \simeq 10^{12}$ and $N \simeq 10^{20}$
- Stability : the Jupiter's Great Red Spot exists from more than three century.
- Is this paradoxical ? An explanation ?

A Statistical Explanation

Thermodynamical Analogy

• A variational problem for the curve formed by the jet

 $\min\left\{F_{R}\left[\phi_{R}\right]=2Re_{c}L-2Ru\int_{A_{1}}d\mathbf{r}\,h_{0}(y)+o\left(R\right)\right\}$

• Laplace equation: link between the curvature radius *r* and the free energy difference

 $\frac{e_c}{r} = -u\left(\alpha_1 - h_0\left(y\right)\right)$

• Prediction: the structure is located on extrema of the equivalent topography.

Right: The actual equivalent topography for the GRS and White Ovals (computed using Dowling and Ingersoll (1989) analysis of the ob-

1

Typical vortex shape served velocity fields)

Phase Diagram : Jets and Elongated Vortices

E is the energy and *B* measures the asymmetry of the initial PV distribution

- Like for a usual gas example, the statistical effects leads to deterministic behaviors
- The statistical mechanics
 - Phase space : uniform density
 - A huge particle number : entropy
 - Dynamical mixing
- Statistical mechanics for geophysical flows ?

The Quasi-Geostrophic Model

 $\frac{\partial q}{\partial t} + \mathbf{u} \cdot \nabla q = 0$ with $q = -\Delta \psi + \frac{\psi}{R^2} - h(y)$ and $\mathbf{u} = -\mathbf{e}_z \wedge \nabla \psi$

where *q* is the potential vorticity (PV), u the velocity field, ψ the stream function, and *h* the equivalent topography induced by the deep zonal flow.

Conservation laws :

Energy:
$$E = \frac{1}{2} \int_D d\mathbf{r} \left(\mathbf{u}^2 + \frac{\psi^2}{R^2} \right)$$
 Casimirs: $C_f(q) = \int_D d\mathbf{r} f(q)$

Statistical Mechanics of the Quasi-Geostrophic Model

Left : Typical potential vorticity (PV) field, from a numerical simulations with initially only two PV values (red and blue) Let $p(\mathbf{r})$ be the local probability to have one of the two initial PV values (red or blue)

Entropy (proposed by Robert and Sommeria (1991), Miller (1991)):

$S = -\int_{D} [p(\mathbf{r}) \ln p(\mathbf{r}) + (1 - p(\mathbf{r})) \ln(1 - p(\mathbf{r}))] d\mathbf{r}$

The entropy counts the number of states corresponding to a given *p*: the entropy maximum is the most probable state after complete PV mixing

Statistical Equilibria : $\max \{S \mid \text{with } E = E_0 \text{ and } A = A_0\}$

where *A* is the area occupied by one of the potential vorticity levels, *E* is the energy and *S* the entropy (most probable state for a given energy and PV distribution)

• Critical points: a stationnary state given by

$$q = -\Delta \psi + \frac{\psi}{R^2} - h(y) = f_{\alpha,\beta}(\psi)$$

The Shape of QG Equilibria and of Jovian Vortices

Oval BC

A Brown Barge

Statistical Model of the Great Red Spot's Velocity Field

Observation data

Observations : from Voyager data analyses (Dowling and Ingersoll 1994).

• A good quantitative agreement + Rossby deformation radius determination.

White Ovals from Random PV Distributions

Left : Dynamical evolution from a random initial distribution Right : This evolution con-

• Analytical results in the limit of small Rossby deformation radius: $R \rightarrow 0$.

verges to a statistical equilibrium, similar to a White Oval

The Great Red Spot: Coexistence of 2 Thermodynamical

Phases Separated by an Interface (Strong Jet)

Entropy maximization is equivalent to the variational problem:

 $\min \{F_R[\phi] \mid \text{with } A[\phi] \text{ given} \}$ $\text{with } F_R[\phi] = \int_D d\mathbf{r} \left[\frac{R^2(\nabla \phi)^2}{2} + f(\phi) - \frac{R\phi h_0(y)}{2} \right] \text{ and } A[\phi] = \int_D d\mathbf{r} \phi$

This describes a first order phase transition (analogous to a gaz buble in a liquid)

f has two minima

 ϕ thus takes the two values where *f* reaches its minima, in two subdomains (phase separaration) separated by an interface (see right figure)

- With an asymptotic expansion $(R \rightarrow 0)$, we describe the jet
- By analogy with usual thermodynamics, this interface should minimize its length, for a fixed area. The topography will slightly change this picture.

The Brown Barges' Velocity Field

<u>Contact</u> : Freddy.Bouchet@inIn.cnrs.fr <u>Publications</u> :

- F. BOUCHET and J. SOMMERIA, 2002, J. Fluid. Mech., 464 465-207
- F. BOUCHET and T. DUMONT Sub. to Journal of Atmospherical Sciences
- F. BOUCHET, P.H. CHAVANIS and J. SOMMERIA (Shallow Water model)