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Abstract Two-dimensional and geophysical turbulent flows have the property to
self organize and create large scale coherent jets and vortices. This is for instance
one of the major processes for the dynamics of Earth’s atmosphere. Following On-
sager initial insight, based on conjugated works by mathematicians and physicists,
this fundamental physical process has found some explanations in the framework
of statistical mechanics. An important step, initiated twenty years ago, has been the
study of the equilibrium statistical mechanics for the 2D Euler and the related quasi-
geostrophic models (the Miller-Robert-Sommeria theory).
Real geophysical and experimental flows are however dissipative and maintained
by external forces. These lectures focus on recent theoretical development of the
statistical mechanics of those non-equilibrium situations. Those progresses have
been achieved using tools from field theory (path integrals and instantons), non-
equilibrium statistical mechanics (large deviations, stochastic averaging). The aim
of these lectures is to briefly introduce the theoretical aspects of this program in the
simplest context: the 2D stochastic Euler or Navier-Stokes equations and the quasi-
geostrophic equations.
We review path integral representations of stochastic processes, large deviations for
transition probabilities, action minimization, instanton theory, for general mechan-
ical systems forced by random forces. We will apply this framework in order to
predict equilibrium and non-equilibrium phase transitions for the 2D Euler, Navier-
Stokes, and quasi-geostrophic dynamics, and to predict the rates of rare transitions
between two attractors in situations of first order phase transitions.
Kinetic theory of systems with long range interactions, both with and without
stochastic external forces, are explained. Based on this kinetic theory, we predict
non-equilibrium phase transitions, and discuss their recent experimental observa-
tions and numerical simulations.
Even if the model we have considered so far are too simple academic models, the ex-
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pected relevance of those approaches in the future for Earth atmosphere and climate
dynamics is briefly discussed.

1 Introduction

1.1 Self-organization of two-dimensional and geophysical flows

Atmospheric and oceanic flows are three-dimensional (3D), but are strongly dom-
inated by the Coriolis force mainly balanced by pressure gradients (geostrophic
balance). The turbulence that develops in such flows is called geostrophic turbu-
lence. Models describing geostrophic turbulence have the same type of additional
invariants as those of the two-dimensional (2D) Euler equations. As a consequence,
energy flows backward and the main phenomenon is the formation of large scale
coherent structures (jets, cyclones and anticyclones). One such example is the for-
mation of Jupiter’s Great Red Spot, Fig. 1.

Fig. 1 Picture of Jupiter’s Great
Red Spot - a large scale vortex
situated between bands of atmo-
spheric jets. Photo courtesy of NASA:
http://photojournal.jpl.nasa.gov/catalog
/PIA00014.

Fig. 2 Zonally averaged velocity profile in the
upper troposphere of Jupiter. The flow is organ-
ised into alternating strong jets.

The analogy between 2D turbulence and geophysical turbulence is further em-
phasized by the theoretical similarity between the 2D Euler equations, describing
2D flows, and the layered quasi-geostrophic or shallow water models, describing
the largest scales of geostrophic turbulence: both are transport equations for a scalar
quantity by a non-divergent flow, conserving an infinite number of invariants.
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The formation of large scale coherent structures is a fascinating problem and an
essential part of the dynamics of Earth’s atmosphere and oceans. This is the main
motivation for setting up a theory for the self-organization of 2D turbulence.

1.2 Statistical mechanics of the self-organization of
two-dimensional and geophysical flows: Onsager’s equilibrium
route

Any turbulence problem involves a huge number of degrees of freedom coupled via
complex nonlinear interactions. The aim of any theory of turbulence is to understand
the statistical properties of the velocity field. It is thus extremely tempting to attack
these problems from a statistical mechanics point of view.

Statistical mechanics is indeed a very powerful set of theoretical tools that allows
us to reduce the complexity of a system down to a few thermodynamic parameters.
As an example, the concept of phase transition allows us to describe drastic changes
of the whole system when a few external parameters are changed. Statistical me-
chanics is the main theoretical approach we develop in these lectures. It succeeds
in explaining many of the phenomena associated with two-dimensional turbulence
[13].

This may seem surprising at first, as it is a common belief that statistical mechan-
ics is not successful in handling turbulence problems. The reason for this belief is
that most turbulence problems are intrinsically far from equilibrium. For instance,
the forward energy cascade in three-dimensional turbulence involves a finite energy
dissipation, no matter how small the viscosity (anomalous dissipation) (see for in-
stance Onsager’s insightful consideration of the non-conservation of energy by the
three dimensional Euler equations [28]). As a result of this finite energy flux, three
dimensional turbulent flows cannot be considered close to some equilibrium distri-
bution.

By contrast, two-dimensional turbulence does not suffer from the anomalous dis-
sipation of the energy, so equilibrium statistical mechanics, or close to equilibrium
statistical mechanics makes sense when small fluxes are present. The first attempt
to use equilibrium statistical mechanics ideas to explain the self-organization of
two-dimensional turbulence dates from Onsager work in 1949 [51] (see [28] for a
review of Onsager’s contributions to turbulence theory). Onsager worked with the
point-vortex model, a model that describes the dynamics of singular point vortices,
first used by Lord Kelvin and which corresponds to a special class of solutions of
the 2D Euler equations. The equilibrium statistical mechanics of the point-vortex
model has a long and very interesting history, with wonderful pieces of mathemati-
cal achievements [51, 37, 18, 39, 26, 21, 27, 1].

The generalization of Onsager’s ideas to the 2D Euler equations with a con-
tinuous vorticity field, taking into account all invariants, has been proposed in the
beginning of the 1990s [57, 45, 58, 60], leading to the Miller–Robert–Sommeria
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theory (MRS theory). The MRS theory includes the previous Onsager theory and
determines within which limits the theory will give relevant predictions and results.

The MRS theory deals with the microcanonical invariant measure. It predicts that
most microscopic states (vorticity field) concentrate into a single macrostate (most
vorticity fields basically have the same large scale velocity field). This explains why
one should expect the flow to self-organize into this equilibrium macrostate. This
equilibrium macrostate is characterized by the maximization of an entropy with
some constraints related to dynamics invariants. The aim of section 3 is to sketch
the derivation of this variational problem, which is the basis of the theory. Then ap-
plication to the Great Red Spot of Jupiter will be briefly summarized.

These two points constitute a very brief overview of equilibrium statistical me-
chanics. Over the last fifteen years, the RSM equilibrium theory has been applied
successfully to a large class of problems, for both the two-dimensional Euler and
quasi-geostrophic equations. This includes many interesting applications, such as
the predictions of phase transitions in different contexts, a model for the Great Red
Spot and other Jovian vortices, and models of ocean vortices and jets. A detailed
description of the statistical mechanics of 2D and geophysical flows (theory) and
of these geophysical applications is presented in the review [13]. Older reviews
or books [64, 42, 40], give a very interesting complementary viewpoint, stressing
mainly the theory and laboratory experiments. The note by Y. Pomeau [54] gives
also a very interesting comment on the reason why the two-dimensional Euler equa-
tions, by contrast with most other equilibrium approach for classical field theory,
does not suffer from the Rayleigh-Jeans paradox (basically the fact that a classical
field has an infinite heat capacity). This point is further discussed in [13]. Finally
we stress that equilibrium statistical mechanics for two dimensional and geophys-
ical flows is still a very active subject, with many contribution during the last few
years [71, 70, 33, 34, 35, 66, 49, 48, 73, 8, 24, 55], many of them by bright young
scientists.

As far as equilibrium statistical mechanics is concerned, the aim of these lec-
ture is just to explain the basis of Miller–Robert–Sommeria theory, explain how
to compute the entropy of macrostate and thus their probability through the use of
large deviation theory. We discuss these points in section 3 at a level which is as
elementary as possible.

1.3 Non-equilibrium statistical mechanics of the self-organization
of two-dimensional and geophysical flows: statistical
mechanics and dynamics

Most of natural turbulent flows are not freely evolving, they are rather constantly
forced and dissipated. Then, in statistically stationary regimes, power input through
external forces balance energy dissipation on average. In the limit of very small
forces and dissipation, compared to conservative terms of the dynamics, it is ex-
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pected to find a strong relation between these non-equilibrium flows and some of
the states predicted by equilibrium statistical mechanics. In order to give a precise
meaning to this general idea, and to deal with far from equilibrium situations, it is
essential to develop also the non-equilibrium statistical mechanics of the 2D Euler,
2D Navier-Stokes and barotropic quasi-geostrophic equations. As we discuss be-
low, this has been the subject of recent key advances in the applications of statistical
mechanics to turbulent flows. This is actually the main subject of these lectures.

We present two non-equilibrium statistical mechanics approaches: the first deals
with non-equilibrium first order phase transitions and the computation of transition
rates using large deviations, and the second is a kinetic theory approach to the pre-
diction of the large scale flows.

1.3.1 Statistical mechanics of paths in phase space and non-equilibrium
bistable turbulent flows

Many turbulent flows can evolve and self-organize towards two or more very differ-
ent states. In some of these systems, the transitions between two of such states are
rare and occur relatively rapidly. Examples include the Earth magnetic field rever-
sals (over geological timescales) or in magnetic field reversal in MHD experiments
(e.g. the Von Krmn Sodium (VKS) turbulent dynamo in Fig. 3) [3], Rayleigh-Bnard
convection cells [20, 50, 65, 17], 2D turbulence [63, 41, 10] (see Fig. 4), 3D flows
[56] and for ocean and atmospheric flows [72, 62]. The understanding of these tran-
sitions is an extremely difficult problem due to the large number of degrees of free-
doms, large separation of timescales and the non-equilibrium nature of these flows.

However, for forced-dissipated turbulent systems it is unclear how to define the
set of attractors for the dynamics. Although, in the limit of weak forcing and dissi-
pation, one would expect that the set of attractors would converge to the ones of the
deterministic equation. In the case of the 2D Euler equations, equilibrium statistical
mechanics in the form of the equilibrium Miller-Robert–Sommeria theory allows
for the prediction set of attractors for the dynamics. They are a subsets of the steady
states of the 2D Euler equations, then equilibrium statistical mechanics gives a first
partial answer to the question of attractors.

Moreover, simulations of the 2D Navier-Stokes equations in the weak force and
dissipation limit showed that the dynamics actually concentrates precisely close to
the set of the 2D Euler equations attractors [10]. Interestingly, the same simula-
tion showed sporadic non-equilibrium phase transitions, where the system spon-
taneously switched between two apparently stable steady states resulting in a com-
plete change in the macroscopic behavior (see figure 4). If the forces and dissipation
are weak, then these transitions are actually extremely rare, occurring on a timescale
much longer than the dynamical timescale.

In such situations, when the turbulent flow switches at random times from one
type of attractor to another, a theoretical aim is to compute the transition rate. It
is also often the case that most transition paths from one attractor to another con-
centrate to a single path, then a natural aim is to compute this most probable path.
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Fig. 3 Figure taken from [3] showing random transitions between meta-stable orientations of
the magnetic field in an experimental turbulent dynamo. The main azimuthal component of the
magnetic field is shown in red.

Fig. 4 Figure taken from [10] showing rare transitions (illustrated by the Fourier component of the
largest y mode) between two large scale attractors of the periodic 2D Navier-Stokes equations. The
system spends the majority of its time close to the vortex dipole and parallel flows configurations.

In order achieve those aims, we will use a path integral representation of the tran-
sition probabilities and study its semi-classical limit, in an asymptotic expansion
where the small parameter is the one that determines both the force and dissipa-
tion amplitude. In this limit, if this semi-classical approach is relevant, one expects
a large deviation result, similar to the one obtained through the Freidlin-Wentzell
theory[30]. In order to illustrate in a pedagogical way the general approach, we will
treat in these lectures the classical case of the Kramer model (computation of the
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transition rate for a particle in a double well potential). We will generalize the dis-
cussion to a set of Langevin dynamics that includes the two-dimensional Euler and
Quasi-Geostrophic Langevin dynamics, and finally we will discuss partial results for
the two-dimensional Navier-Stokes equations when detailed balance is not satisfied.
Those different points are discussed in section 4.4.

1.3.2 Kinetic theory of zonal jets

One example of spontaneous emergence of large-scale coherent structures in geo-
physical flows is the formation of zonal (east-west) jets. The common pictures of
Jupiter perfectly illustrate this fact: the surface flow is clearly organized into paral-
lel, alternating zonal jets as shown in figure 2, with also the presence of giant and
very stable vortices such as the Great Red Spot. Such large scale features are on one
hand slowly dissipated, mainly due to a large-scale friction mechanism, and on the
other hand maintained by the small-scale turbulence, through Reynolds’ stresses.
The main mechanism is thus a transfer of energy from the forcing scale (due to
barotropic and baroclinic instabilities) to the turbulent scales and until the scale of
the jets.

An important point in this phenomenology is the fact that the turbulent fluctua-
tions are of very weak amplitude compared to the amplitude of the zonal jet, and
that they evolve much faster. This means that the typical time scale of advection and
shear of the fluctuations by the jet is much smaller that the typical time scale of for-
mation or dissipation of the whole jet. This time scale separation is a very specific
property of the geophysical large-scale structures.

In this turbulent context, the understanding of jet formation requires averaging
out the effect of rapid turbulent degrees of freedom in order to describe the slow evo-
lution of the jet structure. Such a task, an example of closure, is usually extremely
hard to perform for turbulent flows. Using the time-scale separation mentioned ear-
lier, we prove that it can be performed explicitly in this problem. This approach,
called a kinetic theory by analogy with similar approaches in the statistical mechan-
ics of systems with long range interactions, is presented in section 5.

1.4 A contemporary approach of statistical mechanics: large
deviation theory

Onsager was the first to consider a statistical mechanics explanation of two-dimensional
turbulent flows [51]. At the time he was scientifically active, Onsager made a large
number of decisive contributions to statistical mechanics theory: solutions of the
2D Ising model, reciprocity relations, contributions to the statistical mechanics of
electrolytes and turbulence, and so on. Since that time the theoretical approaches
for treating statistical mechanics problems have been completely renewed. One of
the main changes has been the use of the language of large deviation theory for



8 Freddy Bouchet, Cesare Nardini and Tomás Tangarife

more than 30 years. For instance, recent results in the understanding of equilibrium
statistical mechanics problems, proving fluctuation theorems (Onsager’s reciprocity
relations generalized far from equilibrium), and in dealing with non-equilibrium
statistical mechanics problems, are all related to large deviation theory.

Interestingly, as we discuss in these lectures, the route proposed by Onsager in
his 1949 paper [51] in order to understand the self-organization of two-dimensional
flows, led a few decades later to some of the first applications of large deviation
theory to equilibrium statistical mechanics problems.

The theory of large deviations deals with the asymptotic behavior of the expo-
nential decay of the probabilities of rare or extreme events. The associated limiting
parameter is usually taken to be the number of observations, the number of particles,
but can be other parameters, such as vanishing noise or the temperature of a chemi-
cal reaction, or large time. Large deviation theory can be considered a generalization
of the central limit theorem, with the refinement of including information about the
behavior of the tails of the probability density. The main result of large deviation
theory is the large deviation principle, a result describing the leading asymptotic
behavior of the tails or large deviations of the probability distribution in the limit
N → ∞. For instance, the large deviation principle for a random variable XN is

lim
N→∞

− 1
N

log[P(XN = x)] = I(x), (1)

where P is the probability density for the random variable XN , and I(x) is called the
rate function. For instance, if XN = (1/N)∑N

i=1 xi, where xi are independent identi-
cally distributed random variables then I(x) is given by Cramer’s theorem.

Beside the applications described in the previous sections, the aim of these lec-
tures is to explain and derive heuristically large deviation results for the equilibrium
statistical mechanics of the two-dimensional Euler and quasi-geostrophic equations
(equilibrium) and for the 2D Navier-Stokes or quasi-geostrophic equations with
stochastic forces (non-equilibrium). The large deviation result for the equilibrium
case (section 3) is derived through a generalization of Sanov theorem, and leads
to a formula for the probability of macrostates for the microcanonical measures.
The large deviation results for the non-equilibrium cases (section 4.4) are derived
through semi-classical limits in path integrals (or equivalently the Freidlin-Wentzell
framework) and lead to the evaluation of transition paths and transition probabilities
for bistable turbulent flows, close to non-equilibrium phase transitions.

1.5 Organization of those lectures

In section 2, we state the equations of motion and their conservation laws. In sec-
tion 3, we construct microcanonical invariant measures for the 2D Euler equations
and discuss the entropy maximization problem in predicting the most probably
steady states on the 2D Euler equation. In section 4.4, we discuss large deviations
for non-equilibrium problems and illustrate this using a simple academic example,
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the problem of computation of transition rate for the Kramer problem, followed by
the application to the 2D Navier-Stokes equations. Finally, in section 5 we discuss
the kinetic theory of zonal jets for the barotropic quasi-geostrophic dynamics.

2 The 2D Euler, barotropic Quasi Geostrophic, and stochastic
Navier–Stokes equations

2.1 Equations of motion

The aim of this section is to present the simplest model that describes two-dimensional
and geophysical turbulent flows: the two-dimensional Navier-Stokes equation and
the barotropic equation with stochastic forcing. In the limit when forces and dissi-
pation go to zero, the two-dimensional Navier-Stokes equation reduces to the two-
dimensional Euler equation. We describe the conservation laws for these equations
and their influence on the dynamics. The review [13] gives a very brief introduction
to geophysical fluid dynamics and the quasi-geostrophic model. A more complete
introduction is found in textbooks of geophysical fluid dynamics [53, 68].

We are interested in the non-equilibrium dynamics associated to the two-dimensional
stochastically forced barotropic equations (also called barotropic Quasi-Geostrophic
equations):

∂q
∂ t

+v [q−h] ·∇q = −αω +ν∆ω +
√

2αη , (2)

v = ez ×∇ψ, q = ω +h(y) = ∆ψ +h, (3)

where ω , v and ψ are respectively the vorticity, the non-divergent velocity, and
the streamfunction. For simplicity, in these lectures we consider the dynamics on
a periodic domain D = [0,2δπ)× [0,2π) with aspect ratio δ . Then ψ is periodic
with the further condition

∫
D dr ψ = 0. q is the potential vorticity, and h is a given

topography function with
∫
D dr h = 0. For h = 0, the barotropic equations reduces

to the 2D Navier-Stokes equation.
The linear friction term −αω models large scale dissipation. We consider non-

dimensional equations, where a typical energy is of order 1 (see [13]) such that ν
is the inverse of the Reynolds number and α is the inverse of a Reynolds number
based on the large scale friction. We assume that the Reynolds numbers satisfy ν ≪
α ≪ 1. In the limit of weak forces and dissipation limα→0 limν→0, the 2D Navier-
Stokes equations converge to the two-dimensional Euler equations for finite time,
but the type of forcing and dissipation determines to which set of attractors the
dynamics evolve to over a very long time. The curl of the forcing η(x, t) is a white
in time Gaussian field defined by ⟨η(x, t)η(x′, t ′)⟩=C(x−x′)δ (t − t ′), where C is
the correlation function of a stochastically homogeneous noise.
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The two-dimensional Euler equations (h = 0), or the inertial barotropic equation
(h ̸= 0), are given by Eq. (2) with forces and dissipation set to zero (α = ν = 0).

2.2 Conservation laws for the inertial dynamics

The kinetic energy of the flow is given by

E [q] =
1
2

∫
D

dr v2 =
1
2

∫
D

dr (∇ψ)2 =−1
2

∫
D

dr (q−h)ψ, (4)

where the last equality is obtained with an integration by parts. The kinetic energy
is conserved for the dynamics of the two-dimensional Euler and inertial barotropic
equations i.e. dE /dt = 0,. These equations also conserve an infinite number of func-
tionals, named Casimirs. They are related to the degenerate structure of the infinite-
dimensional Hamiltonian system and can be understood as invariants arising from
Noether’s theorem [61]. These functionals are of the form

Cs[q] =
∫

D
s(q)dr, (5)

where s is any sufficiently regular function. We note that on a doubly-periodic do-
main the total circulation

Γ =
∫

D
qdr, (6)

is necessarily equal to zero: Γ = 0.
The infinite number of conserved quantities are responsible for the equations

having an infinite (continuous) set of steady states (see section 2 in [13]). Any of
the infinite number of steady states of the 2D Euler or inertial barotropic equations
satisfy

v ·∇q = 0.

For instance, if there is a functional relation between the potential vorticity and the
streamfunction, i.e. q = ∆ψ = f (ψ), where f is any continuous function, then using
2 one easily check that v ·∇q = 0. Physically, these states are important because
some of them act as attractors for the dynamics.

There is also a strong empirical and numerical evidence that a complex evolution
of the two-dimensional Euler equations leads most of the times to attractors that
are steady states of the equations. The specific function f that is reached after a
complex evolution can be predicted in certain situation using equilibrium statistical
mechanical arguments presented in the next section (see [13] for more details).
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2.3 The conservation of the vorticity distribution

The two-dimensional Euler and inertial barotropic equations conserve the distribu-
tion of potential vorticity, i.e. the total area of a specific potential vorticity level set is
conserved. As we explain now the conservation of the potential vorticity distribution
is equivalent to the conservation of all Casimirs.

We first prove that the potential vorticity distribution is conserved as a conse-
quence of Casimir conservation laws. We consider the special class of Casimir (5):

C(σ) =
∫

D
H(−q+σ)dr, (7)

where H(·) is the Heaviside step function. The function C(σ) returns the area occu-
pied by all potential vorticity levels smaller or equal to σ . C(σ) is an invariant for
any σ and therefore any derivative of C(σ) is also conserved. Therefore, the distri-
bution of vorticity, defined as D(σ) =C′(σ), where the prime denotes a derivation
with respect to σ , is also conserved by the dynamics. The expression D(σ)dσ is the
area occupied by the vorticity levels in the range σ ≤ q ≤ σ +dσ .

Moreover, any Casimir can be written in the form

C f [q] =
∫

D
dσ f (σ)D(σ).

The conservation of all Casimirs, Eq. (5), is therefore equivalent to the conservation
of D(σ).

The conservation of the distribution of vorticity levels, as proven above, can also
be understood from the equations of motion. We find that Dq/Dt = 0, showing that
the values of the potential vorticity field are Lagrangian tracers. This means that the
values of q are transported through the non-divergent velocity field, thus keeping
the distribution unchanged.

From now on, we restrict ourselves to a K-level vorticity distribution. We make
this choice for pedagogical reasons, but a generalization of the discussion of next
section to a continuous vorticity distribution is straightforward. The K-level vorticity
distribution is defined as

D(σ) =
K

∑
k=1

Akδ (σ −σk), (8)

where Ak denotes the area occupied by the vorticity value σk. The areas Ak are not
arbitrary, their sum is the total area ∑K

k=1 Ak = |D |. Moreover, the constraint (6),
imposes the constraint ∑K

k=1 Akσk = 0.
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3 Equilibrium statistical mechanics and the mean field
variational problem as a large deviation result

3.1 Large deviation theory in 2D turbulence, the equilibrium mean
field variational problem

The first large deviation results in two-dimensional turbulence have been obtained
in the context of the theory for the 2D Euler equations. Michel and Robert [44]
have studied the large deviation of Young measures and have suggested that the
entropy of the Miller–Robert–Sommeria theory is the analogue of a large deviation
rate function. By considering a prior distribution for the vorticity invariants, in a
framework where the invariants are considered in a canonical ensemble rather than
in a microcanonical one, Boucher and collaborators [5] have given a derivation of
a large deviation result based on finite dimensional approximations of the vorticity
field. The beginning of the nineties has also been a time of intense study of the
statistical mechanics of the point vortex model [18, 38, 39, 27, 28, 4], a special
class of solution of the two-dimensional Euler equations. Among those study, large
deviations results for the equilibrium measures where also obtained.

The aim of this section is to present a heuristic construction of microcanonical
invariant measures for the 2D Euler equations. This construction primarily follows
the initial ideas of the previous works [44, 5], but is much simplified. Moreover,
for pedagogical reasons, the reading of this heuristic presentation does not imply
any knowledge of large deviation theory and avoids any technical discussion. These
measures are constructed using finite dimensional approximation of the vorticity
field, with N2 number of degrees of freedom. N2 is then the large deviation param-
eter and the entropy appears as the analogue of the large deviation rate function.

In order to state the main result, let us define p(r,σ) as the local probability
to observe vorticity values equal to σ at point r: p(r,σ) = ⟨δ (ω(r)−σ)⟩, where
δ is the Dirac delta function (we consider averaging ⟨·⟩ over the microcanonical
measure, see section 3.2). We also define ω(r) =

∫
dσ σ p(r,σ) the local vorticity

average. Then the large deviation rate function for p(r,σ) is S(E0)−S[p,E0] where

S[p,E0] = S [p]≡
∫

D
∑
k

pk log pk dr (9)

if the constraints N [p] = 1, ∀k, A [pk] = Ak and E [ω] = E0 are satisfied, and
S[p,E0] =−∞ otherwise, and where

S(E0) = sup
{p | N [p]=1}

{S [p] | E [ω̄] = E0, ∀k A[pk] = Ak} , (10)

with E0, Ak and N , the energy, the vorticity distribution, and the probability nor-
malization defined in section 3.3 respectively.

The interpretation of this result is that the most probable value for the local prob-
ability is the maximizer of the variational problem (10), and that the probability to
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observe a departure from this most probable state is exponentially large, with pa-
rameter N2 and rate function (9). Furthermore, the classical mean field equation for
the streamfunction ψ can be derived from (9), as discussed in reference [6].

In next sections, we define precisely the microcanonical measure for the 2D Euler
equations (section 3.2) and prove that the entropy S[p,E0] is a large deviation rate
function for p (section 3.3). This justifies the mean field variational problem (10).

3.2 Microcanonical measure

In order to properly construct a microcanonical measure, we discretize the vorticity
field on a uniform grid with N2 grid points, define a measure on the corresponding
finite-dimensional space and take the limit N → ∞. A uniform grid has to be chosen
in order to comply with a formal Liouville theorem for the 2D Euler equations
[14, 59].

We denote the lattice points by ri j =
(

i
N ,

j
N

)
, with 0 ≤ i, j ≤ N − 1 and denote

ωi j ≡ ω(ri j) the vorticity value at point ri j. The total number of points is N2.
As discussed in the previous section, we assume D(σ) = ∑K

k=1 Akδ (σ −σk). For
this finite-N approximation, our set of microstates (configuration space) is then

XN =
{

ωN = (ωi j)0≤i, j≤N−1 | ∀i, j ωi j ∈ {σ1, . . . ,σK} , and ∀k #
{

ωi j | ωi j = σk
}
= N2Ak

}
.

Here, #(A) is the cardinal of set A. We note that XN depends on D(σ) through Ak
and σk (see (8)).

Using the above expression we define the energy shell ΓN(E0,∆E) as

ΓN(E0,∆E) =
{

ωN ∈ XN | E0 ≤ EN
[
ωN]≤ E0 +∆E

}
,

where

EN =
1

2N2

N−1

∑
i, j=0

v2
i j =− 1

2N2

N−1

∑
i, j=0

ωi jψi j,

is the finite-N approximation of the system energy, with vi j = v(ri j) and ψi j =
ψ(ri j) being the discretized velocity field and streamfunction field, respectively.
∆E is the width of the energy shell. Such a finite width is necessary for our discrete
approximation, as the cardinal of XN is finite. Then the set of accessible energies on
XN is also finite. Let ∆NE be the typical difference between two successive achiev-
able energies. We then assume that ∆NE ≪ ∆E ≪ E0. The limit measure defined
below is expected to be independent of ∆E in the limit N → ∞.

The fundamental assumption of statistical mechanics states that each microstate
in the configuration space is equiprobable. By virtue of this assumption, the proba-
bility to observe any microstate is Ω−1

N (E0,∆E), where ΩN(E0,∆E) is the number
of accessible microstates, i.e. the cardinal of the set ΓN(E0,∆E). The finite-N spe-
cific Boltzmann entropy is defined as
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SN(E0,∆E) =
1

N2 log ΩN(E0,∆E). (11)

The microcanonical measure is then defined through the expectation values of any
observable A. For any observable A[ω] (for instance a smooth functional of the
vorticity field), we define its finite-dimensional approximation by AN

[
ωN
]
. The

expectation value of AN for the microcanonical measure reads⟨
µN(E0,∆E), AN

[
ωN]⟩

N ≡
⟨
AN
[
ωN]⟩

N ≡ 1
ΩN(E0,∆E) ∑

ωN∈ΓN(E0,∆E)

AN
[
ωN] .

The microcanonical measure µ for the 2D Euler equation is defined as a limit of the
finite-N measure:

⟨µ(E0), A[ω]⟩ ≡ lim
N→∞

⟨
µN(E0,∆E), AN

[
ωN]⟩

N .

The specific Boltzmann entropy is then defined as

S(E0) = lim
N→∞

SN(E0,∆E). (12)

3.3 The mean field variational problem as a large deviation result

Computing the Boltzmann entropy by direct evaluation of Eq. (12) is usually an in-
tractable problem. However, we shall proceed in a different way and show that this
alternative computation yields the same entropy in the limit N → ∞. We give heuris-
tic arguments in order to prove that the computation of the Boltzmann entropy Eq.
(12) is equivalent to the maximization of the constrained variational problem (10)
(called a mean field variational problem). This variational problem is the founda-
tion of the RSM approach to the equilibrium statistical mechanics for the 2D Euler
equations. The essential message is that the entropy computed from the mean field
variational problem (10) and from Boltzmann’s entropy definition (12) are the equal
in the limit N → ∞. The ability to compute the Boltzmann entropy through this type
of variational problems is one of the cornerstones of statistical mechanics.

Our heuristic derivation is based on the same type of combinatorics arguments
as the ones used by Boltzmann for the interpretation of its H function in the theory
of relaxation to equilibrium of a dilute gas. This derivation doesn’t use the techni-
calities of large deviation theory. The aim is to actually obtain the large deviation
interpretation of the entropy and to provide a heuristic understanding using basic
mathematics only. The modern mathematical proof of the relationship between the
Boltzmann entropy and the mean field variational problem involves Sanov theorem.

Macrostates are set of microscopic configurations sharing similar macroscopic
behaviors. Our aim is to properly identify macrostates that fully describe the main
features of the largest scales of 2D turbulent flow, and then to compute their proba-
bility or entropy.
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Let us first define macrostates through local coarse-graining. We divide the N×N
lattice into (N/n)× (N/n) non-overlapping boxes each containing n2 grid points (n
is an even number, and N is a multiple of n). These boxes are centered on sites
(i, j) = (In,Jn), where integers I and J verify 0 ≤ I,J ≤ N/n−1. The indices (I,J)
label the boxes.

For any microstate ωN ∈ ΓN , let f k
IJ be the frequency to find the value σk in the

box (I,J)

Fk
IJ(ωN) =

1
n2

I+n/2

∑
i=I−n/2+1

J+n/2

∑
j=J−n/2+1

δd(ωi j −σk),

where δd(x) is equal to one whenever x = 0, and zero otherwise. We note that for
all (I,J), ∑K

k=1 Fk
IJ(ωN) = 1.

A macrostate pN =
{

pk
IJ
}

0≤I,J≤N/n−1;1≤k≤K , is the set of all microstates of

ωN ∈ XN such that Fk
IJ(ωN) = pk

IJ for all I,J, and k (by abuse of notation, and
for simplicity, pN =

{
pk

IJ
}

0≤I,J≤N/n−1;1≤k≤K refers to both the set of values and
to the set of microstates having the corresponding frequencies). The entropy of the
macrostate is defined as the logarithm of the number of microstates in the macrostate

SN [pN ] =
1

N2 log
(

#
{

ωN ∈ XN

∣∣∣ for all I,J, and k, Fk
IJ(ωN) = pk

IJ

})
. (13)

Following an argument by Boltzmann, it is a classical exercise in statistical me-
chanics, using combinatorics and the Stirling formula, to prove that in the limit
N ≫ n ≫ 1 , without taking into account of the area constraints Ak, the entropy of
the macrostate would converge to

SN [pN ]
N≫n≫1∼ SN [pN ] =− n2

N2

N/n−1

∑
I,J=0

K

∑
k=1

pk
IJ log pk

IJ

if ∀I,J, N [pIJ ] = 1, and SN [pN ]∼−∞ otherwise, where N [pIJ ]≡∑k pk
IJ . The area

constraints are easily expressed as constraints over pN : AN
[
pk

N
]
≡ n2

N2 ∑N/n−1
I,J=0 pk

IJ =

Ak and ∀I,J, N [pIJ ] = 1. An easy generalization of the above formula gives

SN [pN ]
N≫n≫1∼ SN [pN ]

if ∀k, AN
[
pk

N
]
= Ak, and SN [pN ] ∼ −∞ otherwise. In the theory of large deviation,

this result could have been obtained using Sanov’s theorem. We now consider a
new macrostate (pN ,E0) which is the set of microstates ωN with energy EN

[
ωN
]

verifying E0 ≤ EN
[
ωN
]
≤ E0 +∆E (the intersection of ΓN(E0,∆E) and pN). For a

given macrostate pN , not all microstates have the same energy. The constraint on
the energy thus can not be recast as a simple constraint on the macrostate pN . Then
one has to treat the energy constraint in a more subtle way. The energy is
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EN
[
ωN]=− 1

2N2

N−1

∑
i, j=0

ωN
i j ψN

i j .

The streamfunction ψN
i j is related to ωN through

ψi j =
1

N2

N−1

∑
i′, j′=0

Gi j,i′ j′ωN
i′ j′ ,

where Gi j,i′ j′ is the Laplacian Green function in the domain D . In the limit N ≫ n≫
1, the variations of Gi j,i′ j′ for (i′, j′) running over the small box (I,J) are vanishingly
small. Then Gi j,i′ j′ can be well approximated by their average value over the boxes
GIJ,I′J′ . Then

ψi j ≃ ψIJ ≡
1

N2

N/n−1

∑
I′,J′=0

GIJ,I′J′

I+n/2

∑
i′=I−n/2+1

J+n/2

∑
j′=J−n/2+1

ωN
i′ j′ =

n2

N2

N−1

∑
I′,J′=0

GIJ,I′J′ωN
IJ ,

where the coarse-grained vorticity is defined as

ωN
IJ =

1
n2

I+n/2

∑
i′=I−n/2+1

J+n/2

∑
j′=J−n/2+1

ωN
i′ j′ .

We note that, over the macrostate pN , the coarse-grained vorticity depends on pN
only:

ωN
IJ =

K

∑
k=1

pk
IJσk for ωN ∈ pN .

Using similar arguments, it is easy to conclude that in the limit N ≫ n ≫ 1 the
energy of any microstate of the macrostate pN is well approximated by the energy
of the coarse-grained vorticity

EN
[
ωN] N≫n≫1∼ EN

[
ωN

IJ

]
=− n2

2N2

N/n−1

∑
I,J=0

ωN
IJψN

IJ .

Then the Boltzmann entropy of the macrostate is

SN [pN ,E0]
N≫n≫1∼ SN [pN ] (14)

if ∀k, N [pk
N ] = 1, AN

[
pk

N
]
= Ak and EN

[
ωN

IJ

]
= E0, and SN [pN ,E0] ∼ −∞ other-

wise.
Consider PN,E0(pN) to be the probability density to observe the macrostate pN

in the finite-N microcanonical ensemble with energy E0. By definition of the mi-
crocanonical ensemble of the entropy SN(E0) (see Eq. (11) and the preceding para-
graph), we have
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logPN,E0(pN)
N→∞∼ N2 [SN [pN ,E0]−SN(E0)] . (15)

From the general definition of a large deviation result given by Eq. (1), we clearly
see that formula (14) is a large deviation result for the macrostate pN in the micro-
canonical ensemble. The large deviation parameter is N2 and the large deviation rate
function is −SN [pN ,E0]+SN(E0).

We now consider the continuous limit. The macrostates pk
N are now seen as the

finite-N approximation of pk, the local probability to observe ω(r) = σk: pk(r) =
⟨δ (ω(r)−σk)⟩. The macrostate is then characterized by p = {p1, . . . , pK}. Taking
the limit N ≫ n ≫ 1 allows us to define the entropy of the macrostate (p,E0) as

S[p,E0] = S [p]≡ ∑
k

∫
D

pklogpk dr (16)

if ∀k N [pk] = 1, A [pk] = Ak and E [ω] = E0, and S[p,E0] = −∞ otherwise. In the
same limit, it is clearly seen from definition (13) and result (16) that there is a
concentration of microstates close to the most probable macrostate. The exponential
concentration close to this most probable state is a large deviation result, where the
entropy appears as the opposite of a large deviation rate function (up to an irrelevant
constant).

The exponential convergence towards this most probable state also justifies the
approximation of the entropy with the entropy of the most probable macrostate.
Thus, in the limit N → ∞ we can express the Boltzmann entropy, Eq. (12), as

S(E0) = sup
{p | N [p]=1}

{S [p] | E [ω̄] = E0, ∀k A[pk] = Ak} , (17)

where p = {p1, . . . , pK} and ∀ r, N [p](r) = ∑K
k=1 pk(r) = 1 is the local normal-

ization. Furthermore, A[pk] is the area of the domain corresponding to the vorticity
value ω = σk. The fact that the Boltzmann entropy S(E0) Eq. (12) can be computed
from the variational problem (17) is a powerful non-trivial result of large deviation
theory.

3.4 Applications of equilibrium statistical mechanics

In the two previous sections, we have defined the microcanonical measure for the
two-dimensional Euler and quasi geostrophic equations, and we have proven that
the logarithm of the probability of a macrostate p is given by the macrostate entropy
(16). We can conclude that most of the microstates will correspond to the most
probable macrostate, the one that actually maximize the variational problem (17).
This most probable macrostate is called the equilibrium macrostate. This means
that if we take a random microstate, it will nearly surely have the same velocity as
the one of the equilibrium macrostate. As a consequence, we conclude that equilib-
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Observation (Voyager) Statistical Equilibrium

Fig. 5 Left: the observed velocity field is from Voyager spacecraft data, from Dowling and In-
gersoll [25] ; the length of each line is proportional to the velocity at that point. Note the strong
jet structure of width of order R, the Rossby deformation radius. Right: the velocity field for the
statistical equilibrium model of the Great Red Spot. The actual values of the jet maximum velocity,
jet width, vortex width and length fit with the observed ones. The jet is interpreted as the interface
between two phases; each of them corresponds to a different mixing level of the potential vorticity.
The jet shape obeys a minimal length variational problem (an isoperimetrical problem) balanced
by the effect of the deep layer shear.

rium macrostates are natural candidates to model self organized large scale turbulent
flows, like for instance the Great Red Spot of Jupiter shown on figure (1).

A number of works have considered the comparison of self-organized turbulent
flows with equilibrium macrostates. Interested readers will find comparison with ex-
periments and numerical simulations described in the review [64], whereas models
of geophysical flows, for instance the Great Red Spot of Jupiter, ocean mesoscale
vortices, strong mid basin jets similar to the Gulf Stream or the Kuroshio are dis-
cussed in the review [16]. Recent applications to model the vertical structure of
oceans can be found in the papers [71, 70].

As an example, figure 5 shows the comparison of the observed velocity field for
the Great Red Spot of Jupiter with the velocity field of an equilibrium macrostate of
the quasi-geostrophic model. The theoretical analysis of this equilibrium macrostate
[11] is based on an analogy with Van Der Walls–Cahn–Hilliard model of first order
transition and the shape of the strong jet obeys a minimal length variational problem
(an isoperimetrical problem) balanced by the effect of the deep layer shear (see [16]
for more details).

Another example of equilibrium prediction is the phase diagram of statistical
equilibria for the two-dimensional Euler equation on a doubly periodic domain
(torus). This phase diagram (figure 3.4) shows that the statistical equilibria are ei-
ther dipoles (one cyclone and one anticyclone) or parallel flows. This example is
further discussed in the work [10] and the review [16]. This equilibrium phase dia-
gram has also been used in order to predict non-equilibrium phase transitions [10]
as is discussed in section 4.4.
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Fig. 6 Bifurcation diagrams for statistical equilibria of the two-dimensional Euler equations in a
doubly periodic domain a) in the g-a4 plane, g is related to the domain aspect ratio and a4 to the
fourth order moment of the vorticity distribution (please see [16]). b) obtained numerically in the
E−a4 plane, E is the energy, in the case of doubly periodic geometry with aspect ratio δ = 1.1. The
colored insets are streamfunction and the inset curve illustrates good agreement between numerical
and theoretical results in the low energy limit.

4 Non equilibrium phase transitions, path integrals, and
instanton theory

The aim of this section is to discuss non-equilibrium phase transitions in turbulent
flows, more specifically for the dynamics of the two-dimensional Navier–Stokes
equations with random forces, quasi-geostrophic dynamics with random forces, or
related dynamics. We want to discuss simple examples for which situations with rare
transitions between two attractors exist (bistability). We will use path integrals and
large deviations in order to compute the most-probable paths for those transitions
and the transition rates.

In order to give a pedagogical presentation of path integrals and large deviation
theory for stochastic dynamics we first discuss the extremely classical case of the
Kramer problem: the over-damped dynamics of a particle in a double-well potential,
in section 4.1. We generalize these results to an abstract set of dynamics, called
Langevin dynamics, in section 4.2. We apply these results to two-dimensional Euler
and Quasi-Geostrophic Langevin dynamics in section 4.3, for which we are able to
predict bistability, compute transition rates and the most probable transition paths.
Finally we discuss path integral approaches and action minimizer for the stochastic
Navier-Stokes equations in a non-equilibrium context in section 4.4.
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4.1 Large deviations for the overdamped Langevin dynamics

We wish first to give a pedagogical description of large deviation theory in non-
equilibrium systems, more specifically for dynamics consisting of stochastic differ-
ential equations. Therefore, we begin by applying large deviation theory to a sim-
ple academic example of an over-damped particle in a double-well potential (the
Kramer problem) where a large deviation result exists. We will show that we can
compute the transition rate for the motion of the particle from one well to the other
and that the result is an Arrhenius factor (it is proportional to the exponential of the
energy barrier height between the two wells). In fact, this is a large deviation result.

This section develops classical ideas. We use the path integral formalism for
stochastic processes [52, 74]. Similar results are discussed by mathematicians in
the framework of the Freidlin-Wentzell theory [30, 67]. We are much interested by
the time-reversal symmetries of the action and its consequence for the symmetry
between relaxation and fluctuation paths, and its consequences for the computation
of the most probable transition (instanton). Those symmetries are discuss much less
often than the other material, but there are also very classical (some people say it
dates from Onsager, we do not know exactly).

4.1.1 The overdamped Langevin dynamics

We consider a single overdamped particle in a 1D double-well potential V (x) and
subjected to random forces due to a small coupling to a thermal bath. For simplicity
we considered the overdamped limit, for which the dynamics of the particle position
x is governed by the stochastic differential equation

ẋ =−dV
dx

+

√
2
β

η , (18)

where η is a random white noise with a Gaussian distribution characterized by
E [η(t)η(t ′)] = δ (t−t ′), V (x) is a double well potential (see Fig. 7), and β = 1/kBT
where T is the temperature. In the deterministic situation, when 1/β = 0, the parti-
cle relaxes to one of the two stable steady states of the potential V , i.e. it converges
either to x =−1 or to x = 1. In the presence of thermal noise, the particle may gain
enough energy to jump the potential barrier at x = 0 and settle in the other potential
well. If the forcing is weak, i.e. 1 ≪ β∆V , then the jumps between wells will be
rare events and will be statistically independent from one another. They will then be
described by a Poisson process characterized by a transition rate λ . We will show
that one can apply the theory of large deviations in order to compute λ . Moreover
the theory of large deviation will lead to the conclusion that most of the transition
paths concentrate close to the most probable transition path. As will be discussed
more precisely below, this most probable transition path in this situation is called an
instanton.
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In order to obtain these results, we will use formal computations based on a
path integral formulation of the transition probabilities for the stochastic process
(18). Such a path integral formulation is referred as Onsager–Machlup formalism, as
Onsager and Machlup first proposed it, few years after the path integral formulation
of quantum mechanics by Feynman.
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Fig. 7 Graph of the double well potential V (x) = (x2 −1)2/4. We observe two stable steady states
at x =±1 and a saddle at x = 0 with height ∆V = 1/4.

4.1.2 The transition probability as a path integral

To give a simple understanding of the Onsager-Machlup formalism, we first con-
sider a vector η = {ηi}1≤i≤N of independent Gaussian random variables, with zero
mean E(ηi) = 0 and covariance E(ηiη j) = δi j. By definition, the probability mea-
sure of η is the Gaussian measure

dµ = exp

(
−1

2

N

∑
i=1

η2
i

)
N

∏
i=1

dηi√
2π

. (19)

The Euler approximation of the Langevin equation (18) is, within the Ito convention,

xi = xi−1 −∆ t
dV
dx

(xi−1)+

√
2∆ t
β

ηi (20)

for 1 ≤ i ≤ N and with x0 = x(0) a given initial state. The probability measure of a
particular path x = {xi}1≤i≤N is given by inverting (20) and inserting it in (19),

dµ = exp

(
−β

4

N

∑
i=1

(
xi − xi−1

∆ t
+

dV
dx

(xi−1)

)2

∆ t

)
J(η |x)

N

∏
i=1

dxi√
2π

. (21)
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In this expression, J(η |x) is the Jacobian of the change of variable η → x. In the
Ito convention (20), the corresponding matrix is lower-triangular with ones in the
diagonal, so that J(η |x) = 1.

The measure of a Gaussian stochastic process η(t) of zero mean E[η(t)] = 0 and
covariance E[η(t)η(t ′)] = δ (t − t ′), on a time interval [0,T ] with T = N∆ t, is the
formal generalization of the above finite dimensional measure (19),

dµ = exp
(
−1

2

∫ T

0
η2(t)dt

)
D [η ]. (22)

The differential element D [η ] in the above expression is the formal limit of the
finite-dimensional quantity ∏N

i=1
dηi√

2π for N → ∞, ∆ t → 0, where ηi = η(i∆ t) =
η(iT/N). People well trained in mathematics know the difficulty to define such an
object, but we will keep our discussion at a formal level and state that this formal
notation contains all the mathematical subtleties related to the limit N → ∞, ∆ t →
0. Then, the probability measure of a particular trajectory {x(t)}0≤t≤T is also the
formal limit of (21),

dµ = exp

(
−β

4

∫ T

0

(
ẋ+

dV
dx

)2

dt

)
J[η |x]D [x], (23)

where J[η |x] is the Jacobian of the change of variable η → x, and is also equal to
one (we refer to [74] for a more general treatment, noting that [74] actually use the
Stratonovich convention).

The transition probability from an initial state x0 at time 0 to a final state xT
at time T is the sum over all possible paths {x(t)}0≤t≤T such that x(0) = x0 and
x(T ) = xT of the probability of a single path (23). Such a sum can be formally
written as the path integral

P(xT ,T ;x0,0) =
∫ x(T )=xT

x(0)=x0

exp
(
−β

2
A [x]

)
D [x], (24)

with the action functional

A [x] =
1
2

∫ T

0

(
ẋ+

dV
dx

)2

dt. (25)

From (24), it is clear that the most probable trajectories with prescribed initial and
final states are minimizers of the action with prescribed initial and final point. The
optimal action is denoted

A(x0,xT ,T ) = min{A [x] | x(0) = x0, x(T ) = xT} .
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4.1.3 Fluctuation paths

When the initial point x0 = xa belongs to an attractor of the deterministic dynamics
(for the Kramer problem, if x0 = xa =±1 is a stable fixed points), it is expected that
the action A(xa,X ,T ) decreases with time. The action minima starting from one
attractor and having an infinite duration will thus play an important role. Moreover,
those infinite time action minimizers are essential because the transition probability
P(X ,T ;xa,0) converges to the stationary distribution of the stochastic process when
the time T goes to infinity. Those action minimizers starting from one attractor and
with an infinite duration are called fluctuation paths, they solve

A(xa,X ,∞) = min
{

A [x] | lim
T→∞

x(−T ) = xa, x(0) = X
}
.

4.1.4 Relaxation paths

We consider a state X that belongs to the basin of attraction of an attractor xa of the
deterministic dynamics. The relaxation path starting at x, denoted {xr(t)}0≤t≤T is
defined by

ẋr =−dV
dx

(xr)

with initial conditions xr(0) = X . As the path converges to xa, we have xr(+∞) = xa.
Using the expression of the action (25), we see that A [xr] = 0, as the relaxation
path is a deterministic solution, and we also notice that A [x] ≥ 0 for any path
{x(t)}0≤t≤T . As a consequence, relaxation paths are global minimizers of the ac-
tion A [x]. This is because following the deterministic dynamics xr in order to reach
the attractor xa starting from X doesn’t require any stochastic perturbation, so that
the cost is zero and the probability is maximal.

4.1.5 Time-reversal symmetry and the relation between fluctuation and
relaxation paths

In order to characterize fluctuations paths and instantons, we will take profit of the
time-reversal symmetry of the over-damped Langevin dynamics. We consider a path
{x(t)}0≤t≤T and the reversed path R[x] = {x(T − t)}0≤t≤T . The action of the re-
versed path reads

A [R[x]] =
1
2

∫ T

0

(
d
dt

R[x]+
dV
dx

(R[x])
)2

dt =
1
2

∫ T

0

(
−ẋ(t ′)+

dV
dx

(x(t ′))
)2

dt ′,

with the change of variable t ′ = T − t. Then, writing(
ẋ− dV

dx

)2

=

(
ẋ+

dV
dx

)2

−4ẋ
dV
dx

=

(
ẋ+

dV
dx

)2

−4
d
dt

V (x),
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we get
A [R[x]] = A [x]−2(V (x(T ))−V (x(0))) . (26)

Plugging this relation into the path integral expression of the transition probability
(24), we obtain

P(R[xT ],T ;R[x0],0) = P(xT ,T ;x0,0)exp
(

V (x(T ))−V (x(0))
kBT

)
.

We recognize the Gibbs stationary distribution of the over-damped Langevin equa-
tion PS(x) = 1

Z e−V (x)/kBT , so that the above expression gives the detailed balance
relation

P(xT ,T ;x0,0)PS(x0) = P(x0,T ;xT ,0)PS(xT ).

We have thus proven that detailed balance is a consequence of the time-reversal
symmetry, as expected on general ground.

We now consider the fluctuation path from one attractor xa to any point X of its
basin of attraction. Using relation (26) and the fact that the action is always positive,
we have

A [x]≥ 2(V (x(T ))−V (x(0))) , (27)

with equality if and only if x is a minimizer of the reversed action A [R[x]]. If the
initial state is an attractor and the final state is another point in the associated basin
of attraction, the reversed action A [R[x]] is naturally minimized by the relaxation
path R[x] = xr that goes from X to the attractor,

d
dt

R[x] =−dV
dx

(R[x])

with R[x](0) = X and R[x](+∞) = xa. Then the minimizer of A [x] is the reversed
relaxation path. We thus conclude that the fluctuation path from xa to X , is the
time reversed of the relaxation path from X to xa. This situation is schematically
represented in figure 8.

4.1.6 Instanton and large deviation principle

We define the instanton as the most probable path that go from one attractor x−1 =
−1 to the other one x1 = 1 in an infinite time. More precisely we consider xT the
minimizer of the variational problem min

{
A [x] | x

(
−T

2

)
= x−1 and x

(T
2

)
= x1

}
,

and the instanton is the limit when T → ∞ of xT . The instanton action is

A(x−1,x1) = lim
T→∞

min
{

A [x] | x
(
−T

2

)
= x−1 and x

(
T
2

)
= x1

}
,

As will soon become clear, instantons are related to the most probable transition
paths, and their action to the transition rate λ .
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FluctuationRelaxation

x
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x

Fig. 8 Schematic representation of the fluc-
tuation and relaxation paths between an at-
tractor of the deterministic dynamics x0 and
another point X in the basin of attraction
of x0, for the over-damped dynamics. The
relaxation path is the deterministic trajec-
tory from x to x0, and the fluctuation path
is the time-reversed trajectory. Both trajec-
tories are the most probable paths with the
associated initial and final states.

Relaxation

x
0

Fluctuation

x
1 x

p

Fig. 9 Fluctuation and relaxation paths between
an initial position x0 and an attractor x1, for the
full Langevin dynamics 30. The fluctuation path
(reversed relaxation path) is obtained by reversal
of time, so the momentum is changed as p→−p.
Both trajectories are the most probable paths with
the associated initial and final conditions.

From the previous discussion, it is easily understood that instantons are decom-
posed into two parts. First, there is the fluctuation path from x−1 to the saddle xs = 0,
which is the reverse of the relaxation path from xs to x−1. The action of this part of
the trajectory is given by (26), it is A [R[xr]] = 2(V (xs)−V (x−1)) = 2∆V , where
∆V is the potential barrier height. The second part of the instanton trajectory is the
relaxation path from the saddle xs to the final attractor x1. The action of this relax-
ation path is zero, so that the total instanton action is A [x∗] = 2∆V .

A more precise analysis shows that as both the fluctuation path to the saddle and
the relaxation path last for an infinite time (an infinite time is needed to quit the
attractor and an infinite time is needed to reach the saddle). This explains the defini-
tion of the instanton through the limit of the finite time minimizer xT . One can also
understand that any temporal translation of an instanton is another minimizer from
on attractor x−1 =−1 to the other one x1 = 1 in an infinite time. This degeneracy is
related to the notion of a “free-instanton-molecule” gas approximation and has the
consequence that for time T ≫ 1, the transition probability is proportional to time
T :

P(x1,T ;x−1,0)
T≫1∼ λT.

We refer to [19] for a detailed discussion.
In the limit of small forcing 1 ≪ β∆V , the distribution given by the path integral

(24) is concentrated around its most probable state, the instanton we have deter-
mined. We can thus apply a saddle-point approximation in order to get the transition
probability Pt ,
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lim
β→∞

− 1
β

log(Pt) = ∆V. (28)

Formula (28) states that the transition probability for observing the rare transition
between the two potential wells, in the limit of the weak noise limit, is proportional
to the exponential of the barrier height ∆V . Such a result is called a large deviation
principle for the probability Pt . We recover the exponential factor of the Arrhenius
formula for the transition rate

λ =
1
τ

exp
(
− ∆V

kBT

)
(29)

where ∆V is the energy barrier height and kBT is the temperature.
The computation of the prefactor 1/τ goes beyond a large deviation result. It

was already computed by Kramer, for an overdamped Kramer dynamics. It was the
subject of Langer theory for systems with many degrees of freedom. Alternatively,
it can be computing in the path integral framework by computing the path integrals
at next order, computing the properties of the Gaussian processes close to the in-
stanton, and treating correctly the subtleties related to the instanton degeneracy due
to time translation. Such a computation can be found for example in the reference
[19]. The result is

τ = 2π
(

d2V
dx2 (x0)

d2V
dx2 (x−1)

)−1/2

.

4.1.7 Generalization to the inertial Langevin dynamics

We consider now the dynamics of a particle in the same double-well potential, with
random forces, but without the over-damped approximation. The position and mo-
mentum of the particle {x, p} satisfy{

ẋ = p

ṗ = −dV
dx

−α p+
√

2α
β η .

(30)

In this case, the time-reverse of a given path {x(t), p(t)}0≤t≤T is given by I [x, p] =
{x(T − t),−p(T − t)}0≤t≤T , as represented in figure 9. It is easily proven that the
action of the reversed action path satisfies a relation similar to 26. Then, as in the
overdamped case, one easily proves that the fluctuation paths is the time reverse of
the relaxation paths. As in the over-damped case, instantons from one attractor to
the other are composed of a fluctuation path (time reversed relaxation path) from the
first attractor {x−1 =−1, p−1 = 0} to the saddle {0,0}, and a relaxation path from
the saddle to the final attractor {1,0}.
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4.2 Langevin dynamics with potential G

The aim of this section is to generalize the results discussed for the Kramer model in
section 4.1 to a class of dynamics that corresponds to systems coupled with equilib-
rium (thermal) baths. The consider dynamics with Liouville theorem (for instance
Hamiltonian dynamics), with dissipation which are the gradient of a conserved
quantity and stochastic forces with Einstein type relations. For those Langevin dy-
namics, we prove detailed balance (sometimes in a generalized form), we prove that
the fluctuation paths are the time reversed of the relaxation paths, and we describe
the instantons.

Whereas such Langevin dynamics are very common in physics, the discussion
below is original. As far as we know we are the first to describe this general frame-
work, especially for the case when the potential is not the Hamiltonian but another
conserved quantity. The aim is to apply this framework to dynamics that include the
two-dimensional Euler and quasi-gestrophic dynamics.

4.2.1 Definition of Langevin dynamics

In this section we consider the deterministic dynamics

∂q
∂ t

= F [q] (31)

where q is either a finite dimensional variable or a field.
If q ∈ RN , the dynamics is ∂qi

∂ t = Fi [q]. We then assume that this dynamical
system conserves the Liouville measure ∏N

i=1 dqi, or equivalently that the divergence
of the vector field F is zero

∇.F ≡
N

∑
i=1

∂Fi

∂qi
= 0.

We call this property a Liouville theorem.
If q is a field (for instance a two-dimensional vorticity or potential vorticity field),

defined over a domain D , F [q] (r) is a quantity computed from the field q at any
point r. For instance for the Quasi-Geostrophic equation F [q] =−v [q−h] ·∇q(r) .
We continue the discussion for a field equation only. For any functional K , δK

δq(r)
is the functional derivative of K at point r, a generalization of the usual derivative,
such that for any variation δq, at linear order the first variations of K are given by

δK =
∫

D

δK

δq(r)
δq(r) dr.

We assume that a Liouville theorem holds for the dynamics (31), in the sense that
the formal generalization of the finite dimensional Liouville theorem
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∇.F ≡
∫

D

δF

δq(r)
(r) dr = 0,

is verified.
We also assume that this dynamical system has a conserved quantity G : dG /dt =

0. From (31), we see that this is equivalent to∫
D

F [q] (r)
δG

δq(r)
[q]dr = 0, (32)

for any q. Those hypothesis are verified, for instance if the dynamical system is an
Hamiltonian system

F (q) = {q,H } ,

where {., .} is a Poisson bracket, and G one of the conserved quantity of the Hamil-
tonian system, for instance G = H . We stress however that G does not need to be
H .

If the Liouville hypothesis is verified and G is a conserved quantity, we call a
Langevin dynamics for the potential G the stochastic dynamics

∂q
∂ t

= F [q] (r)−α
∫

D
C(r,r′)

δG

δq(r′)
[q]dr′+

√
2αγη , (33)

where we have introduced a stochastic force η , which we assume to be a Gaussian
process, white in time, and correlated as E [η(r, t)η(r′, t ′)] =C(r,r′)δ (t − t ′). As it
is a correlation function, C has to be a symmetric positive function: for any function
ϕ over D ∫

D

∫
D

ϕ (r)C(r,r′)ϕ
(
r′
)

drdr′ ≥ 0, (34)

and C(r,r′) =C(r′,r). For simplicity, we assume in the following that C is positive
definite and has an inverse C−1 such that∫

D
C(r,r1)C−1(r1,r′)dr1 = δ

(
r− r′

)
.

The major property of a Langevin dynamics is that the stationary probability
density functional is known a-priori. It is

Ps[q] =
1
Z

exp
(
−G [q]

γ

)
,

where Z is a normalization constant. At a formal level, this can be checked easily by
writing the Fokker-Planck equation for the evolution of the probability functionals.
Then the fact that Ps is stationary readily follows from the Liouville theorem and the
property that G is a conserved quantity for the deterministic dynamics.
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4.2.2 Reversed Langevin dynamics

We consider I a linear involution on the space of fields q (I is a linear functional
with I2 = Id). We define the reversed Langevin dynamics with respect to I as

∂q
∂ t

= Fr [q] (r)−α
∫

D
Cr(r,r′)

δGr

δq(r′)
[q]dr′+

√
2αγη , (35)

where
Fr =−IoFoI, (36)

Cr = I+CI, (37)

where I+ is the adjoint of I for the L2 scalar product and

Gr [q] = G [I [q]] . (38)

From the properties of F , C and G , one can easily check that the Liouville theorem
holds for Fr, that Cr is definite positive and that Gr is a conserved quantity for the
dynamics ∂q

∂ t = Fr [q]: for any q∫
D

Fr [q] (r)
δGr

δq(r)
[q]dr = 0. (39)

As a consequence, the reversed Langevin dynamics (35) is actually a Langevin dy-
namics too.

A very interesting case, is when the deterministic dynamics is symmetric with
respect to time reversal. Then it exists a linear involution I such that

F = Fr =−IoFoI. (40)

If moreover C and G are symmetric with respect to the involution: Cr =C, and

Gr = G , (41)

then the reversed Langevin dynamics is nothing else than the initial Langevin dy-
namics itself. We then say that the Langevin dynamics is time-reversible. Simple
examples of time reversible Langevin dynamics are the overdamped processes

q̇ =−
∫

D
C(r,r′)

δG

δq(r′)
[q]dr′+

√
2γη ,

which can be proved to be time reversible with the involution I = Id, or the canonical
Langevin dynamics {

ẋ = p
ṗ = −dV

dx
−α p+

√
2αkBT η ,
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with I
(

x
p

)
=

(
x
−p

)
, or the 2D Euler stochastic Euler equation

∂ω
∂ t

+v ·∇ω =−α
∫

D
C(r,r′)

δG

δω(r′)
dr′+

√
2αγη

with G an even conserved quantity (G [−ω] = G [ω]), where one should then use
I [ω] =−ω . But in the following we will need to consider cases when the Langevin
dynamics is not time reversible, for instance the 2D-stochastic Euler equations when
G is not even or the quasi-geostrophic equations.

4.2.3 Path integrals, action, and time reversal symmetry.

The Lagrangian L associated to the Langevin dynamics (33) is defined as

L

[
q,

∂q
∂ t

]
=

1
2α

∫
D

∫
D

(
∂q
∂ t

−F [q] (r)+α
∫

D
C(r,r1)

δG

δq(r1)
[q]dr1

)
× (42)

C−1(r,r′)
(

∂q
∂ t

−F [q] (r′)+α
∫

D
C(r′,r2)

δG

δq(r2)
[q]dr2

)
drdr′,(43)

and the action functional as

A [q,T ] =
∫ T

0
L

[
q(t),

∂q
∂ t

(t)
]

dt. (44)

The Lagrangian of the reverse process is defined as

Lr

[
q,

∂q
∂ t

]
=

1
2α

∫
D

∫
D

(
∂q
∂ t

−Fr [q] (r)+α
∫

D
Cr(r,r1)

δGr

δq(r1)
[q]dr1

)
×(45)

C−1
r (r,r′)

(
∂q
∂ t

−Fr [q] (r′)+α
∫

D
Cr(r′,r2)

δGr

δq(r2)
[q]dr2

)
drdr′,(46)

and the reverse action functional Ar, accordingly.
We now consider the path integral formalism (Onsager-Machlup) introduced in

section 4.1, for the Langevin dynamics (33). By a generalization of the discussion
in section 4.1, we conclude that the transition probability to go from the state q0 at
time 0 to the state qT at time T , P [qT ,T ;q0,0], can be expressed as

P [qT ,T ;q0,0] =
∫q

∣∣∣∣∣∣ q(0) = q0
q(T ) = qT


D [q]e−

A
2γ , (47)

where we have used that the Jacobian J [q] =
∣∣∣det

[
∂tq−α

∫
D C(r′,r2)

δG
δq(r2)

[q]dr2/q
]∣∣∣

is equal to one if we assume Ito convention.
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For a given path {q(t)}0≤t≤T , we define the reversed path defined by qr(t) =
I [q(T − t)]. The main interest of the reversed process stems from the study of tem-
poral symmetries of the stochastic process and the remark that

A [qr,T ] = Ar [q,T ]−2(G [q(T )]−G [q(0)]) . (48)

Equivalently, using (38), we also have

A [q,T ] = Ar [qr,T ]+2(G [q(T )]−G [q(0)]) . (49)

Let us prove this equality. Using the definition of Fr, Gr and Cr (Eqs. (36-38)),
that

δGr

δq(r)
[q] = I

δG

δq(r)
[I [q]] ,

and that I2 = Id, we have

L

[
I [q] ,− ∂

∂ t
I [q]
]
=

1
2α

∫
D

∫
D

(
∂q
∂ t

−Fr [q] (r)−α
∫

D
Cr(r,r1)

δGr

δq(r1)
[q]dr1

)
×(50)

C−1
r (r,r′)

(
∂q
∂ t

−Fr [q] (r′)−α
∫

D
Cr(r′,r2)

δGr

δq(r2)
[q]dr2

)
drdr′.(51)

Then, expanding and using the conservation of Gr we have

L

[
I [q] ,− ∂

∂ t
I [q]
]
= Lr

[
q,

∂q
∂ t

]
−2

∫
D

∂q
∂ t

δG

δq(r)
dr

or equivalently

L

[
I [q] ,− ∂

∂ t
I [q]
]
= Lr

[
q,

∂q
∂ t

]
−2

d
dt

G [q] .

Using this formula and (44) in order to compute A [qr,T ], we obtain (48).

Performing the change of variable qr(t) = I [q(T − t)] in the path integral repre-
sentation (47), and using the action duality formula (48), we obtain

P [qT ,T ;q0,0]e
− G [q0]

γ = Pr [I [q0] ,T ; I [qT ] ,0]e
− Gr [I[qT ]]

γ , (52)

where Pr is a transition probability for the reverse process. We have thus obtain a
relation between the transition probabilities of the direct process and the transition
probabilities of the reverse one.
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4.2.4 Detailed balance for reversible processes

If we assume that the Langevin dynamics is time reversible, then the direct and the
reverse processes are the same, and the duality relation for the transition probabili-
ties imply

P [qT ,T ;q0,0]e
− G [q0]

γ = P [I [q0] ,T ; I [qT ] ,0]e
− G [I[qT ]]

γ ,

where it is also true that e−
G [I[qT ]]

γ = e−
G [qT ]

γ . This result is the detailed balance prop-
erty for the stochastic process.

When the reverse process is different from the direct one, we see no reason why
detailed balance should be true in general.

4.2.5 Steady states of the deterministic dynamics and critical points of the
potential G

Let us prove that any non-degenerate critical point of the potential is also a steady
state of the deterministic dynamics. This is a classical result in mechanics: for in-
stance any critical point of the energy, if non degenerate, is a steady state.

The extrema of the stationary PDF are critical points of the potential G . Such a
critical point qc verifies

δG

δq(r)
[qc] = 0.

We assume that the critical point is non-degenerate, that is the second variations of
G have no null eigenvalue: more explicitly, the relation∫

D

δ 2G

δq(r)δq(r′)
[qc]ϕ(r′)dr′ = 0

implies that ϕ = 0. If the critical point is non-degenerate then we can prove that qc
is also a steady state of the Hamiltonian dynamics.

We use that G is conserved. Computing δ/δq(r) of (32) we obtain that for any q∫
D

δ 2G

δq(r2)δq(r)
[q]F [q] (r2)dr2 +

∫
D

δG

δq(r2)
[q]

δF

δq(r)
[q] (r2)dr2 = 0. (53)

If we apply this formula to the critical point qc we conclude that∫
D

δ 2G

δq(r2)δq(r)
[qc]F [qc] (r2)dr2 = 0.

Using that G is non degenerate we conclude that for all r

F [qc] (r) = 0
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and thus qc is a steady state of the deterministic dynamics.
The remark that critical points of conserved quantity are steady states also ex-

tends to the stability properties. Any stable and non degenerate minima or maxima
of the conserved quantity is a stable fixed point of the deterministic dynamics (again,
think to the energy or angular momentum in mechanics). Those remarks are proba-
bly about as old as mechanics. For field problems like ours, the issue may be more
subtle. Indeed, one should then be careful of the norm inequivalence (an infinite
number of small scales can do a lot). One can see for instance the Arnold stability
theorems for the 2D Euler equations [2], or their generalization to many fluid me-
chanics problems [36].

Another important point is that, from the relations (36) and (38), it is clear that
if qs is a steady state of the deterministic dynamics, then I [qs] is a steady state of
the reversed dynamics, and vice versa. Also if qc is a critical point of the potential
G , then I [qc] will be a critical point of Gr. The stability properties (minima, global
minima, local minima, number of unstable directions, and so on) of qc with respect
to the minimization of G will be the stability properties of I [qc] for the minimization
of Gr.

4.2.6 Relaxation dynamics and relaxation paths

We call a relaxation path a solution of the relaxation dynamics

∂q
∂ t

= F [q] (r)−α
∫

D
C(r,r′)

δG

δq(r′)
[q]dr′. (54)

Lyapunov functional for relaxation equation

For any relaxation trajectory q(t), using that G is conserved by the inertial dynamics
we easily prove that

d
dt

G [q(t)] =−α
∫

D
C(r,r′)

δG

δq(r′)
δG

δq(r)
drdr′ ≤ 0,

where we have used the positivity of C for establishing the inequality. Then we
conclude that G is a Lyapunov functional for the relaxation dynamics.

From this remark, we conclude that any minima of the potential is stable for the
relaxation dynamics.

4.2.7 Action minima, relaxation paths of the dual dynamics, and instantons

We consider action minima, for instance with fixed boundary conditions
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A(q0,qT ,T ) = min
{q |q(0)=q0 and q(T )=qT }

A [q,T ] .

This variational problem is essential for many problems. For instance it describes
the most probable path to go from q0 to qT . Moreover, as will be discussed in the
next section, it will be useful in order to describe large deviation results.

From the definition of the action (42-44), as C is positive, it is clear that

A(q0,qT ,T )≥ 0.

Using the action duality relation (49), we also conclude that

A(T )≥ 2{G [qT ]−G [q0]} . (55)

It is clear from the definition of the relaxation paths (54) and from the definition
of the action (42-44) that a relaxation path has zero action. This should be clear
physically, as no noise is needed for the system to follow such a path and that for
a centered Gaussian field (the noise), zero is the most probable field. Then if there
exists a relaxation path between q0 and qT during time T (q(t) such that q(0) = q0
and q(T ) = qT ), we conclude that

A(q0,qT ,T ) = 0.

Similarly, using the duality relation (49), we conclude that if there exists a relax-
ation path for the reversed dynamics between I(qT ) and I(q0), we conclude that

A(q0,qT ,T ) = 2{G [qT ]−G [q0]} .

This is an essential remark. Indeed, the reversed dynamics has properties very simi-
lar to the initial dynamics (it has the same fixed points, the same attractors, the same
saddles up to the application of the involution I), but in the argument above, we see
that the final and end-points of the relaxation paths have been exchanged from q0
and qT respectively to I(qT ) and I(q0) respectively. This will be especially useful
when the starting point is one of the local minima of the potential G .

We now consider the case when q0 is a local minimum of G . Then as it is also an
attractor of the relaxation dynamics, no non-trivial relaxation path will start at q0.
But for all qT inside the basin of attraction of q0 for the relaxation dynamics, there
exists a relaxation path from qT to q0. Generically, this path will have an infinite
length T = ∞ (for instance if there is an exponential relaxation). Then there is also
a relaxation path for the dual dynamics from I [qT ] to I [q0].

We thus can conclude that for all qT in the basin of attraction of an local minima
of q0 for the relaxation dynamics, then

A(q0,qT ,∞) = 2{G [qT ]−G [q0]} .
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In many problems, for instance when one looks at the stationary distribution, it is
important to solve the variational problem

A∞(q0,qT ) = inf
T≥0

inf
{q |q(0)=q0 and q(T )=qT }

A [q,T ] .

From the last result and the inequality (55), we immediately conclude that for all qT
in the basin of attraction of an local minima of q0

A∞(q0,qT ) = 2{G [qT ]−G [q0]} .

If qT is in basin of attraction of q1 ̸= 0, then because there exist a relaxation path
from qT to q0, we can conclude that

A∞(q0,qT ) = A(q0,qT ,∞) = A∞(q0,q1).

Moreover, it is easily understood that the action minima will correspond to the relax-
ation trajectory in the dual dynamics from the lowest saddle qs(q0,q1) that belongs
to the closure of the basin of attractions of both q0 and q1. Hence

A∞(q0,qT ) = A∞(q0,q1) = 2{G [qs(q0,q1)]−G [q0]} .

We thus conclude that the minimizers of the action between local minima of the
potential and saddles, during an infinite time, are essential. Those trajectories are
called instantons. As it is clear from the previous discussion, instantons are the re-
versed of relaxation paths for the dual dynamics. Instantons need an infinite time to
leave the attractor and an infinite time to converge to the saddle. More explicitly, if
{qr(t)}−∞≤t≤∞ is a relaxation path for the reversed dynamics between a saddle I [qs]
and the attractor I [q0], then the instanton between q0 and qs is {I [qr(−t)]}−∞≤t≤∞.

4.2.8 Euler-Langrange equations and Hamiltonian formalism

In this section, we write the Euler-Lagrange equations for the minimization of the
action. As it will be more simple, we will use Hamilton formalism in order to do so.

We start from the Lagrangian (42)

L

[
q,

∂q
∂ t

]
=

1
2α

∫
D

∫
D

(
∂q
∂ t

−F [q] (r)+α
∫

D
C(r,r1)

δG

δq(r1)
[q]dr1

)
× (56)

C−1(r,r′)
(

∂q
∂ t

−F [q] (r′)+α
∫

D
C(r′,r2)

δG

δq(r2)
[q]dr2

)
drdr′,(57)

and denote p(r, t) the momentum

p(r)≡ δL [q, q̇]
δ q̇(r)

=
1
α

∫
D

C−1(r,r′)
(

∂q
∂ t

(r′)−F [q] (r′)+α
∫

D
C(r′,r2)

δG

δq(r2)
dr2

)
dr′,
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where we have used the symmetry of C−1. We note that

∂q
∂ t

−F [q] (r)+α
∫

D
C(r,r2)

δG

δq(r2)
dr2 = α

∫
D

C(r,r′)p(r′)dr′. (58)

4.2.9 Hamiltonian

The Hamiltonian associated to the action minimization is defined as

H [p,q] =
∫

D

[
p(r)

∂q
∂ t

(r)− 1
2α

(
∂q
∂ t

−F [q] (r)+α
∫

D
C(r,r1)

δG

δq(r1)
dr1

)
×∫

D
C−1(r,r′)

(
∂q
∂ t

−F [q] (r′)+α
∫

D
C(r′,r2)

δG

δq(r2)
dr2

)
dr′
]

dr

which leads, using (58), to

H [p,q] =
α
2

∫
D

∫
D

p(r)C(r,r′)p(r′)drdr′− (59)∫
D

p(r)
(
−F [q] (r)+α

∫
D

C(r,r1)
δG

δq(r1)
dr1

)
dr. (60)

4.2.10 Euler-Lagrange equations

The Euler-Langrange equations for the action minimization or for the instanton dy-
namics are given by

∂q
∂ t

=
δH

δ p
and

∂ p
∂ t

=−δH

δq
.

It leads to

∂q
∂ t

(r) = F [q] (r)−α
∫

D
C(r,r′)

δG

δq(r′)
dr′+α

∫
D

C(r,r′)p(r′)dr′, (61)

and

∂ p
∂ t

(r) =−
∫

D
p(r1)

(
δF

δq(r)
[q] (r1)−α

∫
D

C(r1,r2)
δG

δq(r1)δq(r)
dr2

)
dr1 (62)

Consistency check

It is easily checked that any relaxation path

∂q
∂ t

= F [q] (r)−α
∫

D
C(r,r′)

δG

δq(r′)
dr′
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with p = 0, is a solution to the instanton equations (61-62).
Moreover any reversed relaxation path of the dual dynamics, solving q(t) =

I [qr(−t)] with

∂qr

∂ t
= Fr [qr] (r)−α

∫
D

Cr(r,r′)
δGr

δq(r′)
[qr]dr′

or equivalently

∂q
∂ t

= F [q] (r)+α
∫

D
C(r,r′)

δG

δq(r′)
[q]dr′ (63)

together with

p(r) = 2
δG

δq(r)
[q] (64)

should also be solution to the instanton equations (61-62). We check this. From this
last expression, we have

∂ p
∂ t

(r) = 2
∫

D

δ 2G

δq(r)δq(r1)
[q]

∂q
∂ t

(r1)dr1

Then using (63)

∂ p
∂ t

(r) = 2
∫

D

δ 2G

δq(r)δq(r1)
[q]
(

F [q] (r1)+α
∫

D
C(r1,r′)

δG

δq(r′)
[q]dr′

)
dr1dr2

which using (64) and (53) gives (62) as expected.

4.2.11 Hamiltonian value for instantons

We prove that instanton, or any action minimizer that converges for t → ∞ to one
fixed point (let say q0 for t going to ∞) has a zero value for the Hamiltonian. Then,
for t → ∞, we have

∂q
∂ t

t→∞→ 0.

Moreover as q0 is an attractor
F [q0] = 0

and
δG

δq(r)
[q0] = 0.

Then from equation (61), using that C is invertible, we get

p t→∞→ 0.
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Using all these relations we conclude that along an instanton the value of the Hamil-
tonian (59) is

H = 0.

4.3 Instantons for the Langevin dynamics of the 2D-Euler and
Quasi-Geostrophic equilibrium dynamics

We consider the Langevin dynamics associated to the quasigeostrophic equations in
a periodic domain D = [0,2lxπ)× [0,2π) with aspect ratio lx:

∂q
∂ t

+v [q−h] ·∇q = −α
∫

D
C(r,r′)

δG

δq(r′)
dr′+

√
2αγη , (65)

v = ez ×∇ψ, q = ω +h(y) (66)

and potential G . We consider G the green function of the Laplacian (G= ∆−1), such
that the equations between the potential vorticity, stream function and velocity are
inverted as

ψ(r) =
∫

D
G
(
r,r′
)
(q−h)(r′)dr′,

and
v [ω] (r) =

∫
D

ez ×∇r1G
(
r,r′
)

ω(r′)dr′. (67)

(v [ω] is the operator that allows to compute the velocity from the vorticity). When
h = 0, this dynamics is the 2D-Euler equilibrium dynamics.

4.3.1 Reversed dynamics and detailed balance

Then the formalism of section 4 applies with F [q] =−v [q−h] ·∇q.
For the 2D Euler or quasi-geostrophic equation, the relevant involution corre-

sponding to time reversal is
I [q] =−q.

Using (36-38) we conclude that

Fr [q] = v [q+h] ·∇q,

Cr =C and
Gr [q] = G [−q] .

From these equation, we see that for the 2D Euler equations (h = 0), Fr = F and
the dynamics is time-reversible (see Eq. 36). The time reversibility condition on G
(see Eq. 41) is that G be even. We thus have two cases:
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1. For the 2D-Euler equations and when G is even, the Langevin dynamics is time-
reversible and we have detailed balance.

2. When either h ̸= 0 (Quasi-Geostrophic) or G is not even, then the Langevin dy-
namics is not time-reversible. It is conjugated to another Langevin dynamics
where h has to be replaced by −h and G by Gr [q] = G [−q]. Detailed balance
is not verified.

4.3.2 Instanton equation

As discussed in section 4, the instantons from one attracting point to a saddle are
the reverse of the relaxation paths for the reversed dynamics. From (54) applied to
the case Fr [q] = v [q+h] ·∇q, and Gr [q] = G [−q], we conclude that the equation
of those relaxation paths is

∂q
∂ t

+v [q+h] ·∇q =−α
∫

D
C(r,r′)

δG

δq(r′)
[−q]dr′. (68)

We also write explicitly the Euler-Lagrange equation in the qausi-geostrophic case.
Writing (61-62) in the case F [q] =−v [q−h] ·∇q, and using

δv
δq(r)

[q−h] (r1) = ez ×∇r1G(r1,r) . (69)

we obtain

∂q
∂ t

(r)+v [q−h] ·∇q =−α
∫

D
C(r,r′)

δG

δq(r′)
dr′+α

∫
D

C(r,r′)p(r′)dr′, (70)

and

∂ p
∂ t

(r)+v [q−h] ·∇p = α
∫

D
p(r1)

∫
D

C(r1,r2)
δ 2G

δq(r1)δq(r)
dr2dr1 (71)

+
∫

D
p(r1)ez ×∇r1 G(r1,r) .∇qdr1 (72)

or equivalently

∂ p
∂ t

(r)+v [q−h] ·∇p = α
∫

D
p(r1)

∫
D

C(r1,r2)
δ 2G

δq(r1)δq(r)
dr2dr1 (73)

+
∫

D
G(r1,r)(∇q×∇p)(r1).ez dr1. (74)



40 Freddy Bouchet, Cesare Nardini and Tomás Tangarife

4.3.3 Phase transition between zonal flows in a barotropic Quasi-Geostrophic
model with topography

In order to fully specify the quasi-geostrophic Langevin dynamics (65) we need to
specify the topography function and a choice of the potential G . Given the infinite
number of conserved quantities for the quasi-geostrophic dynamics, there are many
possible choices. We want to describe the phenomenology of phase transitions and
instanton theory in a situation of first order transition. We will illustrate such a phe-
nomenology through two examples.

For the first example, we choose a topography h(r) = H cos(2y), such that

q = ∆ψ +H cos(2y),

and we consider the potential
G = C +βE , (75)

with energy (4), β is the inverse temperature, and where C is the Casimir functional

C =
∫

D
dr
[

q2

2
−a4

q4

4
+a6

q6

6

]
, (76)

where we assume a6 > 0.

4.3.4 Zonal phase transitions

We first look at the structure of the minima of the potential G (75), and their bifur-
cations when the parameters ε and a4 are changed, where ε is defined by

β =−1+ ε.

At low positive temperature (β → +∞) we expect to see energy minima, which
correspond to ψ = 0 and q = H cos(2y). As the energy is convex, for positive β and
small enough a4, both C and βE will be convex, then we expect that G has a unique
global minimum and no local minima. For large enough β , this equilibrium state
will be dominated by the topographic effect. For small negative β , the change of
convexity of βE from convex to concave will not change this picture. However for
smaller β (more negative and higher absolute value), we expect a phase transition
to occur as the potential G will become locally concave. If a4 > 0 with sufficiently
large values this will be a first order phase transition. If a4 < 0 with sufficiently large
values, this will be a second order phase transition.

For H = 0, a bifurcation occurs for β =−1 (ε = 0) and a4 = 0, as can be easily
checked (see for instance [24]). For H = 0, this bifurcation is due to the vanishing of
the Hessian at β =−1 (ε = 0) and a4 = 0. As discussed in many paper [22, 69, 13,
24], for quadratic Casimir functional C2 =

∫
D dr q2

2 , the first bifurcation involves the
eigenfunction of −∆ with the lowest eigenvalue. If we assume that the aspect ratio
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lx (defined just before equation (65)) verifies lx < 1, then this smallest eigenvalue is
the one corresponding to the zonal mode proportional to cos(y). As we are interested
by transition between zonal states, we assume in all this section that lx < 1.

For non zero but sufficiently small H there will still be a bifurcation for ε and
a4 close to zero. We study this bifurcation in the following. The null space of the
Hessian is spanned by eigenfunctions cos(y) and sin(y). As a consequence, for small
enough ε , a4 and H we expect the bifurcation to be described by a normal form
involving only the projection of the field q on this null space. Hence, we decompose
the fields on a contribution over this null space and its orthogonal complement:

ψ = Acos(y)+Bsin(y)+ψ ′ (77)

with
∫
D dreiyψ ′(r) = 0. Then

q =−Acos(y)−Bsin(y)+q′, (78)

with
∫
D dreiyq′(r) = 0. The fact that the bifurcation can be described by a normal

form over the null space of the Hessian can be expected on a general ground. It can
actually be justified by using Lyapunov–Schmidt reduction, as done and explained
in [24] for a number of examples for the 2D-Euler and quasi-geostrophic equations.
Then all other degrees of freedoms describing the minima qc of G are slaved to A
and B, in the sense that they can be simply expressed as functions of A and B. Even if
the following example is not treated in the paper [24], and if it could clearly be done
without much difficulty, we do not describe the detail of the Lyapunov–Schmidt re-
duction here, for simplicity. We rather propose a more heuristic discussion.

We will treat the problem perturbatively by assuming that ε ≪ 1, εa6 ≪ a2
4, and

a4H2 ≪ ε (we note that it implies that a6H4 ≪ ε). We make these assumptions in
order to get an explicit description of the phase transitions, however it is important to
understand that the theory that predicts the transitions rates and the instantons does
not depend on those asumptions and that the same phenomenology will remain valid
beyond the perturbative regime. Then we will assume that ψ ′ and q′ are first order
corrections in all the three perturbation parameters. We then rewrite the potential G ,
taking into account only the leading order contributions. From (4), (76) and (77-78),
after straightforward computations we have

E = π2lx
[
A2 +B2]+ 1

2

∫
D

dr
[
H cos(2y)−q′

]
ψ ′

and
G = π2lxG0(A,B)+G1(A,B)

[
q′
]
+ lower order terms

with

G0(A,B) = ε
[
A2 +B2]− 3a4

8
[
A2 +B2]2 + 5a6

24
[
A2 +B2]3 +O(εa4),

and
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G1(A,B) [q′] = 1
2 (ε −1)

∫
D [H cos(2y)−q′]ψ ′ dr (79)

+
∫
D

{
q
′2

2

[
1−3a4 [Acos(y)+Bsin(y)]2 +5a6 [Acos(y)+Bsin(y)]4

]}
dr

We assume that a4A2 ≪ ε , a6A4 ≪ ε and ε ≪ 1. Then the leading order terms are
obtained from the minimization of the first integral and

ψ ′ =

[
H
3

cos(2y)
][

1+O(ε)+O
(
a4A2)+O

(
a6A4)] ,

or equivalently

q′ =−H
3

cos(2y)
[
1+O(ε)+O

(
a4A2)+O

(
a6A4)] .

We use this expression in order to compute the leading order contributions to
G1(A,B) = min{q′} G 1(A,B) [q′]. After lengthy but straightforward computations,
we get at leading order

G1 =min
q

G1 =−H2

3
− π2lxa4H2

6
[
A2 +B2]+ 5π2lxa6H2

144

(
5
[
A2 +B2]2 +2

[
A2 −B2]2) ,

and then
min

q
G = min

(A,B)
π2lxG(A,B) (80)

with G given at leading order by

G(A,B) = −H2

3 +
(

ε − a4H2

6 + 5a6H4

216

)[
A2 +B2

]
(81)

+
(
− 3a4

8 + 25a6H2

144

)[
A2 +B2

]2
+
(

5a6
24

)[
A2 +B2

]3
+
(

5a6H2

72

)[
A2 −B2

]2
.

G(A,B) is the normal form that describes the phase transition for a4A2 ≪ 1, and
a6A4 ≪ 1 and ε ≪ 1.

The fact that G is a normal form for small enough a4, a6, and H implies that
the gradient of G in direction transverse to q = Acos(y)+Bsin(y) are much steeper
than the gradient of G. A more complete derivation could easily be performed, for
instance along the line discussed in [24].

The term proportional to
(
A2 −B2

)2 breaks the symmetry between A and B. Its
minimization imposes A2 = B2. Then either A = B, or A = −B. If we take into
account that minimizing with respect to A2 +B2 will only give the absolute value of
A, we conclude that we will have 4 equivalent solutions

qi =−H
3

cos(2y)+
√

2 |A|(ε,a4,a6)cos(y+ϕi),

with ϕi taking one of the four value
{
− 3π

4 ,−π
4 ,

π
4 ,

3π
4

}
, and |A| minimizing
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Fig. 10 The reduced potential surface G(A,B) (see Eq. (81)) for parameter values ε > 0 and
a4 > 0. For those parameter, G has four global minima with |A| = |B|. This structure with four
attractors is due to a breaking of the symmetry imposed by the topography h(y) = H cos(2y) (see
section 4.3.4). For ε < 0, the minima of G have the symmetries of h (the potential vorticity profile
have a reflexion symmetry with respect to both y = 0 or y = π and an antireflexion symmetry
with respect to both y = π/2 and y = 3π/2). For ε > 0 this symmetry is broken leading to four
different attractors. Parameters for the reduced potential are: ε = 1.6×10−2, H = 4, a4 = 6×10−4,
a6 = 3.6×10−6.

G̃(|A|)=−H2

3
+2
(

ε − a4H2

6
+

5a6H4

216

)
|A|2+4

(
3a4

8
+

25a6H2

144

)
|A|4+ 5a6

3
|A|6 .

(82)
The reduced potential G is plotted on figure 10 in the case ε > 0 and a4 > 0.

This structure with four attractors is due to a breaking of the symmetry imposed by
the topography h(y) = H cos(2y). For ε < 0, the minima of G have the symmetries
of h (the potential vorticity profile have a reflexion symmetry with respect to both
y = 0 or y = π and an antireflection symmetry with respect to both y = π/2 and
y = 3π/2). For ε > 0 this symmetry is broken leading to four different attractors.
The potential vorticities of one of the attractors and of one of the saddle points are
shown in figure 11.

Looking at the reduced potential G̃ (equation 82), we recognize the structure of
a tricritical point: a point at which a first order transition line is changed to a second
order transition line. Figure 12 shows a phase diagram for the normal form for a
tricritical point. The reduced potential G̃ (equation 82) corresponds to this normal
form with a = 2

5a6

(
ε − a4H2

6 + 5a6H4

216

)
and b = 8

5a6

(
3a4
8 + 25a6H2

144

)
.

From this last equation, we conclude that: for a4 < 25a6H2

54 (a4 < 0 at leading

order), we have a continuous phase transition for ε = 35a6H4

648 (zero at leading order).

For a4 =
25a6H2

54 (a4 = 0 at leading order), we have a tricritical point. The transition
is between a state which is given at leading order by

q =−H
3

cos(2y)

and one of the four states given by



44 Freddy Bouchet, Cesare Nardini and Tomás Tangarife

-15

-10

-5

0

5

10

15

0 1 2 3 4 5 6

q

y

attractor

saddle

h = H cos(2y)

Fig. 11 The plot shows the topography (h(y) = H cos(2y), symmetric red curve) and two attractors
of the potential vorticity q (black solid lines) corresponding to two of the minima of the effective
potential G (see equation 81, and figure 10) for parameter values ε > 0 and a4 > 0. Additionally,
we present one of the saddles between the two attractors of the effect potential G.
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Fig. 12 This figure shows the phase diagram for a tricritical point corresponding to the maximiza-
tion of the normal form s(m) = −m6 − 3b

2 m4 − 3am2 (from [7]). The inset shows the qualitative
shape of the potential s when the parameters a and b are changed. The bold line is a line of first
order phase, or discontinuous phase transition. The bold-dashed line is a second order phase tran-
sition line. At the tricritical point (a = b = 0), the first order phase transition changes to a second
order phase transition.
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qi =−H
3

cos(2y)+
√

2 |A|(ε,a4,a6)cos(y+ϕi), (83)

where ϕi ∈
{
− 3π

4 ,−π
4 ,

π
4 ,

3π
4

}
, and |A|(ε,a4,a6) is the non-zero minimizer of (82).

For a4 > 0 and ε close to zero, we have coexistence between these two states, and
thus the transition when ε is increased is a first order transition. For a4 < 0 and ε
close to zero, the transition when ε is increased is a second order transition (contin-
uous transition).

4.3.5 Instantons for the topography phase transition

We know describe and compute the instantons corresponding to the phase transi-
tion between zonal flows, discussed in the previous section. In section 4 we have
derived the general theory of Langevin dynamics for field problems with potential
G . We have concluded in section 4.3 that instantons are the time reversed of relax-
ation paths for the reversed dynamics. The equation for the relaxation paths for the
reversed dynamics of the Quasi-Geostrophic dynamics have been derived in section
4.3 (equation (68)).

B
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Fig. 13 The reduced potential surface G(A,B) (same as figure 10) with superimposed the path
followed by both instantons (fluctuation path from one attractor to a saddle) and relaxation paths
(red line). For this case, the fluctuation and relexation paths are actually the reversed of each other,
so that the red line shows an instanton from one attractor followed by a relaxation to another
attractor, or vice versa.

The general theory and equation (68) show that for the Quasi-Geostrophic dy-
namics, the reversed dynamics is the Quasi-Geostrophic dynamics where h has been
replaced by −h and G by Gr, with Gr [q] =G [−q]. In the example we discussed now,
G is even (see equation (76)) such that Gr = G . We remark also that over the set
of zonal flows v = U(y)ex, the non-linear term of the Quasi-Geostrophic equation
identically vanish: v [q+h] .∇q = 0. As a consequence, when the instanton remains
a zonal flow, the fact that h has to be replaced by −h has no consequence. Let us
now argue that the instanton is actually generically a zonal flow.
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Fig. 14 The potential vorticity q versus y for two of the attractors (blue and red curves), the
saddle passed by the instanton (light green curve) and two intermediate profiles along the instanton
dynamics or relaxation dynamics (purple or dark green curves).

We assume for simplicity that the stochastic forces are homogeneous (invariant
by translation in both directions). Then C (r,r′) = C (r− r′) = Cz(y− y′)+Cm(y−
y′,x− x′) where

Cz(y) =
1

2πlx

∫ 2πlx

0

C(x,y)dx

is the zonal part of the correlation function, and Cm =C−Cz the non-zonal part.
As the non-linear term of the Quasi-Geostrophic equation identically vanishes,

the relaxation dynamics has a solution among the set of zonal flows. If Cz is non-
degenerate (positive definite as a correlation function), then relaxation paths will
exist through the gradient dynamics

∂q
∂ t

=−2πα lx
∫ 2π

0

dyCz(y− y′)
δG

δq(y′)
dy′, (84)

where q = q(y) is the zonal potential vorticity field.
Moreover, as argued in section 4.3.4, the fact that G (10) is a normal form for

small enough a4, a6, and H, implies that the gradient of G in directions transverse to
q = Acos(y)+Bcos(y) are much steeper than the gradient of G. As a consequence,
at leading order the relaxation paths will be given by the relaxation paths for the
effective two-degrees of freedom G. Then, from (80), (81), and (84), we obtain that
at leading order the relaxation path is given by (77-78) where the dynamics of A and
B is given by

dA
dt

=−c
∂G
∂A

and
dB
dt

=−c
∂G
∂B

,

with c =−αlx
∫ 2π

0 dyCz(y′)cos(y′). We recall that G is given by equation (81).
From this result the relaxation paths are easily computed. Using that fluctuation

paths are time reversed of relaxation paths, instanton are also easily computed. One
of the resulting relaxation paths and one of the instantons are depicted on figure 13
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on the top G in a (A,B) plane. The two attractor involved, together with the saddle
point and two intermediate states are shown on figure 14.

4.4 Instantons for non-equilibrium steady states of the 2D
Navier-Stokes equations, experiments and related dynamics

In sections 4.1 to 4.3.4 we have discussed situations of bistability close to a first
order phase transitions, in Langevin dynamics. Langevin dynamics are equilibrium
stochastic dynamics in the sense that the stochastic process is either time reversible,
or its time reversal is another Langevin dynamics with a clear physical interpreta-
tion, as explained in sections 4.1 and 4.2. This situation occurs often in physics for
systems in contact with a thermal bath. However the conditions for such Langevin
dynamics are usually not met for real turbulent flows, as most of the times the forc-
ing mechanisms, usually at large scale, are of a completely different nature from the
dissipative mechanisms, usually transfering energy to molecular degrees of freedom
through viscous effects or other mesoscopic transport phenomena.

The main objective of this section is to relax the equilibrium Langevin hypothe-
sis and to present applications of large deviation theory to genuine non-equilibrium
phase transitions. This part of the theory of two-dimensional and geophysical flows
is beeing developped currently and a complete picture does not exist yet. However
several aspects have been understood recently. The aim of this section is to briefly
present those aspects and to refer to more technical papers for a detailed discussion.
We begin with the two-dimensional stochastic Navier-Stokes equations in section
4.4.1 where we discuss the numerical computation of non-equilibrium instantons,
the existence or not of large deviations, and the large deviation rate. In section 4.4.2
we briefly present experimental studies of non-equilibrium phase-transitions. In sec-
tion 4.4.3 we discuss non-equilibrium phase transition in systems with long range
interactions, which are closely related to the two-dimensional Euler and Navier-
Stokes equations and more easily tractable theoretically.

Those three subsection present a mix of theoretical results, modelling, numerical
and experimental results. A complete theoretical approach goes through a kinetic
theory as discussed in section 5.

4.4.1 Large deviations and minimal action paths for the two-dimensional
Navier-Stokes equations

At a phase transition, physical systems undergo drastic qualitative changes. Hence
phase transitions play an essential role in the understanding of the macroscopic be-
havior of any system with a large number of degrees of freedom. In section 3, figure
3.4 on 19 show that the two-dimensional Euler equation on a torus undergo a phase
transition from dipoles (one anticyclone and a cyclone) to parallel flows. Based on
this observation, similar phase transitions have been searched and observed in nu-



48 Freddy Bouchet, Cesare Nardini and Tomás Tangarife

merical simulations of the two-dimensional Navier–Stokes equations [10]. Fig. 4, on
page 6, shows bistability and those rare transitions between two attractors. The sys-
tem has evolved to an apparent non-equilibrium steady state, in which most of the
time, the system’s dynamics is concentrated around two sets of attractors, namely
the vortex dipole and parallel flow. However, at long time intervals, the system spo-
radically switches between these two large scale attractors. Our aim is to understand
this switching behavior with large deviation theory.

A more complete study will be presented in works to be published soon. We only
discuss here two simple ideas. We first show that the most probable paths from one
attractor to another can be computed numerically. Then we discuss the main theoret-
ical issue: do large deviation exist for this system and what is the large deviation rate.

We start from the two-dimensional Navier-Stokes equations

∂ω
∂ t

+v [ω] ·∇ω = −αω +ν∆ω +
√

2αη , (85)

v = ez ×∇ψ, ω = ∆ψ , (86)

where ω , v and ψ are respectively the vorticity, the non-divergent velocity, and
the streamfunction. This is the same as equation 38 in the case h = 0, then ω =
q. The curl of the forcing η(x, t) is a white in time Gaussian field defined by
⟨η(x, t)η(x′, t ′)⟩ = C(x − x′)δ (t − t ′), where C is the correlation function of a
stochastically homogeneous noise. We stress that in general this is not a Langevin
dynamics as defined in section 4.2. Discussion on the qualitative behavior of the
turbulent flow generated by these stochastic equations, of the different regimes, of
the non-dimensionalization of the equation leading to the scaling of the force with√

α are discussed in [16].
The path integral formalism introduced in section 4.1 to 4.3.4 can be used irre-

spectively of the reversibility of the process. We can thus express transition proba-
bilities in terms of path integrals. Generalizing (42) and (44), on page 30, the La-
grangian L associated to the two-dimensional Navier–Stokes equations (85) is

L

[
q,

∂q
∂ t

]
= 1

2α
∫
D

∫
D

(
∂ω
∂ t (r)+v [ω] ·∇ω (r)+αω (r)−ν∆ω (r)

)
C−1(r,r′)(87)

×
(

∂ω
∂ t (r

′)+v [ω] ·∇ω (r′)+αω (r′)−ν∆ω (r′)
)

drdr′,

and the action functional is

A [q,T ] =
∫ T

0
L

[
q(t),

∂q
∂ t

(t)
]

dt. (88)

The transition probability to go from the state q0 at time 0 to the state qT at time T ,
denoted P [qT ,T ;q0,0], can then be expressed as
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P [qT ,T ;q0,0] =
∫q

∣∣∣∣∣∣ q(0) = q0
q(T ) = qT


D [q]e−

A
2 , (89)

Numerical computation of the least action path

The minimizer of the action with fixed initial and final state (q(0) = q0 and q(T ) =
qT ) then represents the most probable transition from q0 to qT . Without the help
of the time reversibility it is much more difficult to have a picture of this transition
path.

However the minimization of the action can be performed numerically. This is a
very difficult task, from a numerical analysis point of view, as we have to minimize
the action on the space of vorticity paths (fields depending on a three dimensional
space: two spatial dimensions plus time). This work can still be performed, as was
done in a work in collaboration with J. Laurie. For instance figure 15 shows the most
probable paths for the transition between parallel flows and dipoles (please see also
figure 4, on page 6, for the observed transitions in the direct numerical simulations).
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Fig. 15 Minimum action path between dipoles and parallel flows for the two-dimensional stochas-
tic Navier-Stokes equations. For this example of noise correlation function C, the minimum ac-
tion path involves mainly the two large scale modes. The path is represented in the the plane(∣∣ω̂(0,1)

∣∣ , ∣∣ω̂(1,0)
∣∣), where ω̂(0,1) and ω̂(1,0) are the Fourier components of the vorticity field for the

largest scales (k=(0,1) and k=(1,0)). The inset show how the vorticity field changes along the most
probable path for the transition between zonal flows and dipole (please see also figure 4, on page
6, for the observed transitions in the direct numerical simulations).

Large deviations, the Freidlin–Wentzell formalism, and the WKB asymptotics

The discussion on section 4 is based on the computation of the transitions probabil-
ities through path integrals (see Eq. (47), on page 22, Eq. (47) on page 30, and Eq.
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(89), for the transition probabilities for the Kramer problem, the Quasi-Geostrophic
Langevin dynamics and the Navier–Stokes equations respectively). As it is the case
in quantum mechanics, such path integrals can be evaluated in two main cases:
Gaussian cases, and in a semi-classical limit. In a semi-classical limit, when a pa-
rameter is small (h̄ in quantum mechanics, ∆V/kBT for the Kramer problem 47, γ
for the Quasi-Geostrophic Langevin dynamics 47), the path integral can be evalu-
ated as a Laplace integral. Then the path integral is equal to the exponential of the
action of the most probable path (the least action path, or the classical path) mul-
tiplied by a prefactor that can be evaluated by considering Gaussian fluctuations
around this most probable path (WKB or semi-classical asymptotic expansion). For
instance for the Kramer problem, the result is

P(x1,T ;x−1,0)
1≪T≪τ exp(β∆V ) and β∆V≫1∼ T

τ
exp(−β∆V ) , (90)

as explained in section 24. Sometimes the following result is stated: for any time T

lim
β→∞

1
β

logP(x1,T ;x−1,0) =−∆V. (91)

Such a result, using the logarithm of the transition probability and multiplying by
the rate 1/β , is called a large deviation result with rate 1/β . This result is clearly
weaker than the result 50, and also simpler to obtain as it involves only the least
action path.

A question is to know under which conditions results like (90), or the large devi-
ation result (91) are actually valid. This is a crucial question, as then the least action
path gives the scaling of the transition probability and we can also conclude that
most fluctuation paths concentrate close to the most probable one, the least action
path. For any dynamical system of the type

dx
dt

= F(x)+
√

εσ(x)η ,

where x is a vector of finite dimension n, η a white noise, σT σ is a definite positive
diffusion matrix, and the vector field F is such that the deterministic dynamics ẋ =
F(x) has isolated attractors, it is known that a large deviation result holds. In the
mathematical literature, this is one of the subjects of Freidlin–Wentzell theory [30].
A more precise theorem can be found in classical literature [30, 67]. This theory
corresponds to finite dimensional dynamics, with a clear small parameter (here the
noise amplitude ε) and a clear separation of time scales (the system relaxes towards
attractors on a time scale of order one, then getting deviations of order one needs
very rare realizations of the noise). Clearly the Kramer problem discussed in section
4.1 fits into this Freidlin–Wentzell framework, with ε = β∆V .

A very subtle and interesting question is wether large deviation results hold for
the Quasi-Geostrophic Langevin dynamics, discussed in section 4.2, in the limit
γ → 0. From the action, (47) on page 30, one clearly sees that a natural semi-classical
small parameter, γ , does exist. Moreover, the deterministic dynamics actually re-
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laxes on finite time towards the attractors which are the local minima of G , as in the
Freidlin–Wentzell framework. However the fact that the system describe the dynam-
ics of a field, in infinite dimension, makes the result non-trivial. We do not discuss
those subtle points further here.

For us, the most important issue is to understand if a large deviation result holds
for the stochastic Navier–Stokes equations. Looking at the transition probability
(89) and the Lagrangian 87, we see that no clear semi-classical parameter appears.
One may wonder if the small noise amplitude α may be used as a semi-classical
parameter. This is not clear at all. Indeed α is also the parameter that governs dissi-
pation. For small α , on time scales of order 1, the dynamics is governed by the 2D
Euler equation and the deterministic dynamics relaxes towards attractors of the 2D
Euler dynamics, for instance towards equilibrium states described in section 3. How-
ever there are an infinite number of such equilibrium states, as they are parametrized
by the energy and the vorticity distribution. Moreover those equilibrium states are
not isolated, by contrast they form a connected set. Then we are clearly not within
the hypothesis of Freidlin–Wentzell theory. Actually, the phenomenology, observed
from experiments and numerical simulations (see figure 4, or [23, 10]), is that the
dynamics is attracted by attractors of the two-dimensional Euler equations and then
slowly drifts inside this set, on time scales that probably scale like 1/α for small α .

The nature of the large deviations for such a systems with a connected set of
attractors and a slow drift on a longer time scale might be not simple. A very in-
teresting simple example, with only two degrees of freedom, is studied in [12]. In
this paper, it is shown that a non standard large deviation rate may appear due to the
possible slow drift along the set of attractors until the set of unstable fixed points of
the deterministic dynamics.

A simpler phenomenology would be that large deviation occurs for transitions
probabilities on time scale of order 1/α . This is for instance what actually happens
in the Kramer problem in the underdamped limit as described in many classical ref-
erences [32, 30]. Then a clear understanding emerges through first using the time
scale separation in order to obtain a slow stochastic dynamics through stochastic av-
eraging, and then obtain a large deviation result from this slow dynamics. We think
that this is the most promising way towards understanding large deviations for the
two-dimensional stochastic Navier–Stokes equations, and this is what we will dis-
cuss in section 5.

Before discussing stochastic averaging, let us first comment on simple empiri-
cal (numerical) facts about large deviations for the two-dimensional Navier–Stokes
equations. Looking at the figure 4, and the discussion [10], we see that the transition
between two different states is extremely rare: there is a clear time scale separation,
as the typical transition time is 104 or 105 turn-over times. The simulations in the
work [23] also show that the flow remains close to a well characterized attractor
with weak fluctuations around it. These are clear signs of a large deviation regime.
More precisely we can say from these empirical results that the invariant measure
concentrates close to a set of states, that are stable steady states of the 2D Euler
equations.
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What is then the large deviation rate ? Following the stochastic averaging results
presented in section 5, we will conclude that the slow dynamics is a determinis-
tic dynamics plus a noise. The amplitude of the noise is related to the number of
effective degrees of freedom in the fluctuations field close to the attractors (more
precisely, the transverse degrees of freedom with respect to the attractor). Then we
can conclude that the more we will force on the small scales, for a fixed total energy
input rate, the smallest will be the noise in the slow dynamics, and the rarest will be
large deviations. This can be also understood from a heuristic dynamical discussion:
the process leading to the large scale structure and their fluctuations is a transfer of
energy towards the largest scales, mainly through direct interaction with the large
scale flow. Then if we exit more small scales modes with weaker amplitude, an
averaging effect will tend to reduce fluctuations.
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Fig. 16 Plot of the order parameter
∣∣ω(0,1)

∣∣ from direct numerical simulations of the two-
dimensional Navier-Stokes equations, with aspect ratio δ = 1.09, α = 0 and ν = 7.10−4 (numerical
simulations by E. Simonnet). The stochastic force spectrum is a flat spectrum forcing modes with
Fourier coefficient with either 2 ≤ k ≤ 7 (red, top), or 3 ≤ k ≤ 7 (green, middle), or 4 ≤ k ≤ 7 (blue,
bottom). On the right-hand side of each time series is the PDF of

∣∣ω(0,1)
∣∣. This plot shows that the

more Fourier coefficient are involved (the more we force on small scales), the rarest the transitions
are. This is an indication that the typical scale of the forcing may be a large deviation rate.
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An empirical evidence that the typical forcing scale may play the role of a large
deviation rate is given on figure 16. This plot shows that the transition between
dipole and parallel flow occurs less and less frequently as the stochastic force acts
on smaller and smaller scales. The fact that the forcing scale (the number of effec-
tive degrees of freedom involved in the backward energy cascade) plays the role of
a large deviation rate, does not mean that the time scale separation (small α and
small ν) is not important. Actually it is likely that both the inverse of the time scale
separation and typical scale of the stochastic force may be large deviation parame-
ters. A better understanding requires further theoretical, numerical, and experimen-
tal works.

4.4.2 Non-equilibrium phase transitions in systems in rotating tank
experiments

The study of non-equilibrium phase transitions has also been done in experiments
in collaborations with M. Mathur and J. Sommeria. Experiments were performed in
a water-filled 2m diameter annular tank at LEGI, Grenoble to simulate the interac-
tion of mid-latitude atmospheric jets with continental topography. The tank rotates
at a speed Ωt to simulate the effects of earth’s rotation. A linear bottom slope in
the tank models the variation of the earth’s background rotation with latitude. A
jet was forced by an annular ring, rotating at a speed Ωr with respect to the tank
rotation, sitting on the surface of the water. The direct forcing mechanism allowed
for an easy control of the zonal jet. On top of the linearly (in the radial direction)
sloped tank bottom was a gaussian (in the azimuthal direction) shaped topography
of amplitude 3cm to model continental topography. Velocity measurements in the
two-dimensional plane 16cm below the free surface were performed using Particle
Image Velocimetry.

Ωt and Ωr were the control parameters in our experiments. We define the order
parameter C as the extent of propagation of the mode-3 wave in the azimuthal di-
rection. Purely propagating and stationary mode-3 waves correspond to zero and a
finite value, respectively, for the order parameter.

Figure 17(a) shows the variation of the order parameter C as a function of Ωt
from two experiments in which Ωt is slowly increased (blue curve, experiment 1)
and decreased (red curve, experiment 2) in time while Ωr is held constant. For small
values of Ωt (0.45rad/s), C is small, indicating that the mode-3 wave is mostly prop-
agating around the tank in both the experiments. For intermediate values of Ωt , C
attains very small values in experiment 1 and much larger values in experiment 2,
showing that the system admits two different states (referred to as the propagat-
ing and blocked states, respectively) in the range 0.45 ≤ Ωt ≤ 0.53rad/s. For larger
values of Ωt (0.55 rad/s), C settles at a finite (relatively large) value in both the
experiments, indicating that the system attains the blocked state for large Ωt irre-
spective of its history. The intermediate regime where both the propagating state and
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Fig. 17 (a) Order parameter C as a function of Ωt in experiments where Ωr = 0.78rad/s is held
constant. The two arrows indicate the direction in which Ωt is varied in the corresponding ex-
periments. The black vertical line corresponds to the value of Ωr in the experiments presented in
(b) & (c). (b) & (c) Time-averaged stream function ψ in experiments where Ωt = 0.51rad/s and
Ωr = 0.78rad/s are both held constant. (b) & (c) correspond to the blue and red branches in (a),
respectively.

the blocked state are possible for the same value of Ωt is the region of bistability, a
phenomenon admitted by systems exhibiting hysteresis.

Bistability is further demonstrated in figures 17(b) and 17(c), where we plot the
time-averaged streamfunction as a function of the spatial coordinates from exper-
iments in which Ωr = 0.51rad/s and Ωt = 0.78rad/s are both held constant. The
propagating and blocked states are chosen by the path by which Ωt is taken to
Ωt = 0.51rad/s. The propagating state is characterized by a zonal-jet-like mean flow
pattern whereas the blocked state is characterized by a cyclonic vortex downstream
of the topography.

No spontaneous transitions between the propagating and the blocked state were
observed, in spite of the strong turbulent fluctuations. Intrinsic noise in the form of
cylindrical obstacles in the flow did not cause transitions either. External noise in the
form of abrupt changes in Ωt within the bistable regime causes switches between
the two states. In the “mixed” state observed for relatively small values of Ωt , the
mode-3 phase variation with time shows step-like features and the computation of
the statistics of the duration of each of step is currently ongoing. This work will be
published soon.

4.4.3 Non-equilibrium phase transitions in systems with long-range
interactions

In this section we briefly review two theoretical works [46, 47] which are directly
related to the question of the bistability and of the existence of large deviations
for the two-dimensional Navier–Stokes equations. The aim of these works was to
find non-equilibrium phase transitions and bistability in systems described by the
Vlasov equation with stochastic forces. The Vlasov equations have indeed mathe-
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Fig. 18 Numerical simulation of non-equilibrium phase transitions for the stochastically-forced
model with mean field interaction. The magnetization is plotted as a function of time at kinetic
temperature T = 0.83. The figure shows clear signatures of bistability in which the system during
the course of evolution switches back and forth between spatially homogeneous (magnetization of
order 0) and inhomogeneous (magnetization of order 1) states.

matical and theoretical properties and behaviors which are very close to the two-
dimensional Euler equations ones. Moreover, they are technically simpler to study,
from a theoretical point of view, and a complete theoretical treatment could be done.
This was the subject of two recent works [46, 47]. Under the effect of stochastic
driving, the system at long times reaches stationary states where external forces bal-
ance dissipation on average. These states do not respect detailed balance, and are
characterized by non-vanishing currents of conserved quantities. In order to ana-
lyze spatially homogeneous stationary states, we have developed a kinetic theory
approach that generalizes the theory known for isolated long-range interacting sys-
tems. Our approach may also be generalized to describe spatially inhomogeneous
stationary states. For homogeneous ones, we obtain a very good agreement between
predictions from kinetic theory and extensive numerical simulations. In specific pa-
rameter regimes, our numerical simulation results show very interesting bistable
behavior (non-equilibrium phase transition) between homogeneous and inhomoge-
neous states (please see figure 18). We advise any reader interested by the theoreti-
cal understanding of non-equilibrium phase transitions in turbulent flows to read the
papers [46, 47].

5 Kinetic theory of zonal jet dynamics

As suggested in section 15, we will now use the fact that the large-scale flow evolves
on a very long time scale (of order 1/α for the stochastic barotropic equations (2) on
page 9) in order to describe the large deviations that are observed over this long time
scale (see figure 16). We present here this procedure, called stochastic averaging, in
the case where the large-scale flow is constituted of zonal jets (parallel jets in the x
direction).
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The goal of the stochastic averaging is to obtain an effective equation that de-
scribes the slow dynamics of the large scales of the flow. Such a procedure, an
example of turbulent closure, is usually inconsistent in a turbulence context. The
main part of the work is thus to prove the consistency of the closure in this case.
We do not describe this point in detail here, please see [15] for a complete presen-
tation, but we present the main ideas in section 5.1. Assuming that the expansion is
self-consistent, we will obtain the equation (100). The application of this equation
in order to obtain a large-deviation result for the jets dynamics is then discussed in
section 5.2.

5.1 Stochastic averaging

5.1.1 Rescaled dynamics

In the presence of a topography h or of a beta effect β , zonal jets are natural attrac-
tors of the inertial dynamics [15]. Then, in the presence of a small dissipation and of
a small stochastic forcing (the regime α ≪ 1 in (2)), the flow will be very close to a
zonal jet, plus a perturbation that corresponds to turbulent fluctuations, that vanish
as α goes to zero. Moreover, as the zonal jet is a stationary solution of the inertial
dynamics, it is expected to evolve over a time scale that is much larger than the time
scale of evolution of the turbulence. In the units used in (2), the time scale of evo-
lution of the turbulent fluctuations is of order one, while the time scale of evolution
of the jet (the dissipation time scale) is 1/α . The goal of the stochastic averaging is
to average the stochastic equations of motion over the realizations of this turbulent
fluctuation field, in order to get the effective slow dynamics of the zonal jet.

The large scale zonal jets are characterized by either a zonal velocity field vz(r)=
U(y)ex or its corresponding zonal potential vorticity qz(y) = −U ′(y) + h(y). For
reasons that will become clear in the following discussion (we will explain that this
is a natural hypothesis and prove that it is self-consistent in the limit α ≪ 1), the
non-zonal perturbation to this zonal velocity field is of order

√
α . We then have the

decomposition

q(r) = qz(y)+
√

αωm(r) , v(r) =U(y)ex +
√

αvm(r) (92)

where the zonal projection is defined by ⟨ f ⟩(y) = 1
2πδ

∫ 2πδ
0 dx f (r).

We now project the barotropic equation (2) into zonal and non-zonal part, assum-
ing for simplicity that the random forcing doesn’t act directly on the zonal degrees
of freedom1 (⟨C⟩= 0):

∂qz

∂ t
=−α

∂
∂y

⟨
v(y)m ωm

⟩
−αωz +ν

∂ 2ωz

∂y2 , (93)

1 This assumption is not necessary for the theory, it is just for convenience.
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∂ωm

∂ t
+LU [ωm] =

√
2η −

√
αvm.∇ωm +

√
α ⟨vm.∇ωm⟩ , (94)

where LU is the linearized dynamics operator around the zonal base flow U . We
see that the zonal potential vorticity is coupled to the non-zonal one through the
zonal average of the advection term ∂

∂y

⟨
v(y)m ωm

⟩
. If our rescaling of the equations

is correct, we clearly see that the natural time scale for the evolution of the zonal
flow is 1/α . By contrast, the natural time scale for the evolution of the non-zonal
perturbation is one. These remarks show that in the limit α ≪ 1, we have a time
scale separation between the slow zonal evolution and a rapid non-zonal evolution.
Our aim is to use this remark in order to describe precisely the stochastic behavior
of the Reynolds stress in this limit (by integrating out the non-zonal turbulence), and
to prove that our rescaling of the equations and this time scale separation hypothesis
is a self-consistent hypothesis.

5.1.2 Adiabatic elimination of fast variables

We will use the remarks that we have a time scale separation between zonal and
non-zonal degrees of freedom in order to average out the effect of the meridional
turbulence. This amounts at treating the non-zonal degrees of freedom adiabatically.
This kind of problems are described in the theoretical physics literature as adia-
batic elimination of fast variables [31] or may also be called stochastic averaging
in the mathematics literature. Our aim is to perform the stochastic averaging of the
barotropic flow equation and to find the equation that describes the slow evolution
of zonal flows. In this stochastic problem, it is natural to work at the level of the
probability density function (PDF) of the flow, P[q] = P[qz,ωm]. Then, the dynami-
cal equations (2) or (93,94) are equivalent to the so-called Fokker-Planck equation
for P.

Complete Fokker-Planck equation

The evolution equation for the PDF reads

∂P
∂ t

= L0P+
√

αLnP+αLzP, (95)

The operator L0 is the Fokker-Planck operator that corresponds to the linearized dy-
namics close to the zonal flow U , forced by a Gaussian noise, white in time and with
spatial correlations C. This Fokker-Planck operator acts on the non-zonal variables
only and depends parametrically on U . This is in accordance with the fact that on
time scales of order 1, the zonal flow does not evolve and only the non-zonal degrees
of freedom evolve significantly. It should also be remarked that this term contains
dissipation terms of order α and ν . These dissipation terms can be included in L0
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because in the limit ν ≪ α ≪ 1, the non-zonal dynamics is dominated by the inter-
action with the mean flow, thanks to the so-called Orr mechanism. This crucial point
will be discussed in the following paragraph. At order

√
α , the nonlinear part of the

perturbation Ln describes the non-linear interactions between non-zonal degrees of
freedom. At order α , the zonal part of the perturbation Lz contains the terms that
describe the large-scale friction and the coupling between the zonal and non-zonal
flow.

Stationary distribution of the fast variables

The goal of our approach is to get an equation that describes only the zonal, slowly
evolving part of the PDF, but taking into account the fact that the non-zonal de-
grees of freedom have rapidly relaxed to their stationary distribution. The first step
is then to determine this stationary distribution of the non-zonal, fast evolving de-
grees of freedom. This stationary distribution is given by the stationary state of
(95), retaining only the first order term: L0P = 0. For the special case of a de-
termined zonal flow P [qz,ωm] = δ (qz −q0)Q(ωm), L0 is the Fokker-Planck op-
erator that corresponds to the dynamics of the non-zonal degrees of freedoms, for
quasi-geostrophic equations linearized around the base flow with potential vortic-
ity q0 (equation (94) without the non-linear terms.) It is a linear stochastic process
(Ornstein–Uhlenbeck process) with zero average value, so we know that its sta-
tionary distribution is a centered Gaussian, entirely determined by the variance of
ωm. The variance is the stationary value of the two-points correlation function of
ωm, g(r1,r2, t) = E [ωm(r1, t)ωm(r2, t)]. The evolution of g is given by the so-called
Lyapunov equation, which is obtained by applying the Ito formula to the stochastic
equation for ωm:

∂ωm

∂ t
+LU [ωm] =

√
2η ⇒ ∂g

∂ t
+
(

L(1)
U +L(2)

U

)
g = 2C. (96)

(L(i)
U means that the operator is applied to the i-th variable). We now understand that

the asymptotic behavior of this equation is a crucial point for the whole theory. It can
be proved [9] that g has a well-defined limit (in the distributional sense) for t → ∞,
even in the absence of any dissipation mechanism (α = ν = 0). This may seem
paradoxical as we deal with a linearized dynamics with a stochastic force and no
dissipation mechanism. This is due to the Orr mechanism [9] (the effect of the shear
through a non-normal linearized dynamics), that acts as an effective dissipation. The
fact that (96) has a finite limit when α → 0 is the precise justification of the scaling
(92), and it is thus the central point of the theory.

The average of an observable A[qz,ωm] over the stationary gaussian distribution
is still a function of qz, and it is an average over the non-zonal degrees of freedom,
taking into account the fact that they have relaxed to their stationary distribution. In
the following, we denote this average
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EU [A] =
∫

D [ωm]A[qz,ωm]G [qz,ωm] , (97)

the subscript U recalling that this quantity depends on the zonal flow.

Effective zonal Fokker-Planck equation

The formal development of the stochastic reduction is not reported here, see [15]
for details. We obtain the following Fokker-Planck equation for the slowly evolving
part of the zonal jets PDF R[qz],

∂R
∂τ

=
∫

dy1
δ

δqz(y1)

{[
∂F [U ]

∂y1
+ωz(y1)−

ν
α

∂ 2ωz

∂y2
1

]
R[qz]

}
(98)

+
∫

dy1dy2
δ 2

δqz(y1)δqz(y2)
(CR(y1,y2) [qz]R [qz]) , (99)

which evolves over the time scale τ = αt, with the drift term

F [U ] = EU

[⟨
v(y)m ωm

⟩]
(y1)+αF1 [U ] ,

with F1 a functional of qz, and the diffusion coefficient CR(y1,y2) [qz], that also de-
pends on the zonal flow qz.

This Fokker-Planck equation is equivalent to a non-linear stochastic partial dif-
ferential equation for the potential vorticity qz,

∂qz

∂τ
=−∂F

∂y
[U ]−ωz(y1)+

ν
α

∂ 2ωz

∂y2 +ζ , (100)

where ζ is white in time Gaussian noise with spatial correlation CR. As CR depends
itself on the velocity field U , this is a non-linear noise. The main physical conse-
quences of this equation are discussed in the following paragraphs.

5.2 Physical interpretation of the zonal Fokker-Planck equation

5.2.1 First order: quasi-linear dynamics

At first order in α , we obtain a deterministic evolution equation for qz:

∂qz

∂ t
=−α

∂
∂y

EU

[⟨
v(y)m ωm

⟩]
−αωz +ν∆ωz, (101)

where the forcing term −α ∂
∂y EU

[⟨
v(y)m ωm

⟩]
can be computed as a linear transform

of the stationary solution of the Lyapunov equation (96).
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To summarize, we found that at leading order in α , the zonal flow is forced by the
average of the advection term due to the non-zonal fluctuations (Reynolds’ stress),
and that this quantity is computed from the linearized dynamics for the fluctuations.
In other words, we could have applied the same stochastic reduction technique to
the quasi-linear dynamics (equations (93) and (94) without non-linear terms), and
we would have obtained at leading order the same deterministic equation (101).
The system (101,96) is a quasi-Gaussian (or second-order) closure of the dynamics.
Working directly at the level of the PDF, and using the tools of the stochastic reduc-
tion, we have been able to justify the closure of this problem. This quasi-Gaussian
closure has been already studied in numerical works (SSST in [29] and CE2 in [43]),
and is known to give very good results.

Using again the results about the Orr mechanism [9], some important facts about
equation (101) can be proved. First, we can make sure that the Reynolds’ stress is
well-behaved, even in the inertial limit α,ν → 0, so that the zonal flow equation
(101) is always well-defined. We can also show that the energy in the meridional
degrees of freedom is of order α . As a consequence, a vanishing amount of energy
is dissipated in the fluctuations and almost all the energy injected by the stochastic
forcing goes to the zonal degrees flow. Moreover, the dynamics defined by equations
(101,96) are much more simpler to solve numerically that the full non-linear dynam-
ics (2). The numerical results that illustrate the two properties mentioned above are
reported in figure 19.
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Fig. 19 Numerical results in the case of a parabolic base zonal flow U(y) = A(y+ 2)2 +U0 in
a channel geometry, with a forcing at the scale kx = 1, ky = 1 and different values of the friction
coefficient α , and ν = 0. We see that in the inertial limit α → 0, the Reynolds’ stress converges to a
well-defined function, and that all the energy injected in the fluctuations is transferred to the zonal
flow (blue line), while the energy dissipated in the fluctuations vanishes (red line). This constitutes
a verification of the self-consistency of the theory, and relies on the non trivial Orr mechanism.
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5.2.2 Next order: corrections and multistability and instantons

From the full Fokker-Planck equation (95), we expect the non-linear operator Ln to
produce terms of order α1/2 and α3/2 in the zonal Fokker-Planck equation (99). The
detailed computation shows that these terms exactly vanish. As a consequence, we
have proved that the quasi-Gaussian closure (101,96) is correct in the limit α ≪ 1,
with correction only at order α2.

We then have a correction F1 to the drift F [U ] due to the non-linear interactions.
At this order, the quasilinear dynamics and non-linear dynamics differ. We also see
the appearance of the noise term, which has a qualitatively different effect than
the drift term. For instance if one is interested in large deviations from the most
probable states, correction of order α to F0 will still be vanishingly small, whereas
the effect of the noise will be essential. This issue is important for the description of
the bistability of zonal jets and phase transitions, as discussed in section 15.

6 Conclusion

During the last decade, there have been several advances in the statistical mechan-
ics approach to two-dimensional and geostrophic turbulence. The most recent re-
sults, and possibly the most promising for geophysical application, is the use of
large deviation theory in order to describe the attractors and the transition rates for
the two-dimensional stochastic Navier-Stokes equations and geostrophic turbulence.
We have described briefly some of those results in these lectures. Those encouraging
results are still incomplete, and many open questions should be addressed by the-
oreticians in the future. Have those turbulent flow a large deviation regime ? What
is the large deviation rate ? How to compute large deviation rate functions ? How
to make those predictions effective in more complex models ? How to compute
numerically large deviation rate functions for turbulent flows ?

This ongoing development of statistical mechanics approach to geophysical tur-
bulent flows is extremely promising for many applications related to the turbulent
part of climate dynamics. We expect very interesting outcomes in this direction in
the future.
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Sci., 1798:42–58, 2012.

15. Freddy Bouchet, Cesare Nardini, and Tomás Tangarife. Kinetic theory of jet dynamics in
the stochastic barotropic and 2d navier-stokes equations. Journal of Statistical Physics,
153(4):572–625, 2013.

16. Freddy Bouchet and Antoine Venaille. Statistical mechanics of two-dimensional and geophys-
ical flows. Physics Reports, 515(5):227–295, 2012.

17. E. Brown and G. Ahlers. Rotations and cessations of the large-scale circulation in turbulent
Rayleigh-Bénard convection. Journal of Fluid Mechanics, 568:351, November 2006.

18. E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti. A special class of stationary flows
for two-dimensional euler equations: A statistical mechanics description. Part II. Commun.
Math. Phys., 174:229–260, 1995.

19. B Caroli, C Caroli, and B Roulet. Diffusion in a bistable potential: The functional integral
approach. Journal of Statistical Physics, 26(1):83–111, 1981.

20. M. Chandra and M. Verma. Dynamics and symmetries of flow reversals in turbulent convec-
tion. Physical Review E, 83(6):7–10, June 2011.

21. P. H. Chavanis. Statistical mechanis of two-dimensional vortices and stellar systems. In
T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens, editors, Dynamics and Thermodynamics
of Systems With Long Range Interactions, volume 602 of Lecture Notes in Physics, pages
208–289. Springer-Verlag, 2002.

22. P. H. Chavanis and J. Sommeria. Classification of self-organized vortices in two-dimensional
turbulence: the case of a bounded domain. J. Fluid Mech., 314:267–297, 1996.

23. M. Chertkov, C. Connaughton, I. Kolokolov, and V. Lebedev. Dynamics of Energy Conden-
sation in Two-Dimensional Turbulence. Phys. Rev. Lett., 99:084501, 2007.

24. Marianne Corvellec and Freddy Bouchet. A complete theory of low-energy phase diagrams
for two-dimensional turbulence steady states and equilibria. arXiv preprint arXiv:1207.1966,
2012.



Non-eq. stat. mech. of the stochastic Navier–Stokes eq. and geostrophic turbulence 63

25. T. E. Dowling and A. P. Ingersoll. Potential vorticity and layer thickness variations in the
flow around Jupiter’s Great Red SPOT and White Oval BC. Journal of Atmospheric Sciences,
45:1380–1396, 1988.

26. D. H. E. Dubin and T. M. O’Neil. Two-dimensional guiding-center transport of a pure electron
plasma. Phys. Rev. Lett., 60(13):1286–1289, 1988.

27. G. L. Eyink and H. Spohn. Negative-temperature states and large-scale, long-lived vortices in
two-dimensional turbulence. Journal of Statistical Physics, 70:833–886, 1993.

28. G. L. Eyink and K. R. Sreenivasan. Onsager and the theory of hydrodynamic turbulence. Rev.
Mod. Phys., 78:87–135, 2006.

29. Brian F. Farrell and Petros J. Ioannou. Structural stability of turbulent jets. Journal of Atmo-
spheric Sciences, 60:2101–2118, 2003.

30. M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems. Springer -
New York, Berlin, 1984.

31. C. W. Gardiner. Handbook of stochastic methods for physics, chemistry and the natural sci-
ences. Springer Series in Synergetics, Berlin: Springer, —c1994, 2nd ed. 1985. Corr. 3rd
printing 1994, 1994.

32. P. Hänggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years after Kramers. Re-
views of Modern Physics, 62:251–342, April 1990.

33. Corentin Herbert. Additional invariants and statistical equilibria for the 2d euler equations on
a spherical domain. Journal of Statistical Physics, 152(6):1084–1114, 2013.
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