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AbstratWe explain the emergene and stability of the most important jets and vorties, inthe highly turbulent Jupiter's atmosphere, by a statistial mehanis of the potentialvortiity mixing. Using the Quasi-Geostrophi 1-1/2 layer, with topography, when theRossby deformation radius is small, we predit strong jets. These jets an be eitherzonal, or losed into a ring struture like the Great Red Spot one. We reprodue theGRS observed veloity �eld to a very good quantitative auray. For smaller vorties,or for stronger topography urvature, we reprodue the harateristis properties of theWhite Ovals or of the yloni Brown Barges. The link between their shape, topographyand surrounding shear is expliitly desribed. We obtain very strong qualitative resultsfor the Jupiter's vorties. For instane, any of these vorties must be on topographyextrema (in the referene frame moving with the struture), the shear in the ative layeris larger than the shear in the deep layer. On a same latitudinal band, the veloity ofthe vortex is related to their latitude. These theoretial preditions are in aordanewith the observed properties of Jovian vorties.1 IntrodutionAtmospheri and oeani �ows have the property to organize into large sale jets or vorties.Due to the large di�erene between typial foring and inertial time sales, this organizationis remarkably stationary in the ase of Jupiter's troposphere. The understanding of thestability and of the detailed struture of these �ows is thus render easier than for any othergeophysial �ows. Moreover, the exellent quality of the data obtained from spae probes,makes easy a preise omparison of theoretial preditions with atual �ows.As in the oeans and in the earth atmosphere, these �ows are often organized intonarrow jets. They an zonally �ow around the planet, like the eastward jet at 240 latitudein the northern hemisphere of Jupiter (Maxworthy 1984), or alternatively organize intorings, forming vorties, like the rings shed by the meandering of the Gulf-Stream in thewestern Atlanti Oean. The �ow �eld in Jupiter most famous feature, the Great Red Spot,is an oval-shaped jet, rotating in the antiyloni diretion and surrounding an interior areawith a weak mean �ow (Dowling and Ingersoll 1989) (see �gure 1). Robust yloni vortiesare also observed with a similar jet struture (Hatzes et al 1981), see �gure 13. Smallerfeatures, as the White Ovals, have also an oval shape but without the jet ring struture.For a reent review on the dynamis of Jupiter's atmosphere, see Ingersoll and ollaborators(2003).A number of numerial studies have been led to model the Jupiter's vorties (see In-gersoll and ollaborators 2003, for a review). The Kida vortex (Kida 1981) has been usedto explain the typial oval shape of suh vorties (Polvani and ollaborators 1990). Somesoliton like strutures have been also desribe (Petviashvili 1981, ????) with similar shapes.Anyway, none of these analytial and theoretial models, reprodue both the oval shape andring struture of the Great Red Spot. We will argue that the strong jets are the onsequeneof a small value of the Rossby deformation radius, for very energeti �ows. With suh pa-rameters, the e�et of a topography (deep �ow and beta e�et) will be neessary to explainthe typial oval shape. Moreover, suh jets and vorties are in a turbulent surrounding,and the persistene of their strength and onentration in the presene of eddy mixing isintriguing and should be explained. 2



The explanation proposed in this paper is based on a statistial mehanial approah: thenarrow jet or vortex appears as the most probable state of the �ow after a turbulent mix-ing of potential vortiity, taking into aount onstraints due to the dynamial onservedquantities, espeially energy. Suh a statistial theory has been �rst proposed for the two-dimensional inompressible Euler equations by Kuz'min (1982), Robert (1990), Robert andSommeria (1991), Miller (1990), see Sommeria (2001) for a reent review. This theorypredits an organization of 2D turbulene into a steady �ow, superposed with �ne sale,'mirosopi' vortiity �utuations. This is by far the most likely result of random stirring,so the evolution to this statistial equilibrium is in pratie irreversible. Complete vortiitymixing is prevented by the onservation of the energy, whih an be expressed as a on-straint in the aessible vortiity �elds. A similar, but quantitatively di�erent, organizationhad been previously obtained with statistial mehanis of singular point vorties, insteadof ontinuous vortiity �elds (Onsager 1949, Joye and Montgomery 1973). The possibilityof using suh ideas to explain the Great Red Spot has been expliitly quoted sine the �rstworks on the 2D Euler statistial mehanis by Robert (1990), Miller (1990), Sommeria etal (1991), Miller Weihman and Cross (1992), Turkington, Majda and DiBattista (2001),but without expliit preditions.In the study of geophysial �ows, the Rossby deformation radius is a entral parameter,as it de�nes a typial sale for the variation of the pressure. In a previous paper (Bouhetand Sommeria, 2002), we have analytially desribed the statistial equilibrium states, forthe Quasi-Geostrophi equation, in the limit of a small Rossby deformation radius. In thislimit, the equilibrium �ows are haraterized by strong jets, either zonal and �owing aroundthe planet or forming losed vorties, depending on the parameters. When a topographyis onsidered, these vorties have the typial shape of Jovian ones'. We have also shownthat these equilibrium are able to reprodue quantitatively all the main harateristis ofthe Great Red Spot. In setion 2.3, we will give a simpli�ed derivation of these results.Whereas in Bouhet and Sommeria 2002, the statistial equilibrium were analyzed for thesimple ase of a potential vortiity distribution made of two levels, we extensively disussthe generalization of the results to any PV distribution. We show that the main results donot depend on the detailed distribution. This is true as a onsequene of the small value ofthe Rossby deformation radius.In setion 2.4, we disuss the appliation of suh results to the Jovian vorties. Wedisuss a simple model for the Great Red Spot, also present in Bouhet and Sommeria(2002). We disuss important qualitative preditions for suh vorties : they are loated onextrema of the topography, their energy must be greater than a ritial one, the shear onthe ative layer has to be stronger than in the deep layer, their typial width is given by analternative of the Rhine's sale, whih no does not depends on the beta-e�et, but on thetopography urvature.The limit of small Rossby radius is no more valid for smaller vorties, suh as the BrownBarges or the White Ovals. In order to model these features, we will numerially omputethe veloity �elds of the statistial equilibrium states. Using the qualitative omprehensionobtained from the analytial analysis, we will be able to reprodue the main propertiesof these �ows, either from the destabilization of jets, or from random Potential Vortiityinitial onditions. In setion 3 we obtain a veloity �eld lose to the White-Oval one. Insetion 4, we obtain numerially the veloity �eld of the Great Red Spot whih is aurately3



ompared to the observed one's. In setion 6, we obtain the peuliar veloity �eld of theBrown Barges, with a jet like struture in the meridional diretion, and a strong shear inthe zonal one.In setion 5, we omment results of Ellis, Haven and Turkington (2002), on the stabilityof statistial equilibrium. We illustrate the orresponding results by numerial experimentof stabilization or destabilization of strong jets. This omplete the explanation of theemergene and of the stability of Jupiter's features in the Jupiter's turbulent atmosphere.2 Statistial mehanis of the Quasi-Geostrophi equation inthe limit of small Rossby deformation radiusIn this setion we present the Quasi-Geostrophi 1-1/2 layer model and the main ideasof the potential vortiity statistial mehanis. This theory desribes the most probablestate, emerging from a random PV �eld with a given PV distribution and energy. Themain hypothesis is that these equilibrium strutures emerge from the very omplex dy-namial mixing. These stationary states have been desribed analytially in a previouswork (Bouhet and Sommeria 2002), for the Quasi-Geostrophi model, in the limit of smallRossby deformation radius. In this setion we sketh the main ideas of this derivation andthe main results and onsequene in the ontext of the Jovian troposphere. These resultsexplain in partiular the formation of jets or vorties from random initial onditions. Suhvorties have the annular jet struture harateristi of the Great Red Spot and their mainharateristis are analytially related.In the following setions we will propose numerial simulation, illustrating these mainresults, and permitting to ompare them to the main strutures of the Jovian troposphere :the strong jets, the north hemisphere Brown Barges, the White Ovals, and the Great RedSpot.2.1 The dynamial systemWe start from the barotropi 1-1/2 Quasi Geostrophi (QG) equation :
∂q

∂t
+ v · ∇q = 0 (1)

q = −∆ψ +
ψ

R2
−Rh(y) (2)v = −ez ∧∇ψ (3)where q is the potential vortiity (PV), adveted by the non-divergent veloity v, ψ is thestream funtion1, R is the internal Rossby deformation radius between the layer of �uid1We hoose for the stream funtion ψ the standard sign onvention used for the Euler equation, whihis just the opposite as the one ommonly used in geophysial �uid dynamis. Our stream funtion ψ istherefore proportional to the opposite of the pressure �utuation in the northern hemisphere and to thepressure �utuation in the southern hemisphere, as the planetary vortiity sign is reversed. The signs of qand v are not in�uened by this hoie of sign for ψ.4



under onsideration and a deep thiker layer, una�eted by the dynamis. x and y arerespetively the zonal and meridional oordinates (x is direted eastward and y northward).The term Rh(y) represents the ombined e�et of the planetary vortiity gradient andof a given stationary zonal �ow in the deep layer, with stream funtion ψd(y): Rh(y) =
−βy+ψd/R

2. This deep �ow indues a onstant deformation of the free surfae, ating likea topography on the ative layer2. We shall therefore all h(y) the 'topography'. We salethe topography with the Rossby deformation radius R. This partiular hoie will be ofimportane in the study of the limit R→ 0 (setion 2.3) and we will show that this salingis the appropriate one to study Jovian vorties.We de�ne the QG equations (1,2) with periodi boundary onditions (4π periodi inthe zonal diretion and π periodi in the meridional one for all numerial omputations ofthis artile). The analytial study in Bouhet and Sommeria 2002 has shown that, in thehannel geometry, due to the small value of the Rossby deformation radius, the equilibriumorganization of the �ow is loal. For instane vorties are loated on topography extrema andtheir struture and shape is determined by the topography urvature and is independent onboundary onditions. In the periodi boundary onditions ase, we will show in the followingthat this is still true. This loal organization explains why periodi boundary ondition iswell suited to vorties struture studies. On the ontrary, the global organization of zonesand bands on the planet sale should be takled using a real spherial geometry, for instanein the Shallow Water model. This more general problem will not be onsidered in this artile.We model one zone and band area by a periodi topography:
h(y) = −2a cos(2y) (4)As the relevant sale is de�ned by the latitudinal variations of the topography, we do notrespet the atual zonal band aspet ratio, and we sale the domain size on the latitudinalzone-band extension. In our dimensionless variable R = πR⋆/L⋆ where R⋆ is the atualinternal Rossby deformation radius and L⋆ is the latitudinal extension of the zone-banddomain.Let 〈f〉 ≡ ∫

D fd
2r be the average of f on D for any funtion f . Physially, as the streamfuntion ψ is related to the geostrophi pressure, 〈ψ〉 is proportional to the mean height atthe interfae between the �uid layer and the bottom layer, and due to the mass onservationit must be onstant (Pedlosky 1987). We make the hoies 〈ψ〉 = 0 and 〈h〉 = 0 withoutloss of generality. The total irulation is 〈q〉 = 〈−∆ψ + ψ/R2 − Rh(y)〉 is equal 〈ψ/R2〉due to the periodi boundary onditions. Therefore 〈q〉 = 0.Due to the periodi onditions for ψ, the linear momentum is also equal to 0,

〈v〉 = 0 (5)2A real topography η(y) would orrespond to Rh(y) = −f0η(y)/h0 where f0 is the referene planetaryvortiity at the latitude under onsideration and h0 is the mean upper layer thikness. Due to the sign of
f0, the signs of h and η would be the same in the south hemisphere and opposite in the north hemisphere.As we will disuss extensively the Jovian south hemisphere vorties, we have hosen this sign onvention for
h.
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The energy
E =

1

2

∫

D
(q +Rh)ψd2r =

1

2

∫

D

[

(∇ψ)2 +
ψ2

R2

]

d2r (6)is onserved (we note that the �rst term in the right hand side of (6) is the kineti energywhereas the seond one is the gravitational available potential energy).The Casimir integrals
Cf (q) =

∫

D
f(q)d2r (7)for any ontinuous funtion f , in partiular the di�erent moments of the PV, are alsoonserved.2.2 The statistial mehanis on a two PV levels on�guration.2.2.1 The marosopi desription.The QG equations (1) (2) are known to develop very omplex vortiity �laments. Beauseof the rapidly inreasing amount of information it would require, a deterministi desriptionof the �ow for long time is both unrealisti and meaningless. The statistial theory adoptsa probabilisti desription for the vortiity �eld. We onsider the loal probability to havesome PV at some points. The statistial equilibrium is then the most probable state for arandom PV �eld with �xed dynamial invariants.The statistial equilibrium therefore depends on the energy (6) and on the in�nite num-ber of Casimirs (7) (PV distribution). For pedagogial reasons, we will onsider the mostsimple ase we will suppose a distribution made of two PV levels, denoted q = a1 and

q = a−1. The results may however be generalized (Robert and Sommeria 1992). In setion2.3, we will explain why the study of the equilibrium strutures is independent of the atualPV distribution, at the lower order when the Rossby radius goes to zero.The two values of the PV q = a1 and q = a−1, and the areas A and (1 − A) theyrespetively oupy in D, will be onserved by the inertial dynamis (this is then equivalentto the onservation of all the Casimirs (7)). The determination of the statistial equilibriumthen depends only on the energy E, on the two PV levels a1 and a−1 and on the area A.The number of free parameters an be further redued by appropriate saling. Indeed ahange in the time unit permits to de�ne the PV levels up to a multipliative onstant. Wehoose for the sake of simpliity :
a1 − a−1

2
= 1 (8)and de�ne the non-dimensional parameter B as :

B ≡
a1 + a−1

2
(9)As disussed previously the mean PV is equal to zero, this imposes that a1A+a−1(1−A) = 0.This means that a1 and a−1 must be of opposite sign and, using (8) and (9), A = (1−B)/2.The distribution of PV levels is therefore fully haraterized by the single asymmetry pa-rameter B, whih takes values between -1 and +1. The symmetri ase of two PV pathes6



with equal area A = 1/2 orresponds to B = 0, while the ase of a path with small area(but high PV, suh that 〈q〉 = 0) orresponds to B → 1. Note that we an restrit thedisussion to B ≥ 1 as the QG system is symmetri by a hange of sign of the PV.The two PV levels mix due to turbulent dynamis, and the resulting state is loallydesribed by the loal probability (loal area proportion) p(r) to �nd the �rst level at theloation r. The probability to �nd the omplementary PV level a−1 is 1−p, and the loallyaveraged PV at eah point is then
q(r) = a1p(r) + a−1(1 − p(r)) = 2

(

p−
1

2

)

+B (10)where the seond relation is obtained by using (8) and (9).Sine the path with PV level a1 is mixed but globally onserved, the integral of itsdensity p over the domain must be equal to the initial area A,
A ≡

1 −B

2
=

∫

D
p(r)d2r (11)We note that the inertial onservation of the Casimir, is taken into aount in themirosopi desription, by the knowledge of the distribution of the PV. However the oarse-graining (marosopi desription) does not preserves the value of the Casimirs (7): Cf (q) 6=

Cf (q), exept for the �rst moment.The e�et of loal PV �utuations on the stream funtion is �ltered out by integrationof equation 2 (ψ = ψ and v = v), the stream funtion and the veloity �eld are thus fullydetermined by the loally averaged PV q as the solution of
q = −∆ψ +

ψ

R2
−Rh(y) ; ψ periodic (12)

and v = −ez ∧∇ψTherefore the energy is also expressed in terms of the �eld q :
E =

1

2

∫

D

[

(∇ψ)2 +
ψ2

R2

]

d2r =
1

2

∫

D
(q +Rh)ψd2r (13)From now on we forget the q over-line for the loally averaged PV and refer to it as the PV.The entral result of the statistial mehanis of the QG equations (1,2) is that the mostprobable mixing of the potential vortiity is given by the maximization of the entropy

S = −

∫

D
[ p(r) ln p(r) + (1 − p(r)) ln(1 − p(r)) ]d2r (14)under the onstraints of the global PV distribution (11) and energy (13). It an be shownthat the mirosopi states satisfying the onstraints given by the onservation laws areoverwhelmingly onentrated near the Gibbs state. A good justi�ation of this statement isobtained by the onstrution of onverging sequenes of approximations of the QG equation7



(1,2), in �nite dimensional vetor spaes, for whih a Liouville theorem holds. This isa straightforward translation of the work of Robert (1999) for 2D Euler equations. Thesequene of suh Liouville measures has then the desired onentration properties as (1,2)enters in the ontext onsidered in Mihel & Robert (1994 b). More reently; Ellis (1999)also disussed suh large deviation results together with other systems.One the most probable state is found, we suppose that it desribes observed �ows.The ergodiity of the system would be su�ient to justify this. But, as in usual statisti-al mehanis (for instane for gas) this ergodi property of a system is very unlikely tobe proven for any generi system and ould moreover appear to be wrong in general. Aweaker property of mixing is however su�ient to justify statistial mehanis due to theonentration property stated in the above paragraph. The Gibbs state is most likely tobe reahed even if the available mirosopi states are not evenly explored. In pratie, thetheory an be validated or invalidated only on the basis of its suess or failure to preditwell haraterized phenomena.2.2.2 The Gibbs statesWe want to desribe the equilibrium strutures (Gibbs states). We thus seek the maximaof the entropy (14) under the onstraints of the area (11) and energy (13):
max {S |withE = E0 andA = (1 −B)/2} (15)In Bouhet and Sommeria (2002), we have studied this variational problem in the limitof small Rossby deformation radius. The study of suh a variational problem is rendereddi�ult by the two onstraints. In the following, we will argue that for the present ase,this tehnial di�ulty may be irumvented. We will then proposed a more straightforwardderivation of Bouhet and Sommeria (2002) results. The main ideas are however the same.For this, let us onsider the following variational problem:











min {F [φ] |with A [φ] = −α}

with F =
∫

D dr
[

R2(∇φ)2

2 + fC(φ) −Rφh(y)
]

, A [φ] =
∫

D drφ

and fC (φ) = φ2/2 − ln (cosh (Cφ)) /C

(16)We will all F the modi�ed free energy. This variational problem (16) involves only onevariable φ whereas the entropy maximization involves the two variables p (or q) and ψ.Moreover, the energy onstraint has been absorbed. It is thus simpler than the maximizationof the entropy with two onstraints. Moreover, as we shall see in setion 2.3, the peuliarshape of the funtion fC , with two minima (see �gure 2) will allow us to have a diret hinton the struture of the solution.Let us ompute the equation veri�ed by the ritial states (the Euler-Lagrange equations)of the modi�ed free energy (16). For this we onsider small variations δφ of the funtional
F + Rα1A, where −Rα1 is the Lagrange parameter assoiated to the onservation of thearea A. After straightforward omputations, we obtain:

−R2∆φ+ φ−Rh(y) = tanh (Cφ) −Rα1 (17)8



Let us suppose that φ minimize this variational problem. Let us then de�ne the streamfuntion ψ by:
ψ = R2 (φ+ α) (18)If we use the relation (18), setting α − Rα1 = B, we obtain the following equation: q =

−∆ψ + ψ/R2 − Rh(y) = B + tanh
(

C
(

ψ/R2 − α
)). This equation is also the ritialpoint of maximization of the entropy (15) (see Bouhet and Sommeria 2002), where Cαand β = −C/R2 are the Lagrange parameters assoiated to the onservation of the areaand of the energy respetively. This equation desribes a stationary solution of the Quasi-Geostrophi equation. These two equations, for the stream funtion ψ, or for φ (17) will bealled the Gibbs state equations.We have shown that the ritial points of the modi�ed free energy (16) are also ritial pointof the maximization of the entropy under onstraint (15). However, this does not prove thatthe minima of the free energy are atually maxima of the entropy under the onstraints. Itan be proven on a very general ground (see Bouhet and Barré 2003) that any minimumof the free energy F = S/β − E, with the area onstraint, is a minima of the entropy withenergy and area onstraint (15) (the onverse in wrong in general). We an thus studythe minimization of the free energy, and verify afterwards that all the possible energy areobtained. This will be the ase in our study, in the limit of small Rossby deformationradius. To prove that the minimization, with area onstraint, of the free energy and of themodi�ed free energy (16) are equivalent, one an either expliitly study the stability of thesolutions or prove that these two variational problem are equivalent to a third one with twoindependent variables ψ and φ. This point is addressed in in Bouhet (2001), proving thatminima of the modi�ed free energy are maxima of the entropy with onstraints.2.3 The limit of small Rossby deformation radius.In this setion, we analyze the solution of the minimization of the modi�ed free energy F(16) with the onstraint of the area A , in the limit of small deformation radius. We willalways onsider C > 1.We have to minimize the funtional F =

∫

D dr
[

R2(∇φ)2

2 + fC(φ) −Rφh(y)
] with aonstraint. The modi�ed free energy redues, at lower oder in R, to the minimization of

∫

D dr fC(φ). The atual shape of the funtion fC will therefore be essential to the disussion.Figure 2 shows this shape when C > 1 (see 16 for the de�nition of fC). This �gure showsthat fC is even and possess two minima that we shall denote ±u. u verify:
u = tanh(Cu). (19)The minimization of this funtional, without the topography term, also represents the oex-istene of two phases in a situation of �rst order phase transitions in lassial thermodynam-is (Van-Der-Walls Cahn-Hilliard model). Let us disuss it, for instane, for a oexistenebetween a gas and a liquid phases. The two minimum value of the volume free energy fCthen orrespond to the spei� volume of eah phase at equilibrium. The onstraint then�xes the respetive volume oupied by the two phases. When �rst order terms are onsid-ered, the gradient term desribes the transition surfae between one phase to the other. A9



surfae free energy is then assoiated to this transition. The minimization of this surfaefree energy then leads to bubble for equilibrium strutures.We note that the mathematial study of funtional of the type 16, but without thetopography, is onsidered in Modia (1987). The funtional analysis study of this work,prove the hypothesis at the base of this qualitative desription: φ will take the two values
±u in subdomains separated by transition area of width saling with R. Using this, we willpropose a very intuitive asymptoti expansion to desribe the solutions (please note thatour problem is two-dimensional, surfaes will be replaed by lines). With respet to Modiawork, our expansion will allows a preise desription of the jet, and the generalization ofthe results when a topography term is taken into aount. A more omplete and satisfyingdesription of the whole asymptoti expansion, generalizable at all order in R, with math-ematial justi�ation of the existene of the solutions for the jet equation at all order in R,is provided in Bouhet (2001). Higher order e�ets are also disussed in this work. We nowpresent a simpli�ed disussion.For vorties, the two phases orrespond to two di�erent value of the mixing of the PV.The onservation of the volume orresponds to the onservation of the global PV. As wewill see, the e�et of the topography will lead to a balane between the minimization ofthe length free energy and of the tendeny of positive PV to stand around extrema of thetopography, leading to the very harateristi elongated shape of Jovian vorties.2.3.1 The zeroth order stream funtion outside of the jet: a quiesent oreAt lower order the value of φ will therefore take the two values u and −u in two sub-domains, denoted respetively A+ and A−, as illustrated in �gure (3). The onstraint
A [φ] =

∫

D drφ = −α, taking A+ +A− = 1, will determine the respetive area oupied bythese two values: 2A± = (1 ∓ α/u). This implies u > α. The atual subdomain shape willbe determined by the seond order analysis. At this stage the two domains A+ or A− mayalso not be onneted.The above disussion solve the �rst order problem. Using the link between φ and thestream funtion (18), we an ompute the �rst order values of ψ: ψ± = R2 (±u+ α), theorresponding value of B: B = −
∫

D dr (tanh (Cφ)) = uA−−uA+ = α, and the orrespond-ing value of the energy (13) : 2R2E = ψ2
+A+ + ψ2

−A−. This yields 2E = R2
(

u2 − α2
),where u is a funtion of C given by (19).For sake of simpliity, we parameterize the state by the two parameters u and B, with

u > B. We thus obtain, at lower order in R :
ψ± = R2(B ± u) (20)
A± =

1

2

(

1 ∓
B

u

) (21)and
E ≃ EA =

R2

2
(u2 −B2) + O (R) (22)10



Therefore all the quantities are determined from the asymmetry parameter B and from theparameter u, related to the energy by (22).In the limit of low energy, u→ |B|, when for instane B > 0, then A1 goes to zero, so that
ψ−1 tends to oupy the whole domain. This state is the most mixed one ompatible withthe onstraint of a given value of B (or equivalently a given initial path area A = (1−B)/2).In the opposite limit u→ 1, we see from (20) that in the two subdomains q = ψ/R2 tendsto the two initial PV levels a1 = 1 +B and a−1 = −1 +B. Thus, this state is an unmixedstate. It ahieves the maximum possible energy E = R2

2 (1 − B2) under the onstraint ofa given path area. We onlude that the parameter u, or the related 'temperature' C0,haraterizes the mixing of these two PV levels. We shall all u the segregation parameter,as it quanti�es the segregation of the PV level a1 (or its omplementary a−1) between thetwo phases.2.3.2 The strong jet equationAs stated before, the preeding analysis does not take into aount the interfae betweenthe two area A±. At this interfae, the value of φ, and thus of the stream funtion willhange rapidly, on a sale of order R. It will thus orresponds to a strong jet. To analyzethis interfae, we onsider the Gibbs states equation (17) at the lower order in R. Usingthat the interfae develops on a length sale of order R, we onsider τ the oordinate normalto the jet, resaled by R: ζ = Rτ . In the Laplaian term, we neglet the urvature whihhas to be taken into aount at the �rst order in R. We then obtain:
−
d2φ

dζ2
= tanh (Cφ) − φ = −

d

dφ
fC (φ) (23)The jet equation is thus the equation of a partile position φ in a potential −fC (φ). As

fC (φ) has exatly two minima: f (±u), there is a unique trajetory with limit onditions
φ→ ±u for ζ → ±∞.This analysis shows that the jet sales typially as the Rossby deformation radius. More-over, in dimensionless units, the jet width and the jet maximum veloity are given by Rl (u)and Rvmax (u) where l and vmax are funtions of u that may be numerially tabulated fromthe resolution of the previous di�erential equation. These relations allow to ompute u fromthe jet properties.2.3.3 The �rst order stream funtion outside of the jet: the weak shear �owTo determine the �rst order stream funtion outside of the jet, we onsider the Gibbs stateequation (17) by negleting the Laplaian term. We thus obtain the algebrai equation:
φ − Rh(y) = tanh(Cφ) − Rα1. Using that φ = ±u at zero order, we alulate the �rstorder solution to this equation. Using the results (19), this yields φ = ±u + Rδφ = ±u +
R (h(y) + α1) /

(

1 − C(1 − u2)
). Using the link between φ and the stream funtion (18) andthe link between the stream funtion and the veloity (3), we obtain:v = R3

(

dh/dy

1 −C(1 − u2)

) ex (24)11



This relates the zonal �ow outside of the jets, the topography, and the parameter u (deter-mined from the total energy or from the jet properties).2.3.4 Determination of the vortex shape: the typial elongated shapeUntil now the jet shape has not been determined. To determine it we an alternativelyonsider the jet equation at �rst order or ompute the �rst order modi�ed free energy F(16). We make this seond hoie as it will enlightened the interpretation of the solution.The zero order modi�ed free energy F0 ould be omputed from the value of φ = ±uoutside of the jet and from the areas A± (21). As it is not of interest for the following dis-ussion, we don't do it expliitly. Let us all Rδφ the �rst order modi�ation of φ, omputedin the previous setion. It gives the ontribution R
∫

D dr dfC(±u)δφ to the modi�ed freeenergy, at �rst order. But as by de�nition of u, dfC(±u) = 0, this ontribution is null. Letus ompute the �rst order ontribution of the topography term RH =
∫

D dr (−Rφh(y)).For this we use the zero order result φ = ±u. We then obtain H = H0 − 2u
∫

A+
drh(y),where H0 ≡ u

∫

D drh(y). We note that H0 does not depends on the jet shape. The lastontribution omes from the jet. As the jet sales like R, to determine the jet ontributionat �rst order in R, we only need the jet determination at zeroth order. It is then easy toonvine oneself that the jet ontribution is proportional to its length L: it will have theform Re (u)L where e(u) depends only on the zeroth order jet property, itself desribed by(23). One an then obtain 2e (u) =
∫ +∞

−∞

(

dφ
dτ

)2
dτ > 0, where φ (τ) is a solution of the jetequation.We thus obtain the �rst order expression for the modi�ed free energy funtional:

F = F0 +RH0 +R

(

e (u)L− 2u

∫

A+

h(y)d2r) (25)We ompute on the same way the �rst order area A. As the jet solution φ (τ) is even, if wehoose φ (0) = 0, there will be no jet ontribution to A at this order. The only ontributionwill ome from the �rst order modi�ation of φ outside of the jet and will therefore beindependent of the jet shape. We thus onlude that, at this order, the minimization ofthe free energy with the area onstraint is equivalent to the minimization of (25) with agiven area A+. As the two �rst terms of (25) are onstant, this new variational problem isa variational problem on the shape of the jet.On one hand, if the topography is zero at �rst order, we observe that this variationalproblem orresponds to the minimization of the jet length for a given area. The jet arethen straight (zonal bands separated by strong jets) or irular (irular vortex) (this is theequivalent of bubbles in �rst order phase transitions). Figure (4) shows the orrespondingphase diagram with respet to the energy and to the asymmetry parameter B. On theother hand when a topography is present at �rst order, the tendeny to minimize the jetlength will be ounterbalaned by the seond term: the positive (resp negative) PV tendsto onentrate on extrema (resp minima) of the topography. For a topography h (y), thevorties will therefore be elongated in the zonal diretion.To give a quantitative desription of this fat, we an obtain from the variational problem12



(25), an equation desribing the shape of the vortex. We refer to Bouhet and Sommeria(2002) appendix B, for the atual omputation. The result is that the radius of urvature
r of the urve formed by the jet (for instane the urve of value φ = 0) must verify:

ǫu (h(y) − α1) = e(u)
1

r
(26)where ε = 1 (resp ε = −1) for an antiylone (resp ylone) solution, and α1 is a Lagrangeparameter assoiated to the onservation of the area A. This relates the vortex shape to thetopography and parameter u. As said in the introdution of this setion it is also possibleto obtain suh a result from the �rst order jet equation analysis. α1 then turns out to bethe Lagrange parameter appearing in the Gibbs state equation (17).In appendix A we give equations whih permit to numerially ompute the vortex shape,from equation 26. Figure 5 ompares the numerially obtained vortex shapes, with theJovian ones. This shows that the solution to equation (26) have the typial elongated shapeof Jovian vorties.In appendix A, we also analytially ompute the half width of the vorties ym. For theosine topography (4), we obtain :

ym =
1

2
g

(

e (u)

2au

) (27)where g is the inverse of the funtion sinx− x cos x for 0 < x < π.From this formula, we see that the maximal latitudinal extension of the vortex solution isgiven by a typial length de�ned by the topography. We stress the important point that thismaximal extension ym is independent on the parameter B, or equivalently is independent onthe area of the vortex. Varying this area, the only way for the vortex to extend is to be veryelongated in the zonal diretion. This very strong qualitative property of these equilibriumsolutions is in agreement with the observed brown barges, as illustrated by �gure 5.A very strong property for the topography may be obtained from the equation for thejet urvature radius. For a vortex solution, latitudinally elongated, like the Jovian ones,the radius of urvature of the jet have its minimum value at the latitude of the enter ofthe spot. From equation (26) we an then dedue that the zonal topography must have anextrema under the enter of the vortex. Dowling and Ingersoll (1989) have analyzed theveloity �eld of the GRS and of the white oval in the Shallow-Water framework. They havethen obtain the Shallow-Water topography. In Bouhet and Sommeria (2002), we have usedthese result to ompute the Quasi-Geostrophi topography. Results are reported on �gure6. It learly shows extrema of the topography under these two antiylones.If the e�et of topography is strong enough: e (u) / (au) ≫ 1, the vortex latitudinalextension will be muh smaller than the typial variation length of the topography, we anthen expand (27) around ym = 0. The maximal extension of the vortex is then only deter-mined by the urvature of the topography around its extremum (quadrati approximation).Let us parameterize this urvature by aqd (h (y) = −εaqd (y − y0)
2 + h (y0), where y0 is thelatitude where h reahes its extremum, ε = ±1. For the osine topography (4) aqd = 4a.13



The expansion around ym = 0 yields:
ymax =

(

3e(u)

2ǫaqdu

)
1

3

. (28)Using equation (26), we have desribed the vortex solutions. As an alternative, zonalsolutions exist, in whih two straight jets, �owing respetively eastward and westward,surround an area of small hange of φ (shear �ow). These jet positions may also be har-aterized by equation (26), when 1/r = 0. Their latitudinal position y± is then determinedby h (y±) = α1. Their respetive positions are thus symmetri with respet to the zonalextrema of the topography. The both type of solutions (jets or vorties) are then seletedfrom the maximum entropy riteria, or equivalently maximizing the values obtained for the�rst order modi�ed free energy (25). This seletion depends on the parameters a de�n-ing the topography (4), on the domain aspet ratio, and on the two parameters u and α(equivalently the energy E and the asymmetry parameter B). In �gure (7), we show theobtained phase diagram for a given value of a and aspet ratio, in the quadrati topographyapproximation. It shows a transition from vortex to jet solutions, when the asymmetryparameter is su�iently lose to zero. The aspet ratio of the vorties is also represented.We refer to Bouhet and Sommeria 2002 for a detailed disussion.In the limit of small Rossby deformation radius, the maxima of entropy for a given PVdistribution and energy, are formed by strong jets, limiting areas haraterized by a weakershear. Straight jets forming bands and zones, or vortex solutions, are both possible. Themaximum entropy priniple allows to selet the type of solution for given parameters. Thedeep layer shear, the ative layer shear, the shape of the vorties, and the strength of thejets are linked by the relations (24,28 and 23).In next setion (2.4) we disuss appliation of these results to the Jovian troposphere.2.4 Jovian troposphere appliationsIn the previous setions, we have dedued all the �ow properties for the statistial equi-librium, in the limit of small deformation radius. The qualitative properties of the vortexsolutions are the one of the Great Red Spot : an annular strong jet, forming an oval shapedboundary, surrounding a quiesent ore and admits a zonal shear. To our knowledge, thisis the �rst model having these qualitative properties.In this setion, we want to desribe the main hypothesis of suh a model for Jovianvorties, and its limitations. We also stress the main physial onsequenes of our analysis.In setion 2.4.2 we disuss the possibility to apply the model of the previous setion toquantitatively desribe the Great Red Spot. This disussion omes bak on the hypothesisonerning the Potential Vortiity initial distribution, and on the limitations of the Quasi-Geostrophi model.In the previous analytial analysis, we have studied equilibrium strutures in the limitof small Rossby deformation radius. We have seen that this hypothesis leads to strongonentrates jets. For instane, we onlude that the atual small value of R, with respet14



to the width of the Great Red Spot is responsible for its annular struture. For the aseof other vorties, suh as the White Ovals, or the north hemisphere Brown Barges, thesmall radius of deformation this limit is no more valid. In setion 3, 4 and 5 numerialomputations of the maxima of entropy under onstraints, whih reprodue the propertiesof these vorties. Nevertheless, the analytial analysis permits to qualitatively understandthe dependene on the parameters of suh vorties, and it has permit us to determine theparameter values for suh vorties.We disuss in setion 2.4.3 some properties the zonal upper layer shear and the deepshear, obtained in the previous analysis, that should be of interest for Jovian vorties. Weexplain why suh strutures are obtained only for very energeti �ows. In setion 2.4.4 wedisuss an alternative to the Rhine's sale to explain the typial vortex width. We onludethis setion by realling the main hypothesis of the statistial mehanis approah.2.4.1 The e�et of the Potential Vortiity distribution on the equilibrium stru-turesA fundamental issue is the hypothesis we made on the PV distribution. We have supposedan initial PV made of two types of PV. As argued in Bouhet and Sommeria (2002), thisis a natural hypothesis in the ontext of a Jovian latitudinal band. Indeed, this ouldbe the result of intense inoming thermal plumes, as reently observed by Ingersoll et al(2000): onservation of the absolute angular momentum during the radial expansion leadsto a strong derease of the loal absolute vortiity, whih omes lose to zero. This meansthat in the planetary referene frame, a loal vortiity path with value −f0 (the planetaryvortiity) is reated. The opposite vortiity is globally reated by the subduting �ow, butit is lose to 0 due the muh larger area.Of ourse, even if a two-level approximation is natural, the real �ne-grained PV distribu-tion is not atually known, and an important issue is to study the dependene of the resultson suh a distribution. The knowledge of this distribution is equivalent to the knowledgeof an in�nity of onstraints, the Casimirs. This is a major pratial limitation of suh astatistial mehanis approah (it is not a theoretial one). A natural way to proeed is tostudy a-posteriori the hoie of the distribution, by omparison with observed �ows. Thisis the way we have proeed, by studying the simplest ase, the two PV level ase, and byomparing the results to the Jupiter's strutures. In the same spirit, Turkington, Majdaand DiBattista (2001) have proposed to study a �ne-grained PV distribution the enteredgamma distribution, in order to study the e�et of a skewness to the PV distribution. Theyhave shown the importane of an antiyloni skewness to obtain antiyloni strutures.This is onsistent with our 2 PV levels desription with B > 0, and with the observedantiyloni foring by inoming thermal plumes, as disussed above. Using this enteredgamma distribution, they have obtained the oval shaped vorties and jets. These jets arenot however strong jets, and they do not observe the ring struture of the GRS. Using ourstudy, we may explain why their distribution is not suited to study Jovian vorties.The thermal plume foring produts PV pathes with vortiity of order −f0. Theiris no physial to expet another type of foring to produe very large values of PV withrespet to |f0|. Moreover, the �ne-grained distribution is onserved, and the extrema ofthe oarse-grained distribution an only derease. This is thus very natural to onsidered a15



PV distribution with ompat support (values of the PV bounded). This is not the ase ofthe entered gamma distribution, and this may have several onsequenes. Indeed, it anbe proved (Robert and Sommeria 1991) that for any bounded distribution, the equilibriumrelation between the PV and the stream funtion q (ψ) must be stritly monotoni andtends to two maximum q±m (the maximum and the minimum of the PV initial distribu-tion) value for ψ going to ±∞. As a onsequene q (ψ) must have at least one in�etionpoint. The q (ψ) relation then has the shape of a tanh at in�nity, possibly with more thanone in�exion point. This last property is not veri�ed for the entered gamma distribution.This is however an essential property, as it is neessary ondition to prove the existene ofthe equilibrium strutures for any parameters. Moreover, as shown by the present study,the tanh like shape of q (ψ) (it is equivalent to the existene of at least two minima of thearea free-energy 16) is essential to obtain the phase oexistene and strong jet property ofthe Jovian vorties. Moreover, besides these physial and theoretial arguments, it orre-sponds to the observed q (ψ) relation for the GRS, as shown by the �gure 12 of Bouhet andSommeria (2002). We thus onlude that PV distributions with ompat support should bepreferentially studied to model geophysial �ows.The problem of the knowledge of the PV distribution is not, however, a real limitation inthe ase of small Rossby deformation radius. We will indeed argue that the main propertyof the equilibrium strutures are independent of the exat distribution, in this ase. Letus suppose that the initial Potential Vortiity distribution is made of an in�nite numberof PV levels (not only two as supposed in the previous setion), but with bounded PV.The statistial equilibrium will then be desribed by a monotoni funtion q(ψ) reahingasymptoti extrema at the minimum and maximum PV levels (Robert and Sommeria, 1991).In most ases suh a funtion will still be represented by a tanh like urve (one in�etionpoint). We still an use the minimization of a free energy similar to (16). The funtion
fC determining this free energy will orrespond again to the oexistene of two phases asrepresented in �gure 2. The derivation desribed in the previous setion is independent ofthe atual shape of the funtion fC . We will then obtain similar equations for the strongjet (23), surrounding shear (24), urvature radius (26) and extremal extension (27). Onlythe u depending funtions in these equations, will depend on the atual PV distribution.We reall that, as illustrated by the �gure 12 of Bouhet and Sommeria (2002), a tanh-likeshape is observed for the GRS.We may also imagine a urve q(ψ) with more than one in�exion point, instead of asingle one, resulting in the oexistene of more than two phases. The most ommon asewill be however a two-phase equilibrium. Likewise in usual thermodynamis the oexisteneof more than two solutal phases is unlikely, even when many hemials (equivalent to PVlevels) are mixed. Nevertheless, we still an use the minimization of a free energy similar to(16). The funtion fC determining this free energy will then orrespond to the oexisteneof three (or more) phases. Solutions an then be an antiylone on a topography bumpoexisting with a ylone on a topography minima, both surrounded by a mean PV area.The jet struture of eah of these vorties will then always be desribed by equations similarto the jet equation (23), urvature radius equation (26) and extremal extension equation(27).We thus onlude that the qualitative struture of the statistial equilibrium is indepen-16



dent of the atual PV distribution. This result is valid only when the Rossby deformationradius is small.2.4.2 A quantitative model for the Great Red SpotThe relations obtained in the previous setion between the topography, the maximum jetveloity, the jet width, the surrounding shear, and the vortex shape have been written indimensional form, in Bouhet and Sommeria (2002). We have then shown that the atualobserved values of these physial properties, for the Great Red Spot, an be mathed withthis model. This then allowed the determination of the Rossby deformation radius andof the topography urvature under the spot. This proves that a model of the GRS, by astatistial equilibria of the Quasi-Geostrophi model, with a quadrati topography, with aninitial ondition made of two values of the initial potential vortiity, an �t observationswith preision.We disuss further these hypothesis. The �rst one onerns the topography. We haveshown that for any topography, the essential point is that it has an extremum under the spot.This is on�rmed by observations (see �gure 6). The hypothesis of a quadrati topographyis then natural. In this artile, we have studied the e�et of a osine topography. The mainresults are the same. However the atual value of the width of the vortex may be hanged.Atually, we will numerially ompute the veloity �eld of the GRS for a osine topographyin setion 4, and the atual values of the Rossby deformation radius and of the topographyurvature will slightly hange.Conerning the potential vortiity distribution, we have argued in setion 2.4.1 that thequalitative desription does not depends on the atual initial PV distribution. However,the quantitative desription, for instane of the shape of the vortex, depends on it (viathe u depending funtions). For instane, we think that a model with another initial PVdistribution, may also allow to �t observations with preision, leading possibly to slightlydi�erent values for the Rossby deformation radius or for the atual topography urvature.The validity of the Quasi-Geostrophi model, and of the desription of the Jovian tropo-sphere by a single layer, are limitations of our model. The validity of the Quasi-Geostrophimodel, for the GRS desription, has been disussed by Dowling and Ingersoll (1989) andit was found reasonably good as a �rst approah. It is not fully aurate, for instane, themaximum value of the Rossby number has been evaluated to be 0.36 (near the jet maxi-mum urvature) (Mithell and ollaborators, 1981). We note that an analysis of equilibriumstates in the Shallow-Water model leads essentially to the same struture (Bouhet, Chava-nis and Sommeria, 2003), as the one presented in the present work, with orretions due toageostrophy.2.4.3 Energy, zonal shear and topographyWe have proven in setion 2.3.4, that vorties are loated on topography extrema. Thishas been veri�ed using the GRS and White Oval data (see �gure 6). In setion 2.4.1, wehave argued that, for any PV distribution, the relation linking the radius of urvature ofthe jet with the topography will be again (26), where only the u depending terms will be17



hanged. Our onlusion on the topography extrema is thus independent on the atual PVdistribution.In the following, we stress some important onsequenes of our analytial analysis, on-erning the shear �ow, whih are also independent on the atual PV distribution. Equa-tion (24) desribes the shear outside of the jets. Using (19), it an easily proven that
1 − C(1 − u2) < 1. Thus the shear in the ative layer σ = dvx/dy is larger than the shearin the deep layer : σd = R3d2h/dy2. Qualitatively, this may be seen as a onsequene ofthe fat that positive Potential Vortiity will sit predominantly on topography bumps.Let us give a justi�ation on a more general ground, in order to argue that this resultis independent on the PV distribution. . We �rst prove that any statistial equilibrium,not zonal (a vortex for instane), must have an energy E > 0. Let us onsider a statistialequilibrium for any PV distribution. On one hand, it an be proven on a general ground, thatfor positive temperatures states β > 0, only one solution to the equilibrium state equationexist (see for instane Mihel et Robert 1994a). On the other hand, in a periodi geometry,with topography, or in a hannel geometry, it an be proven easily that a zonal solutionexists (following Mihel and Robert proof of the existene of the equilibrium, but restritingthe study to a one dimensional equation). This proves that positive temperature states arezonal. Moreover, when only one state is possible in suh maximization of entropy with agiven energy, it an be proven that the inverse temperature β is a dereasing funtion of theEnergy E (or equivalently that the equilibrium entropy is onave, see Bouhet and Barré(2003) for a justi�ation). From this we dedue that all states with β > 0 have an energylower than the state with β = 0. The only state with β = 0 is a ompletely mixed state:
q = 0, thus ψ (y) = R3h (y), and E = 0. We thus onlude that all equilibrium strutureswith energy E < 0 are zonal. Conversely, this proves that any statistial equilibrium, notzonal (a vortex for instane), must have an energy E > 0. We reall that we have supposed
C = −R2β > 1, in the analysis of equilibrium states (setion 2.3). We note that thisreasoning may be easily applied to any stable stationary state of the Quasi-geostrophiequation, with topography, in a hannel or doubly-periodi geometry (by onsidering thefuntional whih is minimized in the derivation of the �rst Arnold stability theorem (Arnold1961)). We also note that this result is independent o� any hypothesis on the PV distributionand on the value of R. When the PV distribution is known a-priori, the ritial value βc of
β (resp the Energy) below (resp above) whih non zonal solutions may exist, may be provento be stritly positive. For instane, for the two-level distribution we have onsidered, itan be proven that βC > 1/R2 +λ1, where λ1is the �rst eigenvalue of the Laplaian, for thegeometry onsidered. 3.We end this disussion, by qualitatively linking this result, with the strength of theshear. We �rst note that in the Quasi-Geostrophi model, PV interats mainly with PVvalues at a distant do lower than a typial length of order R. This allows to onlude thatnegative PV pathes on topography trough lower the Energy (and onversely for positive PVpathes). As a onsequene, in any state with E > 0, positive PV must dominate negativePV on topography bumps. The shear in the upper layer is thus larger than in the lower layer.We have proven that stable stationary �ows, not zonal (a vortex for instane), must have3This riterion is linked with the hypothesis of the seond Arnold stability theorem.18



an energy E > 0. This has a strong pratial impliation : to numerially obtain vortieslike the Jovian ones, with small values of R, one has to start with an initial onditions wherepositive PV dominate negative PV on topography bumps.2.4.4 An alternative to the Rhines' saleFor a geostrophi turbulene with a linear β e�et (h (y) = βy), it has been argued thattypial length for the vortex size should be Lβ = π
√

U/β (the Rhines' sale, Rhines andYoung 1982), where U is a typial �ow veloity. On the ontrary, when the value of theRossby deformation radius is small, for a stritly linear beta-e�et, the statistial equilibriumvortex solution are irular, with jet width saling with, but without limit to their size, dueto the beta-e�et. The beta-e�et is only responsible for a onstant westward veloity driftsuh as to ompensate the beta-e�et (see Bouhet and Sommeria 2002).When a more omplex topography is taken into aount (not linear), our study in setion2.3 has shown that the vortex width has a maximal value. The maximal latitudinal extensionfor a zonal topography is for instane given by (27) for a osine topography or by (28) fora quadrati topography. We thus dedue from this analysis that a typial vortex widthis related to the topography urvature, and not to the topography �rst-derivative, as inthe Rhines' sale ase. The topography urvature is itself diretly related to the shearsurrounding the vortex (24) or to the deep shear. We obtain the following dimensionaltypial latitudinal extension for the vortex Lσ =
(

R2U/σd

)1/3, where U is the typial strongjet veloity, and σd is the deep shear, of the same order as the shear surrounding the vortexor. If we moreover onsider that the typial potential vortiity is of order |f0|, the planetaryvortiity, and that the jet width sale with R, we obtain U ∝ R |f0|. This gives an otherexpression of the typial latitudinal extension in terms of the Rossby deformation radiusand on the shear : Lσ = R (|f0| /σd)
1/3. As R, |f0| and σd are independent on the initialonditions (PV distribution and energy), the typial latitudinal extension is independenton the foring. We reall that the exat value of the latitudinal extension, for a givenPV distribution and energy, for a given topography, may be omputed from the small Rexpansion (27 or28), or numerially for larger values of R.2.5 Relaxation equations : a small sale turbulene parameterizationAs disussed in the beginning of this setion, the equilibrium statistial mehanis desribesthe states of optimum Potential Vortiity mixing, for a given energy and PV distribution.The dynamis of the Quasi-Geostrophi equations (1) should be responsible for suh amixing. From a numerial point of view, the orret parameterization of this mixing is aruial issue for the modeling of geophysial �ows. Aordingly to the ideas of statistialmehanis, Robert et Sommeria (1992) have proposed a parameterization of turbulene,for two-dimensional or Quasi-Geostrophi �ows, based on a Maximum Entropy ProdutionPriniple (MEPP). The orresponding equations have the property to maximize the entropyprodution while onserving all the dynamial invariants. As they onverge, for in�nite time,towards entropy maxima, they have been alled relaxation equations. Therefore, they analso be used to numerially ompute maxima of the entropy for given PV distribution andenergy. 19



Let us present these equations in the ontext of the Quasi-Geostrophi dynamis. In thefollowing setions we will use them for dynamial simulations. We will show their interest,ompared with other parameterizations, to perform �ow simulation (setion 3.3). We alsouse them to ompute equilibrium strutures that we will ompare to the atual vorties ofJupiter troposphere (setions 3, 4 and 5).Relaxation equation may onsider any potential vortiity distribution (Robert and Som-meria 1992, Robert et Rosier 1996). However, for sake of simpliity, we onsider a situationfor whih the initial ondition is omposed only of PV pathes of vortiity a1 and a−1. Thishoie is in aordane with the equilibrium struture analyses, presented in setions 2.2.2and 2.3 We have argue in setion 2.4.1 that the qualitative properties of the equilibriumstrutures are not a�eted by the PV distribution, for su�iently small Rossby deforma-tion radius. One this simpli�ation is assumed, the relaxation equations are (Robert andSommeria 1992):
∂ω

∂t
+ u.∇ω = ∇. (ν [∇ω + β (a−1 − ω) (ω − a1)∇ψ]) (29)with
β = −

∫

D dr ν∇ω.∇ψ
∫

D dr ν (a−1 − ω) (ω − a1) (∇ψ)2
(30)where β is the Lagrange parameter assoiated to energy onservation and ν is a turbulentvisosity. The �rst term of the right hand side of equation (29) is a usual di�usion. Theseond term on the right hand side of (29) is a drift term whih ats to maintain a onstantenergy. Aordingly to the MEPP hypothesis, it is derived suh that the entropy produtionis optimal.In setion (3.3), we will onsider numerial simulation using only a visosity, this is theusual eddy di�usivity hypothesis. We will then show that suh a parameterization is unableto reprodue even the qualitative properties of the �ow, for very long time simulations. Inboth ases, relaxation equations and eddy visosity, we will use the minimal value of ν,ompatible with a given resolution. We note that there is no theoretial ground to assertthat the oarse-grained dynamis should be suh to maximize the entropy prodution. Therelaxation equations (29) are however likely to better desribe the dynamis beause, on onehand, they respet the onservation laws of the inertial dynamis, and in the other hand,they take into aount the tendeny towards mixing of the system.We note that a numerial algorithm to ompute maxima of entropy under onstraints,whih does not use relaxation equations, is desribed in Turkington and Whitaker (1996).3 White Ovals formation from randomly distributed vorties.In this setion and in the following ones, we use the relaxation equations, presented insetion 2.5, to simulate an inertial dynamis and/or to ompute the statistial equilibriumof the Quasi-Geostrophi model.As a �rst experiment, we show in setion 3.1, how potential vortiity pathes withrandom positions, lead to the formation of several vorties, whih progressively merge until20



forming a unique struture. Due to the presene of a topography, these strutures have anelongated shape. The parameters have been hosen to make an analogy with the Jupiter'sWhite Oval �ow.In setion 3.3 we ompare suh a simulation with a Diret Numerial Simulation (usualvisosity).3.1 Antiylones formation from randomly distributed vortiesLet us onsider the evolution of an initial ondition formed by antiyloni potential vortiitypathes, randomly distributed (�gure 8). The resolution of this omputation is 512x128.Parameters are R = 0.2, a = 0.4, a1 = 4.2, a−1 = −1. We use a di�usivity ν = 1.5 10−4.The time step is ∆t = 6.13 10−3.Figures 8 and 9 illustrate the evolution of this initial ondition, modeled by relaxationequations. They show the oalesene of the vorties, progressively forming several an-tiylones, in a latitudinal band limited by topography. Any of these antiylones is thenentered on the topography maxima, loated in the enter of the piture. These antiylonesform loal statistial equilibrium, as illustrated the satter-plots of the potential vortiityversus the stream funtion, on �gure 9.Time lapses between pitures of �gure 8 orrespond to few turnover times (16 from�rst to last). The loal organization is thus very rapid. On the ontrary the time lapsebetween the two last pitures of �gure 9 is approximately of 50 turnover times. During thistime, the two antiylone have progressively ahieved a loal equilibrium as illustrated bythe sharpening of the two urves on the satter plot of potential vortiity versus streamfuntion. Their respetive position is however quite unhanged.Let us reall that the deformation radius value is R = 0.2, whih is very small omparedto the latitudinal band length : 4π. As the interation between the two vorties dereaseexponentially for values greater than R, it is in this ase very small. This explains the verylong time needed for the system to ahieve the exat equilibrium struture. After a muhgreater time lapse (approximately 300 turnover times) the two antiylones �nally oalese,to form a unique struture, visible on �gure 10.3.2 The White Ovals evolution and strutureThe three White Ovals at 33o S, alled BC, DE and FA, where the larger antiylones onJupiter, after the GRS. They formed when an antiyloni zone broke into three parts in1939-40 (see Ingersoll and ollaborators 2002 for referenes). In 1998, the antiylones BCand DE merge into a larger one. This new oval then merge with the oval BA in 2002.This behavior is predited by the statistial mehanis. The quik organization intooval shaped vorties, followed by a very long time before the three ovals atually merge ina single struture is very similar to the one desribed in the previous omputation (�gures8, 9 and 10). In this last ase, these vortex have emerged from random initial pathes.However as illustrated in setion 13, the same strutures ould have been obtained from thedestabilization of jets.The equilibrium veloity �eld (�gure 10) then shows a struture very similar to the white21



ovals ones: the antiylone is too small for the limit of small Rossby radius R to apply. As aonsequene we do not observe a quiesent inner region as is the ase for the Great Red Spot.The antiylone has nevertheless an oval shape, linked to the deep �ow shear and to theupper layer shear. We have not given dimensional values for the quantitative harateristisof this equilibrium struture, nor tried to math them by hoosing appropriate values of Rand of the topography urvature. This may however be done, using an iterative sheme, aswe will desribe in the following setion, for the Great Red Spot.Suh a work would be of speial interest, in order to try to use the observation datafrom the observation of the merger of these antiylones (see for instane Sanhez-Lavegaand ollaborators 2000). One ould �rst put some onstraint on the physial parametersby using the atual properties of the spot before merging, and verify the large antiyloneafter merging is ompatible with statistial mehanis preditions.3.3 Comparison of relaxation equations with usual eddy-di�usivity pa-rameterizationFigure 11 shows vortiity �elds obtained after 25 turnover times, either using eddy-di�usivityor the relaxation equations, using in both ases the same resolution 512x128. Even if thetime elapsed from the beginning of the omputation is very small ompared to the globalorganization time, this �gure shows important qualitative di�erenes between these twomodelings. The vortiity pathes are far less ompat for eddy-di�usivity type omputations.Moreover the derease of energy is already important for this last omputation. Thesedi�erenes are ruial for long time dynamis : the eddy-di�usivity type omputation indeedrapidly leads to a omplete energy dissipation. As a onsequene, a numerial experiment,with an eddy di�usivity, showing the formation of antiylones from random initial vortiitypathes and their vary slow evolution towards a �nal unique vortex (as show on �gures 8and 9) is probably infeasible.As explained above, this is mainly due to the small value of the deformation radius R,for whih the dynamial organization is very slow. This illustrates very learly the interestof the relaxation equations in suh a ontext.4 The Great Red Spot of Jupiter.4.1 A model of the Great Red SpotLet us propose a model of the Great Red Spot of Jupiter, as a statistial equilibrium stru-ture. We model the latitudinal band of the Great Red Spot as a periodi domain of lati-tudinal extension L⋆ = 18800 km and longitudinal extension 4X18 800 km, with a zonallyperiodi topography of the same periodiity. As explain in setion 2.4.3, the organizationof the struture is essentially loal and determined by the topography under the vortex.Thus the arti�ial boundary onditions used here, are of no importane (due to the smallvalue of R, the equilibrium struture for a wider and more elongated latitudinal band willbe only slightly di�erent from the one omputed here). We use the following parameters: R⋆ = 1460 km, a⋆ = 1.3 10−16km−3s−1, a⋆
1 − a⋆

−1 = 2.14 10−4s−1 (the orrespondingdimensionless parameters are R = 0.234, a = 0.117, B = 0.87, u = 0.99). We numerially22



ompute the equilibrium struture orresponding to these parameters, using the relaxationequations desribed in setion 2.5.Figure 1 shows the potential vortiity and the veloity �eld for the equilibrium struture,as well as the veloity �eld obtain from Voyager data analysis (from Dowling and Ingersoll1998). Let us note the very good qualitative agreement between the two veloity �elds.We have numerially omputed the parameters of this vortex : the maximum jet veloityis v⋆
max = 120ms−1, the jet width (length between the two points where the jet veloityis half of the maximum jet veloity) is l⋆x = 3600 km for the jet at mid latitude (�owingnorthward or southward) and l⋆y = 2900 km for the extremal latitude jet (�owing eastwardor westward), the maximum latitudinal extension (length from the enter of the vortex tothe point northward, where the jet ahieves its maximal speed) is y⋆

m = 3800 km, the aspetratio of the spot (the length is measured using maximum jet veloity point, as for y⋆
m) is

δ = 1.8, and the surrounding shear is σ⋆ = 0.5 10−5 s−1All these quantities are ompatible with the observed ones (data from Mithell and all1981 analysis), exept for the surrounding shear whose real value is σ⋆ = 1.5 10−5 s−1 . Wethus onlude that the statistial equilibrium of the 1-1/2 Quasi-Geostrophi model, witha osine topography and with a 2 level PV distribution, allows to model quantitatively allthe main harateristis of the Great Red Spot, exept for a fator 3 for the shear.A natural question is whether this result ould be improved in the ontext of the 1-1/2Quasi-Geostrophi model. To obtain the above parameters, we have used the indiationsgiven by the relations (23,24,27) and the omputation of the maximum jet veloity, in orderto design an iterative sheme to �nd the parameter best suited to the modeling of the GreatRed Spot. As this sheme onverged, we do not think that it ould be better with thesame topography and the same PV levels distributions. An analysis of equations desribingthe vortex shape (26,27) either for a quadrati or for a osine topography, shows that aquadrati topography should give better results. This is onsistent with the study of thislast ase in Bouhet and Sommeria (2002). Conerning the hoie of the PV distribution,we have argued in setion 2.4.1 that a di�erent PV distribution, ompatible with a q − ψwith a onavity hange, would give similar results with di�erent values for the u dependingfuntions in the relations (23,24,27) . This may be a way of improving these results.However, our feeling is that suh a searh for improvement is of little interest, giventhat the 1-1/2 Quasi-Geostrophi is a rude model of the troposphere of Jupiter. Firstly,the geostrophi balaned is not well veri�ed in the area where the urvature of the jet isminimal, and the layer height variations are not very small ompared to the layer height. A1-1/2 Shallow-Water model would improve the results, and be more onvenient to make avery preise study. Seondly, a 1-1/2 layer is ertainly a rude approximation of the Joviantroposphere.4.2 Validity of the lower order approximationThe model we propose assumes several hypothesis (PV distribution, optimal mixing) andapproximations (for instane the Quasi-Geostrophi model 1-1/2 model). This numerialomputation allows to test the approximation made when desribing the solution by its lower23



order desription when R → 0. For instane, for the width of the jet, we have obtained
l⋆x = 5100 km and l⋆y = 4100 km. The jet width thus depends on latitude (this is visible onboth the omputed and the observation veloity �elds, �gure 1) and is larger than the �rstorder predition. This is a onsequene of the shear (for l⋆y) and of the strong urvature ofthe jet near the extrema of the topography (for l⋆x). There, the urvature r is only 3 timesthe Rossby deformation radius R, whih limits the validity of the approximation R → 0.We note that the latitudinal dependene is present at the following order of the asymptotiexpansion (see Bouhet 2001, part 1, setion 4.3).We also note that the urvature at mid latitude is greater for the numerially omputedequilibrium than the analytial predition. This is also due to the small R approximation.This urvature di�erene in this area is important, however this has only a limited e�et onthe maximal latitudinal extension of the spot. Indeed, the value ym analytially preditedis ym = 4300 km, whereas the numerially omputed one is ym = 3800 km. This explainwhy the shape of the spot is orretly predited by the analytial relation, in spite of thelimitations of the lower order approximation. The urvature of the real jet is also smallerthan the one of the numerially omputed one. This may be due to the disrepanies of theQuasi-Geostrophi approximation in this area (ylostrophi balane).We thus onlude that the lower order of the small Rossby deformation radius is validonly as a �rst approximation, for a value of R orresponding to the GRS (let say 30% forthe desribed variables). However, we note that the qualitative agreement is very good. Inpartiular, the predition of the latitudinal maximal extension, and of the vortex shapesis good. Whereas the numerial values are not exat, this analysis has permitted us tounderstand the role of the various parameters, in order to �nd parameters suited to modelthe GRS, the White Ovals (setion 3) or the Brown Barges (setion 5).5 Thermodynami phase transition and strong jet stability.Beause of the very di�erent typial time sales, for foring and dissipation in on hand,and for inertial organization in the other hand, Jupiter's features appear stationary. Forinstane, the Great Red Spot is observed from more than three enturies. Whereas itslength seems to have hange during this time, its global struture is likely to be the same.Jovian feature should therefore be stationary for the inertial dynamis.A large amount of work has dealt with the stability of quasi-two dimensional �ows.Linear stability of jets has been for instane addressed by Rayleigh, Kuo, Charley and Stern(see Pedlosky (1987) for a disussion for geophysial �ows). Nonlinear stability results have�rst be obtained by Arnold (1966) for the Euler equation. The �ows are then proven tobe stable beause they minimize a funtional, built on the Casimirs and on the energy,invariant under the dynamis (formal stability). A further estimate on this funtionalallows to prove that a perturbation around the stationary state remains bounded underthe nonlinear dynamis (non-linear stability). A generalization of these ideas for other�ow equations have then been studied (see for instane Holm and ollaborators (1985) orYongming, Mu and Sheperd (1996) for geophysial �ows). In the ase of zonal solutions, forthe Quasi-Geostrophi equation or for the Euler equation, the linear stability results an beretrieve from the nonlinear stability results. 24



These stability results are only su�ient ondition for stability. Lots of geophysial�ows, essentially the most energeti ones, are indeed stable whereas they do not verify thehypothesis of these theorems. For the Jovian atmosphere, this is for instane reported in thereview of Dowling (1995). This has led to some interrogation on the stability of these �ows.These questions have been emphasized also by the di�ulty to obtain numerial model ofsuh �ows, having strong jets, typial of the Jovian troposphere.The statistial mehanis of the potential vortiity o�ers a way to understand this sta-bility. The link between the Arnold's stability theorems and the statistial equilibrium hasbeen noted for instane by Robert and Sommeria (1991) (see also Bouhet (2001)). In suhworks the equivalent of the Arnold's theorem hypothesis is that only one solution exist fora given inverse temperature β. This has been proven for states with β > βc (or equivalentlyfor energy su�iently small E < Ec, as proven in setion 2.4.3). For smaller β (largerenergy E > Ec), the stability of the �ow was qualitatively understood by the impossibilityof the potential vortiity to mix further. A lear formalization of this statement has beenproposed reently by Ellis, Haven and Turkington (2002), where an augmented funtional,taking into aount of the Energy onservation, have been used to generalize the Arnold'sstability theorem. The result of this work is that any entropy maxima under onstraints,exept the ones lose to a phase transition point, is stable. As no norm is spei�ed inthis work, and the a-priori estimate neessary to prove a nonlinear stability theorem is notprovided, these results are the proof of formal stability (see Holm and ollaborators (1985)for a preise de�nition of formal stability) of suh �ows. This is however a deisive steptowards the understanding of the stability.A ruial hypothesis needed to use these results is that the seond variations of theaugmented funtional used by Ellis, Haven and Turkington (2002), be de�nite positive. InEllis, Haven and Turkington (2002), this point is not analyzed in details, and ited as atehnial problem. Unfortunately, this is not right in most of the situations. As soon as theequations have some symmetry, and the �ow does not respet this symmetry, the seondvariations an not be de�nite positive. At least one diretion must have a zero eigenvalue.For instane, in our ase, the vortex solutions break the zonal symmetry. A small pertur-bation of suh a vortex, an lead to the translation of the vortex by a �nite distane. Forthis reason, a nonlinear stability result is not possible. However, the situation is physiallyvery lear: a perturbation an only lead to �ows lose to the initial ones, up to an arbitrarytranslation. A lear formalization of these ideas remains to be done. Anyway, the resultsof Ellis, Haven and Turkington (2002) are a deisive step towards the understanding of thestability of suh �ows.Statistial equilibrium are thus stable, as soon as they are not too lose to a phasetransition. On a pratial point of view, one thus have to study the phase diagram of theequilibrium states. For instane phase diagrams on �gure 4 and 7 represent stable stationary�ows, similar to Jovian vorties and jets. Please note that some other stable states mayexist for the same energy and parameter B (metastable states, for instane).As illustrated on �gure 7, depending on the parameters, strong jets or vortex solutionsmay be stable, depending on the values of the parameters E and B. In order to illustratethese stability properties, we onsider the evolution of an initial ondition omposed of anantiyloni PV band, standing on the maximum of the topography. The orresponding �ow25



is made of two strong zonal jets �owing eastward and westward respetively. The PV has awidth l. We strongly perturb this initial ondition by entering the PV band on a latitude
yc varying with the longitude: ycentre = π/2 + l/4 sin x+ l/12 sin(3π/2 + π/6). Figures 12and 13 show this initial ondition, for l = 1.09 and l = 0.31 respetively. The values ofthe topography parameter (see 4) and of the Rossby deformation radius are a = 0.6 and
R = 0.25 respetively.The parameters for the numerial simulation are ν = 5.93 10−5 (resolution 512X128),orresponding to a Reynolds number (based on the Rossby deformation radius) of Re =
(Rvmax) /ν equal to 820. The numerial time step is ∆t = 0.012.Figure 12 illustrates the evolution for the �rst initial onditions. The �rst piture showthat the two jets, are destabilized by this strong perturbation. The jet however stabilizeaordingly to the phase diagram on �gure 7 (the value of B is then lose to zero). Wenote that this initial ondition does not verify the non-linear or linear stability theoremhypothesis. The last of these pitures show slight osillations of the PV level lines, that weinterpret as Rossby waves, guided by the jet. The relaxation of these waves is very slow.Figure 13 illustrates the evolution, for the seond initial ondition. As the area of the PVband is then small, the value of B is no more lose to 0. Aordingly to the phase diagramon �gure 7, the two jet destabilize and form antiylones. The statistial equilibrium is thenan elongated antiylone entered, on the topography extrema. The �nal state is shown on�gure 14. This solution will also be used in next setion to model one of the yloni BrownBarges of the Jupiter's north hemisphere.6 The north-hemisphere Brown BargesBrown Barges are brown oval spots (see �gure 5), loated at 14o N on the Jupiter's tropo-sphere. On the ontrary to most of Jovian features, these vorties are ylones. A studyof these spot veloity �eld is reported in Hatzes and ollaborators (1981). In this setion,we model this spot with the statistial equilibrium vortex obtained in the previous setion,from the destabilization of a strong jet (�gure 13). We ompare the veloity �eld of thisstatistial equilibrium struture with the data analysis of Hatzes and ollaborators (1981).The equilibrium PV �eld obtained from this numerial simulation is represented on �gure14. This �gure atually represents an antiylone. However, beause of the symmetries ofthe Quasi-Geostrophi model, a symmetri yloni struture may be obtained. The veryelongated shape, with a maximum latitudinal extension may be ompared to the image ofone of the real Brown Barges (see �gure 5). We also represent the veloity in a latitudinaland meridional setions of the spot, both for the statistial equilibrium and for the dataanalysis of Hatzes and ollaborators (1981). One may observe that the veloity struture isthe same. The northward veloity, along a meridional setion, shows a strong jet strutureat the front edge of the spot, whereas it is null inside of the spot. On the ontrary, theeastward veloity along a zonal setion, does not show the jet struture : it is essential ashear �ow. The omparison of these plots shows that statistial equilibrium desribe verywell the qualitative properties of this spot. We have not tried to give some dimensionalvalues of the main harateristi of the spot. However this ould be done. By an iterativealgorithm, one ould then try to predit the atual values of the topography urvature and26



of the Rossby deformation radius, as we have done for the Great Red Spot.The struture is thus di�erent from the Great Red Spot one's. The jet struture on thenorthward veloity allows to onlude that the Rossby deformation radius is small. Thee�et of a very intense topography urvature haraterizes the Brown Barges. For thisreason, the topography an no more be treated as a �rst order perturbation, like has beendone in setion (2.3). However, an asymptoti desription, following the same ideas anbe done, assuming the amplitude of the topography as having e�ets on the zeroth orderof the asymptoti expansion. The result is a modi�ed algebrai equation desribing theveloity �eld outside of the spot. The jet struture then expliitly depends on the latitude
y. The shape of the vortex is always desribed by an equation similar to (26). However, thedependene on y beause of the topography, is no more due only to the PV variation insideof the spot, but also to the latitudinal dependene of the jet properties. We leave a morepreise desription and study of this asymptoti expansion for future works.In Hatzes and ollaborators (1981), authors insist on the osillations of the shape of thisylone, whereas we have desribed only a stationary solution, with similar veloity �eldstruture. We note that, as in the ase of the jets desribed in setion 5, perturbation ofthe equilibrium struture would lead to osillations around the stationary �ow whih shoulddesribe the observed ones. A further study of this problem may be of interest.7 ConlusionWe have desribed equilibrium of the potential vortiity statistial equilibrium, for theQuasi-Geostrophi equation. Independently of the statistial interpretation, all the �ow wehave desribed are stable stationary �ow for the invisid dynamis. We have �rst presentedresults in the limit of small Rossby deformation radius. The main ideas of this asymptotidesription are present in the work Bouhet and Sommeria (2002). The derivation proposedhere is however simpli�ed. We have disussed in details the generalization of these results toany potential vortiity distributions. Using numerial omputations, we have also desribedstatistial equilibrium �ows for parameters for whih the hypothesis of a small Rossbydeformation radius no more holds. The appliation of these results to model, the Jovianstrong jets and main vorties are extensively desribed.In the limit of small Rossby deformation radius, the equilibrium �ows are haraterizedby strong jets. The minimization of the entropy selets either zonal solutions or vortiesbounded by strong jets, depending on the parameters. These jets play the role of an interfaeseparating two area of di�erent potential vortiity mixing. The shape of this interfaeis given by the minimization of their length, for a given area. Under the presene of adeep zonal �ow and of a beta-e�et, or equivalently of a topography, this minimization isbalaned by the tendeny of antiyloni potential vortiity to stand around the maximaof the topography. This leads to the harateristi elongated vorties observed on Jupiter'stroposphere. The width of these vorties may be omputed exatly. A typial width isgiven by an alternative of the Rhine's sale, built on the urvature of the topography, orequivalently on the deep layer shear σd : L = (RU/σd)

1/3 = R (Ω/σd)
1/3. This modelpredits that vorties sit on extrema of the topography. This property has been veri�edusing available data for the Great Red Spot and the White Oval BC.27



Using these results, we have proposed a quantitative model for the Great Red Spot. InBouhet and Sommeria (2002), using the small Rossby radius derivation, with a two PV-levels distribution, we have shown that an appropriate hoie of the energy, total potentialvortiity, topography urvature and Rossby deformation radius allows to reprodue theobserved jet maximum veloity, jet width, vortex shape and aspet ratio, and surroundingshear. In this work, by omparison with numerial omputation of the equilibrium, we haveshown that the small Rossby radius approximation leads to a orret desription of thestruture of the vortex, for the Great Red Spot parameters. The disrepanies due to �nitesize e�ets are of the order of the error due to the Quasi-Geostrophi approximation. Theobtained veloity �eld ompares very well with the observed one.Using numerial determination of the equilibrium �ows, we have proposed models of theWhite Ovals or of the yloni Brown Barges. These vorties may be obtained either fromrandom initial onditions or from the destabilization of strong jets. The White Ovals areharaterized by a size whih is of the same order as the Rossby deformation radius. Thedeep shear is responsible for their oval shape and for the surrounding shear. The BrownBarges are haraterized by a very strong topography urvature. For these vorties, we haveobtained their typial jet like struture for the northward veloity in a zonal setion, andtheir typial shear for the eastward veloity in a meridional setion.The statistial mehanis predits some strong qualitative properties for Jovian likevorties. For a given deep shear, and Rossby deformation radius (for the same latitudinalband, for instane), smaller vorties are lose to a irle. Their aspet ratio grows with thesize. The latitudinal extension of the spot as a maximum value, foring a very elongatedshape as the one of the Brown Barges. For suh vorties to exist, a ritial energy in thelatitudinal band must be present. When this is the ase, the shear in the ative layerhas to be larger than the shear in the deep layer. Vortex adapt their zonal drift speed,suh as in their referene frame, they are loated in an extrema of the topography. Thussimilar vorties in the same latitudinal band must have a relative zonal veloity if they arenot loated at the same latitude. This drift veloity is linear with the latitude di�erene,as soon as the latitude di�erene is su�iently small for the deep shear to be supposedonstant.All the statistial equilibrium are dynamially stable, even when the onditions for linearor non-linear lassial results do not apply.The statistial mehanis of the potential vortiity desribes the most probable �ow for agiven energy and potential vortiity distribution. The main assumption of this work is thatsuh �ows desribes atually the observed jets and vorties of Jupiter's troposphere. Thedynamial system ergodiity would be a su�ient ondition to justify this hypothesis. Theproof of ergodiity is very di�ult, even for very simple dynamial systems. The best wayto study the validity of statistial mehanis in omplex systems remains the omparison ofits preditions with observations of with numerial simulations. This works has shown thatthe statistial mehanis of the potential vortiity is able to model the main Jovian featuresand to predit important qualitative properties, whih an be veri�ed.In a latitudinal band, the topography fores a shear �ow in the ative layer. Thisfavors vortex merging, and thus the potential vortiity mixing. On the other hand, ifwe onsider a topography with two bumps, following the same ideas as in this work, we28



may for instane desribe stable solutions orresponding to two antiylones on eah of thetopography bumps. In these two bumps are of di�erent high, this solution may not be astatistial equilibrium state, but only a loal maxima of the entropy under onstraint. Insuh a ase, the topography would at as a dynamial barrier, preventing a real ergodiityfor the system. However, the statistial interpretations would still remain lear.An other point to be disussed is the slowing down of the dynamis, due to the small valueof the Rossby deformation radius. The interations between vorties, deays exponentiallyfor distane muh larger than R. For this reason, well separated vorties mainly not interat.This may prevent their merging predited by statistial mehanis. It will at least imposea very long time sale to observe an e�etive ergodiity. This situation is illustrated by themerging of the three White Ovals whih formed in 1938 (Sanhez-Lavega and ollaborators2000). The two last ones have �nally merged in 2002, after a very long oexistene in thesame latitudinal band.Besides these qualitative arguments, we want to stress that ergodiity may really bequestionable in some situations, for suh systems. As an example we refer to Barré andollaborators (2002). In this study, a system with long range interations, sharing deepanalogies with quasi-two-dimensional �ows, is shown to have very long lived out-of equilib-rium states.We have disussed some limitations of these statistial models for Jupiter's jets andvorties. The major ones onerns the validity of the modeling of Jupiter's troposphere bythe Quasi-Geostrophi model. Whereas it is good as a �rst approximation, generalizationof these results for a Shallow Water dynamis or for multi-layered dynamial models shouldprovide more preise results in order to propose more preise omparison with the observedstrutures.Some further studies of the equilibrium struture should be of interest to put preiseonstraint on the physial parameters. For instane, it may be possible to determine thedeep shear under major vorties, suh as the White Ovals or the Brown Barges. A modelof White Ovals merging based on statistial mehanis ould also permit to put furtheronstraints on the physial parameters and potential vortiity distribution. Studies of linearperturbations around the equilibrium strutures should be able to desribe the spot shapeosillations, as observed for instane for the Brown Barges (Hatzes and ollaborators, 1981).In this work, we have assumed an invisid dynamis. This is a very natural assumption,given the very di�erent time sales for foring and dissipation in one hand, and invisidorganization in the over hand. Whereas the observed features should be invisid statistialequilibrium, the atual PV distribution and energy atually depends on the foring andon the dissipation. We have for instane argued for a distribution with bounded potentialvortiity, whih should be well approximated by a two level distribution, beause of theobserved foring by inoming thermal plumes. However, in order to go further in theanalysis of the potential vortiity �ne-grained distribution, one should model more preiselyforing and dissipation. This ould permit to explain observable phenomena, suh as thediminution, on a very long time sale, of the size of the giant antiylones, or an eventualinvisid evolution of the osillations of some vorties. In pratie, the foring should beintrodued in kineti like equations, like those developed in Kazantzev and ollaborators,or following ideas desribed in DiBattista, Majda and Grote (2001). Suh models would29



explain the long term evolution of the �ne-grained PV-distribution, whereas the observedstruture should remain lose to equilibrium struture during the evolution.AknowledgmentsThis work is part on the PHD thesis of F. Bouhet, direted by R. Robert and J. Sommeria.The �rst part of this work (Bouhet and Sommeria 2002), has been done in ollaborationwith J. Sommeria. The authors thank J. Sommeria, R. Robert and P.H. Chavanis for usefulomments on the present work. During this work, one of us has been funded by a �BourseLavoisier� of the Frenh �Ministère des A�aires Etrangères�, and by the program COFIN00�haos and loalization�.A Analysis of the jet shape equationIn setion 2.3, we have obtain the equation veri�ed by the jet position (26): ǫu (h(y) − α1) =
e(u)

r . In this setion, we disuss equations allowing numerial integration of this equationand we derive an analytial expression for the latitudinal extension of a vortex solution. Thisderivation, is a generalization to a osine topography, of results in Bouhet and Sommeria(2002).We look at antiylones solutions (ε = 1) around the maxima of h (4). This extremais reahed for y = π/2. We make a latitudinal translation suh that the maxima of thetopography be on y = 0. We thus onsider the topography h (y) = 2a cos (2y). The ylonease may be easily reovered by symmetry.To make the equation for the radius of urvature more expliit, let us de�ne s a urvi-linear parameterization of our urve, T(s) the tangent unit vetor to the urve and θ(s)the angular funtion of the urve de�ned by T(s) = (cos θ(s), sin θ(s)) for any s. Thenthe radius of urvature r of the urve is linked to θ(s) by 1/r = dθ/ds. This yields thedi�erential equations :
dθ

ds
=

2au

e (u)
cos (2y) − α1 (31)

dy

ds
= sin θ(s) (32)

dx

ds
= cos θ(s) (33)For symmetry reasons, it is easily veri�ed that the solutions of (31, 33 and 32), with initialonditions θ(0) = π

2 , y(0) = 0 and some x(0) are periodi. The resulting vortex is thensymmetri with respet to the latitude of the maxima of the topography (here y = 0).Moreover, we have proved in the appendix C of Bouhet and Sommeria (2002) that theseinitial onditions are the only ones leading to vortex solutions (losed urves), in the ase of aquadrati topography. The argument used there only uses the symmetry of the topographywith respet to the extrema of the topography and an easily be generalized in the presentase. 30



Let us ompute ym, the maximal latitude of the vortex (the maximal latitude of the jetenter) (ym is the half of the latitudinal extension of the vortex). We �rst note that the twovariables θ and y are independent of x. We will therefore onsider the system formed by thetwo �rst di�erential equations (31,32). It is easily veri�ed that this system is Hamiltonian,with θ and y the two onjugate variables and
H ≡ cos θ +

au

e (u)
sin (2y) − α1y (34)the Hamiltonian. Thus H is onstant on the solution urves. From the initial ondition, wededue H = 1. We note that for y = ym, the urvature of the jet is 0 (1/r = 0 ). From 31,we thus obtain 2au

e(u) cos (2ym) − α1 = 0. Combining this relation with the one obtained byusing that H = 1, for y = ym and θ = π : −1+ au
e(u) sin (2ym)−α1ym = 1 allows to ompute

ym and α1. This gives:
ym =

1

2
g

(

e (u)

2au

)

and α1 =
2au

e (u)
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Figure Captions.
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10 000 km

20 000 kmFigure 1: Upper part: vortiity �eld and veloity �eld for the statistial equilibrium mod-eling the Great Red Spot. Lower : the observed veloity �eld, from Dowling and Ingersoll(1988). The atual values of the jet maximum veloity, jet width, vortex width and length�t with the observed ones. The strong jet is the interfae between two phases, eah or-responding to di�erent Potential Vortiity mixing. It obeys a minimal length variationalproblem, balaned by the e�et of the deep layer shear.37



Figure 2: The area free energy fC (φ) speifying the free energy funtional (16). For anyvalue of C , the funtion fC (φ) is even and possess two minima ±u. This shows that, atequilibrium, at zeroth order in R, the Potential Vortiity mixing will be desribed by twophases, haraterized by these two minima. This plot orresponds to the value C = 10.
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Figure 4: Phase diagram of the Gibbs states versus the energy E and the asymmetryparameter B (see (9)), when no topography is present (h = 0). The outer solid line is themaximum energy ahievable for a �xed B : E = R2

2 (1 − B2) + O
(

R3
). Straight jets areobtained for the nearly symmetri ases (B around 0), while a vortex is formed when oneof the PV levels has a lower area. This vortex takes the form of a irular jet for su�ientlyhigh energy. The frontiers line between the straight jets and the irular jet is determinedby the minimization of the jet length (�rst order free energy). The hashed line representsthe energy value for whih vortex area A1 or A−1 (21) is equal to (2l)2, where l is thetypial jets width. At the left of this line, the small Rossby deformation radius asymptotiexpansion is no more valid. For suh ase, asymmetri equilibrium have been desribed inBouhet and Sommeria (2002). This hashed line depends on the value of R, the ratio of theRossby deformation radius to the domain sale. It has been here numerially alulated forR = 0.03.
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Figure 5: Top: typial vortex shape obtained from the urvature radius equation (26)for two values of the parameters (arbitrary units). This illustrate the very harateristipartiularity of Jupiter's vorties to be vary elongated, ones they reah an extremal latitude
ym (27). Bottom left: the Great Red Spot and one of the White Ovals. Bottom right: oneof the Brown Barges of Jupiter's north atmosphere. This shows that equilibrium struturesare able to reprodue the harateristi and peuliar elongation of jovian vorties.
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Figure 6: QG topography (units s−1) versus latitude omputed using the data of Dowlingand Ingersoll (1989) : a) under the GRS ; b) under the Oval BC. The analysis of theveloity data in the Quasi-Geostrophi framework, thus learly shows extrema of topographyunder these two vorties. This is in aordane with what we dedue from the statistialequilibrium study.
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Figure 7: Phase diagram of the Gibbs states versus the energy E and the asymmetryparameter B, with a quadrati topography and a domain aspet ratio orresponding to theGreat Red Spot parameters. (400.000 km over 20.000 km). The outer line is the maximumenergy ahievable for a �xed B : E = R2

2 (1−B2)+O
(

R3
). The inner solid line orrespondsto the frontier between the vortex and straight jet solutions. The dash line orrespondsto the limit of validity of the small deformation radius hypothesis. It has been drawnusing the ondition that the maximal vortex width (28) is equal to two Rossby deformationradius. The dot lines are onstant vortex aspet ratio lines with values 2,10,20,30,40,50,70,80respetively. We have represented only solutions for whih antiyloni PV dominate (B >

0). The opposite situation may be reovered by symmetry.
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Figure 8: Dynamis of random initial vortiity pathes, in the Quasi-Geostrophi model,using a small sale parameterization based on a maximum entropy prodution priniple(29). The olor represents the PV values. The Rossby deformation radius is very small(R = 0.2), ompared to the latitudinal band width (π). We use a osine topography (4)whose maxima is loated at the enter of the latitudinal band. The later evolution is shownon �gures 9 and 10 43



Figure 9: Continuation of the previous �gure. After a very rapid loal organization, threeantiylones form. On a muh longer time sale, they merge, forming elongated vortiessimilar to the White Ovals on the jovian troposphere (the time lapse between the satter-plots of �gure 8 is approximately 16 turn over times, whereas between the two last satterplots of this �gure it is 50 turn over times, and 300 to obtain the �nal organization repre-sented on �gure 10. The insets show Stream funtion-PV satter plots. They illustrate theevolution towards stationary states. 44



Figure 10: Equilibrium strutures orresponding to the dynamial evolution of the twopreeding �gures. The upper �gure is the PV, whereas the lower one is the veloity �eld.The maxima of entropy under onstraint is an antiylone, entered on the maxima of thetopography. The surrounding shears and its oval shape are onsequenes of its interationwith the deep layer �ow (topography). This struture is similar to the one of the WhiteOvals. It di�ers from the Great Red Spot, beause the Rossby deformation radius is of thesame order as the vortex size. 45



Figure 11: Comparison of the evolution of the same initial ondition, made of randomvortiity pathes (the same as for the three previous �gures), for two di�erent small salePotential Vortiity mixing parameterization. The upper �gure shows the result for a DiretNumerial Simulation (usual eddy di�usivity), the upper one shows the results for therelaxation equations (29). This shows that the Diret Numerial Simulation does not allowedto obtain strong oherent vorties, for very long times.
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Figure 12: Potential Vortiity �eld, for two jets �owing eastward and westward respetively.Whereas they do not verify the two Arnold's theorem hypothesis, submitted to a strongperturbation, they stabilize. The maximization of the entropy under onstraint allow toobtain new stability theorems (see setion 5).
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Figure 13: Destabilization of two strong jets, and formation of very elongated vortiessimilar to the yloni Brown Barges in the north hemisphere of the Jovian atmosphere.The stability property of suh jets and vorties is summarized by the phase diagram on�gure 7 (see setion 5).
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Figure 14: The upper �gure shows the Potential Vortiity �eld for a statistial equilibriumon a strong topography. The shape of the spot an be ompared to real image of the BrownBarges (�gure 5). The four lower �gures show the veloity for a zonal setion (eastwardveloity, left �gures) and for a meridional setion (northward veloity, right �gures). Thetwo upper veloity �gures are the observed ones for one of the yloni Brown Barges, in thenorth hemisphere of Jupiter (from Hatzes and ollaborators (1981)). The two lower onesare the statistial equilibrium ones.
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