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Abstra
tWe explain the emergen
e and stability of the most important jets and vorti
es, inthe highly turbulent Jupiter's atmosphere, by a statisti
al me
hani
s of the potentialvorti
ity mixing. Using the Quasi-Geostrophi
 1-1/2 layer, with topography, when theRossby deformation radius is small, we predi
t strong jets. These jets 
an be eitherzonal, or 
losed into a ring stru
ture like the Great Red Spot one. We reprodu
e theGRS observed velo
ity �eld to a very good quantitative a

ura
y. For smaller vorti
es,or for stronger topography 
urvature, we reprodu
e the 
hara
teristi
s properties of theWhite Ovals or of the 
y
loni
 Brown Barges. The link between their shape, topographyand surrounding shear is expli
itly des
ribed. We obtain very strong qualitative resultsfor the Jupiter's vorti
es. For instan
e, any of these vorti
es must be on topographyextrema (in the referen
e frame moving with the stru
ture), the shear in the a
tive layeris larger than the shear in the deep layer. On a same latitudinal band, the velo
ity ofthe vortex is related to their latitude. These theoreti
al predi
tions are in a

ordan
ewith the observed properties of Jovian vorti
es.1 Introdu
tionAtmospheri
 and o
eani
 �ows have the property to organize into large s
ale jets or vorti
es.Due to the large di�eren
e between typi
al for
ing and inertial time s
ales, this organizationis remarkably stationary in the 
ase of Jupiter's troposphere. The understanding of thestability and of the detailed stru
ture of these �ows is thus render easier than for any othergeophysi
al �ows. Moreover, the ex
ellent quality of the data obtained from spa
e probes,makes easy a pre
ise 
omparison of theoreti
al predi
tions with a
tual �ows.As in the o
eans and in the earth atmosphere, these �ows are often organized intonarrow jets. They 
an zonally �ow around the planet, like the eastward jet at 240 latitudein the northern hemisphere of Jupiter (Maxworthy 1984), or alternatively organize intorings, forming vorti
es, like the rings shed by the meandering of the Gulf-Stream in thewestern Atlanti
 O
ean. The �ow �eld in Jupiter most famous feature, the Great Red Spot,is an oval-shaped jet, rotating in the anti
y
loni
 dire
tion and surrounding an interior areawith a weak mean �ow (Dowling and Ingersoll 1989) (see �gure 1). Robust 
y
loni
 vorti
esare also observed with a similar jet stru
ture (Hatzes et al 1981), see �gure 13. Smallerfeatures, as the White Ovals, have also an oval shape but without the jet ring stru
ture.For a re
ent review on the dynami
s of Jupiter's atmosphere, see Ingersoll and 
ollaborators(2003).A number of numeri
al studies have been led to model the Jupiter's vorti
es (see In-gersoll and 
ollaborators 2003, for a review). The Kida vortex (Kida 1981) has been usedto explain the typi
al oval shape of su
h vorti
es (Polvani and 
ollaborators 1990). Somesoliton like stru
tures have been also des
ribe (Petviashvili 1981, ????) with similar shapes.Anyway, none of these analyti
al and theoreti
al models, reprodu
e both the oval shape andring stru
ture of the Great Red Spot. We will argue that the strong jets are the 
onsequen
eof a small value of the Rossby deformation radius, for very energeti
 �ows. With su
h pa-rameters, the e�e
t of a topography (deep �ow and beta e�e
t) will be ne
essary to explainthe typi
al oval shape. Moreover, su
h jets and vorti
es are in a turbulent surrounding,and the persisten
e of their strength and 
on
entration in the presen
e of eddy mixing isintriguing and should be explained. 2



The explanation proposed in this paper is based on a statisti
al me
hani
al approa
h: thenarrow jet or vortex appears as the most probable state of the �ow after a turbulent mix-ing of potential vorti
ity, taking into a

ount 
onstraints due to the dynami
al 
onservedquantities, espe
ially energy. Su
h a statisti
al theory has been �rst proposed for the two-dimensional in
ompressible Euler equations by Kuz'min (1982), Robert (1990), Robert andSommeria (1991), Miller (1990), see Sommeria (2001) for a re
ent review. This theorypredi
ts an organization of 2D turbulen
e into a steady �ow, superposed with �ne s
ale,'mi
ros
opi
' vorti
ity �u
tuations. This is by far the most likely result of random stirring,so the evolution to this statisti
al equilibrium is in pra
ti
e irreversible. Complete vorti
itymixing is prevented by the 
onservation of the energy, whi
h 
an be expressed as a 
on-straint in the a

essible vorti
ity �elds. A similar, but quantitatively di�erent, organizationhad been previously obtained with statisti
al me
hani
s of singular point vorti
es, insteadof 
ontinuous vorti
ity �elds (Onsager 1949, Joy
e and Montgomery 1973). The possibilityof using su
h ideas to explain the Great Red Spot has been expli
itly quoted sin
e the �rstworks on the 2D Euler statisti
al me
hani
s by Robert (1990), Miller (1990), Sommeria etal (1991), Miller Wei
hman and Cross (1992), Turkington, Majda and DiBattista (2001),but without expli
it predi
tions.In the study of geophysi
al �ows, the Rossby deformation radius is a 
entral parameter,as it de�nes a typi
al s
ale for the variation of the pressure. In a previous paper (Bou
hetand Sommeria, 2002), we have analyti
ally des
ribed the statisti
al equilibrium states, forthe Quasi-Geostrophi
 equation, in the limit of a small Rossby deformation radius. In thislimit, the equilibrium �ows are 
hara
terized by strong jets, either zonal and �owing aroundthe planet or forming 
losed vorti
es, depending on the parameters. When a topographyis 
onsidered, these vorti
es have the typi
al shape of Jovian ones'. We have also shownthat these equilibrium are able to reprodu
e quantitatively all the main 
hara
teristi
s ofthe Great Red Spot. In se
tion 2.3, we will give a simpli�ed derivation of these results.Whereas in Bou
het and Sommeria 2002, the statisti
al equilibrium were analyzed for thesimple 
ase of a potential vorti
ity distribution made of two levels, we extensively dis
ussthe generalization of the results to any PV distribution. We show that the main results donot depend on the detailed distribution. This is true as a 
onsequen
e of the small value ofthe Rossby deformation radius.In se
tion 2.4, we dis
uss the appli
ation of su
h results to the Jovian vorti
es. Wedis
uss a simple model for the Great Red Spot, also present in Bou
het and Sommeria(2002). We dis
uss important qualitative predi
tions for su
h vorti
es : they are lo
ated onextrema of the topography, their energy must be greater than a 
riti
al one, the shear onthe a
tive layer has to be stronger than in the deep layer, their typi
al width is given by analternative of the Rhine's s
ale, whi
h no does not depends on the beta-e�e
t, but on thetopography 
urvature.The limit of small Rossby radius is no more valid for smaller vorti
es, su
h as the BrownBarges or the White Ovals. In order to model these features, we will numeri
ally 
omputethe velo
ity �elds of the statisti
al equilibrium states. Using the qualitative 
omprehensionobtained from the analyti
al analysis, we will be able to reprodu
e the main propertiesof these �ows, either from the destabilization of jets, or from random Potential Vorti
ityinitial 
onditions. In se
tion 3 we obtain a velo
ity �eld 
lose to the White-Oval one. Inse
tion 4, we obtain numeri
ally the velo
ity �eld of the Great Red Spot whi
h is a

urately3




ompared to the observed one's. In se
tion 6, we obtain the pe
uliar velo
ity �eld of theBrown Barges, with a jet like stru
ture in the meridional dire
tion, and a strong shear inthe zonal one.In se
tion 5, we 
omment results of Ellis, Haven and Turkington (2002), on the stabilityof statisti
al equilibrium. We illustrate the 
orresponding results by numeri
al experimentof stabilization or destabilization of strong jets. This 
omplete the explanation of theemergen
e and of the stability of Jupiter's features in the Jupiter's turbulent atmosphere.2 Statisti
al me
hani
s of the Quasi-Geostrophi
 equation inthe limit of small Rossby deformation radiusIn this se
tion we present the Quasi-Geostrophi
 1-1/2 layer model and the main ideasof the potential vorti
ity statisti
al me
hani
s. This theory des
ribes the most probablestate, emerging from a random PV �eld with a given PV distribution and energy. Themain hypothesis is that these equilibrium stru
tures emerge from the very 
omplex dy-nami
al mixing. These stationary states have been des
ribed analyti
ally in a previouswork (Bou
het and Sommeria 2002), for the Quasi-Geostrophi
 model, in the limit of smallRossby deformation radius. In this se
tion we sket
h the main ideas of this derivation andthe main results and 
onsequen
e in the 
ontext of the Jovian troposphere. These resultsexplain in parti
ular the formation of jets or vorti
es from random initial 
onditions. Su
hvorti
es have the annular jet stru
ture 
hara
teristi
 of the Great Red Spot and their main
hara
teristi
s are analyti
ally related.In the following se
tions we will propose numeri
al simulation, illustrating these mainresults, and permitting to 
ompare them to the main stru
tures of the Jovian troposphere :the strong jets, the north hemisphere Brown Barges, the White Ovals, and the Great RedSpot.2.1 The dynami
al systemWe start from the barotropi
 1-1/2 Quasi Geostrophi
 (QG) equation :
∂q

∂t
+ v · ∇q = 0 (1)

q = −∆ψ +
ψ

R2
−Rh(y) (2)v = −ez ∧∇ψ (3)where q is the potential vorti
ity (PV), adve
ted by the non-divergent velo
ity v, ψ is thestream fun
tion1, R is the internal Rossby deformation radius between the layer of �uid1We 
hoose for the stream fun
tion ψ the standard sign 
onvention used for the Euler equation, whi
his just the opposite as the one 
ommonly used in geophysi
al �uid dynami
s. Our stream fun
tion ψ istherefore proportional to the opposite of the pressure �u
tuation in the northern hemisphere and to thepressure �u
tuation in the southern hemisphere, as the planetary vorti
ity sign is reversed. The signs of qand v are not in�uen
ed by this 
hoi
e of sign for ψ.4



under 
onsideration and a deep thi
ker layer, una�e
ted by the dynami
s. x and y arerespe
tively the zonal and meridional 
oordinates (x is dire
ted eastward and y northward).The term Rh(y) represents the 
ombined e�e
t of the planetary vorti
ity gradient andof a given stationary zonal �ow in the deep layer, with stream fun
tion ψd(y): Rh(y) =
−βy+ψd/R

2. This deep �ow indu
es a 
onstant deformation of the free surfa
e, a
ting likea topography on the a
tive layer2. We shall therefore 
all h(y) the 'topography'. We s
alethe topography with the Rossby deformation radius R. This parti
ular 
hoi
e will be ofimportan
e in the study of the limit R→ 0 (se
tion 2.3) and we will show that this s
alingis the appropriate one to study Jovian vorti
es.We de�ne the QG equations (1,2) with periodi
 boundary 
onditions (4π periodi
 inthe zonal dire
tion and π periodi
 in the meridional one for all numeri
al 
omputations ofthis arti
le). The analyti
al study in Bou
het and Sommeria 2002 has shown that, in the
hannel geometry, due to the small value of the Rossby deformation radius, the equilibriumorganization of the �ow is lo
al. For instan
e vorti
es are lo
ated on topography extrema andtheir stru
ture and shape is determined by the topography 
urvature and is independent onboundary 
onditions. In the periodi
 boundary 
onditions 
ase, we will show in the followingthat this is still true. This lo
al organization explains why periodi
 boundary 
ondition iswell suited to vorti
es stru
ture studies. On the 
ontrary, the global organization of zonesand bands on the planet s
ale should be ta
kled using a real spheri
al geometry, for instan
ein the Shallow Water model. This more general problem will not be 
onsidered in this arti
le.We model one zone and band area by a periodi
 topography:
h(y) = −2a cos(2y) (4)As the relevant s
ale is de�ned by the latitudinal variations of the topography, we do notrespe
t the a
tual zonal band aspe
t ratio, and we s
ale the domain size on the latitudinalzone-band extension. In our dimensionless variable R = πR⋆/L⋆ where R⋆ is the a
tualinternal Rossby deformation radius and L⋆ is the latitudinal extension of the zone-banddomain.Let 〈f〉 ≡ ∫

D fd
2r be the average of f on D for any fun
tion f . Physi
ally, as the streamfun
tion ψ is related to the geostrophi
 pressure, 〈ψ〉 is proportional to the mean height atthe interfa
e between the �uid layer and the bottom layer, and due to the mass 
onservationit must be 
onstant (Pedlosky 1987). We make the 
hoi
es 〈ψ〉 = 0 and 〈h〉 = 0 withoutloss of generality. The total 
ir
ulation is 〈q〉 = 〈−∆ψ + ψ/R2 − Rh(y)〉 is equal 〈ψ/R2〉due to the periodi
 boundary 
onditions. Therefore 〈q〉 = 0.Due to the periodi
 
onditions for ψ, the linear momentum is also equal to 0,

〈v〉 = 0 (5)2A real topography η(y) would 
orrespond to Rh(y) = −f0η(y)/h0 where f0 is the referen
e planetaryvorti
ity at the latitude under 
onsideration and h0 is the mean upper layer thi
kness. Due to the sign of
f0, the signs of h and η would be the same in the south hemisphere and opposite in the north hemisphere.As we will dis
uss extensively the Jovian south hemisphere vorti
es, we have 
hosen this sign 
onvention for
h.
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The energy
E =

1

2

∫

D
(q +Rh)ψd2r =

1

2

∫

D

[

(∇ψ)2 +
ψ2

R2

]

d2r (6)is 
onserved (we note that the �rst term in the right hand side of (6) is the kineti
 energywhereas the se
ond one is the gravitational available potential energy).The Casimir integrals
Cf (q) =

∫

D
f(q)d2r (7)for any 
ontinuous fun
tion f , in parti
ular the di�erent moments of the PV, are also
onserved.2.2 The statisti
al me
hani
s on a two PV levels 
on�guration.2.2.1 The ma
ros
opi
 des
ription.The QG equations (1) (2) are known to develop very 
omplex vorti
ity �laments. Be
auseof the rapidly in
reasing amount of information it would require, a deterministi
 des
riptionof the �ow for long time is both unrealisti
 and meaningless. The statisti
al theory adoptsa probabilisti
 des
ription for the vorti
ity �eld. We 
onsider the lo
al probability to havesome PV at some points. The statisti
al equilibrium is then the most probable state for arandom PV �eld with �xed dynami
al invariants.The statisti
al equilibrium therefore depends on the energy (6) and on the in�nite num-ber of Casimirs (7) (PV distribution). For pedagogi
al reasons, we will 
onsider the mostsimple 
ase we will suppose a distribution made of two PV levels, denoted q = a1 and

q = a−1. The results may however be generalized (Robert and Sommeria 1992). In se
tion2.3, we will explain why the study of the equilibrium stru
tures is independent of the a
tualPV distribution, at the lower order when the Rossby radius goes to zero.The two values of the PV q = a1 and q = a−1, and the areas A and (1 − A) theyrespe
tively o

upy in D, will be 
onserved by the inertial dynami
s (this is then equivalentto the 
onservation of all the Casimirs (7)). The determination of the statisti
al equilibriumthen depends only on the energy E, on the two PV levels a1 and a−1 and on the area A.The number of free parameters 
an be further redu
ed by appropriate s
aling. Indeed a
hange in the time unit permits to de�ne the PV levels up to a multipli
ative 
onstant. We
hoose for the sake of simpli
ity :
a1 − a−1

2
= 1 (8)and de�ne the non-dimensional parameter B as :

B ≡
a1 + a−1

2
(9)As dis
ussed previously the mean PV is equal to zero, this imposes that a1A+a−1(1−A) = 0.This means that a1 and a−1 must be of opposite sign and, using (8) and (9), A = (1−B)/2.The distribution of PV levels is therefore fully 
hara
terized by the single asymmetry pa-rameter B, whi
h takes values between -1 and +1. The symmetri
 
ase of two PV pat
hes6



with equal area A = 1/2 
orresponds to B = 0, while the 
ase of a pat
h with small area(but high PV, su
h that 〈q〉 = 0) 
orresponds to B → 1. Note that we 
an restri
t thedis
ussion to B ≥ 1 as the QG system is symmetri
 by a 
hange of sign of the PV.The two PV levels mix due to turbulent dynami
s, and the resulting state is lo
allydes
ribed by the lo
al probability (lo
al area proportion) p(r) to �nd the �rst level at thelo
ation r. The probability to �nd the 
omplementary PV level a−1 is 1−p, and the lo
allyaveraged PV at ea
h point is then
q(r) = a1p(r) + a−1(1 − p(r)) = 2

(

p−
1

2

)

+B (10)where the se
ond relation is obtained by using (8) and (9).Sin
e the pat
h with PV level a1 is mixed but globally 
onserved, the integral of itsdensity p over the domain must be equal to the initial area A,
A ≡

1 −B

2
=

∫

D
p(r)d2r (11)We note that the inertial 
onservation of the Casimir, is taken into a

ount in themi
ros
opi
 des
ription, by the knowledge of the distribution of the PV. However the 
oarse-graining (ma
ros
opi
 des
ription) does not preserves the value of the Casimirs (7): Cf (q) 6=

Cf (q), ex
ept for the �rst moment.The e�e
t of lo
al PV �u
tuations on the stream fun
tion is �ltered out by integrationof equation 2 (ψ = ψ and v = v), the stream fun
tion and the velo
ity �eld are thus fullydetermined by the lo
ally averaged PV q as the solution of
q = −∆ψ +

ψ

R2
−Rh(y) ; ψ periodic (12)

and v = −ez ∧∇ψTherefore the energy is also expressed in terms of the �eld q :
E =

1

2

∫

D

[

(∇ψ)2 +
ψ2

R2

]

d2r =
1

2

∫

D
(q +Rh)ψd2r (13)From now on we forget the q over-line for the lo
ally averaged PV and refer to it as the PV.The 
entral result of the statisti
al me
hani
s of the QG equations (1,2) is that the mostprobable mixing of the potential vorti
ity is given by the maximization of the entropy

S = −

∫

D
[ p(r) ln p(r) + (1 − p(r)) ln(1 − p(r)) ]d2r (14)under the 
onstraints of the global PV distribution (11) and energy (13). It 
an be shownthat the mi
ros
opi
 states satisfying the 
onstraints given by the 
onservation laws areoverwhelmingly 
on
entrated near the Gibbs state. A good justi�
ation of this statement isobtained by the 
onstru
tion of 
onverging sequen
es of approximations of the QG equation7



(1,2), in �nite dimensional ve
tor spa
es, for whi
h a Liouville theorem holds. This isa straightforward translation of the work of Robert (1999) for 2D Euler equations. Thesequen
e of su
h Liouville measures has then the desired 
on
entration properties as (1,2)enters in the 
ontext 
onsidered in Mi
hel & Robert (1994 b). More re
ently; Ellis (1999)also dis
ussed su
h large deviation results together with other systems.On
e the most probable state is found, we suppose that it des
ribes observed �ows.The ergodi
ity of the system would be su�
ient to justify this. But, as in usual statisti-
al me
hani
s (for instan
e for gas) this ergodi
 property of a system is very unlikely tobe proven for any generi
 system and 
ould moreover appear to be wrong in general. Aweaker property of mixing is however su�
ient to justify statisti
al me
hani
s due to the
on
entration property stated in the above paragraph. The Gibbs state is most likely tobe rea
hed even if the available mi
ros
opi
 states are not evenly explored. In pra
ti
e, thetheory 
an be validated or invalidated only on the basis of its su

ess or failure to predi
twell 
hara
terized phenomena.2.2.2 The Gibbs statesWe want to des
ribe the equilibrium stru
tures (Gibbs states). We thus seek the maximaof the entropy (14) under the 
onstraints of the area (11) and energy (13):
max {S |withE = E0 andA = (1 −B)/2} (15)In Bou
het and Sommeria (2002), we have studied this variational problem in the limitof small Rossby deformation radius. The study of su
h a variational problem is rendereddi�
ult by the two 
onstraints. In the following, we will argue that for the present 
ase,this te
hni
al di�
ulty may be 
ir
umvented. We will then proposed a more straightforwardderivation of Bou
het and Sommeria (2002) results. The main ideas are however the same.For this, let us 
onsider the following variational problem:











min {F [φ] |with A [φ] = −α}

with F =
∫

D dr
[

R2(∇φ)2

2 + fC(φ) −Rφh(y)
]

, A [φ] =
∫

D drφ

and fC (φ) = φ2/2 − ln (cosh (Cφ)) /C

(16)We will 
all F the modi�ed free energy. This variational problem (16) involves only onevariable φ whereas the entropy maximization involves the two variables p (or q) and ψ.Moreover, the energy 
onstraint has been absorbed. It is thus simpler than the maximizationof the entropy with two 
onstraints. Moreover, as we shall see in se
tion 2.3, the pe
uliarshape of the fun
tion fC , with two minima (see �gure 2) will allow us to have a dire
t hinton the stru
ture of the solution.Let us 
ompute the equation veri�ed by the 
riti
al states (the Euler-Lagrange equations)of the modi�ed free energy (16). For this we 
onsider small variations δφ of the fun
tional
F + Rα1A, where −Rα1 is the Lagrange parameter asso
iated to the 
onservation of thearea A. After straightforward 
omputations, we obtain:

−R2∆φ+ φ−Rh(y) = tanh (Cφ) −Rα1 (17)8



Let us suppose that φ minimize this variational problem. Let us then de�ne the streamfun
tion ψ by:
ψ = R2 (φ+ α) (18)If we use the relation (18), setting α − Rα1 = B, we obtain the following equation: q =

−∆ψ + ψ/R2 − Rh(y) = B + tanh
(

C
(

ψ/R2 − α
)). This equation is also the 
riti
alpoint of maximization of the entropy (15) (see Bou
het and Sommeria 2002), where Cαand β = −C/R2 are the Lagrange parameters asso
iated to the 
onservation of the areaand of the energy respe
tively. This equation des
ribes a stationary solution of the Quasi-Geostrophi
 equation. These two equations, for the stream fun
tion ψ, or for φ (17) will be
alled the Gibbs state equations.We have shown that the 
riti
al points of the modi�ed free energy (16) are also 
riti
al pointof the maximization of the entropy under 
onstraint (15). However, this does not prove thatthe minima of the free energy are a
tually maxima of the entropy under the 
onstraints. It
an be proven on a very general ground (see Bou
het and Barré 2003) that any minimumof the free energy F = S/β − E, with the area 
onstraint, is a minima of the entropy withenergy and area 
onstraint (15) (the 
onverse in wrong in general). We 
an thus studythe minimization of the free energy, and verify afterwards that all the possible energy areobtained. This will be the 
ase in our study, in the limit of small Rossby deformationradius. To prove that the minimization, with area 
onstraint, of the free energy and of themodi�ed free energy (16) are equivalent, one 
an either expli
itly study the stability of thesolutions or prove that these two variational problem are equivalent to a third one with twoindependent variables ψ and φ. This point is addressed in in Bou
het (2001), proving thatminima of the modi�ed free energy are maxima of the entropy with 
onstraints.2.3 The limit of small Rossby deformation radius.In this se
tion, we analyze the solution of the minimization of the modi�ed free energy F(16) with the 
onstraint of the area A , in the limit of small deformation radius. We willalways 
onsider C > 1.We have to minimize the fun
tional F =

∫

D dr
[

R2(∇φ)2

2 + fC(φ) −Rφh(y)
] with a
onstraint. The modi�ed free energy redu
es, at lower oder in R, to the minimization of

∫

D dr fC(φ). The a
tual shape of the fun
tion fC will therefore be essential to the dis
ussion.Figure 2 shows this shape when C > 1 (see 16 for the de�nition of fC). This �gure showsthat fC is even and possess two minima that we shall denote ±u. u verify:
u = tanh(Cu). (19)The minimization of this fun
tional, without the topography term, also represents the 
oex-isten
e of two phases in a situation of �rst order phase transitions in 
lassi
al thermodynam-i
s (Van-Der-Walls Cahn-Hilliard model). Let us dis
uss it, for instan
e, for a 
oexisten
ebetween a gas and a liquid phases. The two minimum value of the volume free energy fCthen 
orrespond to the spe
i�
 volume of ea
h phase at equilibrium. The 
onstraint then�xes the respe
tive volume o

upied by the two phases. When �rst order terms are 
onsid-ered, the gradient term des
ribes the transition surfa
e between one phase to the other. A9



surfa
e free energy is then asso
iated to this transition. The minimization of this surfa
efree energy then leads to bubble for equilibrium stru
tures.We note that the mathemati
al study of fun
tional of the type 16, but without thetopography, is 
onsidered in Modi
a (1987). The fun
tional analysis study of this work,prove the hypothesis at the base of this qualitative des
ription: φ will take the two values
±u in subdomains separated by transition area of width s
aling with R. Using this, we willpropose a very intuitive asymptoti
 expansion to des
ribe the solutions (please note thatour problem is two-dimensional, surfa
es will be repla
ed by lines). With respe
t to Modi
awork, our expansion will allows a pre
ise des
ription of the jet, and the generalization ofthe results when a topography term is taken into a

ount. A more 
omplete and satisfyingdes
ription of the whole asymptoti
 expansion, generalizable at all order in R, with math-emati
al justi�
ation of the existen
e of the solutions for the jet equation at all order in R,is provided in Bou
het (2001). Higher order e�e
ts are also dis
ussed in this work. We nowpresent a simpli�ed dis
ussion.For vorti
es, the two phases 
orrespond to two di�erent value of the mixing of the PV.The 
onservation of the volume 
orresponds to the 
onservation of the global PV. As wewill see, the e�e
t of the topography will lead to a balan
e between the minimization ofthe length free energy and of the tenden
y of positive PV to stand around extrema of thetopography, leading to the very 
hara
teristi
 elongated shape of Jovian vorti
es.2.3.1 The zeroth order stream fun
tion outside of the jet: a quies
ent 
oreAt lower order the value of φ will therefore take the two values u and −u in two sub-domains, denoted respe
tively A+ and A−, as illustrated in �gure (3). The 
onstraint
A [φ] =

∫

D drφ = −α, taking A+ +A− = 1, will determine the respe
tive area o

upied bythese two values: 2A± = (1 ∓ α/u). This implies u > α. The a
tual subdomain shape willbe determined by the se
ond order analysis. At this stage the two domains A+ or A− mayalso not be 
onne
ted.The above dis
ussion solve the �rst order problem. Using the link between φ and thestream fun
tion (18), we 
an 
ompute the �rst order values of ψ: ψ± = R2 (±u+ α), the
orresponding value of B: B = −
∫

D dr (tanh (Cφ)) = uA−−uA+ = α, and the 
orrespond-ing value of the energy (13) : 2R2E = ψ2
+A+ + ψ2

−A−. This yields 2E = R2
(

u2 − α2
),where u is a fun
tion of C given by (19).For sake of simpli
ity, we parameterize the state by the two parameters u and B, with

u > B. We thus obtain, at lower order in R :
ψ± = R2(B ± u) (20)
A± =

1

2

(

1 ∓
B

u

) (21)and
E ≃ EA =

R2

2
(u2 −B2) + O (R) (22)10



Therefore all the quantities are determined from the asymmetry parameter B and from theparameter u, related to the energy by (22).In the limit of low energy, u→ |B|, when for instan
e B > 0, then A1 goes to zero, so that
ψ−1 tends to o

upy the whole domain. This state is the most mixed one 
ompatible withthe 
onstraint of a given value of B (or equivalently a given initial pat
h area A = (1−B)/2).In the opposite limit u→ 1, we see from (20) that in the two subdomains q = ψ/R2 tendsto the two initial PV levels a1 = 1 +B and a−1 = −1 +B. Thus, this state is an unmixedstate. It a
hieves the maximum possible energy E = R2

2 (1 − B2) under the 
onstraint ofa given pat
h area. We 
on
lude that the parameter u, or the related 'temperature' C0,
hara
terizes the mixing of these two PV levels. We shall 
all u the segregation parameter,as it quanti�es the segregation of the PV level a1 (or its 
omplementary a−1) between thetwo phases.2.3.2 The strong jet equationAs stated before, the pre
eding analysis does not take into a

ount the interfa
e betweenthe two area A±. At this interfa
e, the value of φ, and thus of the stream fun
tion will
hange rapidly, on a s
ale of order R. It will thus 
orresponds to a strong jet. To analyzethis interfa
e, we 
onsider the Gibbs states equation (17) at the lower order in R. Usingthat the interfa
e develops on a length s
ale of order R, we 
onsider τ the 
oordinate normalto the jet, res
aled by R: ζ = Rτ . In the Lapla
ian term, we negle
t the 
urvature whi
hhas to be taken into a

ount at the �rst order in R. We then obtain:
−
d2φ

dζ2
= tanh (Cφ) − φ = −

d

dφ
fC (φ) (23)The jet equation is thus the equation of a parti
le position φ in a potential −fC (φ). As

fC (φ) has exa
tly two minima: f (±u), there is a unique traje
tory with limit 
onditions
φ→ ±u for ζ → ±∞.This analysis shows that the jet s
ales typi
ally as the Rossby deformation radius. More-over, in dimensionless units, the jet width and the jet maximum velo
ity are given by Rl (u)and Rvmax (u) where l and vmax are fun
tions of u that may be numeri
ally tabulated fromthe resolution of the previous di�erential equation. These relations allow to 
ompute u fromthe jet properties.2.3.3 The �rst order stream fun
tion outside of the jet: the weak shear �owTo determine the �rst order stream fun
tion outside of the jet, we 
onsider the Gibbs stateequation (17) by negle
ting the Lapla
ian term. We thus obtain the algebrai
 equation:
φ − Rh(y) = tanh(Cφ) − Rα1. Using that φ = ±u at zero order, we 
al
ulate the �rstorder solution to this equation. Using the results (19), this yields φ = ±u + Rδφ = ±u +
R (h(y) + α1) /

(

1 − C(1 − u2)
). Using the link between φ and the stream fun
tion (18) andthe link between the stream fun
tion and the velo
ity (3), we obtain:v = R3

(

dh/dy

1 −C(1 − u2)

) ex (24)11



This relates the zonal �ow outside of the jets, the topography, and the parameter u (deter-mined from the total energy or from the jet properties).2.3.4 Determination of the vortex shape: the typi
al elongated shapeUntil now the jet shape has not been determined. To determine it we 
an alternatively
onsider the jet equation at �rst order or 
ompute the �rst order modi�ed free energy F(16). We make this se
ond 
hoi
e as it will enlightened the interpretation of the solution.The zero order modi�ed free energy F0 
ould be 
omputed from the value of φ = ±uoutside of the jet and from the areas A± (21). As it is not of interest for the following dis-
ussion, we don't do it expli
itly. Let us 
all Rδφ the �rst order modi�
ation of φ, 
omputedin the previous se
tion. It gives the 
ontribution R
∫

D dr dfC(±u)δφ to the modi�ed freeenergy, at �rst order. But as by de�nition of u, dfC(±u) = 0, this 
ontribution is null. Letus 
ompute the �rst order 
ontribution of the topography term RH =
∫

D dr (−Rφh(y)).For this we use the zero order result φ = ±u. We then obtain H = H0 − 2u
∫

A+
drh(y),where H0 ≡ u

∫

D drh(y). We note that H0 does not depends on the jet shape. The last
ontribution 
omes from the jet. As the jet s
ales like R, to determine the jet 
ontributionat �rst order in R, we only need the jet determination at zeroth order. It is then easy to
onvin
e oneself that the jet 
ontribution is proportional to its length L: it will have theform Re (u)L where e(u) depends only on the zeroth order jet property, itself des
ribed by(23). One 
an then obtain 2e (u) =
∫ +∞

−∞

(

dφ
dτ

)2
dτ > 0, where φ (τ) is a solution of the jetequation.We thus obtain the �rst order expression for the modi�ed free energy fun
tional:

F = F0 +RH0 +R

(

e (u)L− 2u

∫

A+

h(y)d2r) (25)We 
ompute on the same way the �rst order area A. As the jet solution φ (τ) is even, if we
hoose φ (0) = 0, there will be no jet 
ontribution to A at this order. The only 
ontributionwill 
ome from the �rst order modi�
ation of φ outside of the jet and will therefore beindependent of the jet shape. We thus 
on
lude that, at this order, the minimization ofthe free energy with the area 
onstraint is equivalent to the minimization of (25) with agiven area A+. As the two �rst terms of (25) are 
onstant, this new variational problem isa variational problem on the shape of the jet.On one hand, if the topography is zero at �rst order, we observe that this variationalproblem 
orresponds to the minimization of the jet length for a given area. The jet arethen straight (zonal bands separated by strong jets) or 
ir
ular (
ir
ular vortex) (this is theequivalent of bubbles in �rst order phase transitions). Figure (4) shows the 
orrespondingphase diagram with respe
t to the energy and to the asymmetry parameter B. On theother hand when a topography is present at �rst order, the tenden
y to minimize the jetlength will be 
ounterbalan
ed by the se
ond term: the positive (resp negative) PV tendsto 
on
entrate on extrema (resp minima) of the topography. For a topography h (y), thevorti
es will therefore be elongated in the zonal dire
tion.To give a quantitative des
ription of this fa
t, we 
an obtain from the variational problem12



(25), an equation des
ribing the shape of the vortex. We refer to Bou
het and Sommeria(2002) appendix B, for the a
tual 
omputation. The result is that the radius of 
urvature
r of the 
urve formed by the jet (for instan
e the 
urve of value φ = 0) must verify:

ǫu (h(y) − α1) = e(u)
1

r
(26)where ε = 1 (resp ε = −1) for an anti
y
lone (resp 
y
lone) solution, and α1 is a Lagrangeparameter asso
iated to the 
onservation of the area A. This relates the vortex shape to thetopography and parameter u. As said in the introdu
tion of this se
tion it is also possibleto obtain su
h a result from the �rst order jet equation analysis. α1 then turns out to bethe Lagrange parameter appearing in the Gibbs state equation (17).In appendix A we give equations whi
h permit to numeri
ally 
ompute the vortex shape,from equation 26. Figure 5 
ompares the numeri
ally obtained vortex shapes, with theJovian ones. This shows that the solution to equation (26) have the typi
al elongated shapeof Jovian vorti
es.In appendix A, we also analyti
ally 
ompute the half width of the vorti
es ym. For the
osine topography (4), we obtain :

ym =
1

2
g

(

e (u)

2au

) (27)where g is the inverse of the fun
tion sinx− x cos x for 0 < x < π.From this formula, we see that the maximal latitudinal extension of the vortex solution isgiven by a typi
al length de�ned by the topography. We stress the important point that thismaximal extension ym is independent on the parameter B, or equivalently is independent onthe area of the vortex. Varying this area, the only way for the vortex to extend is to be veryelongated in the zonal dire
tion. This very strong qualitative property of these equilibriumsolutions is in agreement with the observed brown barges, as illustrated by �gure 5.A very strong property for the topography may be obtained from the equation for thejet 
urvature radius. For a vortex solution, latitudinally elongated, like the Jovian ones,the radius of 
urvature of the jet have its minimum value at the latitude of the 
enter ofthe spot. From equation (26) we 
an then dedu
e that the zonal topography must have anextrema under the 
enter of the vortex. Dowling and Ingersoll (1989) have analyzed thevelo
ity �eld of the GRS and of the white oval in the Shallow-Water framework. They havethen obtain the Shallow-Water topography. In Bou
het and Sommeria (2002), we have usedthese result to 
ompute the Quasi-Geostrophi
 topography. Results are reported on �gure6. It 
learly shows extrema of the topography under these two anti
y
lones.If the e�e
t of topography is strong enough: e (u) / (au) ≫ 1, the vortex latitudinalextension will be mu
h smaller than the typi
al variation length of the topography, we 
anthen expand (27) around ym = 0. The maximal extension of the vortex is then only deter-mined by the 
urvature of the topography around its extremum (quadrati
 approximation).Let us parameterize this 
urvature by aqd (h (y) = −εaqd (y − y0)
2 + h (y0), where y0 is thelatitude where h rea
hes its extremum, ε = ±1. For the 
osine topography (4) aqd = 4a.13



The expansion around ym = 0 yields:
ymax =

(

3e(u)

2ǫaqdu

)
1

3

. (28)Using equation (26), we have des
ribed the vortex solutions. As an alternative, zonalsolutions exist, in whi
h two straight jets, �owing respe
tively eastward and westward,surround an area of small 
hange of φ (shear �ow). These jet positions may also be 
har-a
terized by equation (26), when 1/r = 0. Their latitudinal position y± is then determinedby h (y±) = α1. Their respe
tive positions are thus symmetri
 with respe
t to the zonalextrema of the topography. The both type of solutions (jets or vorti
es) are then sele
tedfrom the maximum entropy 
riteria, or equivalently maximizing the values obtained for the�rst order modi�ed free energy (25). This sele
tion depends on the parameters a de�n-ing the topography (4), on the domain aspe
t ratio, and on the two parameters u and α(equivalently the energy E and the asymmetry parameter B). In �gure (7), we show theobtained phase diagram for a given value of a and aspe
t ratio, in the quadrati
 topographyapproximation. It shows a transition from vortex to jet solutions, when the asymmetryparameter is su�
iently 
lose to zero. The aspe
t ratio of the vorti
es is also represented.We refer to Bou
het and Sommeria 2002 for a detailed dis
ussion.In the limit of small Rossby deformation radius, the maxima of entropy for a given PVdistribution and energy, are formed by strong jets, limiting areas 
hara
terized by a weakershear. Straight jets forming bands and zones, or vortex solutions, are both possible. Themaximum entropy prin
iple allows to sele
t the type of solution for given parameters. Thedeep layer shear, the a
tive layer shear, the shape of the vorti
es, and the strength of thejets are linked by the relations (24,28 and 23).In next se
tion (2.4) we dis
uss appli
ation of these results to the Jovian troposphere.2.4 Jovian troposphere appli
ationsIn the previous se
tions, we have dedu
ed all the �ow properties for the statisti
al equi-librium, in the limit of small deformation radius. The qualitative properties of the vortexsolutions are the one of the Great Red Spot : an annular strong jet, forming an oval shapedboundary, surrounding a quies
ent 
ore and admits a zonal shear. To our knowledge, thisis the �rst model having these qualitative properties.In this se
tion, we want to des
ribe the main hypothesis of su
h a model for Jovianvorti
es, and its limitations. We also stress the main physi
al 
onsequen
es of our analysis.In se
tion 2.4.2 we dis
uss the possibility to apply the model of the previous se
tion toquantitatively des
ribe the Great Red Spot. This dis
ussion 
omes ba
k on the hypothesis
on
erning the Potential Vorti
ity initial distribution, and on the limitations of the Quasi-Geostrophi
 model.In the previous analyti
al analysis, we have studied equilibrium stru
tures in the limitof small Rossby deformation radius. We have seen that this hypothesis leads to strong
on
entrates jets. For instan
e, we 
on
lude that the a
tual small value of R, with respe
t14



to the width of the Great Red Spot is responsible for its annular stru
ture. For the 
aseof other vorti
es, su
h as the White Ovals, or the north hemisphere Brown Barges, thesmall radius of deformation this limit is no more valid. In se
tion 3, 4 and 5 numeri
al
omputations of the maxima of entropy under 
onstraints, whi
h reprodu
e the propertiesof these vorti
es. Nevertheless, the analyti
al analysis permits to qualitatively understandthe dependen
e on the parameters of su
h vorti
es, and it has permit us to determine theparameter values for su
h vorti
es.We dis
uss in se
tion 2.4.3 some properties the zonal upper layer shear and the deepshear, obtained in the previous analysis, that should be of interest for Jovian vorti
es. Weexplain why su
h stru
tures are obtained only for very energeti
 �ows. In se
tion 2.4.4 wedis
uss an alternative to the Rhine's s
ale to explain the typi
al vortex width. We 
on
ludethis se
tion by re
alling the main hypothesis of the statisti
al me
hani
s approa
h.2.4.1 The e�e
t of the Potential Vorti
ity distribution on the equilibrium stru
-turesA fundamental issue is the hypothesis we made on the PV distribution. We have supposedan initial PV made of two types of PV. As argued in Bou
het and Sommeria (2002), thisis a natural hypothesis in the 
ontext of a Jovian latitudinal band. Indeed, this 
ouldbe the result of intense in
oming thermal plumes, as re
ently observed by Ingersoll et al(2000): 
onservation of the absolute angular momentum during the radial expansion leadsto a strong de
rease of the lo
al absolute vorti
ity, whi
h 
omes 
lose to zero. This meansthat in the planetary referen
e frame, a lo
al vorti
ity pat
h with value −f0 (the planetaryvorti
ity) is 
reated. The opposite vorti
ity is globally 
reated by the subdu
ting �ow, butit is 
lose to 0 due the mu
h larger area.Of 
ourse, even if a two-level approximation is natural, the real �ne-grained PV distribu-tion is not a
tually known, and an important issue is to study the dependen
e of the resultson su
h a distribution. The knowledge of this distribution is equivalent to the knowledgeof an in�nity of 
onstraints, the Casimirs. This is a major pra
ti
al limitation of su
h astatisti
al me
hani
s approa
h (it is not a theoreti
al one). A natural way to pro
eed is tostudy a-posteriori the 
hoi
e of the distribution, by 
omparison with observed �ows. Thisis the way we have pro
eed, by studying the simplest 
ase, the two PV level 
ase, and by
omparing the results to the Jupiter's stru
tures. In the same spirit, Turkington, Majdaand DiBattista (2001) have proposed to study a �ne-grained PV distribution the 
enteredgamma distribution, in order to study the e�e
t of a skewness to the PV distribution. Theyhave shown the importan
e of an anti
y
loni
 skewness to obtain anti
y
loni
 stru
tures.This is 
onsistent with our 2 PV levels des
ription with B > 0, and with the observedanti
y
loni
 for
ing by in
oming thermal plumes, as dis
ussed above. Using this 
enteredgamma distribution, they have obtained the oval shaped vorti
es and jets. These jets arenot however strong jets, and they do not observe the ring stru
ture of the GRS. Using ourstudy, we may explain why their distribution is not suited to study Jovian vorti
es.The thermal plume for
ing produ
ts PV pat
hes with vorti
ity of order −f0. Theiris no physi
al to expe
t another type of for
ing to produ
e very large values of PV withrespe
t to |f0|. Moreover, the �ne-grained distribution is 
onserved, and the extrema ofthe 
oarse-grained distribution 
an only de
rease. This is thus very natural to 
onsidered a15



PV distribution with 
ompa
t support (values of the PV bounded). This is not the 
ase ofthe 
entered gamma distribution, and this may have several 
onsequen
es. Indeed, it 
anbe proved (Robert and Sommeria 1991) that for any bounded distribution, the equilibriumrelation between the PV and the stream fun
tion q (ψ) must be stri
tly monotoni
 andtends to two maximum q±m (the maximum and the minimum of the PV initial distribu-tion) value for ψ going to ±∞. As a 
onsequen
e q (ψ) must have at least one in�e
tionpoint. The q (ψ) relation then has the shape of a tanh at in�nity, possibly with more thanone in�exion point. This last property is not veri�ed for the 
entered gamma distribution.This is however an essential property, as it is ne
essary 
ondition to prove the existen
e ofthe equilibrium stru
tures for any parameters. Moreover, as shown by the present study,the tanh like shape of q (ψ) (it is equivalent to the existen
e of at least two minima of thearea free-energy 16) is essential to obtain the phase 
oexisten
e and strong jet property ofthe Jovian vorti
es. Moreover, besides these physi
al and theoreti
al arguments, it 
orre-sponds to the observed q (ψ) relation for the GRS, as shown by the �gure 12 of Bou
het andSommeria (2002). We thus 
on
lude that PV distributions with 
ompa
t support should bepreferentially studied to model geophysi
al �ows.The problem of the knowledge of the PV distribution is not, however, a real limitation inthe 
ase of small Rossby deformation radius. We will indeed argue that the main propertyof the equilibrium stru
tures are independent of the exa
t distribution, in this 
ase. Letus suppose that the initial Potential Vorti
ity distribution is made of an in�nite numberof PV levels (not only two as supposed in the previous se
tion), but with bounded PV.The statisti
al equilibrium will then be des
ribed by a monotoni
 fun
tion q(ψ) rea
hingasymptoti
 extrema at the minimum and maximum PV levels (Robert and Sommeria, 1991).In most 
ases su
h a fun
tion will still be represented by a tanh like 
urve (one in�e
tionpoint). We still 
an use the minimization of a free energy similar to (16). The fun
tion
fC determining this free energy will 
orrespond again to the 
oexisten
e of two phases asrepresented in �gure 2. The derivation des
ribed in the previous se
tion is independent ofthe a
tual shape of the fun
tion fC . We will then obtain similar equations for the strongjet (23), surrounding shear (24), 
urvature radius (26) and extremal extension (27). Onlythe u depending fun
tions in these equations, will depend on the a
tual PV distribution.We re
all that, as illustrated by the �gure 12 of Bou
het and Sommeria (2002), a tanh-likeshape is observed for the GRS.We may also imagine a 
urve q(ψ) with more than one in�exion point, instead of asingle one, resulting in the 
oexisten
e of more than two phases. The most 
ommon 
asewill be however a two-phase equilibrium. Likewise in usual thermodynami
s the 
oexisten
eof more than two solutal phases is unlikely, even when many 
hemi
als (equivalent to PVlevels) are mixed. Nevertheless, we still 
an use the minimization of a free energy similar to(16). The fun
tion fC determining this free energy will then 
orrespond to the 
oexisten
eof three (or more) phases. Solutions 
an then be an anti
y
lone on a topography bump
oexisting with a 
y
lone on a topography minima, both surrounded by a mean PV area.The jet stru
ture of ea
h of these vorti
es will then always be des
ribed by equations similarto the jet equation (23), 
urvature radius equation (26) and extremal extension equation(27).We thus 
on
lude that the qualitative stru
ture of the statisti
al equilibrium is indepen-16



dent of the a
tual PV distribution. This result is valid only when the Rossby deformationradius is small.2.4.2 A quantitative model for the Great Red SpotThe relations obtained in the previous se
tion between the topography, the maximum jetvelo
ity, the jet width, the surrounding shear, and the vortex shape have been written indimensional form, in Bou
het and Sommeria (2002). We have then shown that the a
tualobserved values of these physi
al properties, for the Great Red Spot, 
an be mat
hed withthis model. This then allowed the determination of the Rossby deformation radius andof the topography 
urvature under the spot. This proves that a model of the GRS, by astatisti
al equilibria of the Quasi-Geostrophi
 model, with a quadrati
 topography, with aninitial 
ondition made of two values of the initial potential vorti
ity, 
an �t observationswith pre
ision.We dis
uss further these hypothesis. The �rst one 
on
erns the topography. We haveshown that for any topography, the essential point is that it has an extremum under the spot.This is 
on�rmed by observations (see �gure 6). The hypothesis of a quadrati
 topographyis then natural. In this arti
le, we have studied the e�e
t of a 
osine topography. The mainresults are the same. However the a
tual value of the width of the vortex may be 
hanged.A
tually, we will numeri
ally 
ompute the velo
ity �eld of the GRS for a 
osine topographyin se
tion 4, and the a
tual values of the Rossby deformation radius and of the topography
urvature will slightly 
hange.Con
erning the potential vorti
ity distribution, we have argued in se
tion 2.4.1 that thequalitative des
ription does not depends on the a
tual initial PV distribution. However,the quantitative des
ription, for instan
e of the shape of the vortex, depends on it (viathe u depending fun
tions). For instan
e, we think that a model with another initial PVdistribution, may also allow to �t observations with pre
ision, leading possibly to slightlydi�erent values for the Rossby deformation radius or for the a
tual topography 
urvature.The validity of the Quasi-Geostrophi
 model, and of the des
ription of the Jovian tropo-sphere by a single layer, are limitations of our model. The validity of the Quasi-Geostrophi
model, for the GRS des
ription, has been dis
ussed by Dowling and Ingersoll (1989) andit was found reasonably good as a �rst approa
h. It is not fully a

urate, for instan
e, themaximum value of the Rossby number has been evaluated to be 0.36 (near the jet maxi-mum 
urvature) (Mit
hell and 
ollaborators, 1981). We note that an analysis of equilibriumstates in the Shallow-Water model leads essentially to the same stru
ture (Bou
het, Chava-nis and Sommeria, 2003), as the one presented in the present work, with 
orre
tions due toageostrophy.2.4.3 Energy, zonal shear and topographyWe have proven in se
tion 2.3.4, that vorti
es are lo
ated on topography extrema. Thishas been veri�ed using the GRS and White Oval data (see �gure 6). In se
tion 2.4.1, wehave argued that, for any PV distribution, the relation linking the radius of 
urvature ofthe jet with the topography will be again (26), where only the u depending terms will be17




hanged. Our 
on
lusion on the topography extrema is thus independent on the a
tual PVdistribution.In the following, we stress some important 
onsequen
es of our analyti
al analysis, 
on-
erning the shear �ow, whi
h are also independent on the a
tual PV distribution. Equa-tion (24) des
ribes the shear outside of the jets. Using (19), it 
an easily proven that
1 − C(1 − u2) < 1. Thus the shear in the a
tive layer σ = dvx/dy is larger than the shearin the deep layer : σd = R3d2h/dy2. Qualitatively, this may be seen as a 
onsequen
e ofthe fa
t that positive Potential Vorti
ity will sit predominantly on topography bumps.Let us give a justi�
ation on a more general ground, in order to argue that this resultis independent on the PV distribution. . We �rst prove that any statisti
al equilibrium,not zonal (a vortex for instan
e), must have an energy E > 0. Let us 
onsider a statisti
alequilibrium for any PV distribution. On one hand, it 
an be proven on a general ground, thatfor positive temperatures states β > 0, only one solution to the equilibrium state equationexist (see for instan
e Mi
hel et Robert 1994a). On the other hand, in a periodi
 geometry,with topography, or in a 
hannel geometry, it 
an be proven easily that a zonal solutionexists (following Mi
hel and Robert proof of the existen
e of the equilibrium, but restri
tingthe study to a one dimensional equation). This proves that positive temperature states arezonal. Moreover, when only one state is possible in su
h maximization of entropy with agiven energy, it 
an be proven that the inverse temperature β is a de
reasing fun
tion of theEnergy E (or equivalently that the equilibrium entropy is 
on
ave, see Bou
het and Barré(2003) for a justi�
ation). From this we dedu
e that all states with β > 0 have an energylower than the state with β = 0. The only state with β = 0 is a 
ompletely mixed state:
q = 0, thus ψ (y) = R3h (y), and E = 0. We thus 
on
lude that all equilibrium stru
tureswith energy E < 0 are zonal. Conversely, this proves that any statisti
al equilibrium, notzonal (a vortex for instan
e), must have an energy E > 0. We re
all that we have supposed
C = −R2β > 1, in the analysis of equilibrium states (se
tion 2.3). We note that thisreasoning may be easily applied to any stable stationary state of the Quasi-geostrophi
equation, with topography, in a 
hannel or doubly-periodi
 geometry (by 
onsidering thefun
tional whi
h is minimized in the derivation of the �rst Arnold stability theorem (Arnold1961)). We also note that this result is independent o� any hypothesis on the PV distributionand on the value of R. When the PV distribution is known a-priori, the 
riti
al value βc of
β (resp the Energy) below (resp above) whi
h non zonal solutions may exist, may be provento be stri
tly positive. For instan
e, for the two-level distribution we have 
onsidered, it
an be proven that βC > 1/R2 +λ1, where λ1is the �rst eigenvalue of the Lapla
ian, for thegeometry 
onsidered. 3.We end this dis
ussion, by qualitatively linking this result, with the strength of theshear. We �rst note that in the Quasi-Geostrophi
 model, PV intera
ts mainly with PVvalues at a distant do lower than a typi
al length of order R. This allows to 
on
lude thatnegative PV pat
hes on topography trough lower the Energy (and 
onversely for positive PVpat
hes). As a 
onsequen
e, in any state with E > 0, positive PV must dominate negativePV on topography bumps. The shear in the upper layer is thus larger than in the lower layer.We have proven that stable stationary �ows, not zonal (a vortex for instan
e), must have3This 
riterion is linked with the hypothesis of the se
ond Arnold stability theorem.18



an energy E > 0. This has a strong pra
ti
al impli
ation : to numeri
ally obtain vorti
eslike the Jovian ones, with small values of R, one has to start with an initial 
onditions wherepositive PV dominate negative PV on topography bumps.2.4.4 An alternative to the Rhines' s
aleFor a geostrophi
 turbulen
e with a linear β e�e
t (h (y) = βy), it has been argued thattypi
al length for the vortex size should be Lβ = π
√

U/β (the Rhines' s
ale, Rhines andYoung 1982), where U is a typi
al �ow velo
ity. On the 
ontrary, when the value of theRossby deformation radius is small, for a stri
tly linear beta-e�e
t, the statisti
al equilibriumvortex solution are 
ir
ular, with jet width s
aling with, but without limit to their size, dueto the beta-e�e
t. The beta-e�e
t is only responsible for a 
onstant westward velo
ity driftsu
h as to 
ompensate the beta-e�e
t (see Bou
het and Sommeria 2002).When a more 
omplex topography is taken into a

ount (not linear), our study in se
tion2.3 has shown that the vortex width has a maximal value. The maximal latitudinal extensionfor a zonal topography is for instan
e given by (27) for a 
osine topography or by (28) fora quadrati
 topography. We thus dedu
e from this analysis that a typi
al vortex widthis related to the topography 
urvature, and not to the topography �rst-derivative, as inthe Rhines' s
ale 
ase. The topography 
urvature is itself dire
tly related to the shearsurrounding the vortex (24) or to the deep shear. We obtain the following dimensionaltypi
al latitudinal extension for the vortex Lσ =
(

R2U/σd

)1/3, where U is the typi
al strongjet velo
ity, and σd is the deep shear, of the same order as the shear surrounding the vortexor. If we moreover 
onsider that the typi
al potential vorti
ity is of order |f0|, the planetaryvorti
ity, and that the jet width s
ale with R, we obtain U ∝ R |f0|. This gives an otherexpression of the typi
al latitudinal extension in terms of the Rossby deformation radiusand on the shear : Lσ = R (|f0| /σd)
1/3. As R, |f0| and σd are independent on the initial
onditions (PV distribution and energy), the typi
al latitudinal extension is independenton the for
ing. We re
all that the exa
t value of the latitudinal extension, for a givenPV distribution and energy, for a given topography, may be 
omputed from the small Rexpansion (27 or28), or numeri
ally for larger values of R.2.5 Relaxation equations : a small s
ale turbulen
e parameterizationAs dis
ussed in the beginning of this se
tion, the equilibrium statisti
al me
hani
s des
ribesthe states of optimum Potential Vorti
ity mixing, for a given energy and PV distribution.The dynami
s of the Quasi-Geostrophi
 equations (1) should be responsible for su
h amixing. From a numeri
al point of view, the 
orre
t parameterization of this mixing is a
ru
ial issue for the modeling of geophysi
al �ows. A

ordingly to the ideas of statisti
alme
hani
s, Robert et Sommeria (1992) have proposed a parameterization of turbulen
e,for two-dimensional or Quasi-Geostrophi
 �ows, based on a Maximum Entropy Produ
tionPrin
iple (MEPP). The 
orresponding equations have the property to maximize the entropyprodu
tion while 
onserving all the dynami
al invariants. As they 
onverge, for in�nite time,towards entropy maxima, they have been 
alled relaxation equations. Therefore, they 
analso be used to numeri
ally 
ompute maxima of the entropy for given PV distribution andenergy. 19



Let us present these equations in the 
ontext of the Quasi-Geostrophi
 dynami
s. In thefollowing se
tions we will use them for dynami
al simulations. We will show their interest,
ompared with other parameterizations, to perform �ow simulation (se
tion 3.3). We alsouse them to 
ompute equilibrium stru
tures that we will 
ompare to the a
tual vorti
es ofJupiter troposphere (se
tions 3, 4 and 5).Relaxation equation may 
onsider any potential vorti
ity distribution (Robert and Som-meria 1992, Robert et Rosier 1996). However, for sake of simpli
ity, we 
onsider a situationfor whi
h the initial 
ondition is 
omposed only of PV pat
hes of vorti
ity a1 and a−1. This
hoi
e is in a

ordan
e with the equilibrium stru
ture analyses, presented in se
tions 2.2.2and 2.3 We have argue in se
tion 2.4.1 that the qualitative properties of the equilibriumstru
tures are not a�e
ted by the PV distribution, for su�
iently small Rossby deforma-tion radius. On
e this simpli�
ation is assumed, the relaxation equations are (Robert andSommeria 1992):
∂ω

∂t
+ u.∇ω = ∇. (ν [∇ω + β (a−1 − ω) (ω − a1)∇ψ]) (29)with
β = −

∫

D dr ν∇ω.∇ψ
∫

D dr ν (a−1 − ω) (ω − a1) (∇ψ)2
(30)where β is the Lagrange parameter asso
iated to energy 
onservation and ν is a turbulentvis
osity. The �rst term of the right hand side of equation (29) is a usual di�usion. These
ond term on the right hand side of (29) is a drift term whi
h a
ts to maintain a 
onstantenergy. A

ordingly to the MEPP hypothesis, it is derived su
h that the entropy produ
tionis optimal.In se
tion (3.3), we will 
onsider numeri
al simulation using only a vis
osity, this is theusual eddy di�usivity hypothesis. We will then show that su
h a parameterization is unableto reprodu
e even the qualitative properties of the �ow, for very long time simulations. Inboth 
ases, relaxation equations and eddy vis
osity, we will use the minimal value of ν,
ompatible with a given resolution. We note that there is no theoreti
al ground to assertthat the 
oarse-grained dynami
s should be su
h to maximize the entropy produ
tion. Therelaxation equations (29) are however likely to better des
ribe the dynami
s be
ause, on onehand, they respe
t the 
onservation laws of the inertial dynami
s, and in the other hand,they take into a

ount the tenden
y towards mixing of the system.We note that a numeri
al algorithm to 
ompute maxima of entropy under 
onstraints,whi
h does not use relaxation equations, is des
ribed in Turkington and Whitaker (1996).3 White Ovals formation from randomly distributed vorti
es.In this se
tion and in the following ones, we use the relaxation equations, presented inse
tion 2.5, to simulate an inertial dynami
s and/or to 
ompute the statisti
al equilibriumof the Quasi-Geostrophi
 model.As a �rst experiment, we show in se
tion 3.1, how potential vorti
ity pat
hes withrandom positions, lead to the formation of several vorti
es, whi
h progressively merge until20



forming a unique stru
ture. Due to the presen
e of a topography, these stru
tures have anelongated shape. The parameters have been 
hosen to make an analogy with the Jupiter'sWhite Oval �ow.In se
tion 3.3 we 
ompare su
h a simulation with a Dire
t Numeri
al Simulation (usualvis
osity).3.1 Anti
y
lones formation from randomly distributed vorti
esLet us 
onsider the evolution of an initial 
ondition formed by anti
y
loni
 potential vorti
itypat
hes, randomly distributed (�gure 8). The resolution of this 
omputation is 512x128.Parameters are R = 0.2, a = 0.4, a1 = 4.2, a−1 = −1. We use a di�usivity ν = 1.5 10−4.The time step is ∆t = 6.13 10−3.Figures 8 and 9 illustrate the evolution of this initial 
ondition, modeled by relaxationequations. They show the 
oales
en
e of the vorti
es, progressively forming several an-ti
y
lones, in a latitudinal band limited by topography. Any of these anti
y
lones is then
entered on the topography maxima, lo
ated in the 
enter of the pi
ture. These anti
y
lonesform lo
al statisti
al equilibrium, as illustrated the s
atter-plots of the potential vorti
ityversus the stream fun
tion, on �gure 9.Time lapses between pi
tures of �gure 8 
orrespond to few turnover times (16 from�rst to last). The lo
al organization is thus very rapid. On the 
ontrary the time lapsebetween the two last pi
tures of �gure 9 is approximately of 50 turnover times. During thistime, the two anti
y
lone have progressively a
hieved a lo
al equilibrium as illustrated bythe sharpening of the two 
urves on the s
atter plot of potential vorti
ity versus streamfun
tion. Their respe
tive position is however quite un
hanged.Let us re
all that the deformation radius value is R = 0.2, whi
h is very small 
omparedto the latitudinal band length : 4π. As the intera
tion between the two vorti
es de
reaseexponentially for values greater than R, it is in this 
ase very small. This explains the verylong time needed for the system to a
hieve the exa
t equilibrium stru
ture. After a mu
hgreater time lapse (approximately 300 turnover times) the two anti
y
lones �nally 
oales
e,to form a unique stru
ture, visible on �gure 10.3.2 The White Ovals evolution and stru
tureThe three White Ovals at 33o S, 
alled BC, DE and FA, where the larger anti
y
lones onJupiter, after the GRS. They formed when an anti
y
loni
 zone broke into three parts in1939-40 (see Ingersoll and 
ollaborators 2002 for referen
es). In 1998, the anti
y
lones BCand DE merge into a larger one. This new oval then merge with the oval BA in 2002.This behavior is predi
ted by the statisti
al me
hani
s. The qui
k organization intooval shaped vorti
es, followed by a very long time before the three ovals a
tually merge ina single stru
ture is very similar to the one des
ribed in the previous 
omputation (�gures8, 9 and 10). In this last 
ase, these vortex have emerged from random initial pat
hes.However as illustrated in se
tion 13, the same stru
tures 
ould have been obtained from thedestabilization of jets.The equilibrium velo
ity �eld (�gure 10) then shows a stru
ture very similar to the white21



ovals ones: the anti
y
lone is too small for the limit of small Rossby radius R to apply. As a
onsequen
e we do not observe a quies
ent inner region as is the 
ase for the Great Red Spot.The anti
y
lone has nevertheless an oval shape, linked to the deep �ow shear and to theupper layer shear. We have not given dimensional values for the quantitative 
hara
teristi
sof this equilibrium stru
ture, nor tried to mat
h them by 
hoosing appropriate values of Rand of the topography 
urvature. This may however be done, using an iterative s
heme, aswe will des
ribe in the following se
tion, for the Great Red Spot.Su
h a work would be of spe
ial interest, in order to try to use the observation datafrom the observation of the merger of these anti
y
lones (see for instan
e San
hez-Lavegaand 
ollaborators 2000). One 
ould �rst put some 
onstraint on the physi
al parametersby using the a
tual properties of the spot before merging, and verify the large anti
y
loneafter merging is 
ompatible with statisti
al me
hani
s predi
tions.3.3 Comparison of relaxation equations with usual eddy-di�usivity pa-rameterizationFigure 11 shows vorti
ity �elds obtained after 25 turnover times, either using eddy-di�usivityor the relaxation equations, using in both 
ases the same resolution 512x128. Even if thetime elapsed from the beginning of the 
omputation is very small 
ompared to the globalorganization time, this �gure shows important qualitative di�eren
es between these twomodelings. The vorti
ity pat
hes are far less 
ompa
t for eddy-di�usivity type 
omputations.Moreover the de
rease of energy is already important for this last 
omputation. Thesedi�eren
es are 
ru
ial for long time dynami
s : the eddy-di�usivity type 
omputation indeedrapidly leads to a 
omplete energy dissipation. As a 
onsequen
e, a numeri
al experiment,with an eddy di�usivity, showing the formation of anti
y
lones from random initial vorti
itypat
hes and their vary slow evolution towards a �nal unique vortex (as show on �gures 8and 9) is probably infeasible.As explained above, this is mainly due to the small value of the deformation radius R,for whi
h the dynami
al organization is very slow. This illustrates very 
learly the interestof the relaxation equations in su
h a 
ontext.4 The Great Red Spot of Jupiter.4.1 A model of the Great Red SpotLet us propose a model of the Great Red Spot of Jupiter, as a statisti
al equilibrium stru
-ture. We model the latitudinal band of the Great Red Spot as a periodi
 domain of lati-tudinal extension L⋆ = 18800 km and longitudinal extension 4X18 800 km, with a zonallyperiodi
 topography of the same periodi
ity. As explain in se
tion 2.4.3, the organizationof the stru
ture is essentially lo
al and determined by the topography under the vortex.Thus the arti�
ial boundary 
onditions used here, are of no importan
e (due to the smallvalue of R, the equilibrium stru
ture for a wider and more elongated latitudinal band willbe only slightly di�erent from the one 
omputed here). We use the following parameters: R⋆ = 1460 km, a⋆ = 1.3 10−16km−3s−1, a⋆
1 − a⋆

−1 = 2.14 10−4s−1 (the 
orrespondingdimensionless parameters are R = 0.234, a = 0.117, B = 0.87, u = 0.99). We numeri
ally22




ompute the equilibrium stru
ture 
orresponding to these parameters, using the relaxationequations des
ribed in se
tion 2.5.Figure 1 shows the potential vorti
ity and the velo
ity �eld for the equilibrium stru
ture,as well as the velo
ity �eld obtain from Voyager data analysis (from Dowling and Ingersoll1998). Let us note the very good qualitative agreement between the two velo
ity �elds.We have numeri
ally 
omputed the parameters of this vortex : the maximum jet velo
ityis v⋆
max = 120ms−1, the jet width (length between the two points where the jet velo
ityis half of the maximum jet velo
ity) is l⋆x = 3600 km for the jet at mid latitude (�owingnorthward or southward) and l⋆y = 2900 km for the extremal latitude jet (�owing eastwardor westward), the maximum latitudinal extension (length from the 
enter of the vortex tothe point northward, where the jet a
hieves its maximal speed) is y⋆

m = 3800 km, the aspe
tratio of the spot (the length is measured using maximum jet velo
ity point, as for y⋆
m) is

δ = 1.8, and the surrounding shear is σ⋆ = 0.5 10−5 s−1All these quantities are 
ompatible with the observed ones (data from Mit
hell and all1981 analysis), ex
ept for the surrounding shear whose real value is σ⋆ = 1.5 10−5 s−1 . Wethus 
on
lude that the statisti
al equilibrium of the 1-1/2 Quasi-Geostrophi
 model, witha 
osine topography and with a 2 level PV distribution, allows to model quantitatively allthe main 
hara
teristi
s of the Great Red Spot, ex
ept for a fa
tor 3 for the shear.A natural question is whether this result 
ould be improved in the 
ontext of the 1-1/2Quasi-Geostrophi
 model. To obtain the above parameters, we have used the indi
ationsgiven by the relations (23,24,27) and the 
omputation of the maximum jet velo
ity, in orderto design an iterative s
heme to �nd the parameter best suited to the modeling of the GreatRed Spot. As this s
heme 
onverged, we do not think that it 
ould be better with thesame topography and the same PV levels distributions. An analysis of equations des
ribingthe vortex shape (26,27) either for a quadrati
 or for a 
osine topography, shows that aquadrati
 topography should give better results. This is 
onsistent with the study of thislast 
ase in Bou
het and Sommeria (2002). Con
erning the 
hoi
e of the PV distribution,we have argued in se
tion 2.4.1 that a di�erent PV distribution, 
ompatible with a q − ψwith a 
on
avity 
hange, would give similar results with di�erent values for the u dependingfun
tions in the relations (23,24,27) . This may be a way of improving these results.However, our feeling is that su
h a sear
h for improvement is of little interest, giventhat the 1-1/2 Quasi-Geostrophi
 is a 
rude model of the troposphere of Jupiter. Firstly,the geostrophi
 balan
ed is not well veri�ed in the area where the 
urvature of the jet isminimal, and the layer height variations are not very small 
ompared to the layer height. A1-1/2 Shallow-Water model would improve the results, and be more 
onvenient to make avery pre
ise study. Se
ondly, a 1-1/2 layer is 
ertainly a 
rude approximation of the Joviantroposphere.4.2 Validity of the lower order approximationThe model we propose assumes several hypothesis (PV distribution, optimal mixing) andapproximations (for instan
e the Quasi-Geostrophi
 model 1-1/2 model). This numeri
al
omputation allows to test the approximation made when des
ribing the solution by its lower23



order des
ription when R → 0. For instan
e, for the width of the jet, we have obtained
l⋆x = 5100 km and l⋆y = 4100 km. The jet width thus depends on latitude (this is visible onboth the 
omputed and the observation velo
ity �elds, �gure 1) and is larger than the �rstorder predi
tion. This is a 
onsequen
e of the shear (for l⋆y) and of the strong 
urvature ofthe jet near the extrema of the topography (for l⋆x). There, the 
urvature r is only 3 timesthe Rossby deformation radius R, whi
h limits the validity of the approximation R → 0.We note that the latitudinal dependen
e is present at the following order of the asymptoti
expansion (see Bou
het 2001, part 1, se
tion 4.3).We also note that the 
urvature at mid latitude is greater for the numeri
ally 
omputedequilibrium than the analyti
al predi
tion. This is also due to the small R approximation.This 
urvature di�eren
e in this area is important, however this has only a limited e�e
t onthe maximal latitudinal extension of the spot. Indeed, the value ym analyti
ally predi
tedis ym = 4300 km, whereas the numeri
ally 
omputed one is ym = 3800 km. This explainwhy the shape of the spot is 
orre
tly predi
ted by the analyti
al relation, in spite of thelimitations of the lower order approximation. The 
urvature of the real jet is also smallerthan the one of the numeri
ally 
omputed one. This may be due to the dis
repan
ies of theQuasi-Geostrophi
 approximation in this area (
y
lostrophi
 balan
e).We thus 
on
lude that the lower order of the small Rossby deformation radius is validonly as a �rst approximation, for a value of R 
orresponding to the GRS (let say 30% forthe des
ribed variables). However, we note that the qualitative agreement is very good. Inparti
ular, the predi
tion of the latitudinal maximal extension, and of the vortex shapesis good. Whereas the numeri
al values are not exa
t, this analysis has permitted us tounderstand the role of the various parameters, in order to �nd parameters suited to modelthe GRS, the White Ovals (se
tion 3) or the Brown Barges (se
tion 5).5 Thermodynami
 phase transition and strong jet stability.Be
ause of the very di�erent typi
al time s
ales, for for
ing and dissipation in on hand,and for inertial organization in the other hand, Jupiter's features appear stationary. Forinstan
e, the Great Red Spot is observed from more than three 
enturies. Whereas itslength seems to have 
hange during this time, its global stru
ture is likely to be the same.Jovian feature should therefore be stationary for the inertial dynami
s.A large amount of work has dealt with the stability of quasi-two dimensional �ows.Linear stability of jets has been for instan
e addressed by Rayleigh, Kuo, Charley and Stern(see Pedlosky (1987) for a dis
ussion for geophysi
al �ows). Nonlinear stability results have�rst be obtained by Arnold (1966) for the Euler equation. The �ows are then proven tobe stable be
ause they minimize a fun
tional, built on the Casimirs and on the energy,invariant under the dynami
s (formal stability). A further estimate on this fun
tionalallows to prove that a perturbation around the stationary state remains bounded underthe nonlinear dynami
s (non-linear stability). A generalization of these ideas for other�ow equations have then been studied (see for instan
e Holm and 
ollaborators (1985) orYongming, Mu and Sheperd (1996) for geophysi
al �ows). In the 
ase of zonal solutions, forthe Quasi-Geostrophi
 equation or for the Euler equation, the linear stability results 
an beretrieve from the nonlinear stability results. 24



These stability results are only su�
ient 
ondition for stability. Lots of geophysi
al�ows, essentially the most energeti
 ones, are indeed stable whereas they do not verify thehypothesis of these theorems. For the Jovian atmosphere, this is for instan
e reported in thereview of Dowling (1995). This has led to some interrogation on the stability of these �ows.These questions have been emphasized also by the di�
ulty to obtain numeri
al model ofsu
h �ows, having strong jets, typi
al of the Jovian troposphere.The statisti
al me
hani
s of the potential vorti
ity o�ers a way to understand this sta-bility. The link between the Arnold's stability theorems and the statisti
al equilibrium hasbeen noted for instan
e by Robert and Sommeria (1991) (see also Bou
het (2001)). In su
hworks the equivalent of the Arnold's theorem hypothesis is that only one solution exist fora given inverse temperature β. This has been proven for states with β > βc (or equivalentlyfor energy su�
iently small E < Ec, as proven in se
tion 2.4.3). For smaller β (largerenergy E > Ec), the stability of the �ow was qualitatively understood by the impossibilityof the potential vorti
ity to mix further. A 
lear formalization of this statement has beenproposed re
ently by Ellis, Haven and Turkington (2002), where an augmented fun
tional,taking into a

ount of the Energy 
onservation, have been used to generalize the Arnold'sstability theorem. The result of this work is that any entropy maxima under 
onstraints,ex
ept the ones 
lose to a phase transition point, is stable. As no norm is spe
i�ed inthis work, and the a-priori estimate ne
essary to prove a nonlinear stability theorem is notprovided, these results are the proof of formal stability (see Holm and 
ollaborators (1985)for a pre
ise de�nition of formal stability) of su
h �ows. This is however a de
isive steptowards the understanding of the stability.A 
ru
ial hypothesis needed to use these results is that the se
ond variations of theaugmented fun
tional used by Ellis, Haven and Turkington (2002), be de�nite positive. InEllis, Haven and Turkington (2002), this point is not analyzed in details, and 
ited as ate
hni
al problem. Unfortunately, this is not right in most of the situations. As soon as theequations have some symmetry, and the �ow does not respe
t this symmetry, the se
ondvariations 
an not be de�nite positive. At least one dire
tion must have a zero eigenvalue.For instan
e, in our 
ase, the vortex solutions break the zonal symmetry. A small pertur-bation of su
h a vortex, 
an lead to the translation of the vortex by a �nite distan
e. Forthis reason, a nonlinear stability result is not possible. However, the situation is physi
allyvery 
lear: a perturbation 
an only lead to �ows 
lose to the initial ones, up to an arbitrarytranslation. A 
lear formalization of these ideas remains to be done. Anyway, the resultsof Ellis, Haven and Turkington (2002) are a de
isive step towards the understanding of thestability of su
h �ows.Statisti
al equilibrium are thus stable, as soon as they are not too 
lose to a phasetransition. On a pra
ti
al point of view, one thus have to study the phase diagram of theequilibrium states. For instan
e phase diagrams on �gure 4 and 7 represent stable stationary�ows, similar to Jovian vorti
es and jets. Please note that some other stable states mayexist for the same energy and parameter B (metastable states, for instan
e).As illustrated on �gure 7, depending on the parameters, strong jets or vortex solutionsmay be stable, depending on the values of the parameters E and B. In order to illustratethese stability properties, we 
onsider the evolution of an initial 
ondition 
omposed of ananti
y
loni
 PV band, standing on the maximum of the topography. The 
orresponding �ow25



is made of two strong zonal jets �owing eastward and westward respe
tively. The PV has awidth l. We strongly perturb this initial 
ondition by 
entering the PV band on a latitude
yc varying with the longitude: ycentre = π/2 + l/4 sin x+ l/12 sin(3π/2 + π/6). Figures 12and 13 show this initial 
ondition, for l = 1.09 and l = 0.31 respe
tively. The values ofthe topography parameter (see 4) and of the Rossby deformation radius are a = 0.6 and
R = 0.25 respe
tively.The parameters for the numeri
al simulation are ν = 5.93 10−5 (resolution 512X128),
orresponding to a Reynolds number (based on the Rossby deformation radius) of Re =
(Rvmax) /ν equal to 820. The numeri
al time step is ∆t = 0.012.Figure 12 illustrates the evolution for the �rst initial 
onditions. The �rst pi
ture showthat the two jets, are destabilized by this strong perturbation. The jet however stabilizea

ordingly to the phase diagram on �gure 7 (the value of B is then 
lose to zero). Wenote that this initial 
ondition does not verify the non-linear or linear stability theoremhypothesis. The last of these pi
tures show slight os
illations of the PV level lines, that weinterpret as Rossby waves, guided by the jet. The relaxation of these waves is very slow.Figure 13 illustrates the evolution, for the se
ond initial 
ondition. As the area of the PVband is then small, the value of B is no more 
lose to 0. A

ordingly to the phase diagramon �gure 7, the two jet destabilize and form anti
y
lones. The statisti
al equilibrium is thenan elongated anti
y
lone 
entered, on the topography extrema. The �nal state is shown on�gure 14. This solution will also be used in next se
tion to model one of the 
y
loni
 BrownBarges of the Jupiter's north hemisphere.6 The north-hemisphere Brown BargesBrown Barges are brown oval spots (see �gure 5), lo
ated at 14o N on the Jupiter's tropo-sphere. On the 
ontrary to most of Jovian features, these vorti
es are 
y
lones. A studyof these spot velo
ity �eld is reported in Hatzes and 
ollaborators (1981). In this se
tion,we model this spot with the statisti
al equilibrium vortex obtained in the previous se
tion,from the destabilization of a strong jet (�gure 13). We 
ompare the velo
ity �eld of thisstatisti
al equilibrium stru
ture with the data analysis of Hatzes and 
ollaborators (1981).The equilibrium PV �eld obtained from this numeri
al simulation is represented on �gure14. This �gure a
tually represents an anti
y
lone. However, be
ause of the symmetries ofthe Quasi-Geostrophi
 model, a symmetri
 
y
loni
 stru
ture may be obtained. The veryelongated shape, with a maximum latitudinal extension may be 
ompared to the image ofone of the real Brown Barges (see �gure 5). We also represent the velo
ity in a latitudinaland meridional se
tions of the spot, both for the statisti
al equilibrium and for the dataanalysis of Hatzes and 
ollaborators (1981). One may observe that the velo
ity stru
ture isthe same. The northward velo
ity, along a meridional se
tion, shows a strong jet stru
tureat the front edge of the spot, whereas it is null inside of the spot. On the 
ontrary, theeastward velo
ity along a zonal se
tion, does not show the jet stru
ture : it is essential ashear �ow. The 
omparison of these plots shows that statisti
al equilibrium des
ribe verywell the qualitative properties of this spot. We have not tried to give some dimensionalvalues of the main 
hara
teristi
 of the spot. However this 
ould be done. By an iterativealgorithm, one 
ould then try to predi
t the a
tual values of the topography 
urvature and26



of the Rossby deformation radius, as we have done for the Great Red Spot.The stru
ture is thus di�erent from the Great Red Spot one's. The jet stru
ture on thenorthward velo
ity allows to 
on
lude that the Rossby deformation radius is small. Thee�e
t of a very intense topography 
urvature 
hara
terizes the Brown Barges. For thisreason, the topography 
an no more be treated as a �rst order perturbation, like has beendone in se
tion (2.3). However, an asymptoti
 des
ription, following the same ideas 
anbe done, assuming the amplitude of the topography as having e�e
ts on the zeroth orderof the asymptoti
 expansion. The result is a modi�ed algebrai
 equation des
ribing thevelo
ity �eld outside of the spot. The jet stru
ture then expli
itly depends on the latitude
y. The shape of the vortex is always des
ribed by an equation similar to (26). However, thedependen
e on y be
ause of the topography, is no more due only to the PV variation insideof the spot, but also to the latitudinal dependen
e of the jet properties. We leave a morepre
ise des
ription and study of this asymptoti
 expansion for future works.In Hatzes and 
ollaborators (1981), authors insist on the os
illations of the shape of this
y
lone, whereas we have des
ribed only a stationary solution, with similar velo
ity �eldstru
ture. We note that, as in the 
ase of the jets des
ribed in se
tion 5, perturbation ofthe equilibrium stru
ture would lead to os
illations around the stationary �ow whi
h shoulddes
ribe the observed ones. A further study of this problem may be of interest.7 Con
lusionWe have des
ribed equilibrium of the potential vorti
ity statisti
al equilibrium, for theQuasi-Geostrophi
 equation. Independently of the statisti
al interpretation, all the �ow wehave des
ribed are stable stationary �ow for the invis
id dynami
s. We have �rst presentedresults in the limit of small Rossby deformation radius. The main ideas of this asymptoti
des
ription are present in the work Bou
het and Sommeria (2002). The derivation proposedhere is however simpli�ed. We have dis
ussed in details the generalization of these results toany potential vorti
ity distributions. Using numeri
al 
omputations, we have also des
ribedstatisti
al equilibrium �ows for parameters for whi
h the hypothesis of a small Rossbydeformation radius no more holds. The appli
ation of these results to model, the Jovianstrong jets and main vorti
es are extensively des
ribed.In the limit of small Rossby deformation radius, the equilibrium �ows are 
hara
terizedby strong jets. The minimization of the entropy sele
ts either zonal solutions or vorti
esbounded by strong jets, depending on the parameters. These jets play the role of an interfa
eseparating two area of di�erent potential vorti
ity mixing. The shape of this interfa
eis given by the minimization of their length, for a given area. Under the presen
e of adeep zonal �ow and of a beta-e�e
t, or equivalently of a topography, this minimization isbalan
ed by the tenden
y of anti
y
loni
 potential vorti
ity to stand around the maximaof the topography. This leads to the 
hara
teristi
 elongated vorti
es observed on Jupiter'stroposphere. The width of these vorti
es may be 
omputed exa
tly. A typi
al width isgiven by an alternative of the Rhine's s
ale, built on the 
urvature of the topography, orequivalently on the deep layer shear σd : L = (RU/σd)

1/3 = R (Ω/σd)
1/3. This modelpredi
ts that vorti
es sit on extrema of the topography. This property has been veri�edusing available data for the Great Red Spot and the White Oval BC.27



Using these results, we have proposed a quantitative model for the Great Red Spot. InBou
het and Sommeria (2002), using the small Rossby radius derivation, with a two PV-levels distribution, we have shown that an appropriate 
hoi
e of the energy, total potentialvorti
ity, topography 
urvature and Rossby deformation radius allows to reprodu
e theobserved jet maximum velo
ity, jet width, vortex shape and aspe
t ratio, and surroundingshear. In this work, by 
omparison with numeri
al 
omputation of the equilibrium, we haveshown that the small Rossby radius approximation leads to a 
orre
t des
ription of thestru
ture of the vortex, for the Great Red Spot parameters. The dis
repan
ies due to �nitesize e�e
ts are of the order of the error due to the Quasi-Geostrophi
 approximation. Theobtained velo
ity �eld 
ompares very well with the observed one.Using numeri
al determination of the equilibrium �ows, we have proposed models of theWhite Ovals or of the 
y
loni
 Brown Barges. These vorti
es may be obtained either fromrandom initial 
onditions or from the destabilization of strong jets. The White Ovals are
hara
terized by a size whi
h is of the same order as the Rossby deformation radius. Thedeep shear is responsible for their oval shape and for the surrounding shear. The BrownBarges are 
hara
terized by a very strong topography 
urvature. For these vorti
es, we haveobtained their typi
al jet like stru
ture for the northward velo
ity in a zonal se
tion, andtheir typi
al shear for the eastward velo
ity in a meridional se
tion.The statisti
al me
hani
s predi
ts some strong qualitative properties for Jovian likevorti
es. For a given deep shear, and Rossby deformation radius (for the same latitudinalband, for instan
e), smaller vorti
es are 
lose to a 
ir
le. Their aspe
t ratio grows with thesize. The latitudinal extension of the spot as a maximum value, for
ing a very elongatedshape as the one of the Brown Barges. For su
h vorti
es to exist, a 
riti
al energy in thelatitudinal band must be present. When this is the 
ase, the shear in the a
tive layerhas to be larger than the shear in the deep layer. Vortex adapt their zonal drift speed,su
h as in their referen
e frame, they are lo
ated in an extrema of the topography. Thussimilar vorti
es in the same latitudinal band must have a relative zonal velo
ity if they arenot lo
ated at the same latitude. This drift velo
ity is linear with the latitude di�eren
e,as soon as the latitude di�eren
e is su�
iently small for the deep shear to be supposed
onstant.All the statisti
al equilibrium are dynami
ally stable, even when the 
onditions for linearor non-linear 
lassi
al results do not apply.The statisti
al me
hani
s of the potential vorti
ity des
ribes the most probable �ow for agiven energy and potential vorti
ity distribution. The main assumption of this work is thatsu
h �ows des
ribes a
tually the observed jets and vorti
es of Jupiter's troposphere. Thedynami
al system ergodi
ity would be a su�
ient 
ondition to justify this hypothesis. Theproof of ergodi
ity is very di�
ult, even for very simple dynami
al systems. The best wayto study the validity of statisti
al me
hani
s in 
omplex systems remains the 
omparison ofits predi
tions with observations of with numeri
al simulations. This works has shown thatthe statisti
al me
hani
s of the potential vorti
ity is able to model the main Jovian featuresand to predi
t important qualitative properties, whi
h 
an be veri�ed.In a latitudinal band, the topography for
es a shear �ow in the a
tive layer. Thisfavors vortex merging, and thus the potential vorti
ity mixing. On the other hand, ifwe 
onsider a topography with two bumps, following the same ideas as in this work, we28



may for instan
e des
ribe stable solutions 
orresponding to two anti
y
lones on ea
h of thetopography bumps. In these two bumps are of di�erent high, this solution may not be astatisti
al equilibrium state, but only a lo
al maxima of the entropy under 
onstraint. Insu
h a 
ase, the topography would a
t as a dynami
al barrier, preventing a real ergodi
ityfor the system. However, the statisti
al interpretations would still remain 
lear.An other point to be dis
ussed is the slowing down of the dynami
s, due to the small valueof the Rossby deformation radius. The intera
tions between vorti
es, de
ays exponentiallyfor distan
e mu
h larger than R. For this reason, well separated vorti
es mainly not intera
t.This may prevent their merging predi
ted by statisti
al me
hani
s. It will at least imposea very long time s
ale to observe an e�e
tive ergodi
ity. This situation is illustrated by themerging of the three White Ovals whi
h formed in 1938 (San
hez-Lavega and 
ollaborators2000). The two last ones have �nally merged in 2002, after a very long 
oexisten
e in thesame latitudinal band.Besides these qualitative arguments, we want to stress that ergodi
ity may really bequestionable in some situations, for su
h systems. As an example we refer to Barré and
ollaborators (2002). In this study, a system with long range intera
tions, sharing deepanalogies with quasi-two-dimensional �ows, is shown to have very long lived out-of equilib-rium states.We have dis
ussed some limitations of these statisti
al models for Jupiter's jets andvorti
es. The major ones 
on
erns the validity of the modeling of Jupiter's troposphere bythe Quasi-Geostrophi
 model. Whereas it is good as a �rst approximation, generalizationof these results for a Shallow Water dynami
s or for multi-layered dynami
al models shouldprovide more pre
ise results in order to propose more pre
ise 
omparison with the observedstru
tures.Some further studies of the equilibrium stru
ture should be of interest to put pre
ise
onstraint on the physi
al parameters. For instan
e, it may be possible to determine thedeep shear under major vorti
es, su
h as the White Ovals or the Brown Barges. A modelof White Ovals merging based on statisti
al me
hani
s 
ould also permit to put further
onstraints on the physi
al parameters and potential vorti
ity distribution. Studies of linearperturbations around the equilibrium stru
tures should be able to des
ribe the spot shapeos
illations, as observed for instan
e for the Brown Barges (Hatzes and 
ollaborators, 1981).In this work, we have assumed an invis
id dynami
s. This is a very natural assumption,given the very di�erent time s
ales for for
ing and dissipation in one hand, and invis
idorganization in the over hand. Whereas the observed features should be invis
id statisti
alequilibrium, the a
tual PV distribution and energy a
tually depends on the for
ing andon the dissipation. We have for instan
e argued for a distribution with bounded potentialvorti
ity, whi
h should be well approximated by a two level distribution, be
ause of theobserved for
ing by in
oming thermal plumes. However, in order to go further in theanalysis of the potential vorti
ity �ne-grained distribution, one should model more pre
iselyfor
ing and dissipation. This 
ould permit to explain observable phenomena, su
h as thediminution, on a very long time s
ale, of the size of the giant anti
y
lones, or an eventualinvis
id evolution of the os
illations of some vorti
es. In pra
ti
e, the for
ing should beintrodu
ed in kineti
 like equations, like those developed in Kazantzev and 
ollaborators,or following ideas des
ribed in DiBattista, Majda and Grote (2001). Su
h models would29



explain the long term evolution of the �ne-grained PV-distribution, whereas the observedstru
ture should remain 
lose to equilibrium stru
ture during the evolution.A
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alization�.A Analysis of the jet shape equationIn se
tion 2.3, we have obtain the equation veri�ed by the jet position (26): ǫu (h(y) − α1) =
e(u)

r . In this se
tion, we dis
uss equations allowing numeri
al integration of this equationand we derive an analyti
al expression for the latitudinal extension of a vortex solution. Thisderivation, is a generalization to a 
osine topography, of results in Bou
het and Sommeria(2002).We look at anti
y
lones solutions (ε = 1) around the maxima of h (4). This extremais rea
hed for y = π/2. We make a latitudinal translation su
h that the maxima of thetopography be on y = 0. We thus 
onsider the topography h (y) = 2a cos (2y). The 
y
lone
ase may be easily re
overed by symmetry.To make the equation for the radius of 
urvature more expli
it, let us de�ne s a 
urvi-linear parameterization of our 
urve, T(s) the tangent unit ve
tor to the 
urve and θ(s)the angular fun
tion of the 
urve de�ned by T(s) = (cos θ(s), sin θ(s)) for any s. Thenthe radius of 
urvature r of the 
urve is linked to θ(s) by 1/r = dθ/ds. This yields thedi�erential equations :
dθ

ds
=

2au

e (u)
cos (2y) − α1 (31)

dy

ds
= sin θ(s) (32)

dx

ds
= cos θ(s) (33)For symmetry reasons, it is easily veri�ed that the solutions of (31, 33 and 32), with initial
onditions θ(0) = π

2 , y(0) = 0 and some x(0) are periodi
. The resulting vortex is thensymmetri
 with respe
t to the latitude of the maxima of the topography (here y = 0).Moreover, we have proved in the appendix C of Bou
het and Sommeria (2002) that theseinitial 
onditions are the only ones leading to vortex solutions (
losed 
urves), in the 
ase of aquadrati
 topography. The argument used there only uses the symmetry of the topographywith respe
t to the extrema of the topography and 
an easily be generalized in the present
ase. 30



Let us 
ompute ym, the maximal latitude of the vortex (the maximal latitude of the jet
enter) (ym is the half of the latitudinal extension of the vortex). We �rst note that the twovariables θ and y are independent of x. We will therefore 
onsider the system formed by thetwo �rst di�erential equations (31,32). It is easily veri�ed that this system is Hamiltonian,with θ and y the two 
onjugate variables and
H ≡ cos θ +

au

e (u)
sin (2y) − α1y (34)the Hamiltonian. Thus H is 
onstant on the solution 
urves. From the initial 
ondition, wededu
e H = 1. We note that for y = ym, the 
urvature of the jet is 0 (1/r = 0 ). From 31,we thus obtain 2au

e(u) cos (2ym) − α1 = 0. Combining this relation with the one obtained byusing that H = 1, for y = ym and θ = π : −1+ au
e(u) sin (2ym)−α1ym = 1 allows to 
ompute

ym and α1. This gives:
ym =

1

2
g

(

e (u)

2au

)

and α1 =
2au

e (u)
cos (2ym)where g is the inverse of the fun
tion sinx− x cos x for 0 < x < π.Referen
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Figure Captions.
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R

10 000 km

20 000 kmFigure 1: Upper part: vorti
ity �eld and velo
ity �eld for the statisti
al equilibrium mod-eling the Great Red Spot. Lower : the observed velo
ity �eld, from Dowling and Ingersoll(1988). The a
tual values of the jet maximum velo
ity, jet width, vortex width and length�t with the observed ones. The strong jet is the interfa
e between two phases, ea
h 
or-responding to di�erent Potential Vorti
ity mixing. It obeys a minimal length variationalproblem, balan
ed by the e�e
t of the deep layer shear.37



Figure 2: The area free energy fC (φ) spe
ifying the free energy fun
tional (16). For anyvalue of C , the fun
tion fC (φ) is even and possess two minima ±u. This shows that, atequilibrium, at zeroth order in R, the Potential Vorti
ity mixing will be des
ribed by twophases, 
hara
terized by these two minima. This plot 
orresponds to the value C = 10.
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0.6Figure 3: At zeroth order, φ takes the two values ±u on two subdomains A±. Thesesubdomains are separated by strong jets. The a
tual shape of the stru
ture, or equivalentlythe position of the jets, is given by the �rst order analysis.
u
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Figure 4: Phase diagram of the Gibbs states versus the energy E and the asymmetryparameter B (see (9)), when no topography is present (h = 0). The outer solid line is themaximum energy a
hievable for a �xed B : E = R2

2 (1 − B2) + O
(

R3
). Straight jets areobtained for the nearly symmetri
 
ases (B around 0), while a vortex is formed when oneof the PV levels has a lower area. This vortex takes the form of a 
ir
ular jet for su�
ientlyhigh energy. The frontiers line between the straight jets and the 
ir
ular jet is determinedby the minimization of the jet length (�rst order free energy). The hashed line representsthe energy value for whi
h vortex area A1 or A−1 (21) is equal to (2l)2, where l is thetypi
al jets width. At the left of this line, the small Rossby deformation radius asymptoti
expansion is no more valid. For su
h 
ase, asymmetri
 equilibrium have been des
ribed inBou
het and Sommeria (2002). This hashed line depends on the value of R, the ratio of theRossby deformation radius to the domain s
ale. It has been here numeri
ally 
al
ulated forR = 0.03.
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Figure 5: Top: typi
al vortex shape obtained from the 
urvature radius equation (26)for two values of the parameters (arbitrary units). This illustrate the very 
hara
teristi
parti
ularity of Jupiter's vorti
es to be vary elongated, ones they rea
h an extremal latitude
ym (27). Bottom left: the Great Red Spot and one of the White Ovals. Bottom right: oneof the Brown Barges of Jupiter's north atmosphere. This shows that equilibrium stru
turesare able to reprodu
e the 
hara
teristi
 and pe
uliar elongation of jovian vorti
es.
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Figure 6: QG topography (units s−1) versus latitude 
omputed using the data of Dowlingand Ingersoll (1989) : a) under the GRS ; b) under the Oval BC. The analysis of thevelo
ity data in the Quasi-Geostrophi
 framework, thus 
learly shows extrema of topographyunder these two vorti
es. This is in a

ordan
e with what we dedu
e from the statisti
alequilibrium study.
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Figure 7: Phase diagram of the Gibbs states versus the energy E and the asymmetryparameter B, with a quadrati
 topography and a domain aspe
t ratio 
orresponding to theGreat Red Spot parameters. (400.000 km over 20.000 km). The outer line is the maximumenergy a
hievable for a �xed B : E = R2

2 (1−B2)+O
(

R3
). The inner solid line 
orrespondsto the frontier between the vortex and straight jet solutions. The dash line 
orrespondsto the limit of validity of the small deformation radius hypothesis. It has been drawnusing the 
ondition that the maximal vortex width (28) is equal to two Rossby deformationradius. The dot lines are 
onstant vortex aspe
t ratio lines with values 2,10,20,30,40,50,70,80respe
tively. We have represented only solutions for whi
h anti
y
loni
 PV dominate (B >

0). The opposite situation may be re
overed by symmetry.
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Figure 8: Dynami
s of random initial vorti
ity pat
hes, in the Quasi-Geostrophi
 model,using a small s
ale parameterization based on a maximum entropy produ
tion prin
iple(29). The 
olor represents the PV values. The Rossby deformation radius is very small(R = 0.2), 
ompared to the latitudinal band width (π). We use a 
osine topography (4)whose maxima is lo
ated at the 
enter of the latitudinal band. The later evolution is shownon �gures 9 and 10 43



Figure 9: Continuation of the previous �gure. After a very rapid lo
al organization, threeanti
y
lones form. On a mu
h longer time s
ale, they merge, forming elongated vorti
essimilar to the White Ovals on the jovian troposphere (the time lapse between the s
atter-plots of �gure 8 is approximately 16 turn over times, whereas between the two last s
atterplots of this �gure it is 50 turn over times, and 300 to obtain the �nal organization repre-sented on �gure 10. The insets show Stream fun
tion-PV s
atter plots. They illustrate theevolution towards stationary states. 44



Figure 10: Equilibrium stru
tures 
orresponding to the dynami
al evolution of the twopre
eding �gures. The upper �gure is the PV, whereas the lower one is the velo
ity �eld.The maxima of entropy under 
onstraint is an anti
y
lone, 
entered on the maxima of thetopography. The surrounding shears and its oval shape are 
onsequen
es of its intera
tionwith the deep layer �ow (topography). This stru
ture is similar to the one of the WhiteOvals. It di�ers from the Great Red Spot, be
ause the Rossby deformation radius is of thesame order as the vortex size. 45



Figure 11: Comparison of the evolution of the same initial 
ondition, made of randomvorti
ity pat
hes (the same as for the three previous �gures), for two di�erent small s
alePotential Vorti
ity mixing parameterization. The upper �gure shows the result for a Dire
tNumeri
al Simulation (usual eddy di�usivity), the upper one shows the results for therelaxation equations (29). This shows that the Dire
t Numeri
al Simulation does not allowedto obtain strong 
oherent vorti
es, for very long times.
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Figure 12: Potential Vorti
ity �eld, for two jets �owing eastward and westward respe
tively.Whereas they do not verify the two Arnold's theorem hypothesis, submitted to a strongperturbation, they stabilize. The maximization of the entropy under 
onstraint allow toobtain new stability theorems (see se
tion 5).
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Figure 13: Destabilization of two strong jets, and formation of very elongated vorti
essimilar to the 
y
loni
 Brown Barges in the north hemisphere of the Jovian atmosphere.The stability property of su
h jets and vorti
es is summarized by the phase diagram on�gure 7 (see se
tion 5).
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Figure 14: The upper �gure shows the Potential Vorti
ity �eld for a statisti
al equilibriumon a strong topography. The shape of the spot 
an be 
ompared to real image of the BrownBarges (�gure 5). The four lower �gures show the velo
ity for a zonal se
tion (eastwardvelo
ity, left �gures) and for a meridional se
tion (northward velo
ity, right �gures). Thetwo upper velo
ity �gures are the observed ones for one of the 
y
loni
 Brown Barges, in thenorth hemisphere of Jupiter (from Hatzes and 
ollaborators (1981)). The two lower onesare the statisti
al equilibrium ones.
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