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We discuss statistical mechanics models of ocean and atmosphere flows. This the-
oretical approach explains the self-organization of turbulent flows described by the

quasi-geostrophic equations, and predicts the output of their long time evolution.

On these short lectures, emphasize has been placed on examples with available
analytical treatment in order to favor better understanding of the physics and dy-

namics. We obtain quantitative models of the Great Red Spot and other Jovian

vortices, ocean jets like the Gulf-Stream, ocean vortices, and we make quantita-
tive predictions of vertical energy transfers in the ocean. A detailed comparison

between these statistical equilibria and real flow observations or numerical simu-

lations is provided.

1. Introduction

A striking and beautiful property of geophysical turbulent flows is their

propensity to spontaneously self-organize into robust, large scale coher-

ent structures. The most famous example is perhaps the Jovian Great

Red Spot, an anticyclonic vortex observed many centuries ago. Similarly,

the Earth’s oceans are filled with long lived coherent structure: 300km-

diameter vortices with a ring shape are observed everywhere at the surface

of the oceans. Mid-basin eastward jets, analogous to the Gulf-Stream or

the Kuroshio exist in every oceanic basin, and strong bottom trapped recir-

culations such as the Zapiola anticyclone in the Argentine basin have been

recently discovered. Understanding the physical mechanism underlying the

formation and the persistence of these coherent structures in a turbulent

flow remains a major theoretical challenge.

On the one hand, the problem of the self-organization of a turbulent

flow involves a huge number of degrees of freedom coupled together via

complex non-linear interactions. This situation makes any deterministic

1



September 11, 2012 23:2 Proceedings Trim Size: 9in x 6in Peyresq-Bouchet-Venaille-N-4

2

approach illusory, if not impossible. On the other hand, there can be abrupt

and drastic changes in the large scale flow structure when varying a single

parameter such as the energy of the flow, or its circulation. It is then ap-

pealing to study this problem with a statistical mechanics approach, which

reduces the problem of large-scale organization of the flow to the study of

states depending on a few key parameters only. The first attempt to use

equilibrium statistical mechanics ideas to explain the self-organization of

2D turbulence was performed by Onsager (1949) in the framework of the

point vortex model. There exists now a theory, the Robert-Sommeria-Miller

(RSM hereafter) equilibrium statistical mechanics, that explains the spon-

taneous organization of unforced and undissipated two-dimensional and

geophysical flows (Robert, 1990; Miller, 1990; Robert, 1991; Robert and

Sommeria, 1991). From the knowledge of the energy and the global dis-

tribution of potential vorticity levels provided by an initial condition, this

theory predicts the large scale flow as the most probable outcome of tur-

bulent mixing.

The aim of these lectures is to present applications of this equilibrium

statistical mechanics theory specifically to the description of geophysical

flows. There already exist several presentations of the equilibrium statistical

mechanics of two-dimensional and geostrophic turbulent flows (Sommeria,

2001; Lim and Nebus, 2007; Majda and Wang, 2006), some emphasizing

kinetic approaches of the point-vortex model (Chavanis, 2002), other fo-

cusing on the legacy of Onsager (Eyink and Sreenivasan, 2006). Interest of

applications of statistical mechanics to climate problems is also discussed

in a recent letter (Marston, 2011). A more detailed and precise explanation

of the statistical mechanics basis of the RSM theory, actual computations

of a large class of equilibrium states and further references can be found in

a recent review (Bouchet and Venaille (2012)).

We present in the first section the quasi-geostrophic dynamics, a simple

model for geophysical turbulent flows, and introduce the RSM statistical

mechanics for this system. This theory is used to interpret the formation

of Jovian vortices and oceanic rings in the second section, where a formal

analogy between bubble formation and the self-organization phenomenon

in geophysical flows is presented. The third section is devoted to the inter-

pretation of eastward jets as marginal equilibrium states in oceanic basins.

The last section deals with vertical energy transfers in geophysical flows,

with application to the formation of bottom-trapped recirculations such as

the Zapiola anticylone. The equilibrium statistical mechanics has a limited

range of applicability since it neglects the effect of forcing and dissipation.
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The validity of this hypothesis will be carefully addressed for each geo-

physical application in the related chapter, and will be discussed at a more

general level in the conclusion.

2. Statistical mechanics of quasi-geostrophic flows

2.1. The 1.5 layer quasi-geostrophic model

We introduce here the simplest possible model for the dynamics of the

Jovian atmosphere or the Earth’s oceans: the quasi-geostrophic equations.

There are several books discussing this model in more details, among which

Gill (1982); Pedlosky (1982); Salmon (1998); Vallis (2006).

We assume that the dynamics takes place in an upper active layer, and

there is a lower denser layer either at rest or characterized by a prescribed

stationary current.

The flow is assumed to be strongly rotating with a Coriolis parameter

f = 2Ω sin θ, where θ is the latitude and Ω the rotation rate of the planet.

Strongly rotating means that we consider the limit of small Rossby numbers

ε = U/fL, where L is a typical length scale of the domain where the flow

takes place, and U is a typical velocity.

Another key quantity of this system is the Burger number R/L where

R = (Hg∆ρ/ρ)
1/2

/f is called the Rossby radius of deformation. It depends

on the relative density difference ∆ρ/ρ between both layers, on the gravity

g, on the Coriolis parameter f , and on the mean depth H of the upper

layer.

The fluids we consider are stably stratified, at hydrostatic balance on

the vertical and at geostrophic balance on the horizontal. Geostrophic

balance means that horizontal pressure gradients compensate the Corio-

lis force. These flows are called quasi two-dimensional fluids because one

can show that the velocity field in the upper layer is horizontal and depth-

independant (Taylor-Proudman theorem). In order to capture the dynam-

ics, the quasi-geostrophic model is obtained through an asymptotic expan-

sion of the Euler equations in the limit of small Rossby number ε (Pedlosky,

1982). The full dynamical system reads

∂q

∂t
+ v · ∇q = 0, with v = ez ×∇ψ , (1)

and q = ∆ψ − ψ

R2
+ ηd . (2)

The complete derivation of the quasi-geostrophic equations shows that the

streamfunction gradient ∇ψ is proportional to the pressure gradient along
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the interface between the two layers. The dynamics (1) is a non-linear

transport equation for a scalar quantity, the potential vorticity q given by

(2). The potential vorticity is a central quantity for geostrophic flows. The

term ∆ψ = ω is the relative vorticitya.

The term ψ/R2 is related to the interface pressure gradient and thus to

the interface height variations through the hydrostatic balance. We see that

R appears as a characteristic length of the system. Although the rigorous

derivation of quasi-geostrophic equations requires R ∼ L, this model is

commonly used in the regime R � L, either in numerical or theoretical

works. This is usually a first step before considering the (more complex)

shallow water equations which is the relevant model in this limit, see e.g.

Pedlosky (1982).

The term ηd = βy+ψd/R
2 represents the combined effects of the plan-

etary vorticity gradient βy and of a given stationary flow ψd in the deep

layer. We assume that this deep flow is known and unaffected by the dy-

namics of the upper layer. The streamfunction ψd induces a permanent

deformation of the interface with respect to its horizontal position at restb.

This is why the deep flow acts as a topography on the active layer. The term

βy accounts at lowest order for the Earth’s sphericity: the projection of the

planet rotation vector on the local vertical axis is f = 2Ω · ez = f0 + βy,

with f0 = 2Ω sin θ0, where θ0 is the mean latitude where the flow takes

place, and β = 2Ω cos θ0/re with re the planet’s radius. This is called

the beta-plane approximation because the term βy appears as an effective

topography in the quasi-geostrophic dynamics.

For the boundary conditions, two cases will be distinguished, depending

on the domain geometry D. In the case of a closed domain, there is an im-

permeability constraint (no flow across the boundary), which amounts to a

constant streamfunction along the boundary. To simplify the presentation,

the condition ψ = 0 at boundaries will be consideredc. In the case of a

aThe term “relative” refers to the vorticity ω in the rotating frame.
bA real topography h(y) would correspond to h = −f0ηd/H where f0 is the reference

planetary vorticity at the latitude under consideration and H is the mean upper layer

thickness. Due to the sign of f0, the signs of h and ηd would be the same in the south
hemisphere and opposite in the north hemisphere. As we will discuss extensively the

Jovian south hemisphere vortices, we have chosen this sign convention for ηd. We will

consider the effect of a real topography when discussing vertical energy transfers, in the
last section.
cThe physically relevant boundary condition should be ψ = ψfr where ψfr is determined
by using the mass conservation constraint

∫
dr ψ = 0 (ψ is proportional to interface

variations). Taking ψ = 0 does not change quantitatively the solutions in the domain
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zonal channel, the streamfunction ψ is periodic in the x direction, and the

impermeability constraint applies on northern and southern boundaries. In

the remaining two sections, length scales are nondimensionalized such that

the domain area |D| is equal to one.

Because we consider here a model with one active layer above another

layer, it is called a 1.5 layer quasi-geostrophic model, which is also some-

times referred to as the “equivalent barotropic model”.

2.2. Dynamical invariants and their consequences

According to Noether’s Theorem, each symmetry of the system is associated

with the existence of a dynamical invariant, see e.g. Salmon (1998). These

invariants are crucial quantities, because they provide strong constraints for

the flow evolution. Starting from (1), (2) and the aforementioned boundary

conditions one can prove that quasi-geostrophic flows conserve the energy:

E =
1

2

∫
D

dr

[
(∇ψ)2 +

ψ2

R2

]
= −1

2

∫
D

dr (q − ηd)ψ, (3)

with r = (x, y). Additionally, the quasi-geostrophic dynamics (1) is a trans-

port by an incompressible flow, so that the area γ (σ) dσ occupied by a given

vorticity level σ is a dynamical invariant. The quantity γ(σ) will be referred

to as the global distribution of potential vorticity. The conservation of the

distribution γ (σ) is equivalent to the conservation of the Casimir’s func-

tionals
∫
D dr f(q), where f is any sufficiently smooth function.

Depending on the properties of the domain geometry where the flow

takes place, the dynamics might be characterized by additional symme-

tries. Each of these symmetry would imply the existence of an additional

invariant.

A striking consequence of the previous conservation laws is the fact that

energy remains at large scale in freely evolving quasi-geostrophic dynamics.

This property makes a priori possible the formation and the persistence of

long lived coherent structures. This contrast with three dimensional turbu-

lence, where the direct energy cascade (toward small scale) would rapidly

dissipate such structures. These long lived coherent structures are by defini-

tion steady (or quasi-steady) states of the dynamics. The stationary points

of the quasi-geostrophic equations (1), referred to as dynamical equilibrium

states, satisfy v · ∇q = ∇ψ ×∇q = 0. It means that dynamical equilibria

are flows for which streamlines are isolines of potential vorticity. Then,

bulk, but only the strength of boundary jets.
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any state characterized by a q − ψ functional relationship is a dynamical

equilibrium. More details on the consequence of the conservation laws in

two-dimensional and geophysical turbulent flows can be found in Bouchet

and Venaille (2012).

At this point, we need a theory i) to support the idea that the freely

evolving flow dynamics will effectively self-organize into a dynamical equi-

librium state ii) to determine the q − ψ relationship associated with this

dynamical equilibrium iii) to select the dynamical equilibria that are likely

to be observed. This is the goal and the achievement of equilibrium statis-

tical mechanics theory, presented in the next subsection.

2.3. The equilibrium statistical mechanics of

Robert-Sommeria-Miller (RSM)

The RSM statistical theory initialy developed by Robert (1990); Miller

(1990); Robert (1991); Robert and Sommeria (1991) is introduced on a

heuristic level in the following. There exist rigorous justifications of the

theory see Bouchet and Venaille (2012) for detailed discussions and further

references.

A microscopic state is defined by its potential vorticity field q(r). If

taken as an initial condition, such a fine grained field would evolve toward

a state with filamentation at smaller and smaller scales, while keeping in

general a well defined large scale organization. Then, among all the possible

fine grained states, an overwhelming number are characterized by these

complicated small scale filamentary structures. This phenomenology gives

a strong incentive for a mean-field approach, in which the flow is described

at a coarse-grained level. For that purpose, the probability ρ(σ, r)dσ is

introduced to measure a potential vorticity level σ at a point r = (x, y).

The probability density field ρ defines a macroscopic state of the system.

The corresponding averaged potential vorticity field, also referred to as

coarse-grained, or mean-field, is q (r) =
∫

Σ
dσ σρ (σ, r), which is related to

the streamfunction through q = ∆ψ−ψ/R2+ηd, and where Σ =]−∞, +∞[.

Many microscopic states can be associated with a given macroscopic

state. The cornerstone of the RSM statistical theory is the computation

of the most probable state ρeq, that maximizes the Boltzmann-Gibbs (or

mixing) entropy

S [ρ] ≡ −
∫
D

dr

∫
Σ

dσ ρ log ρ , (4)

while satisfying the constraints associated with each dynamical invariant.
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The mixing entropy (4) is a quantification of the number of microscopic

states q corresponding to a given macroscopic state ρ. The state ρeq is not

only the most probable one: an overwhelming number of microstates are

effectively concentrated close to it (Michel and Robert, 1994). This gives

the physical explanation and the prediction of the large scale organization

of the flow.

To compute statistical equilibria, the constraints must be expressed in

term of the macroscopic state ρ:

• The local normalization N [ρ] (r) ≡
∫

Σ
dσ ρ (σ, r) = 1,

• The global potential vorticity distribution Dσ [ρ] ≡
∫
D dr ρ (σ, r) =

γ (σ),

• The energy E [ρ] ≡ − 1
2

∫
D dr

∫
Σ

dσ ρ (σ − ηd)ψ = E.

Because of the overwhelming number of states with only small scale

fluctuations around the mean field potential vorticity, and because energy

is a large scale quantity, contributions of these fluctuations to the total

energy are negligible with respect to the mean-field energy.

The first step toward computations of RSM equilibria is to find critical

points ρ of the mixing entropy (4). In order to take into account the

constraints, one needs to introduce the Lagrange multipliers ζ(r), α(σ),

and λ associated respectively with the local normalization, the conservation

of the global vorticity distribution and of the energy. Critical points are

solutions of:

∀ δρ δS − λδE −
∫

Σ

dσ αδDσ −
∫
D

dr ζδN = 0 , (5)

where first variations are taken with respect to ρ. This leads to ρ =

N exp (λσψ (r)− α(σ)) where N is determined by the normalization con-

straint
(∫

dσ ρ = 1
)
. Statistical equilibria are dynamical equilibria char-

acterized by a functional relation between potential vorticity and stream-

function:

q̄ =

∫
Σ

dσ σeλσψ(r)−α(σ)∫
Σ

dσ eσλψ(r)−α(σ)
= g (ψ) (6)

It can be shown that g is a monotonic and bounded function of ψ for

any global distribution γ(σ) and energy E. These critical points can either

be entropy minima, saddle or maxima. To find statistical equilibria, one

needs then to select the entropy maxima.

At this point, two different approaches could be followed. The first

one would be to consider a given small scale distribution γ(σ) and energy
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E, and then to compute the statistical equilibria corresponding to these

parameters. In practice, especially in the geophysical context, one does not

have empirically access to the microscopic vorticity distribution, but rather

to the q − ψ relation (6) of the large scale flow. The second approach,

followed in the remaining of these lectures, is to study statistical equilibria

corresponding to a given class of q − ψ relations.

3. Statistical equilibria and jet solutions, application to

ocean rings and to the Great Red Spot of Jupiter

Most analytical results on the equilibrium states are obtained in cases where

the q − ψ relation is close to be linear, or equivalently in the limit of a

quadratic Energy-Casimir functional, see e.g. Bouchet and Venaille (2012)

and references therein. More general solutions are very difficult to find

analytically, and may require numerical computations, for instance using

continuation algorithms.

There are however other limits where an analytical description becomes

possible. This is for instance the case in the limit of large energies (Turking-

ton, 1983). The second interesting limit is the limit of Rossby deformation

radius R much smaller than the size of the domain (R� L), where the non-

linearity of the vorticity-stream function relation becomes essential. This

limit case and its applications to the description of coherent structures in

geostrophic turbulence is the subject of this section.

In the limit R � L, the variational problems of the statistical theory

are analogous to the Van-Der-Waals Cahn Hilliard model that describes

phase separation and phase coexistence in usual thermodynamics. The

Van-Der-Waals Cahn Hilliard model describes for instance the equilibrium

of a bubble of a gas phase in a liquid phase, or the equilibria of soap

films in air. For these classical problems, the essential concepts are the free

energy per unit area, the related spherical shape of the bubbles, the Laplace

equation relating the radius of curvature of the bubble with the difference

in pressure inside and outside the bubble (see section 3.1), or properties

of minimal surfaces (the Plateau problem). We will present an analogy

between those concepts and the structures of quasi-geostrophic statistical

equilibrium flows.

For these flows, the limit R � L leads to interfaces separating phases

of different free energies. In our case, each phase is characterized by a dif-

ferent value of average potential vorticity, and corresponds to sub-domains

in which the potential vorticity is homogenized. The interfaces correspond
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to strong localized jets of typical width R. This limit is relevant for appli-

cations showing such strong jet structures.

From a geophysical point of view, this limit R � L is relevant for

describing some of Jupiter’s features, like for instance the Great Red Spot

of Jupiter (a giant anticyclone) (here R ' 500− 2000 km and the length of

the spot is L ' 20, 000 km) (see section 3.3).

This limit is also relevant to ocean applications, where R is the internal

Rossby deformation radius (R ' 50 km at mid-latitude). We will apply the

results of statistical mechanics to the description of robust (over months

or years) vortices such as ocean rings, which are observed around mid-

latitude jets such as the Kuroshio or the Gulf Stream, and more generally

in any eddying regions (mostly localized near western boundary currents)

as the Aghulas current, the confluence region in the Argentinian basin or

the Antarctic Circumpolar circulation (see section 3.4). The length L can

be considered as the diameters of those rings (L ' 200 km).

We will also apply statistical mechanics ideas in the limit R� L to the

description of the large scale organization of oceanic currents (in inertial

region, dominated by turbulence), such as the eastward jets like the Gulf

Stream or the Kuroshio extension (the analogue of the Gulf Stream in the

Pacific ocean). In that case the length L could be thought as the ocean

basin scale L ' 5, 000 km (see section 4).

3.1. The Van der Waals–Cahn Hilliard model of first order

phase transitions

We first describe the Van der Waals–Cahn Hilliard model. We give in the

following subsections a heuristic description based on physical arguments.

Some comments and references on the mathematics of the problem are

provided in section 3.1.4.

This classical model of thermodynamics and statistical physics describes

the coexistence of phase in usual thermodynamics. It involves the minimiza-

tion of a free energy with a linear constraint:{
F = min {F [φ] | A [φ] = −B }

with F =
∫
D dr

[
R2(∇φ)2

2 + f(φ)
]

and A [φ] =
∫
D drφ

(7)

where φ is the non-dimensional order parameter (for instance the non-

dimensionality local density), and f (φ) is the non-dimensional free energy

per unit volume. We consider the limit R� L where L is a typical size of

the domain. We assume that the specific free energy f has a double well
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Figure 1. The double well shape of the specific free energy f (φ) (see equation (7)). The
function f (φ) is even and possesses two minima at φ = ±u. At equilibrium, at zeroth

order in R, the physical system will be described by two phases corresponding to each
of these minima.

shape (see figure 1), characteristic of a phase coexistence related to a first

order phase transition. For a simpler discussion, we also assume f to be

even; this does not affect the properties of the solutions discussed bellow.

3.1.1. First order phase transition and phase separation

At equilibrium, in the limit of small R, the function f (φ) plays the dom-

inant role. In order to minimize the free energy, the system will tend to

reach one of its two minima (see figure 1). These two minima correspond

to the value of the order parameters for the two coexisting phases, the two

phases have thus the same free energy.

The constraint A (see equation. 7) is related to the total mass (due to

the translation on φ to make f even, it can take both positive and negative

values). Without the constraint A, the two uniform solutions φ = u or

φ = −u would clearly minimize F : the system would have only one phase.

Because of the constraint A, the system has to split into sub-domains:

part of it with phase φ = u and part of it with phase φ = −u. In a two

dimensional space, the area occupied by each of the phases are denoted A+

and A− respectively. They are fixed by the constraint A by the relations

uA+ − uA− = −B and by A+ + A− = 1 (where 1 is the total area). A

sketch of a situation with two sub-domains each occupied by one of the two
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u

−u

Figure 2. At zeroth order, φ takes the two values ±u on two sub-domains A±. These

sub-domains are separated by strong jets. The actual shape of the structure, or equiva-

lently the position of the jets, is given by the first order analysis.

phases is provided in figure 2.

Up to now, we have neglected the term R2 (∇φ)
2

in the functional (7).

In classical thermodynamics, this term is related to non-local contributions

to the free energy (proportional to the gradient rather than to only point-

wise contributions). Moreover the microscopic interactions fix a length scale

R above which such non-local interactions become negligible. Usually for

a macroscopic system such non-local interactions become negligible in the

thermodynamic limit. Indeed as will soon become clear, this term gives

finite volume or interface effects.

We know from observations of the associated physical phenomena

(coarsening, phase separations, and so on) that the system has a tendency to

form larger and larger sub-domains. We thus assume that such sub-domains

are delimited by interfaces, with typical radius of curvature r much larger

than Rd. Actually the term R2 (∇φ)
2

is negligible except on an interface

of width R separating the sub-domains. The scale separation r � R allows

to consider independently what happens in the transverse direction to the

interface on the one hand and in the along interface direction on the other

hand. As described in next sections, this explains the interface structure

and interface shape respectively.

dThis can indeed be proved mathematically, see section 3.1.4
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3.1.2. The interface structure

At the interface, the value of φ changes rapidly, on a scale of order R,

with R � r. What happens in the direction along the interface can thus

be neglected at leading order. To minimize the free energy (7), the inter-

face structure φ(ζ) needs thus to minimize a one dimensional variational

problem along the normal to the interface coordinate ζ

Fint = min

{∫
dζ

[
R2

2

(
dφ

dζ

)2

+ f(φ)

]}
. (8)

Dimensionally, Fint is a free energy F divided by a length. It is the free

energy per unit length of the interface.

We see that the two terms in (8) are of the same order only if the

interface has a typical width of order R. We rescale the length by R:

ζ = Rτ . The Euler-Lagrange equation of (8) gives

d2φ

dτ2
=
df

dφ
. (9)

This equation is a very classical one. For instance making an analogy

with mechanics, if φ would be a particle position, τ would be the time,

equation (9) would describe the conservative motion of the particle in a

potential V = −f . From the shape of f (see figure 1) we see that the

potential has two bumps (two unstable fixed points) and decays to −∞ for

large distances. In order to connect the two different phases in the bulk,

on each side of the interface, we are looking for solutions with boundary

conditions φ → ±u for τ → ±∞. It exists a unique trajectory with such

limit conditions: in the particle analogy, it is the trajectory connecting the

two unstable fixed points (homoclinic orbit).

This analysis shows that the interface width scales like R. Moreover,

after rescaling the length, one clearly sees that the free energy per length

unit (8) is proportional to R: Fint = eR, where e > 0 could be computed

as a function of f (Bouchet and Sommeria, 2002; Venaille and Bouchet,

2011a).

3.1.3. The interface shape: an isoperimetrical problem

In order to determine the interface shape, we come back to the free energy

variational problem (7). In the previous section, we have determined the

transverse structure of the interface, by maximizing the one dimensional

variational problem (8). We have discussed the quantity Fint = Re, a free
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energy per unit length, which is the unit length contribution of the interface

to the free energy. The total free energy is thus

F = eRL, (10)

where we have implicitly neglected contributions of relative order R/r,

where r is the curvature radius of the interface.

In order to minimize the free energy (10), we thus have to minimize the

length L. We must also take into account that the areas occupied by the

two phases, A+ and A− are fixed, as discussed in section 3.1.1. We thus

look for the curve with the minimal length, that bounds a surface with area

A+

min {eRL |Area = A+ } . (11)

This type of problem is called an isoperimetrical problem. In three dimen-

sions, the minimization of the area for a fixed volume leads to spherical

bubbles or plane surface if the boundaries does not come into play. When

boundaries are involved, the interface shape is more complex (it is a min-

imal surface -or Plateau- problem). This can be illustrated by nice soap

films experiments, as may be seen in very simple experiments or in many

science museums. Here, for our two dimensional problem, it leads to circle

or straight lines, as we now prove.

It is a classical exercise of variational calculus to prove that the first

variations of the length of a curve is proportional to the inverse of its

curvature radius r. The solution of the problem (11) then leads to

eR

r
= α, (12)

where α is a Lagrange parameter associated with the conservation of the

area. This proves that r is constant along the interface: solutions are either

circles or straight lines. The law (12) is the equivalent of the Laplace law in

classical thermodynamics, relating the radius of curvature of the interface

to the difference of pressure inside and outside of the bubblee.

We have thus shown that the minimization of the Van-Der-Waals Cahn

Hilliard functional, aimed at describing statistical equilibria for first order

phase transitions, predicts phase separation (formation of sub-domains with

eIndeed, at next order, the Lagrange parameter α leads to a slight imbalance between

the two phase free energy, which is related to a pressure difference for the two phases.
This thus gives the relation between pressure imbalance, radius of curvature and free

energy per unit length (or unit surface in the 3D case).
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Figure 3. Illustration of the Plateau problem (or minimal area problem) with soap

films: the spherical bubble minimizes its area for a given volume (Jean Simeon Chardin,

Les bulles de savon, 1734)

each of the two phases corresponding to the two minima of the free energy).

It predicts the interface structure and that its shape is described by an

isoperimetrical problem: the minimization of the length for a fixed enclosed

area. Thus equilibrium structures are either bubbles (circles) or straight

lines. In the following sections, we see how this applies to the description

of statistical equilibria for quasi-geostrophic flows, describing vortices and

jets.

3.1.4. The mathematics of the Van-Der-Waals Cahn Hilliard

problem

The study of the Van-Der-Waals Cahn Hilliard functional (7) was a math-

ematical challenge during the 1980s. It’s solution has followed from the

analysis in the framework of spaces of functions with bounded variations,

and on results from semi-local analysis. One of the main contributions

to this problem was achieved by Modica (1987). This functional analysis

study proves the assumptions of the heuristic presentation given in the pre-
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vious subsections: φ takes the two values ±u in sub-domains separated by

transition area of width scaling with R.

As a complement to these mathematical works, a more precise asymp-

totic expansion based on the heuristic description above, generalizable at

all order in R, with mathematical justification of the existence of the so-

lutions for the interface equation at all order in R, is provided in Bouchet

(2001). Higher order effects are also discussed in this work.

3.2. Quasi-geostrophic statistical equilibria and first order

phase transitions

The first discussion of the analogy between statistical equilibria in the limit

R� L and phase coexistence in usual thermodynamics, in relation with the

Van-Der-Waals Cahn Hilliard model is given in Bouchet (2001); Bouchet

and Sommeria (2002). This analogy has been recently put on a more pre-

cise mathematical ground, by proving that the variational problems of the

RSM statistical mechanics and the Van-Der-Waals Cahn Hilliard varia-

tional problem are indeed related (Bouchet, 2008). More precisely, any

solution to the variational problem:{
F = min {F [φ] | A [φ] = −B }

with F =
∫
D dr

[
R2(∇φ)2

2 + f (φ)−Rφh
]

and A [φ] =
∫
D drφ

(13)

where ψ = R2φ is a RSM equilibria of the quasi-geostrophic equations (1).

Considering the problem (13), using a part integration and the relation

q = R2∆φ− φ+Rh yields

δF =

∫
dr (f ′(φ)− φ− q) δφ and δA =

∫
dr δφ. (14)

Critical points of (13) are therefore solutions of δF − αδA = 0, for all

δφ, where α is the Lagrange multiplier associated with the constraint A.

These critical points satisfy

q = f ′
(
ψ

R2

)
− ψ

R2
− α.

We conclude that this equation is the same as (6), provided that f ′
(
ψ
R2

)
=

g(βψ) + ψ
R2 − α.

In the case of an initial distribution γ with only two values of the po-

tential vorticity: γ(σ) = |D| (aδ(σ1) + (1− a)δ(σ2)), only two Lagrange

multipliers α1 and α2 are needed, associated with σ1 and σ2 respectively,
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in order to compute g, equation (6). In that case, the function g is exactly

tanh function. There exists in practice a much larger class of initial condi-

tions for which the function g would be an increasing function with a single

inflexion point, similar to a tanh function, especially when one considers

the limit of small Rossby radius of deformation. Bouchet and Sommeria

(2002); Venaille and Bouchet (2011a) give physical arguments to explain

why it is the case for Jupiter’s troposphere or oceanic rings and jets.

When g is a tanh-like function, the specific free energy f has a dou-

ble well shape, provided that the inverse temperature β is negative, with

sufficiently large values.

3.2.1. Topography and anisotropy

The topography term ηd = Rh (y) in (13) is the main difference between

the Van-Der-Waals Cahn Hilliard functional (7) and the quasi-geostrophic

variational problem (13). We recall that this term is due to the beta plane

approximation and a prescribed motion in a lower layer of fluid (see section

2.1). This topographic term provides an anisotropy in the free energy.

Its effect will be the subject of most of the theoretical discussion in the

following sections.

Since we suppose that this term scales with R, the topography term will

not change the overall structure at leading order: there will still be phase

separations in sub-domains, separated by an interface of typical width R,

as discussed in section 3.1. We now discuss the dynamical meaning of this

overall structure for the quasi-geostrophic model.

3.2.2. Potential vorticity mixing and phase separation

In the case of the quasi-geostrophic equations, the order parameter φ is

proportional to the stream function ψ: ψ = R2φ. At equilibrium, there is

a functional relation between the stream function ψ and the macroscopic

potential vorticity q, given by Eq. (6). Then the sub-domains of constant φ

are domains where the (macroscopic) potential vorticity q is also constant.

It means that the level of mixing of the different microscopic potential

vorticity levels are constant in those sub-domains. We thus conclude that

the macroscopic potential vorticity is homogenized in sub-domains that

corresponds to different phases (with different values of potential vorticity),

the equilibrium being controlled by an equality for the associated mixing

free energy.
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3.2.3. Strong jets and interfaces

In section 3.1.3, we have described the interface structure. The order pa-

rameter φ varies on a scale of order R mostly in the normal to the interface

direction, reaching constant values far from the interface. Recalling that φ

is proportional to ψ, and that v = ez ∧∇ψ, we conclude that:

(1) The velocity field is nearly zero far from the interface (at distances

much larger than the Rossby deformation radius R). Non zero ve-

locities are limited to the interface areas.

(2) The velocity is mainly directed along the interface.

These two properties characterize strong jets. In the limit R � L, the

velocity field is thus mainly composed of strong jets of width R, whose

path is determined from an isoperimetrical variational problem.

3.3. Application to Jupiter’s Great Red Spot and other

Jovian features

Most of Jupiter’s volume is gas. The visible features on this atmosphere, cy-

clones, anticyclones and jets, are concentrated on a thin outer shell, the tro-

posphere, where the dynamics is described by similar equations to the ones

describing the Earth’s atmosphere (Dowling, 1995; Ingersoll and Vasavada,

1998). The inner part of the atmosphere is a conducting fluid, and the

dynamics is described by Magneto-hydrodynamics (MHD) equations.

The most simple model describing the troposphere is the 1-1/2 quasi-

geostrophic model, described in section 2.1. This simple model is a good

one for localized mid latitude dynamics. Many classical work have used it

to model Jupiter’s features, taking into account the effect of a prescribed

steady flow in a deep layer acting like an equivalent topography h (y). We

emphasize that there is no real bottom topography on Jupiter.

Some works based on soliton theory aimed at explaining the structure

and stability of the Great Red Spot. However, none of these obtained a

velocity field qualitatively similar to the observed one, which is actually

a strongly non-linear structure. Structures similar to the Great Red Spot

have been observed in a number of numerical simulations, but without

reproducing in a convincing way both the characteristic annular jet struc-

ture of the velocity field and the shape of the spot. Detailed observations

and fluid mechanics analysis described convincingly the potential vorticity

structure and the dynamical aspects of the Great Red Spot (see Dowl-

ing (1995); Ingersoll and Vasavada (1998); Marcus (1993) and references
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Figure 4. Observation of the Jovian atmosphere from Cassini (Courtesy of NASA/JPL-

Caltech). One of the most striking feature of the Jovian atmosphere is the self orga-

nization of the flow into alternating eastward and westward jets, producing the visible
banded structure and the existence of a huge anticyclonic vortex ∼ 20, 000 km wide,

located around 20 South: the Great Red Spot (GRS). The GRS has a ring structure:

it is a hollow vortex surrounded by a jet of typical velocity ∼ 100 m.s{−1} and width
∼ 1, 000 km. Remarkably, the GRS has been observed to be stable and quasi-steady

for many centuries despite the surrounding turbulent dynamics. The explanation of the

detailed structure of the GRS velocity field and of its stability is one of the main achieve-
ment of the equilibrium statistical mechanics of two dimensional and geophysical flows

(see figure 3.3 and section 3).

therein). The potential vorticity structure is a constant vorticity inside

the spot surrounded by a gentle shear outside, which gives a good fluid

mechanics theory (Marcus, 1993). In this section we explain this potential
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vorticity structure thanks to statistical mechanics. Statistical mechanics

provides also more detailed, and analytical theory of the shape of Jupiter

vortices.

The explanation of the stability of the Great Red Spot of Jupiter using

the statistical mechanics of the quasi-geostrophic model is cited by nearly

all the papers from the beginning of the Robert-Sommeria-Miller theory.

Some equilibria having qualitative similarities with the observed velocity

field have been computed in Sommeria et al. (1991). The theoretical study

in the limit of small Rossby deformation radius, especially the analogy

with first order phase transitions (Bouchet and Sommeria, 2002; Bouchet

and Dumont, 2003) gave the theory presented below: an explanation of the

detailed shape and structure and a quantitative model. These results have

been extended to the shallow-water model (Bouchet et al., 2012). Turk-

ington et al. (2001) argued on the explanation of the position of the Great

Red Spot based on statistical mechanics equilibria.

We describe in the following the prediction of equilibrium statistical

mechanics for the quasi-geostrophic model with topography. We start from

the Van-Der-Waals Cahn Hilliard variational problem in presence of small

topography (13), recalling that its minima are statistical equilibria of the

quasi-geostrophic model (see section 3.2).

The Rossby deformation radius at the Great Red Spot latitude is eval-

uated to be of order of 500− 2000 km, which has to be compared with the

size of the spot: 10, 000X 20, 000 km. This is thus consistent with the limit

R � L considered in the description of phase coexistence within the Van-

Der-Waals Cahn Hilliard model (section 3.1), even if the criteria r � R is

only marginally verified where the curvature radius r of the jet is the larger.

In the limit of small Rossby deformation radius, the entropy maxima

for a given potential vorticity distribution and energy, are formed by strong

jets, bounding areas where the velocity is much smaller. Figure 3.3 shows

the observation of the Great Red Spot velocity field, analyzed from cloud

tracking on spacecraft pictures. The strong jet structure (the interface) and

phase separation (much smaller velocity inside and outside the interface)

is readily visible. The main difference with the structure described in the

previous section is the shape of the vortex: it is not circular as was predicted

in the case without topography or with a linear topography. We consider

the effect of a more general topography in the next section.
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Observation (Voyager) Statistical Equilibrium

Figure 5. Left: the observed velocity field is from Voyager spacecraft data, from Dowling

and Ingersoll (1988) ; the length of each line is proportional to the velocity at that point.
Note the strong jet structure of width of order R, the Rossby deformation radius. Right:

the velocity field for the statistical equilibrium model of the Great Red Spot. The actual

values of the jet maximum velocity, jet width, vortex width and length fit with the
observed ones. The jet is interpreted as the interface between two phases; each of them

corresponds to a different mixing level of the potential vorticity. The jet shape obeys a

minimal length variational problem (an isoperimetrical problem) balanced by the effect
of the deep layer shear.
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Figure 6. Left panel: typical vortex shapes obtained from the isoperimetrical problem

(curvature radius equation (12)), for two different values of the parameters (arbitrary
units). The characteristic properties of Jupiter’s vortex shapes (very elongated, reaching

extremal latitude ym where the curvature radius is extremely large) are well reproduced

by these results. Central panel: the Great Red Spot and one of the White Ovals. Right
panel: one of the Brown Barge cyclones of Jupiter’s north atmosphere. Note the very
peculiar cigar shape of this vortex, in agreement with statistical mechanics predictions

(left panel)..

3.3.1. Determination of the vortex shape: the typical elongated shape

of Jupiter’s features

In order to determine the effect of topography on the jet shape, we

consider again the variational problem (13). We note that the topography

ηd = Rh has been rescaled by R in the term Rh(y)φ appearing in the

variational problem. This corresponds to a regime where the effect of the
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topography is of the same order as the effect of the jet free energy. Two

other regimes exist: one for which topography would have a negligible

impact (this would lead to circular vortices, as treated in section 3.2) and

another regime where topography would play the dominant role. This last

regime may be interesting in some cases, but we do not treat it in this

review.

Due to the scaling Rhφ, the topography does not play any role at ze-

roth order. We thus still conclude that phase separation occurs, with sub-

domains of areas A+ and A− fixed by the potential vorticity constraint (see

section 3.1.1), separated by jets whose transverse structure is described in

section 3.1.3. The jet shape is however given by minimization of the free

energy contributions of order R. Let us thus compute the first order contri-

bution of the topography term RH =
∫
D dr (−Rφh(y)). For this we use the

zeroth order result φ = ±u. We then obtainH = −u
∫
A+

drh+u
∫
A−

drh =

H0− 2u
∫
A+

drh, where H0 ≡ u
∫
D drh. We note that H0 does not depend

on the jet shape.

Adding the contribution of the topography to the jet free energy (10),

we obtain the first order expression for the modified free energy functional

F = RH0 +R

(
eL− 2u

∫
A+

drh(y)

)
, (15)

which is valid up to correction of order e (R/r) and of order R2H. We

recall that the total area A+ is fixed. We see that, in order to minimize

the free energy, the new term tends to favor as much as possible the phase

A+ with positive values of stream function φ = u (and then negative values

of potential vorticity q = −u) to be placed on topography maxima. This

effect is balanced by the length minimization.

In order to study in more details the shape of the jet, we look at the

critical points of the minimization of (15), with fixed area A+. Recalling

that first variations of the length are proportional to the inverse of the

curvature radius, we obtain

2uRh(y) + α =
eR

r
, (16)

where α is a Lagrange parameter associated with the conservation of the

area A+. This relates the vortex shape to the topography and parameters

u and e. From this equation, one can write the equations for X and Y , the

coordinates of the jet curve. These equations derive from a Hamiltonian,

and a detailed analysis allows to specify the initial conditions leading to
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closed curves and thus to numerically compute the vortex shape (Bouchet

and Sommeria, 2002).

Figure 6 compares the numerically obtained vortex shapes, with the

Jovian ones. This shows that the solution to equation (16) has the typical

elongated shape of Jovian vortices, as clearly illustrated by the peculiar

cigar shape of Brown Barges, which are cyclones of Jupiter’s north tro-

posphere. We thus conclude that statistical mechanics and the associated

Van-Der-Waals Cahn Hilliard functional with topography explain well the

shape of Jovian vortices.

Figure 7 shows a phase diagram for the statistical equilibria, with

Jupiter like topography and Rossby deformation radius. This illustrates

the power of statistical mechanics: with only few parameters characteriz-

ing statistical equilibria (here the energy E and a parameter related to the

asymmetry between positive and negative potential vorticity B), we are

able to reproduce all the features of Jupiter’s troposphere, from circular

white ovals, to the GRS and cigar shaped Brown Barges. The reduction

of the complexity of turbulent flow to only a few order parameters is the

main interest and achievement of a statistical mechanics theory.

Moreover, as seen on figure 7, statistical mechanics predicts a phase

transition from vortices towards straight jets. The concept of phase tran-

sition is an essential one in complex systems, as the qualitative physical

properties of the system drastically change at a given value of the control

parameters.

3.3.2. Quantitative comparisons with Jupiter’s Great Red Spot

In the preceding section, we have made a rapid description of the effect

of a topography to first order phase transitions. We have obtained and

compared the vortex shape with Jupiter’s vortices. A much more detailed

treatment of the applications to Jupiter and to the Great Red Spot can

be found in Bouchet and Sommeria (2002); Bouchet and Dumont (2003).

The theory can be extended in order to describe the small shear outside

of the spot (first order effect on φ outside of the interface), on the Great

Red Spot zonal velocity with respect to the ambient shear, on the typical

latitudinal extension of these vortices. A more detailed description of phys-

ical considerations on the relations between potential vorticity distribution

and forcing is also provided in Bouchet and Sommeria (2002); Bouchet and

Dumont (2003).
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Figure 7. Phase diagram of the statistical equilibrium states versus the energy E and

a parameter related to the asymmetry between positive and negative potential vorticity
B, with a quadratic topography. The inner solid line corresponds to a phase transition,

between vortex and straight jet solutions. The dash line corresponds to the limit of

validity of the small deformation radius hypothesis. The dot lines are constant vortex
aspect ratio lines with values 2,10,20,30,40,50,70,80 respectively. We have represented

only solutions for which anticyclonic potential vorticity dominate (B > 0). The opposite
situation may be recovered by symmetry. For a more detailed discussion of this figure,

the precise relation between E, B and the results presented in this lecture, please see

Bouchet Dumont.

3.4. Application to ocean rings

Application of equilibrium statistical mechanics to the description of

oceanic flows is a long-standing problem, starting with the work of

Salmon–Holloway–Hendershott in the framework of energy-enstrophy the-

ory (Salmon et al., 1976).

Another attempt to apply equilibrium statistical mechanics to oceanic

flows had been performed by Dibattista and Majda (2000); Dibattista et al.

(2002) in the framework of the Heton model of Hogg and Stommel (1985)

for the self-organization phenomena following deep convection events, by

numerically computing statistical equilibrium states of a two-layer quasi-

geostrophic model.

None of these previous approaches have explained the ubiquity of

oceanic rings. We show in the following that such rings can actually be

understood as statistical equilibria by similar arguments that explain the

formation of Jovian vortices (see Venaille and Bouchet (2011a) for more
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Figure 8. Snapshot of surface velocity field from a comprehensive numerical simula-
tion of the southern Oceans (Hallberg et all 2006). Left: coarse resolution, the effect

of mesoscale eddies (∼ 100km) is parameterized. Right: higher resolution, without pa-

rameterization of mesoscale eddies. Note the formation of large scale coherent structure
in the high resolution simulation: there is either strong and thin eastward jets or rings

of diameter ∼ 200 km. Typical velocity and width of jets (be it eastward or around

the rings) are respectively ∼ 1 m.s−1 and ∼ 20 km. The give a statistical mechanics
explanation and model for these rings.

details).

3.4.1. Rings in the oceans

The ocean has long been recognized as a sea of eddies. This has been

first inferred from in situ data by Gill, Green and Simmons in the early

1970s (Gill et al., 1974). During the last two decades, the concomitant

development of altimetry and realistic ocean modeling has made possible a

quantitative description of those eddies. The most striking observation is

probably their organization into westward propagating rings of diameters

(Le ∼ 200 km), as for instance seen in figure 8. In that respect, they look

like small Jovian Great Red Spots.

Those eddies plays a crucial role for the general ocean circulation and

its energy cycle, since their total energy is one order of magnitude above

the kinetic energy of the mean flow.

Those rings are mostly located around western boundary currents,

which are regions characterized by strong baroclinic instabilitiesf , such as

fWhen the mean flow present a sufficiently strong vertical shear, baroclinic instabilities
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the Gulf Stream, the Kuroshio, the Aghulas currents below South Africa

or the confluence region of the Argentinian basin, as seen on figures 8 and

11. The rings can also propagate far away from the regions where they are

created.

Most of those rings have a baroclinic structure, i.e. a velocity field

intensified in the upper layer (H ∼ 1 km) of the oceans. This baroclinic

structure suggest that the 1.5 layer quasi-geostrophic model introduced in

the previous sections is relevant to this problem. The horizontal scale of

the rings (Le ∼ 200 km) are larger than the width R ∼ 50 km of the

surrounding jet, of typical velocities U = 1 m.s−1.

The organization of those eddies into coherent rings can be understood

by the same statistical mechanics arguments that have just been presented

in the case of Jupiter’s Great Red Spot. The rings correspond to one phase

containing most of the potential vorticity extracted from the mean flow

by baroclinic instability, while the surrounding quiescent flow corresponds

to the other phase. This statistical mechanics approach, the only one to

our knowledge to describe the formation of large scale coherent structures,

might then be extremely fruitful to account for the formation of such rings.

It remains an important open question concerning the criteria that select

the size of such coherent structures. This is an ongoing subject of investi-

gation.

3.4.2. The westward drift of the rings

In this section, we consider the consequences of the beta effect (see section

2.1), which corresponds to linear topography ηd = βy in (2). We prove that

this term can be easily handled and that it actually explains the westward

drift of oceanic rings with respect to the mean surrounding flow.

We consider the quasi-geostrophic equations on a domain which is in-

variant upon a translation along the x direction (either an infinite or a

periodic channel, for instance). Then the quasi-geostrophic equations are

invariant over a Galilean transformation in the x direction. We consider the

transformation v′ = v + V ex, where v is the velocity in the original frame

of reference and v′ is the velocity in the new Galilean frame of reference.

From the relation v = ez ∧∇ψ, we obtain the transformation law for ψ:

ψ′ = ψ − V y and from the expression q = ∆ψ − ψ/R2 + βy (2) we obtain

release part of the available potential energy associated with this mean flow, which is
generally assumed to be maintained by a large scale, low frequency forcing mechanism

such as surface wind stress or heating (Vallis, 2006)
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Figure 9. Vortex statistical equilibria in the quasi-geostrophic model. It is a circular

patch of (homogenized) potential vorticity in a background of homogenized potential
vorticity, with two different mixing values. The velocity field (right panel) has a very

clear ring structure, similarly to the Gulf-Stream rings and to many other ocean vortices.

The width of the jet surrounding the ring has the order of magnitude of the Rossby radius
of deformation R.

the transformation law for q: q′ = q + V y/R2. Thus the expression for the

potential vorticity in the new reference frame is

q = ∆ψ − ψ

R2
+

(
β +

V

R2

)
y.

From this last expression, we see that a change of Galilean reference frame

translates as a beta effect in the potential vorticity. Moreover, in a reference

frame moving at velocity −βR2ex, the β effect is exactly canceled out.

From this remark, we conclude that taking into account the beta effect,

the equilibrium structures should be the one described by the minimization

of the Van-Der-Waals Cahn Hilliard variational problem, but moving at a

constant westward speed V = βR2. A more rigorous treatment of the sta-

tistical mechanics for the quasi-geostrophic model with translational invari-

ance would require to take into account an additional conserved quantity,

the linear momentum, which would lead to the same conclusion: statistical

equilibria are rings with a constant westward speed V = βR2. See also Ve-

naille and Bouchet (2011a) for more details and discussions on the physical

consequences of this additional constraint.

This drift is actually observed for the oceanic rings, see for instance

figure 10.
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Figure 10. Altimetry observation of the westward drift of oceanic eddies (including
rings) (Chelton et al, 2007), figure 4. The red line is the zonal average (along a latitude

circle) of the propagation speeds of all eddies with life time greater than 12 weeks.
The black line represents the velocity βR2 where β is the meridional gradient of the

Coriolis parameter and R the first baroclinic Rossby radius of deformation. This eddy

propagation speed is a prediction of statistical mechanics

4. Are the Gulf-Stream and the Kuroshio currents close to

statistical equilibria?

In section 3.4, we have discussed applications of statistical mechanics ideas

to the description of ocean vortices, like the Gulf-Stream rings. We have

also mentioned that statistical equilibria, starting from the Van-Der-Waals

Cahn Hilliard functional (13), may model physical situations where strong

jets, with a width of order R, bound domains of nearly constant potential

vorticity.

This is actually the case of the Gulf Stream in the North Atlantic ocean

or of the Kuroshio extension in the North Pacific ocean. This can be in-

ferred from observations, or this is observed in high resolution numerical

simulations of idealized wind driven mid-latitude ocean, see for instance

figure 12 (see Berloff et al. (2007) for more details).

It is thus very tempting to interpret the Gulf Stream and the Kuroshio

as interfaces between two phases corresponding to different levels of poten-

tial vorticity mixing, just like the Great Red Spot and ocean rings in the

previous section. The aim of this chapter is to answer this natural question:

are the Gulf-Stream and Kuroshio currents close to statistical equilibria?
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Figure 11. Observation of the sea surface height of the north Atlantic ocean (Gulf
Stream area) from altimetry (Topex-Poseidon). For geophysical flows, the surface veloc-

ity field can be inferred from the see surface height (SSH): strong gradient of SSH are

related to strong jets. The Gulf stream appears as a robust eastward jet (in presence of
meanders), flowing along the east coast of north America and then detaching the coast

to enter the Atlantic ocean, with an extension L ∼ 2000 km. The jet is surrounded by

numerous westward propagating rings of typical diameters L ∼ 200 km. Typical veloci-
ties and widths of both the Gulf Stream and its rings jets are respectively 1 m.s−1 and

50 km, corresponding to a Reynolds number Re ∼ 1011. Such rings can be understood

as local statistical equilibria, and strong eastward jets like the Gulf Stream and obtained
as marginally unstable statistical equilibria in simple academic models (see subsections

3.4-4).

More precisely, we address the following problem: is it possible to find

a class of statistical equilibria with a strong mid-basin eastward jet similar

to the Gulf Stream of the Kuroshio, in a closed domain? The 1-1/2 layer

quasi-geostrophic model (see section 2.1) is the simplest model taking into

account density stratification for mid-latitude ocean circulation in the upper

first 1000m (Pedlosky, 1998; Vallis, 2006). We analyze therefore the class of

statistical equilibria which are minima of the Van-Der-Waals Cahn Hilliard
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a) b) c)

Figure 12. b) and c) represent respectively a snapshot of the streamfunction and po-
tential vorticity (red: positive values; blue: negative values) in the upper layer of a three

layers quasi-geostrophic model in a closed domain, representing a mid-latitude oceanic
basin, in presence of wind forcing. Both figures are taken from numerical simulations by

P. Berloff. a) Streamfunction predicted by statistical mechanics, see section 4 for further

details. Even in an out-equilibrium situation like this one, the equilibrium statistical
mechanics predicts correctly the overall qualitative structure of the flow.

variational problem (13), as explained in section 3.2. We ask whether it

exists solutions to{
F = min {F [φ] | A [φ] = −B }

with F =
∫
D dr

[
R2(∇φ)2

2 + f (φ)−Rβ̃yφ
]

and A [φ] =
∫
D drφ

(17)

in a bounded domain (let say a rectangular basin) with strong mid-basin

eastward jets. At the domain boundary, we fix φ = 0 (which using φ = R2ψ

turns out to be an impermeability condition). We note that the understand-

ing of the following discussion requires the reading of sections 4.1 to 4.3.

The term Rβ̃y is an effective topography including the beta effect and

the effect of a deep zonal flow (see section 2.1). Its significance and effects

will be discussed in section 5.2. As in the previous section, we consider the

limit R� L and assume f be a double well function.

As discussed in chapter 3.1, with these hypothesis, there is phase sep-

aration in two subdomains with two different levels of potential vorticity

mixing. These domains are bounded by interfaces (jets) of width R. In

view of the applications to mid-basin ocean jets, we assume that the area

A+ occupied by the value φ = u is half of the total area of the domain

(this amounts to fix the total potential vorticity Γ1). The question is to

determine the position and shape of this interface. The main difference

with the cases treated in subsection 3.1 is due to the effect of boundaries

and of the linear effective topography Rβ̃y.
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Figure 13. a) Eastward jet: the interface is zonal, with positive potential vorticity

q = u on the northern part of the domain. b) Westward jet: the interface is zonal, with
negative potential vorticity q = −u in the northern part of the domain. c) Perturbation

of the interface for the eastward jet configuration, to determine when this solution is a

local equilibrium (see subsection 4.2). Without topography, both (a) and (b) are entropy
maxima. With positive beta effect (b) is the global entropy maximum; with negative

beta effect (a) is the global entropy maximum.

4.1. Eastward jets are statistical equilibria of the

quasi-geostrophic model without topography

The value φ = ±u for the two coexisting phases is not compatible with

the boundary condition φ = 0. As a consequence, there exists a boundary

jet (or boundary layer) in order to match a uniform phase φ = ±u to the

boundary conditions. Just like inner jets, treated in section 3, these jets

contribute to the first order free energy, which gives the jet position and

shape. We now treat the effect of boundary layer for the case h = 0 (β̃ = 0

in this case). As explained in section 3.1.3, the jet free energy is the only

contribution to the total free energy.

We first quantify the unit length free energy, Fb, for the boundary jets.

Following the reasoning of section 3.1.3, we have

Fb = min

{∫
dζ

[
R2

2

d2φ

dζ2
+ f(φ)

]}
.

This expression is the same as (8), the only difference is the different

boundary conditions: it was φ →ζ→+∞ u and φ →ζ→−∞ −u, it is now

φ→ζ→+∞ u and φ (0) = 0. Because f is even, one easily see that a bound-

ary jet is nothing else than half of a interior domain jet. Then

Fb =
1

2
Fint =

e

2
R,

where Fint and e are the unit length free energies for the interior jets, as

defined in section 3.1.3. By symmetry, a boundary jet matching the value



September 11, 2012 23:2 Proceedings Trim Size: 9in x 6in Peyresq-Bouchet-Venaille-N-4

31

φ = −u to φ = 0 gives the same contributiong. Finally, the first order free

energy is given by

F = eR

(
L+

Lb
2

)
,

where Lb is the boundary length. Because the boundary length Lb is a fixed

quantity, the free energy minimization amounts to the minimization of the

interior jet length. The interior jet position and shape is thus given by the

minimization of the interior jet length with fixed area A+. We recall that

the solutions to this variational problem are interior jets which are either

straight lines or circles (see section 3.1.3).

In order to simplify the discussion, we consider the case of a rectangular

domain of aspect ratio τ = Lx/Ly. Generalization to an arbitrary closed

domain could also be discussed. We recall that the two phases occupy

the same area A+ = A− = 1
2LxLy. We consider three possible interface

configurations with straight or circular jets:

(1) the zonal jet configuration (jet along the x axis) with L = Lx,

(2) the meridional jet configuration (jet along the y axis with L = Ly,

(3) and an interior circular vortex, with L = 2
√
πA+ =

√
2πLxLy .

The minimization of L for these three configurations shows that the zonal

jet is a global minimum if and only if τ < 1. The criterion for the zonal

jet to be a global RSM equilibrium state is then Lx < Ly. We have thus

found zonal jet as statistical equilibria in the case h = 0.

An essential point is that both the Kuroshio and the Gulf Stream are

flowing eastward (from west to east). From the relation v = ez ×∇ψ, we

see that the jet flows eastward (vx > 0) when ∂yψ < 0. Recalling that

φ = R2ψ, the previous condition means that the negative phase φ = −u
has to be on the northern part of the domain, and the phase φ = u on

the southern part. From (2), we see that this corresponds to a phase with

positive potential vorticity q = u on the northern sub-domains and negative

potential vorticity q = −u on the southern sub-domain, as illustrated in

the panel (a) of figure (13).

Looking at the variational problems (17), it is clear that in the case

β̃ = 0, the minimization of φ is invariant over the symmetryφ→ −φ. Then

gWe have treated the symmetric case when f is even. The asymmetric case could be

also easily treated
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solutions with eastward or westward jets are completely equivalent. Actu-

ally there are two equivalent solutions for each of the case 1, 2 and 3 above.

However, adding a beta effect h = Rβ̃y will break this symmetry. This is

the subject of next section.

We conclude that in a closed domain with aspect ratio Lx/Ly < 1,

without topography, equilibrium states exist with an eastward jet at the

center of the domain, recirculating jets along the domain boundary and

a quiescent interior. For Lx/Ly > 1, these solutions become metastable

states (local entropy maximum). This equilibrium is degenerated, since the

symmetric solution with a westward jet is always possible.

4.2. Addition of a topography

For ocean dynamics, the beta effect plays a crucial role. Let us now con-

sider the case where the topography is ηd = βy+ ψd

R2 . The first contribution

comes from the beta-effect (the variation of the Coriolis parameter with lat-

itude). The second contribution is a permanent deviation of the interface

between the upper layer and the lower layer. For simplicity, we consider the

case where this permanent interface elevation is driven by a constant zonal

flow in the lower layer: ψd = −Udy , which gives ηd =
(
β − Ud

R2

)
y = Rβ̃y.

Then the combined effect of a deep constant zonal flow and of the variation

of the Coriolis parameter with latitude is an effective linear beta effect.

In the definition of β̃ above, we use a rescaling with R. This choice is

considered in order to treat the case where the contribution of the effective

beta effect appears at the same order as the jet length contribution. This

allows to easily study how the beta effect breaks the symmetry φ → −φ
between eastward and westward jets. Following the arguments of section

3.3.1, we minimize

F = RH0 +R

(
eL− 2u

∫
A+

dr β̃y

)
, (18)

(see equation (15)), with a fixed area A+. The jet position is a critical

point of this functional: e/r − 2uβ̃yjet = α (see equation (16)), where α is

a Lagrange parameter and yjet the latitude of the jet. We conclude that

zonal jets (curves with constant yjet and r = +∞) are solutions to this

equation for α = −2uRβ̃yjet. Eastward and westward jets described in the

previous section are still critical points of entropy maximization.
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4.2.1. With a negative effective beta effect, eastward jets are

statistical equilibria

We first consider the case β̃ < 0. This occurs when the zonal flow in the

lower layer is eastward and sufficiently strong (Ud > R2β). If we compute

the first order free energy (18) for both the eastward and the westward

mid-latitude jet, it is easy to see that in order to minimize F , the domain

A+ has to be located at the lower latitudes: taking y = 0 at the interface,

the term −2u
∫
A+

d2r β̃y = uβ̃LxLy/4 gives a negative contribution when

the phase with φ = u (and q = −u) is on the southern part of the domain

(A+ = (0, Lx)× (−Ly

2 , 0)). This term would give the opposite contribution

if the phase φ = u would occupy the northern part of the domain. Thus the

statistical equilibria is the one with negative streamfunction φ (correspond-

ing to positive potential vorticity q) on the northern part of the domain.

As discussed in the end of section 4.1 and illustrated on figure 13, panel

(b), this is the case of an eastward jet.

Thus, we conclude that taking into account an effective negative beta-

effect term at first order breaks the westward-eastward jet symmetry. When

β̃ < 0, statistical equilibria are flows with mid-basin eastward jets.

4.2.2. With a positive effective beta effect, westward jets are

statistical equilibria

Let us now assume that the effective beta coefficient is positive. This is the

case when Ud < R2β, i.e. when the lower layer is either flowing westward,

or eastward with a sufficiently low velocity. The argument of the previous

paragraph can then be used to show that the statistical equilibrium is the

solution presenting a westward jet.

4.2.3. With a sufficiently small effective beta coefficient, eastward

jets are local statistical equilibria

We have just proved that mid-basin eastward jets are not global equilibria in

the case of positive effective beta effect. They are however critical points of

entropy maximization. They still could be local entropy maxima. We now

consider this question: are mid-basin strong eastward jets local equilibria

for a positive effective beta coefficient? In order to answer, we perturb

the interface between the two phases, while keeping constant the area they

occupy, and compute the free energy perturbation.
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The unperturbed interface equation is y = 0, the perturbed one is y =

l(x), see figure 13. Qualitatively, the contributions to the free energy F
(18), of the jet on one hand and of the topography on the other hand,

are competing with each other. Any perturbation increases the jet length

L =
∫
dx

√
1 +

(
dl
dx

)2
and then increases the second term in equation (18)

by δF1 = Re
∫
dx (dl/dx)

2
. Any perturbation decreases the third term in

equation (18) by δF2 = −2Ruβ̃
∫
dx l2.

We suppose that l = lk sin kπ
Lx
x where k ≥ 1 is an integer. Then

δF = δF1 + δF2 = −2uβ̃ + e

(
kπ

Lx

)2

.

Because we minimize F , we want to know if any perturbation leads to

positive variations of the free energy. The most unfavorable case is for the

smallest value of k2, i.e. k2 = 1. Then we conclude that eastward jets are

local entropy maxima when

β̃ < β̃cr =
1

2

e

u

π2

L2
x

.

We thus conclude that eastward zonal jets are local equilibria for sufficiently

small values of β̃.

The previous result can also be interpreted in terms of the domain

geometry, for a fixed value of β̃. Eastward jets are local entropy maxima if

Lx < Lx,cr = π

√
e

2uβ̃cr
.

Let us evaluate an order of magnitude for Lx,cr for the ocean case, first

assuming there is no deep flow (Ud = 0). Then Rβ̃ is the real coefficient

of the beta plane approximation. Remembering that a typical velocity of

the jet is U ∼ uR, and using e ∼ u2 (see Venaille and Bouchet (2011a)

for more details). Then Lx,cr ≈ π
√

U
βcr

. This length is proportional to

the Rhine’s’ scale of geophysical fluid dynamics (Vallis, 2006). For jets like

the Gulf Stream, typical jet velocity is 1 m.s−1 and β ∼ 10−11 m−1.s−1 at

mid-latitude. Then Lcr ∼ 300 km. This length is much smaller than the

typical zonal extension of the inertial part of the Kuroshio or Gulf Stream

currents. We thus conclude that in a model with a quiescent lower layer

and the beta plane approximation, currents like the Gulf Stream or the

Kuroshio are not statistical equilibria, and they are not neither close to

local statistical equilibria.
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Taking the oceanic parameters (β = 10−11 m−1s−1, R ∼ 50 km),

we can estimate the critical eastward velocity in the lower layer Ud,cr =

5 cm s−1 above which the strong eastward jet in the upper layer is a sta-

tistical equilibria. It is difficult to make further conclusions about real

mid-latitude jets; we conjecture that their are marginally stable. This hy-

pothesis of marginal stability is in agreement with the observed instabilities

of the Gulf-Stream and Kuroshio current, but overall stability of the global

structure of the flow. A further discussion of these points will be the object

of future works.

In all of the preceding considerations, we have assumed that the term Rβ̃

was of order R in dimensionless units. This is self-consistent to compute

the unstable states. To show that a solution is effectively a statistical

equilibria when Rβ̃ in of order one, one has to use much less straightforward

considerations than in the preceding paragraphs, but the conclusions would

be exactly the same.

4.3. Conclusion

We have shown that when there is a sufficiently strong eastward flow in

the deep layer (i.e. when Ud > Ud,cr with Ud,cr = R2βcr), ocean mid-

latitude eastward jets are statistical equilibria, even in presence of a beta

plane. When the flow in the deep layer is lower than the critical value

Ud,cr but still almost compensate the beta plane (0 < β − Ud

R2 <
1
2
e
u
π2

L2
x
R),

the solutions with the eastward jets are local equilibria (metastable states).

When β − Ud

R2 >
1
2
e
u
π2

L2
x
R the solution with an eastward jet are unstable.

We have also concluded that the inertial part of the real Gulf-Stream

or of the Kuroshio extension are likely to be marginally stable from a sta-

tistical mechanics point of view.

The statistical equilibria that we have described in this section have

a flow structure that differs notably from the celebrated Fofonoff solution

(Fofonoff, 1954).

The Fofonoff solution is a stationary state of the quasi-geostrophic equa-

tions (1-2) on a beta plane (ηd = βy) obtained by assuming a linear relation-

ship between potential vorticity and streamfunction (q = aψ), in the limit

a + R−2 � L−2, where L is the domain size. In this limit, the Laplacian

term in (2) is negligible in the domain bulk. Then ψ ≈ β/(a+R−2)y, which

corresponds to a weak westward flow, as illustrated figure 14. Strong recir-

culating eastward jets occur at northern and southern boundaries, where
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Figure 14. Phase diagrams of RSM statistical equilibrium states of the 1.5 layer quasi-
geostrophic model, characterized by a linear q−ψ relationship, in a rectangular domain

elongated in the x direction. S(E,Γ) is the equilibrium entropy, E is the energy and

Γ the circulation. Low energy states are the celebrated Fofonoff solutions, presenting
a weak westward flow in the domain bulk. High energy states have a very different

structure (a dipole). Please note that at high energy the entropy is non-concave. This
is related to ensemble inequivalence, which explain why such states were not computed

in previous studies (Please see Venaille and Bouchet, 2009, for more details).

the Laplacian term is no more negligible.

The original work of Fofonoff was carried independently from statistical

mechanics considerations. The linear q − ψ relationship was chosen as a

starting point to compute analytically the flow structure. Because both

the Salmon–Holloway–Hendershott statistical theory (Salmon et al., 1976)

and the Bretherton–Haidvoguel minimum enstrophy principle (Bretherton

and Haidvogel, 1976) did predict a linear relationship between vorticity

and streamfunction, it has been argued that statistical equilibrium theory

predicts the emergence of the classical Fofonoff flows, which had effectively

been reported in numerical simulations of freely decaying barotropic flows

on a beta plane for some range of parameters (Wang and Vallis, 1994).

It is shown in Bouchet (2008) that all those theories are particular cases

of the RSM statistical mechanics theory. On the one hand it has been actu-

ally proven that the classical Fofonoff solutions are indeed RSM statistical

equilibria in the limit of low energies (Venaille and Bouchet, 2011b). On the

other hand, as illustrated by the results of this section, there exists a much

richer variety of RSM equilibrium states than the sole classical Fofonoff

solution. Even in the case of a linear q−ψ relation, high energy statistical

equilibrium states are characterized by a flow structure that differs notably

from the original Fofonoff solution, as illustrated figure 14. These high en-

ergy states correspond actually to the RSM equilibrium states of the Euler
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equation, originally computed by Chavanis and Sommeria (1996). The tran-

sition from classical Fofonoff solutions to those high energy states has been

related the the occurrence of ensemble inequivalence (Venaille and Bouchet,

2009). This explains also why such high energy states have not been re-

ported in earlier studies, where computations were always performed in the

(unconstrained) canonical ensemble, see Venaille and Bouchet (2011b) for

more details.

The early work of Fofonoff and the equilibrium statistical mechanics of

geophysical flows presented in this review are often referred to as the inertial

approach of oceanic circulation, meaning that the effect of the forcing and

the dissipation are neglected.

Ocean dynamics is actually much influenced by the forcing and the dis-

sipation. For instance the mass flux of a current like the Gulf Stream is

mainly explained by the Sverdrup transport. Indeed in the bulk of the

ocean, a balance between wind stress forcing and beta effect (the Sverdrup

balance) lead to a meridional global mass flux (for instance toward the

south on the southern part of the Atlantic ocean. This fluxes is then ori-

ented westward and explain a large part of the Gulf Stream mass transport.

This mechanism is at the base of the classical theories for ocean dynamics,

see e.g. Pedlosky (1998). Because it is not an conservative process, the iner-

tial approach does not take this essential aspect into account. Conversely,

the traditional theory explains the Sverdrup transport, the westward in-

tensification and boundary current, but gives no clear explanation of the

structure of the inertial part of the current: the strongly eastward jets.

Each of the classical ocean theory or of the equilibrium statistical me-

chanics point of view give an incomplete picture, and complement each

other. Another interesting approach consider the dynamics from the point

of view of bifurcation theory when the Reynolds number (or some other con-

trolled parameters) are increased. These three types of approaches seem

complimentary and we hope they may be combined in the future in a more

comprehensive non-equilibrium theory.

5. The vertical structure of geostrophic turbulence

In the previous sections, we assumed that the dynamics took place in an

upper active layer above a lower layer at rest. Vertical energy transfers were

therefore neglected. The vertical structure of the oceanic mesoscale (from

50 to 500 km) is actually a fundamental problem in geophysical fluid dynam-

ics, one that has has been reinvigorated by the need to interpret altimetric
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observation of surface velocity fields (Scott and Wang, 2005; Lapeyre, 2009).

It is widely accepted that the energy of oceanic mesoscale currents is

mostly injected at the surface of the oceans (Ferrari and Wunsch, 2009).

Indeed, the primary source of geostrophic turbulence is mostly baroclinic

instability, extracting turbulent energy from the potential energy reservoir

set at the basin scale by large scale wind patterns (Gill et al., 1974), and

involving surface-intensified unstable modes, see e.g. Smith (2007).

It leads to the following question: what is the vertical structure of a three

dimensional quasi-geostrophic flow in the presence of surface forcing ? A

first step to tackle this problem is to consider a simpler problem without

forcing and dissipation: does an initially surface-intensified flow remain

trapped at the surface or does it spread on the vertical ? Here we address

this issue in the framework of freely-evolving stratified quasi-geostrophic

turbulence, which allows for theoretical analysis with equilibrium statistical

mechanics.

We introduce in the next subsection the continuously stratified quasi-

geostrophic dynamics, and explain how to compute equilibrium states in a

low energy limit.

We examine in a second subsection what are the precise conditions for

the oft-cited barotropization process to occur. Barotropization refers to

the tendency of a quasi-geostrophic flow to reach a depth-independant flow

(Charney, 1971; Rhines, 1977). We study in particular the key role played

by the beta effect (the existence of planetary vorticity gradients) in such

barotropization processes.

Finally, we show in a third subsection that the formation of bottom

trapped-flow in the presence of bottom-topography may be accounted for

by statistical mechanics arguments.

5.1. Continuously stratified quasi-geostrophic flows

Continuously stratified quasi-geostrophic flows take place in three di-

mensions, but their dynamics is quasi two-dimensional because the non-

divergent advecting velocity field has only horizontal components, and can

be described by a streamfunction ψ(x, y, z, t). Such flows are stably strati-

fied with a prescribed buoyancy profile N(z) above a topographic anomaly

hb(x, y), and are strongly rotating at a rate f0/2. In the absence of forcing

and dissipation, the dynamics is expressed as the advection of potential

vorticity q(x, y, z, t) (see e.g. Vallis (2006), section 5.4):
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∂tq + v · ∇q = 0 , v = ez ×∇ψ (19)

q = ∆ψ +
∂

∂z

(
f2

0

N2

∂

∂z
ψ

)
+ βy , (20)

where ∆ is the horizontal Laplacian, and where we have considered the

beta plane approximation (see section 2). The boundary condition at the

bottom (z = −H, where H is now the averaged ocean depth) is given by

f0

N2
∂zψ

∣∣∣∣
z=−H

= −hb , (21)

The boundary condition at the surface (defined as z = 0, using the rigid

lid approximation), is given by the advection of buoyancy

∂tbs + v|z=0 · ∇bs = 0 ,
f2

0

N2
∂zψ

∣∣∣∣
z=0

= bs. (22)

The upper boundary condition (22) can be formally replaced by the con-

dition of no buoyancy variation (∂zψ = 0 at z = 0), provided that surface

buoyancy anomalies are interpreted as a thin sheet of potential vorticity just

below the rigid lid (Bretherton, 1966). For this reason, and without loss of

generality, we will consider that bs = 0 in the remainder of this course. In

the following we will consider the case of a square doubly-periodic domain

D, and we choose to adimensionalize length such that the domain length is

2π, so that the streamfunction is 2π-periodic in the x, y direction.

The dynamics admits similar conservation laws as the one-layer quasi-

geostrophic model considered in sections 2-3-4. Dynamical invariants in-

clude the total (kinetic plus potential) energy

E =
1

2

∫ 0

−H
dz

∫
D

dxdy

[
(∇ψ)

2
+
f2

0

N2
(∂zψ)

2

]
, (23)

and the Casimir functionals Cg(z)[q] =
∫
D dxdy g(q) where g is any con-

tinuous function. These conservation laws have important physical conse-

quences. In particular, there is an inverse energy cascade that leads to the

formation of robust, large scale coherent structures filling the domain in

which the flow takes place. It is shown in Venaille et al. (2012) that the

vertical structure of the large scale flow organization resulting from invis-

cid, freely evolving continuously stratified quasi-geostrophic dynamics can

be predicted using equilibrium statistical mechanics. We sum up the main

results in the next subsections.



September 11, 2012 23:2 Proceedings Trim Size: 9in x 6in Peyresq-Bouchet-Venaille-N-4

40

5.1.1. Equilibrium states characterized by a linear q − ψ relation

Let us call E0 = E(q0) and Z0(z) = (1/2)
∫
D dxdy q2

0 the energy and en-

strophy, respectively, of the initial condition given by q0(x, y, z). Using a

general result of Bouchet (2008), it is shown in Venaille et al. (2012), Ap-

pendix 1, that in the low energy limit, the calculation of RSM equilibrium

states amounts to finding the minimizer qmin of the “total macroscopic

enstrophy”

Ztotcg [q] =
1

2

∫ 0

−H
dz

∫
D

dxdy
q2

Z0
(24)

among all the fields q satisfying the energy constraint

E [q] =
1

2

∫
D

dxdy f0hbψ|z=−H−
1

2

∫
D

dxdy

∫ 0

−H
dz (q − βy)ψ = E0, (25)

The variational problem (24-25) can be seen as a generalization to the

stratified case of the phenomenological minimum enstrophy principle of

Bretherton and Haidvogel (1976).

Critical states of the variational problem (24-25) are computed by intro-

ducing Lagrange multiplier βt associated with the energy constraint, and by

solving δZtotalcg + βtδE = 0,, leading to the linear relation q = βtZ0ψ. The

next step is to find which of these critical states are actual minimizers of the

macroscopic enstrophy for a given energy. We perform these computations

in various cases of geophysical interest in the following subsections.

5.2. The presence of a beta plane favors barotropization

5.2.1. Equilibrium states without topography and without beta effect

We consider here the case hb = 0 and β = 0. Injecting q = βtZ0ψ in (20)

and projecting on Fourier modes yields

∂

∂z

(
f2

0

N2

∂

∂z
ψ̂k,l

)
=
(
βtZ0 +K2

)
ψ̂k,l , (26)

with

∂zψ̂k,l|z=0,−H = 0, K2 = k2 + l2, ψ =
∑
k,l

ψ̂k,l exp (2iπ (kx+ ly)) .

We see that each critical point is characterized by a given wavenumber

modulus K. Its vertical structure and the corresponding value of βt must be
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Figure 15. Left panel: three different vertical profiles of the microscopic enstrophy.

Right panel: corresponding vertical structure of statistical equilibrium states (ψ(z)/ψ(0)

on the left panel), in the case of constant stratification ( f20 /N
2 = 0.1). The e-folding

depth in case A is h = f0/NK (with here K = 1 for the statistical equilibrium state).

computed numerically in the case of arbitrary profiles Z0(z). Let us consider

the example shown in figure 15, for a two-step microscopic enstrophy profile

Z0 = ZsurfΘ (z +H1) + ZintΘ (−z −H1) , H1 � H, (27)

where Θ is the Heaviside function, and for Zint/Zsurf varying between 0

and 1. We find that the minimum macroscopic enstrophy states are always

characterized by the gravest horizontal mode on the horizontal (K = 1).

As for the vertical structure, we observe figure 15 a tendency toward more

barotropic flows when the ratio Zint/Zsurf tends to one. One can actually

show that the equilibrium state is barotropic when Zint/Zsurf = 1, and

that the equilibrium state is surface intensified with e-folding depth h =

f0/N(0)K when Zint/Zsurf = 0 and H1 � H, see Venaille et al. (2012).

These examples show the importance of the conservation of microscopic

enstrophy Z0(z) to the vertical structure of the equilibrium state. The

main result is that statistical mechanics predicts a tendency for the flow to

reach the gravest Laplacian mode on the horizontal (K = 1). The vertical

structure associated with this state is fully prescribed by solving (26) with

K = 1. Because the barotropic component of such flows are larger than

solutions of (26) with K > 1, we can say that the inverse cascade on the

horizontal is associated with a tendency to reach the gravest vertical mode

compatible with the vertical microscopic enstrophy profile Z0. This means

a tendency toward barotropization, although in general, the fact that the

profile Z0 is non constant prevents complete barotropization.
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5.2.2. Including the β-effect .

For a given initial condition ψ0(x, y, z), increasing β increases the contri-

bution of the (depth independent) available potential enstrophy defined as

Zp = β2

∫
D

dxdy y2, (28)

to the total microscopic enstrophy profile Z0(z) =
∫
D dxdy q2

0 , where q0

is the initial potential vorticity field that can be computed by injecting

ψ0 in (20). For sufficiently large values of β, the potential vorticity field

is dominated by the beta effect (q0 ≈ βy), Z0 therefore tends to Zp and

becomes depth independent. Because statistical equilibria computed in the

previous subsection were fully barotropic when the microscopic enstrophy

Z0 was depth-independent, we expect a tendency toward barotropization

by increasing β.

5.2.3. Numerical experiments

We consider in this section the final state organization of an initial sur-

face intensified flow, varying the values of β. The initial potential vorticity

field is q0 = qsurf(x, y)Θ (z +H1) + βy, such that q0 = βy in the interior

(−H < z < −H1) and q0 ≈ qsurf in a surface layer z > −H1. The surface

potential vorticity qsurf(x, y) is a random field with random phases in spec-

tral space, and a Gaussian power spectrum peaked at wavenumber K0 = 5,

with variance δK0 = 2, and normalized such that the total energy is equal

to one (E0 = 1).

We perform simulations of the dynamics by considering a vertical dis-

cretization with 10 layers of equal depth, horizontal discretization of 5122,

H = 1, and F = (Lf0/HN)2 = 1, using a pseudo-spectral quasi-geostrophic

model (Smith and Vallis, 2001). We choose H1 = H/10 for the initial con-

dition, so that there is non zero enstrophy only in the upper layer in the

absence of a beta effect.

The case with β = 0 is presented in the left panel of figure 16. An

inverse cascade in the horizontal leads to flow structures with an horizontal

wavenumber K decreasing with time, associated with a tendency toward

barotropization: the e-folding depth of the surface-intensified flow increases

as f0/2NK. The concomitant horizontal inverse cascade (most of the ki-

netic energy is in the gravest horizontal mode K = 1 at the end of the

simulation) and the increase of the e-folding depth are observed on figure

16, showing good qualitative agreement between statistical mechanics and
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Figure 16. Left: case without beta plane. Only the fields in upper, middle and lower

layer are shown. The end-state is surface-trapped. Right: case with a beta plane;
the initial streamfunction is the same as on the left. The end-state is almost depth-

independant. Note that the interior “ beta plane“ is not clearly visible in the upper
panel of potential vorticity because the color scale is different than in the lower panel.

numerical simulations.

We now switch on the beta effect, with the same initial surface-

intensified streamfunction ψ0(x, y, z). As a consequence, the contribution of

the depth independent part of the microscopic enstrophy increases, which

means a tendency toward a more barotropic equilibria, according to the

previous subsection. This is what is actually observed in the final state or-

ganization of figure 16 in the presence of beta effect. This result reflects the

fact that in physical space, the initial surface-intensified flow stirs the inte-

rior potential vorticity field (initially a beta plane), which in turn induces

an interior flow, which stirs even more the interior potential vorticity field,

and so on. We conclude that in this regime, the beta effect is a catalyst of

barotropization, as predicted by statistical mechanics.

5.3. The formation of bottom-trapped flows

We saw in the previous section that the existence of planetary vorticity

gradients (beta effect) provide a depth-independant source of microscopic

enstrophy that favors barotropization. Another source of microscopic po-

tential vorticity would be provided by the addition of bottom topography.

This should in this case play against barotropization, since the topography

induces potential microscopic enstrophy in the lower layer only. In fact,

an initially surface intensified flow may evolve towards a bottom trapped
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Figure 17. a) Sketch of the flow configuration. The continuous red line represents the

initial microscopic enstrophy profile (here Zint
0 = 0). The dashed blue line represents the

density profile, and the dashed-dotted green line represents the streamfunction amplitude
shape, which is initially surface-intensified. The thick continuous black line represents

bottom topography. b) Vertical slice of the meridional velocity field v of the statistical

equilibrium state in the low energy limit.

current above the topographic anomaly, which can be explained by the

statistical mechanics arguments presented above.

Bottom-intensified flows are commonly observed along topographic

anomalies in the ocean. A striking example is given by the Zapiola an-

ticyclone, a strong recirculation about 500 km wide that takes place above

a sedimentary bump in the Argentine Basin, where bottom-intensified ve-

locities of order 0.1 m.s−1 have been reported from in situ measurements

(Saunders and King, 1995) and models (de Miranda et al., 1999).

Phenomenological arguments for the formation of bottom-trapped flows

were previously given by Dewar (1998) in a forced-dissipated case. A com-

plementary point of view was given by Merryfield (1998), who computed

critical states of equilibrium statistical mechanics for truncated dynamics.

He observed that some of these states were bottom intensified in the pres-

ence of topography. Venaille (2012) showed how to find the equilibrium

states among these critical states, how they depend on the initial micro-

scopic enstrophy profile, and provided numerical evidence of the sponta-

neous self-organization into bottom-trapped flows. We summarize in the

following the main results.

We consider the configuration of figure 17-a: the stratification is linear

in the bulk (N is constant for −H+h < z < −h), and homogeneous in two

layers of thickness h � H at the top and at the bottom, where N = 0+.

In these upper and lower layers, the streamfunction is depth independent,

denoted by ψtop(x, y, t) and ψbot(x, y, t), respectively. In these layers, the
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dynamics is then fully described by the advection of the vertical average

of the potential vorticity fields, denoted by qtop(x, y, t) and qbot(x, y, t).

The interior potential vorticity field is denoted by qint(x, y, z, t). For a

given field qtop, qint, qbot, the streamfunction is obtained by inverting the

following equations:

qtop − βy = ∆ψtop − f2
0

hN2

∂

∂z
ψ

∣∣∣∣
z=−h

, (29)

qbot − βy − f0
hb
h

= ∆ψbot +
f2

0

hN2

∂

∂z
ψ

∣∣∣∣
z=h−H

, (30)

qint − βy = ∆ψ +
f2

0

N2

∂2

∂z2
ψ for −H + h < z < −h , (31)

ψtop = ψ(x, y,−h), ψbot = ψ(x, y,−H + h). (32)

Equations (29-30) are obtained by averaging Eq. (20) in the vertical di-

rection in the upper and the lower layers, respectively, and by using the

boundary condition (21). In the following, the initial condition is a surface-

intensified velocity field induced by a perturbation of the potential vorticity

field confined in the upper layer:

qtop0 = βy + qpert0 , qint0 = βy , qbot0 =
f0

h
hb + βy. (33)

It is assumed in the following that βy � qpert0 � f0hb/h. The poten-

tial vorticity fields are therefore associated with microscopic enstrophies

Zint0 � Ztop0 � Zbot0 . The macroscopic enstrophy minimizers of this config-

uration are computed in the Appendix of Venaille (2012) by solving the vari-

ational problem (24-25). The main result is that for a fixed topography, in

the low energy limit, the equilibrium streamfunction is a bottom-intensified

quasi-geostrophic flow such that bottom streamlines follow contours of to-

pography with positive correlations, see figure 17-b.

The initial condition of figure 18-b is the the same surface-intensified

velocity field as the one used in figure 16. After a few eddy turnover times,

the enstrophy of the upper layer has cascaded towards small scales as shown

by numerous filaments in figure 18-c, concomitantly with an increase of

the horizontal energy length scale. As in the case without topography,

this inverse energy cascade on the horizontal leads therefore to a deeper

penetration of the velocity field, shown in figure 18-d. When this velocity

field reaches the bottom layer, it starts to stir the bottom potential vorticity
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Figure 18. a),b),c) Potential vorticity field at three successive times. In each panel, only

layers 1 (top), 5 (middle) and 10 (bottom) are represented. b),d),f) Vertical slices of the

meridional velocity fields v taken at the center of the domain (y = 0), and associated with
the potential vorticity fields given in panels d),e),f), respectively. The bold continuous

dark line represents bottom topography. The continuous black contours of panel f) give
the structure of the statistical equilibrium state in the low energy (or large topography)

limit, corresponding to figure 17-b. Contour intervals are the same as those between the

different shades.

field. This induces a bottom-intensified flow, which then stirs the surface

potential vorticity field, and so on. The corresponding flow is shown in

figure 18-e, which clearly represents a bottom-intensified anticyclonic flow

above the topographic anomaly, qualitatively similar to the one predicted

by statistical mechanics in the low energy limit.

These results have important consequences for ocean energetics: topo-

graphic anomalies allow transferring surface-intensified eddy kinetic energy

into bottom-trapped mean kinetic energy, which would eventually be dissi-

pated in the presence of bottom friction, as for instance in the case of the

Zapiola anticyclone (Dewar, 1998; Venaille et al., 2011). In the case of the

Zapiola anticyclone, the dissipation time scale is of the order of a few eddy

turnover-time. It is therefore not a priori obvious that the results obtained

in a freely evolving configuration may apply to this case. However, one can

now build upon these results to address the role of forcing and dissipation

in vertical energy transfers above topographic anomalies.
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6. Conclusion

On these lectures, we have discussed applications of equilibrium statistical

mechanics of the quasi-geostrophic model to the Great Red Spot and other

vortices of Jupiter, to Jupiter’s jets, to ocean mesoscale eddies, ocean mid-

basin jets analogous to the Gulf-Stream or the Kuroshio, and to the vertical

structure of geostrophic ocean turbulence.

All these applications illustrate the power of equilibrium statistical me-

chanics. The theory predicts the detailed shape, relation with both external

and deep shear, and the jet profile for the Great Red Spot of Jupiter, de-

pending on only a few key control parameters,. It also predicts the structure

and the westward velocity of mesoscale vortices, much of the qualitative

properties of mid-basin jets, and the vertical structure of quasi-geostrophic

turbulence. Still more applications to ocean and atmosphere dynamics are

currently under investigations.

However, the range of validity of the approach is limited. Equilibrium

statistical mechanics can be valid only if the effects of forcing and dissipa-

tion can be neglected. This corresponds to two different kinds of situation.

The first one, as discussed in the original papers (Robert, 1990; Miller, 1990;

Robert, 1991; Robert and Sommeria, 1991), is when the flow is produced

by an instability, or from a prepared initial condition, and then evolves to

a self-organized state during a time scale which is much smaller than the

typical time scales associated to the non-inertial processes (forcing and dis-

sipation). This framework is probably the correct one, for instance for the

formation of ocean mesoscale eddies from the instability either of the Gulf

Stream (Gulf Stream rings) or of the Agulhas current downstream of Cape

Agulhas.

Most of geophysical and other natural flows are however in another

regime. Very often they have settled down from a very long time to a

statistically stationary solution, for which forces balance dissipation on av-

erage. In this case, one can still compare the typical time scale for inertial

organization on one hand (usually turnover times, or typical times for wave

propagation) to the forcing and dissipation time scale on the other hand

(spin up or spin down time scale). If these two time scales are well sepa-

rated, then we still expect equilibrium statistical mechanics to describe at

leading order the flow structure, and its qualitative properties. Usefulness

of equilibrium statistical mechanics in this second framework, for instance

close to a phase transition, is illustrated in (Bouchet and Simonnet, 2009).

We nevertheless note a limitation of equilibrium statistical mechanics in
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this second framework. It does not predict which of the set of possible

statistical equilibria (parameterized by the inertial invariants) is actually

selected by the long term effect of forces and dissipation. This should be

determined at next order by computing the vanishingly small fluxes of con-

served quantities.

Still most of ocean and atmosphere flows, for instance large scale or-

ganization of the atmosphere or the ocean, fulfill these separation of time

scale hypothesis only marginally. Then a truly non-equilibrium statistical

mechanics approach has to be considered. This is the subject of a number

of current approaches, using kinetic theory (Nardini et al., 2012; Bouchet

and Morita, 2010), related approaches such as stochastic structural stabil-

ity theory (see (Farrell and Ioannou, 2003, 2009; Srinivasan and Young,

2011) and references therein), or cumulant expansions (see (Marston, 2010;

Marston et al., 2008)and references therein), or instanton theory. Section 6

of the review (Bouchet and Venaille, 2012) contains a more complete discus-

sion of such non-equilibrium approaches; whereas the review by (Marston,

2011) stresses the interest of statistical mechanics for climate applications.
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