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ABSTRACT

A process study is conducted on the evolution of boundary currents in a two-layer quasigeostrophic model
on the f plane. These currents are composed of two strips of uniform potential vorticity (PV), one in each layer,
and both hugging the coast. Coastal water separation (‘‘detrainment’’) through baroclinic instability and topo-
graphic perturbation is examined. It is shown that the key characteristics of the flow finite-amplitude destabi-
lization can be explained with the help of a linear quantity—the critical amplitude Ac—that refers to the location
of the line (often called critical layer) where the phase speed of the growing perturbation is equal to the
unperturbed flow velocity. Notably, prediction on PV front breaking location is made possible. Different de-
trainment regimes (i.e., the way fragments of the boundary current are isolated and detached from the initially
rectilinear core—e.g., filament formation, eddy shedding) are also identified, related to various Ac value ranges,
and compared with observed oceanic events.

1. Introduction

Boundary currents play an essential role in the me-
soscale variability of the ocean. They can expel vortices
and filaments seaward, thus participating in the mixing
of heat, salt, and chemical (or biological) species in the
open ocean. Filaments are a common feature of bound-
ary currents. They lead to rapid mixing between adja-
cent waters (e.g., coastal and oceanic waters) because
their coherence is weak. In contrast, coherent mesoscale
vortices have a long lifetime and complex dynamics,
and so they induce transport of water properties over
large scales. The noticeable impact of eddies on large-
scale heat and salt transport raises a particular interest
in understanding their formation mechanisms.

The destabilization of ocean currents arises from in-
trinsic instability, external forcing (e.g., topography), or
a combination of both. This has been the subject of many
theoretical studies (Pratt and Stern 1986; Nof 1991;
Pichevin and Nof 1997; Shimada and Kubokawa 1997).
When limited to small-amplitude perturbations (linear
theory) the destabilization problem is more easily trac-
table, and fundamental results have been obtained in
this framework. The Charney–Stern criterion (Charney
and Stern 1962) gives a necessary condition for linear
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instability to develop. Linear growth rates and most un-
stable wavelengths have been derived for a variety of
geophysical flows whether highly idealized (Charney
1947; Phillips 1954; Ikeda 1983; Smeed 1988) or more
realistic (Barth 1994). Also Pullin (1981) and Viera and
Grimshaw (1994) show that wave breaking of weakly
perturbed flows occurs when meanders reach a critical
layer (Grimshaw and Yi 1991), whose location can be
estimated through a linear calculation. Following their
approach, we define the critical amplitude Ac, which is
related to the location where the phase speed of a small-
amplitude perturbation is equal to the fluid mean ve-
locity. The use of this quantity by Viera and Grimshaw
(1994) is limited to stable locally perturbed flows, which
is consistent with the underlying linear calculation. To
our knowledge, no attempt has been made to extend the
range of the use of Ac to more complex cases (e.g., when
the currents are stratified and potentially unstable). This
is the subject of the present study.

We consider the first stage in the destabilization of
rectilinear flows; this stage extends from the initially
weakly perturbed state until a wave breaking occurs.
Conceived as a proof of concept, this study focuses on
a set of comparable boundary flows in a two-layer fluid
(i.e., all currents are intensified in the upper layer and
have identical maximum velocity), but that cover a wide
range of Ac values, to assess the sensitivity of the flows’
unstable evolution to this quantity. Only baroclinic in-
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FIG. 1. Model configuration (perspective view). We consider a two-
layer model with a constant PV strip against the eastern boundary in
each layer. Notations are defined in the text.

stability is present in our study.1 We neglect topography
and the earth’s curvature (no b effect). The potential
vorticity (PV) is chosen as piecewise constant with only
one PV front per layer. Thus, the system has two un-
stable wave modes (Cushman-Roisin 1994, chapters 7
and 16; Capet et al. 2002 and references therein). This
provides an analytically tractable approach to pure bar-
oclinic instability while retaining horizontal velocity
shear characteristic of jet flows. Last, we restrict our
investigation to quasigeostrophic (QG) dynamics (char-
acterized by small Rossby numbers and isopycnal de-
viations). The QG framework has proven its ability to
capture the essential dynamics of many boundary cur-
rents, such as the Norwegian coastal current (Ikeda et
al. 1989) and the California current system (Ikeda and
Emery 1984). More generally, similar idealized frame-
works have been widely used for theoretical studies that
address the unsteady evolution of boundary currents
(Shimada and Kubokawa 1997; Send 1989; Grimshaw
and Yi 1991; Viera and Grimshaw 1994). Indeed, they
allow simple linear calculations (of which we make ex-
tensive use), while retaining important dynamical in-
gredients of boundary current evolutions. Our focus is
on the evolution of the upper-layer current, for which
comparison with data (e.g., from satellites) is easier, but
the results we obtain equally apply to deep currents
when neglecting the bottom slopes (by symmetry of the
QG equations).

This study is organized as follows. First, the model
equations are recalled, their implementation is de-
scribed, and linear calculations are detailed (section 2).
In the following sections we stress the relationship be-
tween unstable evolution of boundary currents and their
associated critical amplitude. Two different ways are
considered to trigger the instability: an initial small-
amplitude sinusoidal wave corresponding to the most
unstable wavelength (section 3) and a localized topo-
graphic depression playing the role of a bottom irreg-
ularity (section 4). Relevance and limitations of our re-
sults with respect to previous studies and to oceanic
applications are finally discussed in section 5.

2. Configuration, model, and equations

a. Configuration

We consider a model with two homogeneous layers
of depth H1 (upper layer) and H2 (lower layer) at rest
(Fig. 1); g9 denotes the reduced gravity associated with
the interfaces between these layers. We assume a con-
stant Coriolis frequency f 0 (the currents and their per-
turbations always keep a limited spatial extent); the in-
ternal deformation radius associated with this configu-
ration is defined by

1 In fact, it has been identified as the dominant type of instability
involved in several eastern boundary currents’ destabilization (Thom-
son and Gower 1998; Griffith and Pearce 1985b).

g9H H1 22R 5 .d 2f (H 1 H )0 1 2

The domain is a half plane closed by a vertical wall.
We consider coastal currents intensified near this wall
(located at y 5 0; Fig. 1) and associated with uniform
PV anomalies in each layer. The magnitude and initial
width of these PV strips are (Q1, Y1) and (Q2, Y2) for
layers 1 and 2, respectively. The associated (longshore)
velocities are U1(y) and U2(y).

b. Equations

As stated above, all flow investigations are limited to
QG dynamics. Quasigeostrophic equations are nondi-
mensionalized using the baroclinic radius of deforma-
tion Rd as the horizontal length scale. A time scale is
also defined using the maximal upper-layer velocity

, namely, T 5 Rd/ , so that the maximum(max) (max)U U1 1

velocity of the upper current is equal to unity in the
model. Consistently, the scaling for vorticity is chosen
to be 1/T. The nondimensional equations of motion are
then (see Pedlosky 1987, his section 6.16)

] PV A 1 J(C , PV A ) 5 0 k 5 1, 2, (1a)t k k k

where Ck is the streamfunction in layer, PV Ak is the PV
anomaly (or quasigeostrophic PV) and is given by

2PV A 5 ¹ C 1 F (C 2 C ) and (1b)1 1 1 2 1

2PV A 5 ¹ C 1 F (C 2 C ) 1 f Th /H , (1c)2 2 2 1 2 0 b 2

and J(A, B) 5 ]xA]yB 2 ]x]yA is the Jacobian of A and
B; t is the nondimensional time; x and y are the non-
dimensional coordinates; Fi 5 /g9Hi, (i 5 1 . . . 2)2 2f R0 d

are the nondimensional Froude numbers [Fi 5 H32i/(H1

1 H2) in our scaling]; and hb accounts for a bottom
topography anomaly [by nature of the QG equations,
max(hb)/H2 , 1].
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FIG. 2. Nondimensional linear instability characteristics; for a given
flow, (top) kcimax is the maximal growth rate over all wavenumbers
and (bottom) kmax is the corresponding wavenumber.

c. Initial state and parameters

In each layer (k 5 1, 2), the PV anomalies PV Ak are
piecewise constant

0 if y . YkPV A 5k 5Q if y # Y .k k

In Capet et al. (2002), the initial streamfunction and
velocity field associated with a more general configu-
ration have been analytically derived. For the whole
study, we fix the velocity maximum in the upper layer

as well as Rd, H1/H2 and Y1/Y2; two degrees of(max)U1

freedom are then left that we choose to be Q1 and Q2.
We further restrict our attention to a range of flows that
verify the following additional constraints:

• Lateral countercurrents in the upper layer are mod-
erate; that is, / . 20.4 and the total trans-(min) (max)U U1 1

port in the upper layer (#y U1 dy) has the same sign
as .(max)U1

• Lower-layer currents are weaker than upper-layer cur-
rents, | | / | | , 0.7.(max) (max)U U2 1

For simulations and numerical applications, we also
choose the numerical values:

24 21f 5 10 s , R 5 15 km, H 5 200 m,0 d 1

(max) 21H 5 800 m, U 5 10.35 m s , and2 1

Y 5 Y 5 2.5R .1 2 d

This combination of values is representative of well-
defined upper-intensified prograde2 flows. Apart from
being roughly consistent with the oceanic applications
we intend to make (section 5), these choices make our
parameter space reasonable [the parametric study only
bears on different values for (Q1, Q2) inside the white
central area of Fig. 2]. A sensitivity investigation has
shown that our general conclusions are not affected by
the numerical values set in this section.

d. Numerical model

A finite-difference code is used to implement Eqs.
(1a)–(1c) numerically (Holland 1978). It implies the ad-
dition of weak biharmonic viscosity to the right-hand
side of Eq. (1a) to remove enstrophy accumulation near
the grid scale. Since the PV of the flow is piecewise
constant, a weak smoothing of the initial state is also
required. The model domain is a channel either with
periodic boundary conditions (section 3), or with in-
flow–outflow boundary conditions (section 4). A con-
tour dynamics code (Dritschel and Ambaum 1997; Ca-
pet et al. 2002) would be more suited to handle potential

2 That is, leaving the coast on their right when facing downstream.
Retrograde flows are opposite and do not need to be treated explicitly
because of the full symmetry of the problem with regard to the long-
shore direction in QG.

vorticity fronts, but they do not offer as yet versatile
boundary conditions. We carefully checked (by com-
paring the results of both finite-difference and contour
dynamics codes, in periodic configuration) that the pres-
ence of a second longshore wall (far enough from the
dynamically active area) as well as PV front smoothing
and biharmonic viscosity required by our finite-differ-
ences model do not alter the physical outcome of the
numerical simulations (see also Corréard and Carton
1999). Domain width and length vary, but the grid mesh
size is always Rd/9 (eddy resolving).

e. Linear instability calculations

Since the PV gradients are concentrated into the 2
PV jump (from 0 to Q1 in layer 1, and from 0 to Q2 in
layer 2) regions, the Charney–Stern condition for in-
stability translate to Q1 5 Q2 5 0 or Q1Q2 , 0 (Char-
ney–Stern criterion; see section 7.10 in Pedlosky 1987).
The isolated case Q1 5 Q2 5 0 being stable, two quad-
rants of the parameter space are of interest: (Q1 , 0,
Q2 . 0) and (Q1 . 0, Q2 , 0). In order to explain
nonlinear evolutions, linear instability is quantified in
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FIG. 3. Upper-layer nonlinear regimes superimposed on Ac isolines
(interval 0.3) for a small initial wave perturbation. The symbols in-
dicate whether OFF-1 (3), OFF-2 (C), intermediate regime between
OFF-1 and OFF-2 (#), OFF-3 (n), or IN regime (▫) is observed.

FIG. 4. Nonlinear evolution of the (top) upper (solid line) and
(bottom) lower (dashed line) PV fronts corresponding to (Q1 5 20.70,
Q2 5 0.55), over a flat bottom. Times t 5 40, 65, and 90 are shown
from left to right. The distance between two consecutive ticks is 3Rd.
This evolution illustrates the OFF-1 regime. With the numerical val-
ues specified in section 2c, filamentation occurs after 35 days.

TABLE 1. Nonlinear regimes obtained through destabilization of the boundary currents.

Regime Description Location

OFF-1
OFF-2
OFF-3

IN

Filamentation off the PV front
Eddy formation off the PV front
Large meanders without detachment
Filamentation within the PV front

Upper right of (Q1 , 0, Q2 . 0)
Center of (Q1 , 0, Q2 . 0)
Lower part of (Q1 , 0, Q2 . 0)
(Q1 . 0, Q2 , 0)

these regions. The general linear stability analysis for
piecewise PV flows is given in Capet et al. (2002). It
leads to a linear system Ah 5 ch, where h 5 (h1, h2)
is the PV front interface deviation vector (Fig. 1); c the
phase speed of this perturbation (scalar); and A (2 by 2
matrix) is given in the appendix. The corresponding
dispersion relation is quadratic. Solving it yields the
most unstable wavenumber kmax, and the associated
growth rate kcimax for flows corresponding to our PV
distribution. Overall, the growth rate kcimax (Fig. 2) in-
creases with | Q1 2 Q2 | , and the most unstable wave-
number (Fig. 2) corresponds to wavelengths on the order
of 3–12Rd, consistent with the baroclinic nature of the
instability. Asymmetry between the quadrants (Q1 , 0,
Q2 . 0) and (Q1 . 0, Q2 , 0) can be explained by
differences in terms of unstable wave coupling (Capet
et al. 2002).

Following Viera and Grimshaw (1994), we also eval-
uate, where it exists, the critical amplitude Ac (in the
upper layer where our focus is); Ac is defined as the
value of h1 such that the phase speed of the most un-
stable wavelength is equal to the velocity of the basic
flow U1(Y1 1 h1). It refers to the location of a critical
layer in the flow. Note that Ac . 0 corresponds to a
critical layer located off the PV front; Ac is shown in
Fig. 3 (solid lines). In the (Q1 , 0, Q2 . 0) quadrant,
critical layers are located off the PV fronts, and Ac rang-
es from 0.7Rd to 2.5Rd in most of this quadrant, with

undefined values in its lower part (no critical layer). In
contrast, critical layers are situated inshore of the PV
front in the (Q1 . 0, Q2 , 0) quadrant with | Ac | on
the order of the deformation radius away from the axes
Q1 5 0 and Q2 5 0.

3. Current destabilization over a flat bottom

In this section, the flows are initially weakly perturbed
on their most unstable wavelength (the domain length
is adjusted to be equal to two or three wavelengths).
Baroclinic instability is the only process that can am-
plify this initial perturbation, generate finite-amplitude
mesoscale structures, and possibly yield to vortex or
filament formation.

Thirty numerical simulations have been performed for
various (Q1, Q2) values, and the results of the nonlinear
evolutions in the upper layer are summarized in Fig. 3.
Areas close to the axes in the parameter space have not
been specifically investigated to avoid lengthy simula-
tions from very weak growth rates; furthermore, in long
simulations, viscous effects come into play. With this
precaution, we checked that the use of a contour dy-
namics code does not change our results. These results
are described and then interpreted using critical-ampli-
tude calculations.

a. Description of unstable evolution regimes

Four flow evolution regimes are identified with spe-
cific locations in the parameter space. Their label, lo-
cation in (Q1, Q2) space, and brief description are given
in Table 1. In the upper-right corner of the (Q1 , 0, Q2

. 0) quadrant, meander amplification through baro-
clinic instability leads to offshore filamentation (OFF-
1 regime) as shown in Fig. 4 for (Q1 5 20.70, Q2 5
0.55). The perturbation cannot expand very far away
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FIG. 5. Similar to Fig. 4 for (Q1 5 21.0, Q2 5 0.16) except that
a mode-2 perturbation is initially introduced. Times t 5 85, 130, and
175 are represented. This evolution illustrates the OFF-3 regime (Ac

is undefined for this flow). After 70 days no clear detachment has
occurred from the boundary current. (Note that the actual computation
domain is much larger in the cross-shore direction than shown here.) FIG. 7. Similar to Fig. 4 for (Q1 5 0.60, Q2 5 20.20). Times t 5

215, 260, and 300 are shown. This evolution illustrates the IN regime.

FIG. 6. Similar to Fig. 4 for (Q1 5 21.90, Q2 5 0.63). Times t 5
45, 55, and 65 are shown. This evolution illustrates the OFF-2 regime
(eddy detachment that occurs after a 25-day growing period).

FIG. 8. Instantaneous upper PV front (thick line), streamlines (thin
lines), and corresponding velocities for (Q1 5 21.50, Q2 5 0.75).
Streamlines and velocities are calculated in the unstable wave ref-
erence frame. A saddle (hyperbolic) point is present (small square),
and cutoff occurs around its location. The figure is zoomed in on the
isolation region. The distance between two consecutive ticks is Rd.

from the initial PV front position since the offshore part
of the meanders steepens rapidly in the upstream di-
rection, and filaments containing inshore water are
formed. In contrast, in the lowest part of the same quad-
rant, large meanders are formed (in the upper layer) as
the result of complete linear growth of the perturbation,
not marked by wave steepening or breaking. In the lower
layer, weaker PV is wrapped around the strong upper
PV poles. The evolution shown in Fig. 5 for (Q1 5
21.0, Q2 5 0.16) is representative of this regime
(OFF-3 regime). Between these two areas, another dy-
namical regime exhibits wave steepening as in the case
OFF-1, but only after the perturbation is well developed.
A significant amount of upper PV is therefore trapped
when the wave steepening process results in PV cutoff.
Thus, mesoscale eddies (i.e., with a radius much greater
than Rd) are formed [OFF-2 regime; see Fig. 6 for (Q1

5 21.90, Q2 5 0.63)].
Note that no real discontinuity exists between these

three regimes that we somewhat arbitrarily distinguished
for clarity of the discussion. For example, intermediate
evolutions between OFF-1 and OFF-2 are found (# in
Fig. 3) where swollen filaments of thickness close to Rd

are generated.
We finally mention the fourth regime (IN regime),

which coincides with the (Q1 . 0, Q2 , 0) region of
the parameter space. The evolution of (Q1 5 10.60, Q2

5 20.20) shown on Fig. 7 illustrates this regime. The
process of PV isolation here is different from those pre-
viously described. As the perturbation grows, wave
steepening occurs, but it takes place inside the coastal
current strip and yields to a filament of zero PV offshore
water. Seaward excursions of coastal water are very
limited: the boundary current PV is splitted into a vortex
row, but these vortices remain at the coast.

b. Unstable evolutions and critical amplitude

Locations where the flow produces filamentation or
cutoff correspond to velocity saddle points [i.e., points
where, in the wave reference frame, the fluid velocity
vanishes and the velocity field is locally hyperbolic; e.g.,
see the streamfunction and velocity field during meander
cut off for (Q1 5 21.50, Q2 5 0.75) on Fig. 8]. Initially,
the fluid with zero velocity (in the wave frame) is lo-
cated on the critical layers at a distance Ac from the PV
front. Although meander amplification changes the po-
sition of these stagnation points, we expect Ac to give
a reasonable first approximation of the location where
cutoff takes place, at least when | Ac | is small in com-
parison with Rd. Indeed, for small | Ac | , front steepening
and further nonlinear processes occur early during wave
growth, that is, when linear approximation remains ac-
curate enough. The plot of Ac versus the observed lo-
cation of the saddle point (Fig. 9) for the OFF-1 and
OFF-2 regime flows justifies this statement. A satisfac-
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FIG. 9. Critical amplitude Ac vs ycut 2 Y1 where (xcut, ycut) is the
position of the saddle point during the cutoff process. The line of
perfect agreement between linear theory and nonlinear result (i.e., Ac

5 ycut 2 Y11) is also plotted.

FIG. 10. Upper PV front for (Q1 5 21.50, Q2 5 0.75) at t 5 60
(solid line) and for (Q1 5 20.70, Q2 5 0.35) at t 5 120 (dashed
line) superimposed after an appropriate translation along the x axis.
This figure is zoomed in as in Fig. 8. Both flows have an Ac value
of 1.3Rd and very similar detached structures.

FIG. 11. Values of Ej/Ac (for OFF-2 regime runs) superimposed on
lines of equal critical amplitude (interval 0.3). Symbols correspond
to those of Fig. 3.

tory agreement between observed and predicted values
is obtained up to Ac 5 1.5.3

Beyond Ac 5 1.5, there is an important scattering but
the qualitative use of Ac remains of interest. Flows cor-
responding to the OFF-3 regime have evolutions con-
sistent with their values of Ac: the absence of saddle
points and cutoff during flow destabilization relates to
large values of Ac (*2.5Rd) or undefined values of Ac

(no critical layer present initially). Similarly there is a
consistency between negative Ac values of (Q1 . 0, Q2

, 0) flows and their nonlinear evolution (IN regime).
Therefore the different physical regimes identified (see
Table 1) can all be characterized by different values of
Ac. Values bounding these regimes are likely to be spe-
cific to our study and thus somewhat arbitrary, but the
underlying kinematic mechanism is fully general.

In view of the similarity between the detached eddies
associated with identical Ac (Fig. 10), it is finally tempt-
ing to relate quantitatively the size of the detached struc-
tures (if any) to Ac. We focus on regime OFF-2 since
size differences between eddies of the IN regime are
small and their separation from the boundary current is
not always very clear. To eliminate the dependency of
eddy size on the unstable wavelength, we define the
ejection rate Ej as the ratio between the quantity of PV
contained in the ejected eddy and the amount of PV
initially present in one wavelength of the boundary cur-
rent [(2pQ1/kmax)Y1]. Figure 11 represents the values
obtained for Ej/Ac superimposed on Ac isolines. Follow-
ing Ac isolines from the origin to the left-hand side of
the quadrant, an increase in Ej/Ac is noticeable. It might

3 When Ac is ,0 (IN regime), the agreement is also good (not
shown) but no flow of the parameter space has Ac values lower than
21.3Rd.

be explained by the corresponding large increase of the
growth rate (see Fig. 2). However, the standard deviation
of Ej/Ac around its mean (0.20) is very small (2.7 3
1022) in regard to the variations of Ej itself (eddy radii
range over 1.2–2.5Rd). It means that the eddy size in-
creases roughly linearly with Ac, and this gives further
evidence that the detrainment is strongly controlled by
Ac.

4. Current destabilization over a bathymetric
anomaly

a. Idealized bathymetry

In the ocean current meanders are often triggered and
shaped by flow–bathymetry interactions. In such a sit-
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FIG. 12. Nonlinear regimes (resulting from a permanent pertur-
bation due to an R 5 1 depression) superimposed on lines of equal
critical amplitude (lines and symbols as in Fig. 3).

FIG. 13. Nonlinear evolution of the (top) upper (solid line) and
(bottom) lower (dashed line) PV fronts corresponding to (Q1 5 21.90,
Q2 5 0.63). Times t 5 15, 40, and 75 are shown. A 128-m-deep
depression (R 5 1) is centered on the small black dot. The distance
between two consecutive ticks is 3Rd.

FIG. 14. Similar to Fig. 13 for (Q1 5 0.60, Q2 5 20.20). Times t 5
45, 85, and 175 are shown. The depression is 40 m deep (R 5 1).

uation, the strong symmetry and regularity properties
inherent to a sinusoidal perturbation growth (section 3)
are no longer present. In this section we consider the
case in which a depression contributes to boundary cur-
rent destabilization in order to assess the validity of our
previous results about Ac with more complex pertur-
bations.

The bathymetric anomaly is a depression defined by
hc(x, y) 5 hc0 exp{2[x2 1 (y 2 Y1)2]/ }. Changing2Rd

the shape of topography anomaly (e.g., trench, bump)
does not affect the results presented below; hc0 is chosen
such that Q2 and the PV associated with the depression
[topographic PV in Eq. (1c)] are of equal strength [i.e.,
the ratio R 5 f 0Thc0/(H2Q2) 5 1]. For the flows we
consider, this value of R satisfies the QG hypotheses.
The topographic PV is included in the lower-layer PV,
which remains unchanged at t 5 0 (equal to Q2 over
the strip). The initial flow velocities are calculated from
this PV distribution and are thus different from those
of the previous section. The domain length has been set
long enough (up to 50Rd) to allow unsteady phenomena
to fully develop before reaching inflow-outflow bound-
aries.

b. Unstable evolutions and critical amplitude

Subject to finite-amplitude perturbations, even line-
arly stable flows belonging to the (Q1 , 0, Q2 , 0) and
(Q1 . 0, Q2 . 0) can be deformed. For a comparable
configuration, Viera and Grimshaw (1994) demonstrat-
ed the relevance of linear calculations to predict where
PV front breaking takes place. This is, therefore, not
developed here.

For weak to moderate topographic anomalies (R 5
1), the detrainment regimes for linearly unstable flows
are summarized in Fig. 12. In each case, a perturbation
is rapidly produced in the lower layer due to the ad-

justment of the flow to the presence of the depression.
Layer coupling through the density interface allows the
perturbation to be transmitted upward; baroclinic insta-
bility amplifies this perturbation that is a superposition
of wavelengths over a wide range, from domain size
down to the grid scale. Therefore, the details of flow
evolutions differ from those observed in section 3. In
particular, the strong initial interaction between the de-
pression and the flow creates a single dominant meander.
[See the evolution of cases (Q1 5 21.90, Q2 5 0.63)
or (Q1 5 0.60, Q2 5 20.20) in Figs. 13 and 14.] Fur-
thermore, small-scale structures always exist in the per-
turbation [contrast the lower PV structures for (Q1 5
21.90, Q2 5 0.63) in Figs. 13 and 6]. This confirms
that the currents evolution is strongly affected by the
depression–flow interaction that is not taken into ac-
count in our linear calculation of Ac. As a consequence,
the agreement between the actual cutoff location and
the linearly predicted one (Ac) is weaker when compared
with section 3. For example, the flow (Q1 5 21.90, Q2

5 0.63) finally detaches an eddy, but the cutoff process
occurs far away from the coast (ø9Rd) when compared
with the Ac prediction (4.45Rd) and also when compared
with what occurred during the simulation with no bot-
tom topography (ø4.5Rd; see Fig. 6 and Fig. 13). Fur-
thermore, the relation between the size of detached ed-
dies and Ac is not clear anymore (not shown).

However, it is noteworthy that flow regimes are es-
sentially unchanged in comparison with those of section
3 (see Figs. 12 and 3). Low positive (respectively, high
positive) Ac values are still associated with filamentation
(OFF-1) (respectively, eddy separation, OFF-2) regimes.
Negative Ac values still correspond to inner filamenta-
tion that occurs in the quadrant (Q1 . 0, Q2 , 0)
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(Fig. 14). We attribute this qualitative agreement to the
moderate effect of the depression on velocities: the
flow–depression interaction mainly triggers the insta-
bility when the baroclinic coupling is permanent. In-
creasing R (or the depression size) reinforces the effect
of the depression so that Ac based classification has little
significance for R * 2.5 (not shown). Such large R cases
should, however, be considered in the shallow-water
framework since they tend to break the QG assumptions.

5. Discussion

a. Summary

There has been longstanding experience that linear
calculations of the most unstable wavelength and growth
rate associated with an unstable flow provide useful in-
formation even after the initial linear growth stage is
over (Ikeda and Apel 1981) [although growth rates are
affected by nonlinearities so that other wavelengths can
emerge and even dominate in some cases (Ikeda et al.
1984)]. Our numerical experiments in an idealized
framework suggest that linear predictions based on the
critical amplitude also hold beyond the strict linear
growth stage of unstable perturbations and give reliable
information on where and how nonlinear breaking of a
growing perturbation occurs. This proves to be helpful
in describing and even quantifying the detrainment aris-
ing from flow destabilization.

Most notably, several theoretical implications follow
the results of sections 3 and 4.

1) Important work has been dedicated to explaining the
generation of submesoscale vortices through specific
mechanisms (D’Asaro 1988; McWilliams 1988). We
emphasize here the idea that the formation of small
eddies is also compatible with classical baroclinic
instability. It is obtained by our numerical experi-
ments for small positive values of Ac.

2) It is generally accepted that the destabilization of
wide currents yields big eddies (e.g., Feliks and Ghil
1993). This is likely true, but the present study sug-
gests that Ac significantly accounts for the eddy size
and is not related to the current width in a straight-
forward way.

3) Stern and Chassignet (2000) argue that blocking
waves, in particular waves induced by a topographic
anomaly, can reinforce detrainment processes (e.g.,
lead to eddy formation instead of filamentation for
a given flow). On the other hand, we found that
detrainment regimes are primarily related to Ac and
are essentially unchanged when the initial sinusoidal
perturbation of small amplitude (section 3) is re-
placed by a topographic anomaly (section 4). A shal-
low-water model (in which more complex interac-
tions between the flow and the topography are al-

lowed) might be necessary for blocking waves to act
effectively and to enhance the detrainment.

b. Toward experimental validation

Several differences between the real ocean and the
present framework make the experimental validation
and application of our results a difficult task. First, the
analysis and classification of wave breaking and de-
trainment regimes cannot easily be approached using
observations because of background turbulence, vari-
able environments including slope and shelf, flow pulses
(Stern and Chassignet 2000), coastal waves, and mixing
action with surrounding waters; different types of re-
gimes may then exist depending on ‘‘local’’ conditions.
In addition, moderate barotropic instability complicates
our classification of unstable evolution regimes accord-
ing to Ac values (this point is currently under investi-
gation). Furthermore, determining Ac in the ocean will
require high-resolution velocity data and precise eval-
uation of the unstable waves’ phase speed. Last, our
simulations were halted when PV breaking occurred,
and the ability of the different regimes to lead to water
detrainment were assessed at that time. It then seems
that the OFF-2 regime is the most favorable for effective
eddy formation. However, further evolution could likely
change this view. On the one hand, detached eddies can
either move seaward (e.g., as baroclinic dipoles) or
merge back into the coastal flow. On the other hand,
onshore eddy rows obtained for (Q1 . 0, Q2 , 0) (IN
regime) or large undetached meanders (OFF-3) may fi-
nally separate from the coast, particularly if the b effect
is present and induces seaward eddy advection.

To conclude, we briefly discuss three boundary cur-
rent destabilization events. They suggest that the un-
stable evolutions and detrainment regimes we obtained
are also observed in nature (although our idealized
framework may not be suited to modeling the evolution
of these particular currents). During winter 1995, the
northeast Pacific coastal current flowing northward
along British Columbia and Alaska coasts destabilized
and formed a row of six vortices spanning more than
1500 km [see plate 1 in Thomson and Gower (1998)
and also our derived zoomed sketch in Fig. 15a]. Inshore
filamentation developed during wave growth: offshore
waters deeply penetrated into the coastal flow and iso-
lated a series of vortices. This evolution kinematically
compares to that of the IN regime (critical layer inside
the current core). Note that numerical simulations (using
a primitive equation model) intended to study this eddy
formation event (Melsom et al. 1999) led to flow evo-
lution that also seems to fall into IN regime classifi-
cation. The destabilization of the Leeuwin Current also
yields eddies that were observed on infrared images
(Griffith and Pearce 1985a,b; Legeckis and Cresswell
1981). Here we focus our attention on the development
of two particular features: the eddy labeled A, and the
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FIG. 15. Sketch of different eddy formation from boundary currents
as suggested by satellite SST maps. In each case, the solid thick line
indicates the approximate location of the largest temperature gradient.
Arrows indicate water motion expected by the authors. (a) Part of a
six-vortex string whose formation is reported by Thomson and Gower
(1998). The coast (bold line), 1000-m isobath (dashed line), and land
(shaded region) are represented. (b) Formation of the structure labeled
‘‘A’’ from the Leeuwin Current in Griffith and Pearce (1985a). (c)
Formation of the structure labeled ‘‘B’’ from the Leeuwin Current
in Griffith and Pearce (1985a).

large undetached (on the available images) structure la-
beled B in Griffith and Pearce (1985b). A sketch of their
formation is given in Fig. 15. For structure A, temper-
ature and velocities show a shearing process acting on
the offshore part of an unstable meander as in our
OFF-2 regime (critical layer outside the current core).
As to structure B development, no cutoff mechanism is
observed despite a meander offshore extension of 140
km from the Leeuwin Current position. In our study,
flows with large Ac (OFF-3 regime, no critical layer in
the flow) behave in a similar way when destabilized.
Since no Ac value associated with these different desta-
bilization episodes is computable, the relevance of Ac

in the oceanic context has not been demonstrated. How-
ever, we believe that Ac provides a valuable estimate of
the velocity shear encountered by finite-amplitude
waves and therefore gives a kinematic insight into the
breaking of baroclinically unstable flows. Validation
tests involving primitive equation model simulations are
now considered to further support this belief.
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APPENDIX

The Linear Instability Matrix

U (Y ) 01 1A 5 [ ]0 U (Y )2 2

1 1 2 2Q (h a 1 h b ) Q h (a 2 b )1 1 1 2 1 2 2 1 12 ,
1 1 2 2[ ]Q h (a 2 b ) Q (h a 1 h b )1 1 2 2 2 2 2 1 2

where

1
n 2k | Y 1Y | 2k | Y 2Y |l n l na 5 (e 2 e ) andl 2k

1
n 2k |Y 1Y | 2k |Y 2Y |g l n g l nb 5 (e 2 e )l 2kg

with 5 k2 1 1.2kg
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