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ABSTRACT

The Phillips problem of baroclinic instability is generalized in a frontal geostrophic model. The configu-
ration used here is a two-layer flow (with quasigeostrophic upper-layer current) over a sloping bottom.
Baroclinic instability in the frontal model has a single unstable mode, corresponding to isobaths and
isopycnals sloping in the same direction, contrary to the quasigeostrophic model, which has two unstable
modes. In physical terms, this is explained by the absence of relative vorticity in the lower (frontal) layer.
Indeed, the frontal geostrophic model can be related to the quasigeostrophic model in the limit of very small
thickness of the lower layer, implying that potential vorticity reduces to vortex stretching in this layer. This
stability study is then extended to unsteady flows. In the frontal geostrophic model, a mean flow oscillation
can stabilize an unstable steady flow; it can destabilize a stable steady flow only for a discrete spectrum of
low frequencies. In this case, the model equations reduce to the Mathieu equation, the properties of which
are well known.

1. Introduction

Baroclinic instability of intense flows has long since
been recognized as one of the major sources of meso-
scale variability in the atmosphere and oceans. In the
ocean, the instability of intense zonal jets of the general
circulation (such as the Gulf Stream) has been studied
at length, both experimentally and numerically (see
Holland and Haidvogel 1980; Kontoyannis and Watts
1994; Flierl et al. 1999). Many other flows, deep or abys-
sal, with a frontal1 structure and flowing over a sloping
bottom, can be baroclinically unstable. A well-known
example is the Mediterranean Water Undercurrents
that originate from the watermass exchange at the
Straits of Gibraltar between the Atlantic Ocean and the
Mediterranean Sea. South of Portugal (near 8°W), this
flow is composed of two thin jets of warm and salty
water on the Iberian continental slope at 800-m and
1200-m depth; each jet is roughly 200–300 m thick with

velocity maxima in the 0.3–0.5 m s�1 range. This flow
structure (over a steep slope) corresponds to noticeable
vertical deviations of isopycnal surfaces. As they en-
counter the Portimão Canyon and Cape Saint Vincent,
these MWU undergo baroclinic instability and long-
lived anticyclonic eddies (meddies) detach, sometimes
accompanied by shallower cyclones. The MWU are
also subject to low-frequency variability at their source,
the Straits of Gibraltar, also observed downstream
(Chérubin et al. 2003). One can wonder if a pulsating
source can change the stability properties of a current,
rendering it more stable than its time average (i.e.,
steady) analog.

The aim of this paper is therefore to investigate the
baroclinic instability of both steady and unsteady cur-
rents over a sloping bottom in a frontal geostrophic
model. The choice of this model (as compared with the
quasigeostrophic framework) is justified by its ability to
handle frontal flows over sloping topography. Though
many oceanic currents are narrow jets (e.g., the MWU),
we consider here (as a first step) a simplified flow and
geometric configuration. A two-layer zonal channel
flow is used and the mean flow velocity is chosen uni-
form horizontally in each layer. We neglect the plan-
etary beta effect, and the bottom slope is constant. This
problem is therefore an extension of the Phillips (1954)
model, already generalized to time-dependent currents

1 By “frontal,” we mean “associated with vertical displacement
of isopycnal surfaces on the order of the current thickness.”

Corresponding author address: Xavier Carton, LPO, Center IF-
REMER de Brest, BP 70, 29280 Plouzané, France.
E-mail: xcarton@ifremer.fr

MAY 2005 N O T E S A N D C O R R E S P O N D E N C E 911

© 2005 American Meteorological Society

JPO2718



by Pedlosky and Thomson (2003) for quasigeostrophic
flows. We recall that in quasigeostrophic theory two
unstable modes are found for this problem, one with
isobaths and isopycnals sloping in opposite directions
(case 1 of Fig. 1) and one with the isobaths and isopy-
cnals sloping in the same direction (case 3). The flow
and topography configuration where both layer thick-
nesses increase in the same direction (case 2) is stable in
the quasigeostrophic model.

2. Model equations

The frontal geostrophic model is used here in a two-
layer, zonal channel configuration. It includes bottom
topography and allows the lower layer to be frontal,
while the upper one has only minor variations in thick-
ness. The model equations were first derived in (Swa-
ters 1991) using an expansion in the topographic slope.
For simplicity, we retain here the notations used in
(Swaters 1998):

�2�t � J�h � �, hb� � J��, �2�� � 0 and

ht � J�� � hb, h� � 0, �1�

where � is the surface elevation, h is the bottom layer
thickness, and hb is the bottom topography elevation
(see Fig. 2). The pressure in the lower layer is p � hb �
� � h (in dimensionless form). The Jacobian is defined
as usual: J(A, B) � AxBy � AyBx. Velocity in each layer
is geostrophic. Note that the surface elevation could be
replaced by upper-layer pressure in the case of a rigid
lid (see section 3). The channel has width L.

To transpose Phillips’ problem with topography into
that model, the mean flow U1 and U2 must be zonal and
uniform in each layer and the corresponding surface
elevation � and lower-layer thickness h must vary lin-
early with latitude. Since only the velocity shear U1 �
U2 is involved in the stability calculation, we can impose

U1 � 0 with no loss of generality. Then we have � � 0,

hb � sy, and h � h0 � by.

In dimensionless form, the vertical shear is U1 � U2 �
b � s. By symmetry, we can choose s � 0 and b can be
either positive or negative, allowing all configurations
described in Fig. 1.

3. Linear instability of steady flow

The stability of the stationary two-layer flow is inves-
tigated using a normal-mode perturbation approach:

� � �� and h � h � h�,

with

���, h�� � ℜ�	��t�, ��t�
 exp	i�kx � ly�
�,

FIG. 1. Three flow/topography configurations for baroclinic instability.

FIG. 2. Configuration and variables for the frontal geostrophic
and quasigeostrophic models.
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where ℜ(z) stands for the real part of the complex
number z. The dynamical Eqs. (1) are linearized in the
perturbation to yield

�tX � MX,

where M is a 2 � 2 matrix, and X is a vector with
components  and �. With K2 � k2 � l2, we have

M � ik�
s

K2

s

K2

�b s
� � �a0 b0

c0 d0
�. �2�

Setting now [(t), �(t)] � (, �) exp(�ikct), the linear-
ized perturbation equation can be solved to yield

c � c� �
�s�K2 � 1�

2K2 �
s

2K2 ��,

with � � (K2 � 1)2 � 4K2(1 � b/s). The vector com-
ponents are then determined by

�K2 � 1 � ��� �� � 2�� � 0.

The marginal stability condition is obtained by impos-
ing � to vanish, rendering the eigenvalues of M real:

�K2 � 1�2 � 4K2�1 �
b

s� � 0. �3�

The stability regimes are plotted in the plane (K2, b/s)
on Fig. 3. We note that only one situation is unstable,
that with isopycnals and isobaths sloping in the same
direction. Indeed, in the frontal geostrophic model,
baroclinic instability is associated with the release of
gravitational potential energy due to the down slope
motion of the dense current while overlying fluid moves
upslope. This creates a preferred direction in the fron-
tal geostrophic model, that described by case 3, where
the reservoir of dense fluid lies upslope initially. Math-
ematically, the integrated perturbation energy equation
[Eq. (3.5a) in Swaters (1991)] must have a positive right
hand side for baroclinic instability, that is, a net upslope
transport of light fluid.

4. Comparison with the quasigeostrophic model

a. Comparison of model equations and of their
intrinsic relations

Since the quasigeostrophic approximation filters out
fast waves, we do not write the model equations with a
free surface elevation but with surface pressure � (we
refer to Fig. 2 for the description of the variables in the
quasigeostrophic model). Using these notations, the
two-layer frontal geostrophic equations are in dimen-
sionless form:

�2�t � J�h � �, hb� � J��, �2�� � 0 and

ht � J�� � hb, h� � 0.

The two-layer quasigeostrophic equations are (scaling
surface pressure by the upper-layer thickness H1)

��2� � h�t � J��, �2� � h � hb� � 0 �4�

and

		�2�� � h� � h
t � J	� � h � hb, 	�2�� � h

� hb� � h
 � 0, �5�

where � � H2/H1 is the layer thickness ratio. Setting
� � 0, Eq. (5) becomes

ht � J�� � hb, h� � 0,

the second frontal geostrophic equation, which sub-
tracted from Eq. (4) provides the first frontal geo-
strophic equation.

The similarities between the two models result from
their derivation from the primitive equation shallow-
water (PE-SW) model. This derivation is based on an
expansion in Rossby number, followed by a truncation
at first order, for the quasigeostrophic (QG) model.
The frontal geostrophic (FG) model is derived from the
same (PE-SW) equations, by using the bottom slope as
a small parameter (with similar effect as the Rossby
number). In particular, both systems of equations are
quadratic in barotropic pressure and in interface eleva-
tion, whereas frontal geostrophic equations for surface
flows are cubic in these variables (Benilov and Reznik
1996).2 Frontal geostrophic equations for surface flows
become quadratic in their variables only when the baro-
tropic mode is strong and takes over the evolution of
the interface from the baroclinic mode (Benilov and

2 The origin of these cubic terms lies in the degeneracy of the
quasigeostrophic equation for the baroclinic mode in the frontal
limit when the advecting velocity is essentially baroclinic and geo-
strophic.

FIG. 3. Baroclinic instability of a uniform baroclinic current in
the two-layer frontal geostrophic model. The flow is stable in the
shaded area of the K2, b/s plane and unstable elsewhere. Cases 1,
2, and 3 correspond to the flow/topography configurations of Fig. 1.
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Reznik 1996, and references therein). Such dynamics
are then governed by the often-used set of equations

�2�t � J��, �2�� � ��x � 0 and

ht � J��, h� � 0, �6�

where  is a scaled planetary beta effect (see also
Dewar and Gailliard 1993). In the present frontal geo-
strophic model, the lower-layer thickness is advected
both by upper-layer (barotropic) pressure gradients
and by gradients of bottom topography. Therefore only
quadratic terms are present.

The differences between the two models are

1) the absence of relative vorticity in the lower layer in
the FG model [indeed, in the FG model, the lower-
layer velocity scales as the upper one multiplied by
�/(1 � �)] and

2) the necessity of a finite bottom slope in the FG
model since its derivation is based on this parameter
(whereas the QG model does not have this limita-
tion).

b. Comparison of instability properties in the two
models

To avoid a lengthy comparison of linearized model
equations and solution properties, we follow Sakai
(1989) or Pichevin (1998) and consider baroclinic insta-
bility as the resonance between two layerwise Rossby
waves. The upper-layer Rossby wave has phase speed
c1 � �(b � s)/(K2 � 1) due to the slope of the density
interface; the lower-layer Rossby wave has c2 � �(b �
s) � b/(�K2 � 1), a combination of the effects of the
sloping interface and of the bottom slope (also includ-
ing the mean flow). Sakai states that a necessary con-
dition for baroclinic instability is that the two Rossby
waves mutually reinforce and thus propagate at the
same speed. This leads to

b

s
�

K2�1 � 	K2�

1 � 	K4 .

Therefore, two unstable modes are possible if � � 0
with either sign of b/s. When � � 0 (the frontal geo-
strophic case), b/s must be positive for baroclinic insta-
bility to occur. Clearly, the disappearance of relative
vorticity in the lower layer renders the lower-layer
phase speed solely dependent on the bottom slope. In
the frontal geostrophic model, baroclinic instability can
only occur in case 3 (referring to Fig. 1) where the
layerwise waves propagate in the same direction. On
the contrary, in case 1, the lower-layer phase speed
does not change sign in the FG model (contrary to the
QG case), and thus there can be no phase locking nor
resonance between waves.

Another approach to compare the instability proper-
ties of the two models is to solve numerically the lin-
earized equations of the quasigeostrophic model for

normal mode perturbations and to decrease �. The
marginal stability curves for various values of � are su-
perimposed on Fig. 4. Clearly, the unstable mode cor-
responding to interface and topography sloping in op-
posite directions progressively disappears when � di-
minishes.

Two complementary notes to this analysis are the
following:

1) bringing the bottom slope to zero in the FG model
(though this is not allowed formally) brings growth
rates of perturbations to zero also, and

2) the vertical structure of the unstable modes is com-
parable in the QG and FG models. Short waves are
intensified in lower-layer thickness, and long waves
are intensified in barotropic (or here surface) pres-
sure.

5. Linear instability of oscillating flow

a. Derivation of the evolution equation for the
amplitude of the perturbation

The stability of a time-dependent flow is now inves-
tigated in the neighborhood of the marginal curve (in
the frontal geostrophic model), following the method
described in Pedlosky and Thomson (2003). The time-
dependent part of the shear is included here in h, the
lower-layer thickness:

h � h0 � 	1 � f�t�
by. �7�

The time-dependent part of the mean shear can be writ-
ten (following Pedlosky and Thomson 2003 and refer-
ences therein):

f�t� � 
2G � 
H cos����, �8�

FIG. 4. Marginal stability curves in the K2, b/s plane for the
uniform baroclinic current in a quasigeostrophic model for vari-
ous values of �: dashed lines � � 1, solid lines � � 0, � � 0.25 in
dotted lines, and � � 0.025 in dash–dotted lines.
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with �  1. Here G is an increment of the steady shear
in the vicinity of the marginal stability curve and H is
the amplitude of its oscillating part. We have also in-
troduced two time scales, � and T, so that �t � �� � ��T.
Unsteady flow instability will take place over the slower
time scale T while the forcing of the mean flow occurs
on the faster one �. Note that Eq. (7) is comparable
with Eq. (4.1) of Mooney and Swaters (1996), who de-
veloped a weakly nonlinear asymptotic analysis for
marginally unstable flows for the frontal geostrophic
equations (albeit without the time varying part).

To accommodate both quasigeostrophic and frontal
geostrophic cases, the algebraic developments are pre-
sented hereinafter in generic form. Again the evolution
of X(h�, ��) is given by �t X � MX, where the matrix M
is now M � M0 � �H cos(��)M1 � �2GM1, with

Mj � ik�aj bj

cj dj
� � j � 0, 1� �9�

and

a0 � �	�s � b��1 � 2	K2� � b
,

b0 � �	�s � b��1 � 	K2� � b
,

c0 � K2�	�s � b�	�K2 � 1� � b
,

d0 � K2�	�s � b��	K2 � 1� � b
,

a1 � 2	K2b��, b1 � 	K2b��,

c1 � 		�K2 � 1� � 1
b��K2��,

d1 � 	b��, and

� �
1

K2�1 � 	 � 	K2�

[from Eqs. (4)–(5)], the frontal geostrophic case being
recovered for � � 0. The calculations can be usefully
simplified by setting

B � X exp	�ik�a0 � d0�t�2
 and

N0 � M0 � ik�a0 � d0�Id�2.

Expanding B � B0 � �B1 � �2B2 we obtain

��B0 � N0B0,

�TB0 � ��B1 � N0B1 � H cos����M1B0, and

�TB1 � ��B2 � N0B2 � H cos����M1B1 � GM1B0,

and the calculation follows that of Pedlosky and Thom-
son (2003).

At zeroth order in �, with the marginality condition
(a0 � d0)2 � �4b0c0, we recover the independence of
B0 from the fast time: ��B0 � 0, and the proportionality
between layerwise components of B0: B01 � (a0 � d0)B02/
2c0.

At first order in � and setting 11 � a1(a0 � d0)/2 �
b0c1 and 12 � b1(a0 � d0)/2 � b0d1, we have

B11 �
�ikH

�2 	ik cos������11B01 � �12B02�

� � sin�����a1B01 � b1B02�
 and

B12 �
1

ikb0
�dB01

dT
�

k2H

�
sin������11B01 � �12B02�

�
ikB11

2
�a0 � d0��.

At second order in �, the secular terms in the equation

�TB1 � H cos����M1B1 � GM1B0

must vanish in some integral sense (by averaging over
the period of fast variation). Substituting the expres-
sions for the first-order terms in the resulting equation
leads to the slow time variation of the zeroth-order
amplitude:

d2B01

dT2 � k2	b0c1 � d1�a0 � d0��2


× �k2H2

2�2 ��11 � �12

a0 � d0

2b0
� � G�B01 � 0 �10�

(obviously B02 satisfies the same equation).

b. Interpretation in the frontal geostrophic case

In the frontal geostrophic case, Eq. (10) becomes

d2B01

dT2 �
k2bs

K2 �k2H2

2�2

bs

K2 � G� B01 � 0,

leading to the condition for instability

k2bs

2�2K2 H2 � G. �11�

Then two cases must be investigated:

1) For a subcritical flow (G � 0), this condition cannot
be met because b/s � 0 in the vicinity of the mar-
ginal curve. A high- or medium-frequency oscilla-
tion cannot destabilize a stable flow.

2) For a supercritical flow (G � 0), an unstable steady
flow can be stabilized by a mean flow pulsation as
shown by Fig. 5.

To investigate the influence of a low-frequency oscil-
lation on the stability of a subcritical flow in the frontal
geostrophic model, we have to rescale the pulsation �
as �� and set �(T) � �2[G � H cos(�T)] (as in Ped-
losky and Thomson 2003). The expansion in � leads to
the well-known Mathieu equation

�T
2 B0 �

k2bs

K2 	G � H cos��T�
B0 � 0
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(Bender and Orszag 1978, 560–566), showing instability
for a discrete spectrum of frequencies

� �
2
n

�, n � 1, 2, . . . , and � � ��
kbs

K2 G�1�2

,

when G � 0. This equation can be integrated numeri-
cally and its solution can be compared with that of the
steady problem. Figure 6 shows the destabilization of a
linearly stable steady flow by a low-frequency oscillation.

c. Comparison with the quasigeostrophic case

Here, we return to the quasigeostrophic model, using
the complete expressions for aj, bj, cj, and dj given in

section 5a. We study the instability of the unsteady flow
in the transition regime between the quasigeostrophic
and frontal geostrophic models, that is, when � → 0.

First, since the instability occurs in the vicinity of the
marginal stability curve for steady flow, we expand the
marginal stability condition (a0 � d0)2 � �4b0c0 in
powers of �  1. Keeping only linear terms in �, we
obtain

�2	�1 � K2�2 � 2	�2K4 � 7K2 � 1�


� 2K2�	�2 � 	�K4 � K2 � 2�
 � 4K2	 � 0,

with � � s/b. Moreover, Fig. 4 shows that, in the limit of
small wavenumbers, marginal stability occurs for both
signs of b/s when � decreases. Neglecting terms in Kn�m

with (n, m) � 1, we have

�1,2 �
2K2

�1 � K2�2 	2; �	�2
.

For � � 0, we recover the positive value of b/s. For
finite �, a negative value of b/s exists, the module of
which grows as � decreases (see again Fig. 4).

Now, for both signs of b/s, we inspect how the term

�b0c1 � d1

d0 � a0

2 ��k2H2

2�2 ��11 � �12

d0 � a0

2b0
�� G�

can change sign, again in the limit of small � and near
marginality. This corresponds to changes from stability
to instability for the oscillating flow.

The first term T1 � b0c1 � d1 d0 � a0/2 reduces to

T1 �
b2

K2 ����1 �
	

2
� 2	K2 �

	

K2� � 	K2�
when only linear terms in � are kept. For b/s � 0, we
have � � 4K2/(1 � K2)2 � O(�) so that T1 � �4b2/
(1 � K2)2 � O(�) � 0. For b/s � 0 and small K, we have
� � ��/(1 � K2)2 so that T1 � �K2[1 � 1/(1 � K2)2] �
0. In both cases, T1 does not change sign near margin-
ality and therefore does not contribute to a transition
from stability to instability. The second term

T2 �
k2H2

2�2 ��11 � �12

d0 � a0

2b0
� � G

can be written

T2 �
k2H2b2

2�2K2 ����1 � 2	 � 	K2� � 2	K2 �
2	

K2 � 1�
� G.

For b/s � 0, we have � � 4K2/(1 � K2)2 � O(�) near the
marginal curve so that T2 � G � 2k2H2b2/[�2(1 � K2)2],
which can change sign and therefore contribute to
the stabilization of an otherwise unstable steady flow
as in the frontal geostrophic model. For b/s � 0, and

FIG. 5. Time evolution of wave amplitude obtained by integra-
tion of the Mathieu equation with K2 � 3, b � 1, s � 3, and k �
1 for G � 0.01, H � 0.8, and � � 5; the dotted line shows the
corresponding evolution of the unstable normal mode of the sta-
tionary flow.

FIG. 6. As in Fig. 5 but for G � �1, H � 1, and � � 1 (first
critical frequency, n � 1); the dotted line shows the corresponding
evolution of the stable normal mode of the stationary flow.
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again for small K, the expression for T2 near the mar-
ginal stability curve of the steady flow is

T2 �
k2H2b2

2�2K2 � 	K2

�1 � K2�2 �
2	

�K2 � 1�
� 2	K2�� G

or

T2 �
�	k2H2b2

�2K2 � G

for long waves, so that stabilization of an unstable
steady flow by a small oscillatory component requires
increasingly low frequencies as � goes to zero.

In summary, parametric instability in the quasigeo-
strophic model is allowed near the marginal stability
curve for b/s � 0 as � → 0, while it requires increasingly
low frequencies of the oscillatory component for b/s �
0 in the long wave limit, again as � → 0. In that case,
rescaling of � must be performed as in section 5b.
When � � 0, parametric instability leads to stabilization
of supercritical flows with b/s � 0 as shown previously.

6. Conclusions and perspectives

A generalized Phillips problem (the baroclinic insta-
bility of a horizontally uniform, vertically sheared cur-
rent in a two-layer fluid) was studied in a frontal geo-
strophic model for bottom flows over topography. Con-
trary to the quasigeostrophic model, the frontal
geostrophic model allows only one unstable mode for
steady bottom flows, corresponding to like-signed
isopycnic and topographic slopes. In physical terms, this
corresponds to the release of available potential energy
of the mean flow lying upslope. Formally, it was shown
that this frontal model is the limit of the quasigeo-
strophic model when the lower-layer thickness becomes
very small. It was also mentioned that this frontal geo-
strophic model retains only quadratic terms in its dy-
namical equations since the density interface evolution
is governed by barotropic and topographic flow advec-
tion. A simple stability analysis showed that the reso-
nance of Rossby waves vanishes for opposite-signed to-
pographic and isopycnic slopes when the lower-layer
thickness becomes negligible; this is due to the absence
of relative vorticity in the lower layer. This explains
why only a single unstable mode exists for steady, fron-
tal geostrophic, bottom flows.

This study was then extended to unsteady flows hav-
ing an oscillatory component. A multiple time-scale ex-
pansion was used to obtain the slow time evolution of
the amplitude of the perturbation. In the frontal geo-
strophic model, an unstable steady flow can be stabi-
lized by a mean flow pulsation, and a subcritical flow
can be destabilized by a low-frequency oscillation for a
discrete spectrum of frequencies. In the limit of small
lower-layer thickness, the quasigeostrophic model also
allows stabilization of otherwise unstable steady flows

by an oscillatory component for like-signed isopycnic
and topographic slopes. For opposite signed slopes, ef-
fects of the oscillatory component on flow stability can
only occur for increasingly low frequencies, in the long
wave domain, as the lower-layer thickness decreases to
zero. For subcritical flows with low-frequency pulsa-
tion, the slow time evolution of the variables is gov-
erned by a Mathieu equation.

There are interesting extensions of this work:

1) The case of a frontal geostrophic surface flow. For
such flows, the dynamical equations most often re-
tain cubic terms and lead to differential equations
with nonconstant coefficients for the linear stability
problem.

2) The application of the present theory to the Mediter-
ranean water outflow in the Gulf of Cadiz, a frontal
current propagating on the Iberian continental slope.
In the wavelet analysis of current-meter recordings
of this outflow upstream of Portimão Canyon, Serra
(2004) has identified oscillations with periods rang-
ing between 6 and 14 days. Future work will quan-
tify how much this oscillation can modify the baro-
clinic instability of this flow near Portimão Canyon,
and if it may control meddy formation.
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