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We study the two-dimensional (2D) stochastic Navier-Stokes (SNS) equations in the inertial limit of

weak forcing and dissipation. The stationary measure is concentrated close to steady solutions of the 2D

Euler equations. For such inertial flows, we prove that bifurcations in the flow topology occur either by

changing the domain shape, the nonlinearity of the vorticity–stream-function relation, or the energy.

Associated with this, we observe bistable behavior in SNS with random changes from dipoles to

unidirectional flows. The theoretical explanation being very general, we infer the existence of similar

phenomena in experiments and in some regimes of geophysical flows.

DOI: 10.1103/PhysRevLett.102.094504 PACS numbers: 47.27.�i, 05.40.Ca, 47.27.E�, 92.60.hk

The largest scales of turbulent flows are at the heart of a
number of geophysical processes: climate, meteorology,
ocean dynamics, Earth’s magnetic field. Earth is affected
on a very large range of time scales, up to millennia, by the
structure and variability of these flows. Many of these
undergo extreme and abrupt qualitative changes, seem-
ingly randomly, after very long periods of apparent stabil-
ity. This occurs for instance for magnetic field reversal for
the Earth or in MHD experiments [1], for 3D flows [2], for
multiple equilibria of atmospheric flows [3], for 2D turbu-
lence experiments [4,5], and for the paths of the Kuroshio
current [6].

Understanding these phenomena requires a statistical
description of the largest scales of turbulent flows. Very
few theoretical approaches exist due to the prohibitively
huge number of degrees of freedom involved. In the fol-
lowing, we argue that 2D turbulence, because of its relative
theoretical simplicity, is a very interesting framework to
understand these phenomena. We predict the existence of
random switches from dipoles to unidirectional flows (see
Fig. 1), in the 2D Navier-Stokes equations with random
force (SNS). We first exhibit bifurcation lines representing
abrupt changes in steady solutions in the inertial limit and
then look for the corresponding transitions in numerical
simulations. Applications to geophysical and experimental
flows is discussed in the conclusion.

Geophysical and 2D inviscid flows are characterized by
energy and enstrophy conservation and an infinite number
of (Casimir) invariants. This property prevents direct en-
ergy cascade towards the small scales, by contrast with 3D
turbulence. The first consequence is an inverse energy
cascade towards the large scales and a direct enstrophy
cascade. Kraichnan classical theory [7] studies the self-
similar processes associated with these two cascades. The
second phenomenon, the self-organization of the flow into
jets and vortices, occurs if energy is not dissipated before
reaching the largest scale. Then coherent structures break
the self-similarity so that their study cannot be properly
addressed using Kraichnan theory [7]. A second classical
theory, the so-called Robert-Sommeria-Miller (RSM)

equilibrium statistical mechanics [8], predicts the self-
organized structures for inviscid decaying turbulence.
However, this inviscid theory does not take into account
the long-term effects of forcing and dissipation as well as
the slow dynamics of the flow. Therefore, random changes
of flow topologies cannot be explained by these two clas-
sical theories.
As an alternative theoretical approach, we study statis-

tically stationary states of SNS equation. Note that a self-
similar growth of a dipole has been studied in [9] empha-
sizing transient growths: both approaches complement
each other. SNS equation on a doubly periodic domain
D ¼ ð0; 2��Þ � ð0; 2�Þ reads
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where !, v, and c are, respectively, the vorticity, velocity,
and stream function; � is the Rayleigh friction coefficient
and � the viscosity. The curl of the forcing is � ¼P

kfk�kðtÞeik�x=ð2�Þ, with f�kg independent Gaussian
white noises: h�kðtÞ�k0 ðt0Þi ¼ �kk0�ðt� t0Þ. We impose
B0 �

P
kjfkj2=jkj2 ¼ 1 so that � is the average energy

injection rate.
Euler equations (� ¼ � ¼ � ¼ 0Þ conserve the kinetic

energy E and vorticity moments �n (�2 is the enstrophy)

E ¼ 1

2

Z
D
d2xv2 and �n ¼

Z
D
d2x!n: (2)

Application of Ito formula to the energy, and averaging
over the noise, leads to dhEi=dt ¼ �2�hEi þ �� �h�2i.
If h :iS denotes averages over the stationary measure, we
have 2�hEiS þ �h�2iS ¼ �. It expresses the balance be-
tween energy injection and energy dissipation. Clearly, for
flows with energetic large scales, Rayleigh friction domi-
nates dissipation 2�hEiS � �h�2iS (we consider the limit
� ! 0 for fixed � and assume �h�2iS!0). Dimensionless

equation with time change t0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð2�Þp

t, !0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=�

p
!,

�0 ¼ ð2�Þ3=2=ð2�1=2Þ, and �0 ¼�ð2�=�Þ1=2 are
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The energy balance now reads hEiS þ ð�=2�Þh�2iS ¼ 1.
For many geophysical flows and experiments, the case of
weak forces and dissipation is the relevant one. We thus
study the inertial limit � � 1 (lim�!0 lim�!0 ).

Without Rayleigh friction (� ¼ 0), the balance relation
becomes 2�h�2iS ¼ �. By a time unit change, we can fix
h�2iS ¼ 1. The nondimensional equation is then
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Equation (4) is less physically relevant than (3) but is
still very interesting from an academic point of view. A
series of works has proved very interesting mathematical
results, including properties of stationary measures in the
inertial limit � ! 0 (see [10] and references therein). All
the following considerations are relevant for both models
(3) and (4), in their respective inertial limits.

We know since decades from real [11] or numerical
experiments [5,12] that for times large compared to the
turnover time but small compared to the dissipation time,
the largest scales of 2D Navier-Stokes turbulent flows
converge towards steady solutions of Euler equations:

v � r! ¼ 0 or equivalently ! ¼ fðc Þ: (5)

It appears to be true as well for the Euler equations. For
instance, RSM theory predicts f from given initial con-
ditions. Given this empirical evidence, it is thus extremely
natural to expect that in the inertial limit, SNS measures
are concentrated near steady Euler flows.

The ensemble of steady Euler flows is huge, being
parametrized by the function f. It will be proven that
when either f or the domain shape is changed, bifurcations
can occur. Such abrupt transitions lead to strong qualitative
changes in the flow topology. In this critical regime and
under the action of a small random force in the SNS
equation, the system switches randomly from one type of
topology to another. In the following, we show numerical
evidence that this scenario is valid.

We study a bifurcation diagram for stable steady Euler
solutions, by considering

SðEÞ ¼ sup
!

�
S½!� ¼

Z
D
d2xsð!ÞjEð!Þ ¼ E

�
; (6)

where SðEÞ is the equilibrium ‘‘entropy,’’ S the ‘‘entropy’’
of !. The specific ‘‘entropy’’ s is concave. We assume s
even, and with a local maxima for! ¼ 0, for simplicity. At
this stage, s is arbitrary, but we show in the following that,
in the limit of low energy, the detailed shape for s is
unimportant except for the coefficient a4 defined by
sð!Þ ¼ �!2=2þ a4!

4=4þOð!4Þ. Critical points of
(6) verify ! ¼ fðc Þ ¼ ðs0Þ�1ð��c Þ, where � is the
Lagrange multiplier associated with energy conservation.
They are thus steady Euler flows, satisfying (5), and the
knowledge of f or s are equivalent. The Lyapounov stabil-
ity of maxima of (6) can be proven using Arnold theorems
[13(a),13(b)] or their generalizations. One can also prove
that any solutions for (6) are RSM equilibria [14]. Even if it
seems appealing, there are no clear theoretical arguments
for giving a thermodynamical interpretation to (6) in the
SNS out-of-equilibrium context, and the term entropy is
used here by analogy only. We thus consider (6) only as a
practical way to describe stable steady Euler solutions.
Dipoles and unidirectional flows (‘‘bars’’) have been

obtained numerically [15] as entropy maxima for the 2D
Euler equations, in a doubly periodic domain, assuming
sinh, tanh, and 3-level Poisson !� c (5) relations.
According to [15], ‘‘Which has the greater entropy (be-
tween dipoles and bars) depends on seemingly arbitrary
choices.’’ We explain in the following that a4 and E are the
important control parameters.
The fact that both unidirectional flows and dipole may

be equilibria can be understood from the small energy limit
of (6). Let us call feigi�1 the orthonormal family of eigen-
functions of the Laplacian ��ei ¼ �iei; heiejiD ¼ �ij

(h:iD � R
D dx and �i are arranged in increasing order).

We decompose the vorticity as ! ¼ P
i�1!iei. The energy

is then 2Eð!Þ ¼ P
i�1�

�1
i !2

i . Since Eð!Þ is always posi-
tive, h!2iD is small in the limit E ! 0, and only the
quadratic part of s is relevant. Then computation of (6) is
straightforward and gives

!	E!0 ð2�1EÞ1=2e1 with SðEÞ ¼ ��1EþOða4�2
1E

2Þ:
(7)

We thus conclude that the eigenmode with the smallest
eigenvalue, e1, is selected, corresponding to the heuristic
idea that energy condensates to the largest scale. For
instance, when the aspect ratio � > 1, the mode e1 ¼
n1 sin½ðxþ	1Þ=��, �1 ¼ 1=�2 is selected. It is an unidir-
ectional velocity field v1 ¼ n1 cos½ðxþ	1Þ=��ey where

	1 is a phase associated to the translational invariance. A
dipole is actually a mixed state �e1 þ �e2 with e2 ¼
n2 sinðyþ	2Þ, �2 ¼ 1. In the weak energy limit, it can
thus be selected only in the situation �1 ’ �2, which hap-
pens for the square box � ¼ 1. On the one hand, for �1 ¼
�2, we prove bellow that higher-order terms in (7), of order
a4�

2
1E

2, select between dipoles and unidirectional flows.
We note that a4 is intimately related to the shape of the

FIG. 1 (color online). Time series and probability density
functions (PDFs) for the order parameter z1 (see page 3) illus-
trating random changes between dipoles and unidirectional
flows. Colored insets: vorticity fields.
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relationship ! ¼ fðc Þ ¼ ðs0Þ�1ð��c Þ. Indeed, ðs0Þ�1 �
ð�xÞ ¼ xþ a4x

3 þ oðx3Þ and when a4 > 0 (resp. a4 < 0),
the curve fðc Þ bends upward (resp. downward) for posi-
tive c similarly to sinh (resp. tanh). On the other hand, the
entropy difference between states e1 and e2 is equivalent to
ð�2 � �1ÞE (�1;2 depend only on the domain shape). We

thus conclude that the domain shape selects the equilibria
for �2 � �1 � a4�

2
1E whereas for �2 � �1 � a4�

2
1E, the

degeneracy between pure (unidirectional) and mixed (di-
pole) states is removed by the nonlinearity of f (i.e., a4).

In order to study more precisely the parameter range
where the bifurcation occurs, we define g by �2 � �1 ¼
gE. In the small energy limit E ! 0, for fixed g, long but
straightforward computations of (6) lead to

SðEÞ 	E!0 ��1Eþ E2 max
0
X
1

hðXÞ; (8)

with hðXÞ ¼ he41iDa4�
2
1 � gX þ 2
�2

1a4Xð1� XÞ, where

 ¼ 3he21e22iD � he41iD > 0. The vorticity equilibria are

then !eq 	E!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1Eð1� XMÞ

p
e1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�1XM

p
e2 where

XM is the maximizer of h in (8). For XM ¼ 0 or XM ¼ 1,
!eq is an unidirectional flow whereas for 0<XM < 1, it is

a dipole (symmetric for XM ¼ 1=2). The selection occurs
via maximization of h.

The resulting bifurcation diagram is summarized in
Fig. 2(a). When maximizing h, the sign of a4 plays a

crucial role. When g ¼ 0, the dipole is selected for a4 >
0 (sinh-like), whereas unidirectional flows are selected for
a4 < 0 (tanh-like). The term �gX, in h, favors the pure
state e1 (X ¼ 0). For a4 < 0, the unidirectional flow e1 is
always selected. Interestingly, for a4 > 0 a bifurcation
occurs along the critical line g? ¼ 2
�2

1a4 between dipole
and unidirectional flows.
For theoretical reasons, we had to use g; however, for the

geometry of interest here, the aspect ratio � is the relevant
physical parameter. Using the relation g ¼ ð�2 � �1Þ=E,
we obtain that the critical line in the E� a4 plane
[Fig. 2(b)] is the hyperbola a4E¼8�2ð��1Þ=3þoð��
1Þ. We use a continuation algorithm in order to numerically
compute solutions to (6) with fa4ðxÞ ¼ ð1=3� 2a4Þ�
tanhxþ ð2=3þ 2a4Þ sinhx. The inset in Fig. 2(b) shows
good agreement for transition lines obtained either numeri-
cally or theoretically at low energy and for � ¼ 1:01. The
bifurcation diagram for � ¼ 1:1 is given as well. In this
case, the transition line is qualitatively similar (close to a
hyperbola), even if the coefficient defining the hyperbola is
no more correctly determined using the low-energy limit.
We expect to observe both dipoles and unidirectional

flows in SNS. Numerical simulations in a square domain
� ¼ 1 exhibit statistically stationary! with a dipole struc-
ture [Fig. 3(a)], whereas for � � 1:1, nearly unidirectional
flows are observed [Fig. 3(b)]. This result has been con-
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FIG. 2 (color online). Bifurcation dia-
grams for steady Euler flows. (a) In the
g-a4 plane (g is the relative effect of
geometry and energy g ¼ ð1=�2 �
1Þ=E and a4 is the !� c nonlinearity);
(b) For a doubly-periodic geometry with
aspect ratio � ¼ 1:1 in the a4 � E plane
and from numerical computations. The
hyperbola curve is the bifurcation line
between unidirectional flows and dipoles
(colored insets are stream-function pat-
terns). The small inset compares numeri-
cal and theoretical bifurcation lines for
� ¼ 1:01.

FIG. 3 (color online). !� c scatter-
plots (light shade). In black, the same
after time averaging (averaging windows
1 � � � 1=�, the drift due to transla-
tional invariance has been removed)
(a) dipole case with � ¼ 1:03
(b) unidirectional case � ¼ 1:10.
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firmed both for � ¼ 0 and � � 0, and for different � val-
ues and forcing spectra. The functional dependence be-
tween ! and c behaves like sinh in the dipole case
[Fig. 3(a)] and tanh in the unidirectional case [Fig. 3(b)]. It
confirms that the solutions remain close to steady Euler
ones.

A very natural order parameter is jz1j, where z1 ¼
1

ð2�Þ2 h!ðx; yÞ expðiyÞiD. Indeed, for the unidirectional flows

! ¼ �e1, jz1j ¼ 0, whereas for a dipoles! ¼ �ðe1 þ e2Þ,
jz1j ¼ �. Figure 1 shows jz1j time series for � ¼ 1:02 and
� ¼ 1:04. The remarkable observation is the bimodal be-
havior in this transition range. The switches from jz1j
values close to zero to values of order of 0.6 correspond
to genuine transitions between unidirectional and dipole
flows. The PDF of the complex variable z1 (Fig. 1) exhibits
a circle corresponding to the dipole state (a slow dipole
random translation corresponds to a phase drift for z1,
explaining the circular symmetry). The zonal state corre-
sponds to the central peak. As � increases, one observes
less dipole occurrences. For larger (resp. smaller) values of
�, only unidirectional (dipole) flows exist. The transition is
also visible for other physical variables: �4 ¼ hj!j4iD
switches between a state with weak variance and low
mean value (unidirectional) to an intermittent state with
large variance and larger mean value (dipole). Topology
changes are very slow dynamical processes: for the model
(4), an average transition time is of order 1=�. For instance,
Fig. 1 corresponds to 3� 104 coherent structure turnover
times. For this reason, due to numerical limitations, it has
not been yet possible to obtain convincing statistics for the
switches.

In the spirit of [16], we might look for low-dimensional
analogies. PDF dependence on the control parameter bears
striking similarities with the stochastic differential equa-
tion

dx ¼ xð�þ x2 � x4Þdtþ �dW: (9)

The deterministic part of (9) is the normal form for a
generalized subcritical pitchfork bifurcation. For �<
�1=4, one has a single stable fixed point x? ¼ 0. For �>
0, there are three fixed points, one unstable x0 ¼ 0 and two

stable x1;2 ¼ �½1þ ð1þ 4�Þ1=2�1=2. For � 2 ½�1=4; 0�,
three stable fixed points coexist (x0 and x1;2) and two

unstable ones x3;4 ¼ �½1� ð1þ 4�Þ1=2�1=2. With additive

noise (� � 0), when �<�1=4, the jxj PDF has a single
peak centered at x ¼ 0. In the interval corresponding to
� 2 ½�1=4; 0�, an additional peak appears related to jx1;2j.
Finally, there is a transition for � larger than 0 and only
one peak corresponding to jx1j remains.

Using the variational problem (6), we have described a
huge ensemble of stable steady states of Euler equations,
parameterized by s (or f). We have shown that the detailed
shape of s was unimportant, and that only the parameter a4
has a significant role. Numerical simulations show that, as

may have been expected, major changes in the steady state
topology, like bifurcations, also occur in the out-of-
equilibrium SNS equation context even if there is no
known theory that predicts s in such a case. From a theo-
retical point of view, the main issue, beyond the scope of
this Letter, is to explain which of the Euler steady states is
actually selected by the turbulent SNS equation (to predict
s) and to predict the relative frequency of such states.
Following the same approach, bifurcation diagrams can

be computed for any Euler-like model (QG or SW). For
geophysical flows, the expected type of topology changes
will be strongly affected by the beta effect, topography,
stratification, and the domain boundary. In cases where a
bifurcation line exists, we also expect similar random flow
topology changes, with weak forces and dissipation. We
expect this approach to explain the bifurcations observed in
[3,6]. However, the range of validity of the approach needs
to be assessed more precisely using numerical simulations.
Rotating tanks experiments could then be designed in order
to observe similar phenomena.
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