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TWO-DIMENSIONAL TURBULENCEJoel SommeriaLEGI/CORIOLIS, 21 avenue des Martyrs, 38000 Grenoble, Frane.sommeria�hmg.inpg.frhttp://www.oriolis-legi.orgContents1 IntrodutionCourses on turbulene generally begin with the deliate question of de�ningturbulene. As usual for important onepts, a learut de�nition is notpossible,and the problem is still worse for two-dimensional (2D) turbulene. Itan be said that turbulene is a ow whih is disordered in time and spae.The following properties more preisely haraterize turbulene, see for in-stane Lesieur [64℄-Unpreditability of ow realization , in the sense of ampli�ation ofsmall errors (but the statistial properties are generally quite reproduible).-Continuum ow phenomena, governed by the equations of uid me-hanis (whih exludes for instane Brownian motion), and dominated byadvetive inertial e�ets (whih exludes random wave phenomena, domi-nated by some restoring fore).-Interation of a wide range of eddy sales (spatial omplexity), whihimplies high Reynolds numbers and exludes haos of low-dimensional dy-namial systems.-Inreased mixing properties for transported quantities (e.g. hemials,heat)Then 2D turbulene is naturally de�ned as a turbulent ow dependingonly on two spae oordinates x; y or alternatively as a ow on�ned to asurfae (whih does not need to be plane, for instane a sphere). In theformer ase, there is a possibly non-zero third veloity omponent uz, alongthe z diretion, but independent of z. Then the equation of motion states EDP Sienes, Springer-Verlag 1999



4 The title will be set by the publisher.that this veloity omponent is passively transported (like the onentra-tion of a hemial) by the ow ux; uy in the plane, so this third veloityomponent an be ignored in the theoretial desription.Two additional properties are often onsidered in de�ning turbulene(see e.g. Tennekes and Lumley [103℄): the existene of strong vortiity u-tuations and strong energy dissipation. Although vortiity dynamis is alsoessential in 2D turbulene, there is no mehanism of vortiity ampli�ation.We shall see in setion 2 that as a onsequene energy dissipation is forbid-den in the limit of small visosity: this is the main dynamial signature ofa 2D turbulene dynamis. In that sense, 2D turbulene is quite di�erentfrom usual turbulene, but still the de�ning properties listed above an besatis�ed in two dimensions.

Fig. 1. Grid turbulene in a soap �lm (from M. Rutgers, 1996(http://www.physis.ohio-state.edu/~maarten). The uid is moving from left toright, at veloity 2 m/s, aross the omb with mesh 0.3 m, while the total widthis 4 m. Visualization is provided by interferene fringes due to small utuationsof the �lm thikness (this is like the olor patterns in usual soap bubbles). Theinrease of turbulent sale with distane to the grid is learly visible, and it hasbeen measured by laser Doppler veloimetry [71℄ . Note that this tehnique forproduing 2D turbulene has been �rst developed by Couder [30℄The very existene of 2D turbulene has been questioned in the past.It has been onsidered as \a statistial extension of XIX th entury uiddynamis", limited to ideal 2D ow problems remote from the real phys-ial world. Indeed the two ases of 2D turbulene onsidered above may



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 5seem at �rst sight equally unrealisti: z independent ows are (by de�ni-tion) unstable when they beome turbulent, and develop three-dimensionalinstabilities, while on�nement to a thin layer requires external fores assoi-ated with severe frition e�ets or other perturbations. At the beginning of alassial review paper on 2D turbulene by Kraihnan and Montgomery [58℄,20 years ago, it was said that \Two-dimensional turbulene has the speialdistintion that it is nowhere realized in nature or in the laboratory but onlyin omputer simulations". Sine then, laboratory realization have been ob-tained for an astounding variety of physial on�gurations: thin liquid �lms(Fig. 1), ows in rotating tanks, liquid metal ows or eletron plasma inthe presene of a uniform magneti �eld. Observations of eddy �elds in theoean, or in Jupiter's atmosphere (Fig. 2) provide a strong motivation forstudies of 2D turbulene. These systems are more losely approahed by 2Dturbulene onepts than the Earth atmosphere, for whih the thermal for-ing and the frition by 3D turbulene in the boundary layer have importantinuene (see [66℄ for a reent disussion of the relevane of 2D turbuleneto the Earth atmosphere). The existene of oherent eddies like the GreatRed Spot is a striking feature of 2D turbulene, as disussed in setions 3.4and 5. Of ourse 2D turbulene an be only an approximation of reality,but the theoretial onepts developed for this ideal ase appear more andmore useful in understanding the strange properties of turbulene in somereal ows, and they an provide quantitative preditions.Another diÆulty for observing 2D turbulene, even for an ideally 2Dow dynamis, is that the onset of turbulene is not guaranteed: for in-stane simple shear ow, like Poiseuille ow, remain stable at any Reynoldsnumber, whih is never the ase in usual turbulene: all ows beome turbu-lent at suÆiently high Reynolds number, and reah a seemingly universalKolmogorov regime. Therefore the inuene of the foring mehanism, orinitial ondition, is more important than in usual, 3D turbulene. It mustbe further remarked that 2D turbulene tends to eventually organize intosteady oherent ows, loosing the unpreditability harater. However thisorganization is itself the result of spatial omplexity and mixing ourringin a transient stage.Beside its pratial relevane, a strong inentive to study 2D turbu-lene is its strange statistial properties, whih were reognized in the earlytheoretial studies, in partiular by Onsager (1949) [79℄ and Kraihnan(1967) [56℄. The onservation of vortiity by uid partiles prevents theenergy asade towards small sales (see setion 4), resulting in the onser-vation of energy in the limit of small visosity, in strong ontrast with 3Dturbulene. The ow organization into steady oherent strutures is alsoa remarkable feature of 2D turbulene, as already mentioned. A reason-able understanding of 2D turbulene is a prerequisite before studying moreomplex turbulene problems in atmospheri or oeani ontexts.
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Fig. 2. The Great Red Spot (top) and White Oval (bottom) of Jupiter are largevorties remaining remarkably oherent among turbulent eddies, as seen here bythe Voyager 1 spaeraft in February 1979. The length of the Great Red Spotis 22 000 km. The mean zonal ow made of alternating jets is probably deeplyrooted in the uid planetary interior, while the observed turbulene is limitedto a shallow ative layer, dynamially separated from below by a stable densitystrati�ation. This observation of a very ative turbulene, made visible by loudmotion, was a great surprise due to the weak available foring. The high veloitiesan only be explained by assuming that the dynamis is fundamentally 2D, withnegligible energy dissipation (although it is of ourse a layer-wise omplex system),as shown by the following arguments. The observed louds are at a pressure level3 bars, whih must be equal to the olumn weight for the atmosphere above. Sinethe gravity is 25 ms�2; the orresponding mass is 1.2 104 kg/m2, so the surfaedensity � of the ative layer has at least this value (we do not know how deepis the ative layer below the observed loud level). With typial veloities U=50m/s, the orresponding energy density E = �U2=2 is at least 15 106 J/m2: Thefree deay time, equal to the foring time in a permanent regime, is E=P; whereP is the injeted power. The heat ux oming from the planetary interior is 5W/m2, of the same order as the solar heat ux. The eÆieny of onversion tomehanial energy by onvetive e�ets is not more than the Carnot eÆieny,about 1 % sine the typial temperature di�erenes involved are only a few K, fora mean temperature 200 K. Therefore the foring power is of P � 0.05 W/m2,so the deay time E=P is at least 30 107s, ten earth years, muh longer than theeddy turnover time of a few days. For 3D turbulene, the deay time would beby ontrast of the same order as the turnover time.



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 72 Equations and onservation laws2.1 Euler vs Navier-Stokes equations:Turbulene is generally desribed as a omplex solution of the Navier-Stokesequations, restrited here to an inompressible uid. The status of visosityin the desription of turbulene is a often a subjet of debate. The Eulerequations (without visosity) provide the most diret approah, historiallyalso, but lead to many paradoxes, whih are avoided by introduing visos-ity. Visous ows are well understood, and going progressively to turbuleneby dereasing visosity is a reassuring approah. The development of bifur-ation theories and haos omforted this view. However the use of visosityprobably skips the true insight into uid turbulene, whose genuine prop-erties are learly ontrolled by inertial e�ets, whih lead to a breakdownof spatial regularity. This is desribed by the Euler equations. Its strangebehavior is repelling, but it may just orrespond to the main diÆulty ofturbulene that annot be avoided. In 3D turbulene, the introdution ofvisosity is justi�ed on physial grounds, as all real uids are visous (ex-ept superuid). Furthermore, the regularity of the Euler equations in 3Dis not known, so that it may not be a well posed problem (i.e. there is nota unique solution for a given initial ondition).These arguments are not valid in two dimensions. In many physialsystems, the motion is not 2D down to the smallest sales. The dissipativemehanisms then depend on the system, for instane they are quite di�erentin atmospheri ows, eletron plasma or laboratory sale uid experiments.Yet properties of 2D turbulene are expeted to be ommon to these di�erentsystems. Furthermore, the invisid equations are well posed: starting fromany regular initial veloity �eld, the Euler equations have a unique regularsolution for all time ( [108℄ [54℄ [2℄). This property an be extended to anyinitial onditions with bounded measurable initial vortiity �elds [28℄, forinstane pathes with uniform vortiity inside and vortiity disontinuity atthe edge.The invisid dynamis develops inreasing spatial omplexity, withsmaller and smaller sales of motion. This does not lead to mathematialsingularities, as stated above, but atual omputations are restrited to a�nite resolution, and some smoothing is then neessary. For that purposewe introdue a smoothing operator V , whih an be for instane an ordinaryLaplaian �, a higher order smoothing operator (hyper-visosity) (�1)n�n,or some spatial �ltering of small sale osillations. Suh smoothing alwaysalters the dynamis to some extent, as it will be disussed in setion 6.Therefore we start with the Euler equations with a smoothing operatorV . �tu+ u:ru = �rp+ Vu (2.1)



8 The title will be set by the publisher.r:u = 0 (2.2)u:n = 0 ; on boundaries(n normal) (2.3)Note that the impermeability boundary ondition (2.3) is suÆient for theEuler equations, while a smoothing operator requires an additional ondi-tion, whose hoie is not obvious. The hoie of a physial visosity, withno-slip ondition, may not be appropriate, as physial e�ets beyond the 2Dmodel often our in boundary layers, and resolving the thin boundary layerraises numerial diÆulties at high Reynolds number. To avoid boundaryproblems, periodi boundary onditions (equivalent to a tori surfae), or aspherial geometry, are often onsidered for fundamental studies.2.2 Vortiity representation:It is often onvenient to use a representation in terms of vortiity !(t; r)and stream funtion  (t; r), ! = (r� u)z (2.4)u = r� ( ez) � �ez �r (2.5)�t! + u:r! = r� (Vu) (2.6)We an identify the vortiity vetor, along the z diretion (with unit vetorez), with its z omponent, a salar. The evolution equation (2.6), obtainedby taking the url of (2.1) just states that vortiity is adveted and onservedby the ow (in the absene of the smoothing operator V ). The streamfuntion  and resulting ow u are themselves determined from the vortiity�eld by solving the Poisson equation, obtained by ombining (2.5) and (2.4),�� = ! ;  = 0 on boundaries; (2.7)so that the whole ow evolution is determined by the salar vortiity �eldonly.This Poisson equation (2.7) an be solved in terms of a Green funtionG (r; r0), representing the ow indued at point r by a singular point vortex(a Dira vortiity distribution Æ(r� r0) loated at position r0) , (t; r) = Z G (r; r0)!(t; r0)d2r0 (2.8)with ��G = Æ(r� r0) ; G = 0 on boundaries; (2.9)



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 9The ows indued by all elementary vortiity elements at positions r0 aresummed in the integral (2.8).Far from boundaries, G has the axisymmetri form,G (r; r0) = �(2�)�1 ln(jr � r0j=L) (2.10)where L is the typial domain size, whih omes into play as an additiveonstant, due to the arbitrary hoie  = 0 at the boundary. The orre-sponding azimuthal veloity, in 1=jr� r0j, is analogous to the magneti �eldprodued by a line urrent representing the vortex line. Near boundaries,the e�et of virtual mirror vorties outside the uid domain must be added.Suh a vortiity representation is partiularly useful in 2D. It an beused also in 3D, but the evolution of vortiity is more omplex due to vortexstrething, possibly leading to omplex singularities, and a vetor potentialmust then replae the salar stream funtion.2.3 Conservation laws:� Casimirs:The inompressibility r:u = 0 ensures that any material area is onservedas its ontour is transported by the uid motion. Furthermore we have seenthat the vortiity salar ! is onserved for eah uid partile (in the abseneof smoothing operator V ). This is a onsequene of the more generalKelvin's theorem stating that !=H = onst: for a small vortex tube elementwith length H , whih remains onstant in the 2D ase. Physially this is dueto the onservation of angular momentum for a small uid element, de�nedwith respet to the enter of gravity of the element. The onservation of! for eah uid element implies that the orresponding value f(!) is alsoonserved for any ontinuous funtion f , so that, sine the surfae elementd2r is also onserved, any funtional of the formCf = Z f(!)d2r (2.11)(alled a Casimir integral) is onserved. This an be more straightforwardlydemonstrated (for a di�erentiable funtion f), by multiplying (2.6) by thederivative f 0(!), whih yields �tf(!)+r:(f(!)u) = f 0(!)(r�Vu) (takinginto aount that r:u = 0 ). The domain integral of the seond term trans-forms into a boundary integral whih vanishes due to the impermeabilityondition u:n = 0, so that the time derivative_Cf = Z f 0(!)(r� Vu)d2r (2.12)indeed vanishes in the absene of the smoothing operator V .



10 The title will be set by the publisher.In the ase of a power funtion f(!) / !n, we get for n = 1 and 2respetively the onservation of the irulation � and enstrophy �2 ,� = Z !d2r ; �2 = 12 Z !2d2r (2.13)With a onstant visosity smoothing operator Vu = ��u, the time evolution(2.12) of these quantities an be rewritten by replaing the integral of adivergene by boundary ux,_� = � I n:r! ; _�2 = �� Z (r!)2d2r+ � I n:!r! (2.14)(an integration by parts has been used to express _�2 ). Note that theirulation is still onserved in the presene of visosity, exept for possi-ble boundary e�ets. These vanish for \super-slip" boundary onditionsn:r! = 0 (but not for the more ommon \free slip" boundary ondition! = 0). The enstrophy �2 deays by visous e�ets in the interior, andboundary e�ets vanish both for free slip (! = 0) and super-slip n:r! = 0boundary onditions.The extrema !min and !max of the vortiity �eld remains onstant forthe Euler equation (in the absene of foring or frition e�ets): vortiityis just transported and annot be ampli�ed by the inertial ow evolution,unlike in three dimensions (these onservation laws an be also obtainedfrom Casimirs with funtions f dominated by the extremal values of !; forinstane f(!) = exp�n! with n very large). Visosity an only lower themaximum with time and raise the minimum, as by de�nition �! � 0 at thevortiity minimum, and �! � 0 at the maximum.� Energy:The kineti energy E = 12 R u2d2r is onserved by the Euler equations. Thisis easily seen by taking the salar produt of (2.1) with u (with V = 0).Rewriting the advetive term with the lassial identity u:ru = ! � u +r(u2=2), the �rst term is orthogonal to u; while the seond is inorporatedin the pressure, and the u:rp0 = r:(p0u), whose domain integral vanishesdue to the impermeability ondition. Note that this demonstration equallyapplies in 3D, but it requires di�erentiability of the veloity �eld, while weexpet that in 3D, energy dissipation would our after a �nite time due tothe formation of singularities (then the Euler equations themselves ould beonly de�ned in the sense of distributions, not ordinary �elds). By ontrast,in 2D, the ow remains regular for all times, so energy is truly onserved.A more lassial point of view is to onsider the e�et of a small visosity.Then the energy varies as _E = � R u:�ud2r . Noting the identities �u =�r� ! (sine r:u = 0), and u:(r� !) = r:(! � u) + !2 , we get



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 11_E = �2��2 � � I (! � u):n (2.15)The boundary term vanishes both for the no-slip (u = 0) and free slip(! = 0) boundary onditions, and the interior term always makes the energydeay, as expeted.The enstrophy �2 also deays by (2.14), in the absene of boundarye�ets. Then the rate of energy deay (2.15) is bounded by the initial en-strophy, and tends to 0 in the limit of small visosity �: energy is onservedin this limit.1 By ontrast in fully developed 3D turbulene the enstrophyinreases as the visosity is redued (smaller and smaller sales are exited),suh that the produt of these two quantities, determining the energy dis-sipation, beomes independent of visosity: it is ontrolled by the inertialasade proess.Hyper-visosity terms are often introdued in simulations of 2D turbu-lene to better approah the invisid limit of zero energy dissipation. Thenvortiity utuations are smoothed out like with visosity, the enstrophy�2 deays , but as a spurious e�et the extrema !min and !max may beampli�ed (also higher order boundary onditions need to be introdued).In 2D ows it is often onvenient to rewrite the energy using an integra-tion by parts, so that E = 12 Z  !d2r (2.16)Note that the integration by parts also yields a boundary term H  u:dl, butit vanishes thanks to the boundary ondition  = 0 . Another hoie  =onst: would introdue a boundary term in ��onst: whih is unimportantas it is onstant in time. Note that when onsidering vorties interatingin a limited region of an in�nite domain, the physial energy 12 R u2d2rdiverges for a non-zero irulation � (as the indued veloity only deays in�=r the energy integral logarithmially diverges), and only the form (2.16)an be used (see [4℄). This kineti energy has remarkably the same form asthe eletrostati energy of a harge density �eld ! induing a potential  ,satisfying the Poisson equation (2.7).� Momentum and angular momentum:In an in�nite domain the momentum vetor P = R !r�ez d2r is onserved,as well as the angular momentum with respet to any origin L = R !r2 d2r,1This onlusion is unhanged with other boundary onditions, for instane no-slip:then a boundary layer of thikness Æ = (�L=U)1=2 forms (U typial veloity), ontributingto enstrophy as �2 � U2L=Æ. Then the energy dissipation ��2 is in �1=2; whih also tendsto zero in the invisid limit.



12 The title will be set by the publisher.see for instane [4℄ or [23℄. These onservation laws are assoiated withsymmetries of the system: invariane by translation for P and invarianeby rotation for L: and they are onserved as well in domains whose bound-aries respet these symmetries: the x-wise momentum omponent is alsoonserved in a hannel along the x-diretion (see e.g. [98℄), and the angu-lar momentum in a disk (taking the origin at the enter). Note that thisglobal angular momentum L has to be distinguished from the loal angularmomentum of a uid partile, whih is onserved for all geometries.Finally the irulation H u:dl along any boundary ontour is onserved.For a simply onneted domain, this is just the irulation � already on-sidered, but the irulation along any obstale is also onserved, and is notrelated to R !d2r, for instane along the inner wall of an annular domain.This onservation law is diretly demonstrated from (2.1), rewriting the ad-vetive term with the identity u:ru = ! � u + r(u2=2), whose integralvanishes on the wall sine ! � u is normal to the wall (as u is along thewall due to the impermeability ondition) and a losed ontour integral ofa gradient vanishes.� Other onservation laws:We have listed here all the expliit onservation laws for the 2D Euler equa-tions: it an be shown [92℄ that there are no other onserved quantitieswith an expliit form R F (r;u(r); �iuj(r)) d2r . Other onservation lawshowever exist, for instane \topologial onstraints": two initial uniformvortiity pathes remain always distint and they annot fully merge in asingle path. However this onstraint plays little role in pratie, as the twopathes an irreversibly deform and beome more and more intertwined inthe merging proess disussed in next setion.2.4 Steady solutions of the Euler equations:It is often useful to disuss steady solutions of the 2D Euler equations, asthey will appear as the result of turbulent mixing. For steady ows thepartile trajetories are streamlines, so that !, whih is onserved alongtrajetories, will be onstant along any streamline. This means that ! is afuntion of  only, at least in some sub-region: ! = F ( ). In fat the samevalue of  an our on several streamlines, so that di�erent funtions Fan haraterize di�erent regions, as will be shown in the example of thedipole, next setion. Reiproally, it is lear that if ! = F ( ), then theadvetive term u:r! = �r �r! vanishes as r! = F 0( )r is parallelto r : Therefore the property of steady ow is indeed equivalent to theproperty ! = F ( ) in subregions. The interfae between these subregionsmust be a streamline with veloity ontinuous aross it (but disontinuousvortiity in general).



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 13It is also useful to onsider steadily translating solutions, with a on-stant translation veloity vetor U, suh that !(t; r) = !(r � Ut). Thisis equivalent to a steady solution in a referene frame translating at velo-ity U; with the same vortiity and stream funtion  0 =  �U:r, so that! = F ( �U:r). Note that this is only possible in an in�nite domain or ahannel along the U diretion.Similarly we an onsider purely rotating solutions !(t; r) = !(r� (
�r)t), whih is possible in an in�nite domain or a irular geometry (disk orannulus). The general form of suh ow patterns in solid body rotation is! = F ( + 
r2=2). This an be shown diretly on the Euler equations, orby using a rotating referene frame at angular veloity 
.23 Vortex dynamisAs turbulene is part of uid dynamis, it is always useful to keep in mindelementary ow proesses. This is partiularly true for 2D turbulene, whihdisplays \oherent strutures" more learly than 3D turbulene. Some dis-ussion of invisid vortex dynamis is therefore useful. Interesting resultswere already obtained in the XIXth entury, and some of them \redisov-ered" and extended reently in the ontext of 2D turbulene and oean-atmosphere dynamis. The lassial textbooks of Lamb (1932) [60℄ andBathelor [4℄ provide good introdutions to this �eld, and more advanedproperties of disrete vorties are treated by Chorin [26℄ [27℄ and Aref [1℄,and vortex pathes by Sa�man [91℄. The use of point vorties as a numeri-al disretization of ontinuous uid motion is treated in a reent book byCottet and Koumoutsakos [29℄. The main motivation of the XIXth enturyresearhers was di�erent: they were seeking mehanial models to buildtheories of eletromagnetism and atomi physis.3.1 Systems of disrete vorties:Replaing the ontinuous vortiity �eld by a set of singular point vorties(or vortex lines in the z diretion) an be a good approah to many 2D owphenomena. Relation (2.8) then redues to the disrete sum of the ows2While the invariane of the system by translation (Galilean hange of referene frame)is warranted as a general physial priniple, this is not so for a rotating referene frame,in whih entrifugal and Coriolis fore appear. However both fores are pure gradientsin inompressible 2D ows, so they are exatly balaned by pressure gradients. Indeedthe entrifugal fore is proportional to r(
r2=2), with a onstant density fator, and theCoriolis fore is proportional to �2
 � u = 
r . Note that the so-alled geostrophibalane between Coriolis fore and pressure gradient is only realized in 2D ows.



14 The title will be set by the publisher.indued by eah point vortex at position rj(t) and irulation j , (t; r) =Xj jG (r; rj(t)): (3.1)Eah vortex is transported by the ow indued by all the other vorties.The self interation of the vortex (leading to a diverging  ) an be ignored,as seen by de�ning a point vortex as the limit of small vortiity pathes withvortiity ai ! 1 and in�nitely small area i=ai; suh that the irulationi remains onstant. Then self-interation just produes a loal rotation ofthe path with no inuene on the limiting point vortex. Furthermore theirulation i of eah vortex is onserved in the ow evolution, sine boththe small vortex path area and vortiity ai are onserved. Thus eah vortexi is transported by the veloity derived from the stream funtion (3.1), withthe sum restrited to i 6= j whih yields (the sum is made on indies i < jto avoid double ounting of the same term),_xi = �Eint=�yi ; _yi = ��Eint=�xi (3.2)with Eint =Xi<j ijG (ri; rj) (3.3)The N point vorties therefore move like N interating partiles. The studyof point vorties was initiated by Helmholtz in 1858, and this general dy-namial equation �rst derived by Kirhho�.The dynamial equation is �rst order in time, unlike the usual seondorder Newton equation. However it has quite remarkably a Hamiltonianstruture, but the onjugate variables are the spae oordinates xi and yiinstead of the positions and momenta of the partiles. The HamiltonianEint is onserved with ow evolution, and it orresponds to an interationenergy of vorties. Note that the true physial energy is in�nite due tothe self-energy assoiated with eah vortex (the veloity tends to in�nityin 1=r around eah vortex ore but this has no inuene in the vortexinteration). The expression (2.10) of the interation energy is like theeletrostati interation energy for long harged rods (notie however that itorresponds physially to a kineti energy of the ow, and the analogy witheletrostatis is not omplete, due to the di�erent dynamial equation). Thepair interation deays only slowly with distane, so that vortex interationsare highly non-loal, and we expet olletive e�ets to be important, ratherthan binary ollisions.3.2 Vortex pairs� Case of point vorties:



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 15Suppose two point vorties of like sign and irulation  are separated by adistane d far from boundaries. Then (3.2) just states that the two vortiesrotate at veloity =(2�d), keeping a onstant distane d (Fig. 3a). Twovorties with unequal strength rotate around their \enter of mass". If thetwo vorties have equal irulation with opposite sign, the enter of massdoes not exist, and both vorties translate with onstant spaing d: (Fig.3b)Note that in superuids, vorties of opposite sign tend to eventuallyattrat and annihilate eah other. This is due to interations with additionaldegrees of freedom, whih an extrats energy from the uid system. Anexternal fore on a vortex, for instane due to pinning on a solid substrate,an result in drift of the vortex ore with respet to the loal ow, andthe ourrene of a Magnus fore perpendiular to this drift, resulting inredution of the vortex distane. Suh e�ets are absent in the ideal owproblems onsidered here, and the distane d does remain onstant.In the translating ase it is interesting to note that a region of the ow istransported and follows the translating motion. Therefore this ow ontainsmomentum, representing the translating motion of some uid area, see Fig.4 left (this is the 2D analog of a vortex ring).
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Fig. 3. Sketh of the motion of a vortex pair. (a) rotation with like signs and (b)translation with opposite signs.
Fig. 4. Flow (left) in a point vortex pair and (right) in a Chaplygin's ontinuouspair. The streamlines are represented in a referene frame moving with the stru-ture (so the ow is steady). Note that the uid area inside the losed streamlinesis entrained by the pair in its motion.



16 The title will be set by the publisher.� Translating vortex pairs with ontinuous vortiity:The translating motion of vortex pairs with opposite sign is a remarkablyrobust feature, obtained when ow momentum is injeted, even when vor-ties are far from pointwise. Fig. 5 shows how an initial jet organizes intoa vortex pair in a strati�ed uid [46℄. Similar results had been previouslyobtained from a wake in a soap �lm [31℄ or in an eletromagnetially drivenow [77℄. We see that, remarkably, the turbulene \self-organizes" into sim-ple oherent strutures, here vortex pairs, and this will be the subjet ofsetion 5.A vortex pair solution proposed by Chaplygin in 1902 [15℄ (see also thereview paper [72℄) provides a more realisti desription of suh features,using ontinuous vortiity �elds. We have seen in subsetion 2.4 that ageneral steadily translating solution is obtained with a vortiity of the form! = �� = F ( �U:r) in some region. A natural idea is to hoose a linearfuntion F; then solving a Helmholtz equation for  in the vortex domain,mathing an irrotational ow outside with ontinuous veloity. It turns outthat a good mathing is then obtained only with a irular domain, and oneobtains Chaplygin's solution = �2Uk J1(kr)J0(ka) sin � for r � a ;  = U(r � a2r ) sin � for r � a (3.4)in terms of the polar oordinates r and �; where J0 and J1 are Besselfuntions and ka the �rst zero of J1:Note that this solution, represented in Fig. 4 right, emerges in manyexperiments and numerial simulations by spontaneous organization afteromplex ow evolution. Similar asymmetri dipoles, with a rotating motionare also obtained. For any initial momentum, angular momentum, and en-ergy, one an determine a orresponding dipole or axisymmetri monopolesolution [23℄, whih is expeted to be obtained after omplex vortiity stir-ring in some region of spae. However non-linear relationships betweenvortiity and streamfuntion an be obtained as well [77℄.� Vortex merging:Two vortiity pathes with the same sign rotate around eah other like pointvorties when their distane is suÆiently large in omparison with theirsize. Eah path is just slightly deformed by vortex interations: this is liketidal e�ets between two gravitating bodies. This is however no longer truebelow some ritial distane: the two vorties irreversibly deform leadingto a single vortex, as shown in Fig. 6. This �gure is obtained from anexperiment with an eletron plasma trapped in a magneti �eld, whihremarkably follows the 2D Euler equations. The ow eventually tends to
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Fig. 5. organization of a short jet injeted in a density strati�ed ow (fromref. [46℄). We see in the suessive views of the same jet the initial 3D stage,followed by a ollapse to a quasi-2D state, whih organizes into a dipole.an axisymmetri on�guration when small sale vortiity osillations aresmoothed out. The threshold of distane leading to irreversible deformationhas been studied in detail using ontour dynamis for vortex pathes [81℄.The resulting �nal merging an be understood on general grounds as aproess of entropy maximization (see setion 5): the most probable state ofthe system is axisymmetri.The initial vortex deformation leading to merging is due to the e�et ofthe strain indued by the other vortex. This is a motivation for studyingthe inuene of a uniform pure strain on a single vortex. A weak vortex islearly passively deformed by the strain, while it resists deformation when



18 The title will be set by the publisher.its vortiity reahes a value of the same order as the strain rate.The same merging mehanism is observed for vorties of unequal sizeand strength (but equal sign). This has been heked with eletron plasmaexperiments [75℄ as well as various numerial simulations.3� Interation of more than two point vorties:Interation of three point vorties yields a variety of motion. The problemhas some similarity [78℄ with a triad in Fourier spae, whih shall be dis-ussed in setion 4. An interesting uriosity is the possibility, for partiularinitial onditions and vortex irulations, that the three vorties spiral in-ward to a singular point [1℄. Singularities are however forbidden in the aseof more realisti �nite ore vorties. For four vorties and more, haoti mo-tion is possible, as well as stable on�gurations. Tripoles made of a entralvortex and two satellite vorties of opposite sign have been observed bothin laboratory [48℄ and oeani ows. With point vorties, stable patternsare obtained for more than three vorties, but none of them seem robust forextended vorties: two vorties of the same sign tend to merge.3.3 Instability of shear ows and vortex latties:� Parallel ows:The lassial stability riterion of Rayleigh applies to 2D invisid ows.Thus lassial ows with vortiity extrema, shear layers, jets and wakesdevelop 2D turbulene. The turbulent region grows linearly with time orstream-wise oordinate, in a similar way whether or not 3D perturbationsare allowed to develop [65℄.By ontrast Poiseuille ows and boundary layers behave quite di�erently.These ows are linearly stable aording to the Rayleigh riterion (they haveno vortiity extrema), and they indeed remain stable in purely 2D ows,whatever the Reynolds number. The instabilities ourring in these owsare genuinely three-dimensional and are suppressed by the onstraint oftwo-dimensionality.� Vortex latties:Vortex latties an initiate 2D turbulene when they are unstable. Thesquare lattie of alternating sign vorties is highly unstable and initiates3Note however that ontour dynamis simulations indiate a variety of other possibili-ties for unequal size vorties [34℄: in some ases merging is only partial, and small satellitevorties are produed. Suh proesses ould be relevant in ontrolling the population ofvorties of di�erent size in 2D turbulene as disussed in setion 4, so this problem wouldrequire more areful examination, omparing di�erent numerial methods.
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Fig. 6. Vortex merger in an eletron plasma experiment (from [75℄). Maps of thevortiity �eld are represented at four suessive times (0, 16, 41 and 76 �s). Theinitial distane of the vortex enters is 1.2 times the vortex diameter. The exper-imental devie is skethed at the top of the �gure. The eletrons are extratedfrom a soure in the high vauum ylindrial ell. Then they are transversallyon�ned by the uniform axial magneti �eld Bz and they drift with the veloityu = (E � Bz)=Bz perpendiular to the eletri �eld E indued by the eletronspae harge. This drift ow remarkably satis�es the Euler equations: the inom-pressibility ondition r:u = 0 is a onsequene of r� E = 0 while the vortiityr � u / r:E = n=�0 is proportional to the harge density n, onserved by theow. This harge density �eld is visualized and measured by suddenly aeleratingthe eletrons on the olletor (destroying the system).the inverse energy asade of 2D turbulene. In ontrast, triangular lattiesof equal sign vorties and hexagonal latties with alternating sign vortiesturn out to be stable [104℄. Suh stability properties an be more easilydetermined if one restrits the analysis to perturbations at large sales withrespet to the lattie mesh, so that asymptoti expansions an be used. It isthen shown that a minimal degree of anisotropy is needed to get instability[43℄.In onlusion, while 3D ows at very high Reynolds systematially de-velop turbulene, with quasi-universal behavior, this is not true in 2D. There



20 The title will be set by the publisher.is muh more inuene of the generating mehanism, and turbulene maynot be produed at all in some ases.3.4 Statistial mehanis of point vorties:� The statistial mehanis approah:Statistial mehanis, as developed by Maxwell, Boltzmann, Gibbs and theirfollowers, has been remarkably suessful in prediting the behavior of sys-tems with many degrees of freedom. Its main suess has been in preditingthe statistial (thermodynami) equilibrium for a onservative (Hamilto-nian) systems, for instane a gas made of many moleules. 3D turbulene is,in ontrast, a strongly dissipative system. However, 2D turbulene onservesenergy, whih raises hope for equilibrium statistial mehanis approahes.This is not an obvious matter however, sine 2D turbulene undergoes ir-reversible transformations with dissipation of vortiity utuations (enstro-phy), instead of energy. The point vortex model is preisely a Hamiltoniansystem, as we have seen in subsetion 3.1, so that the standard methodsof equilibrium statistial mehanis readily apply. The relevane to atualontinuous ows will be disussed later.The statistial mehanis of point vorties was �rst disussed by Onsagerin 1949 [79℄. First of all, it is an interesting exerise in statistial mehanis,sine \negative temperature" states are obtained. In suh states vorties oflike sign tend to lump together, forming large oherent vorties. Onsagerstressed the importane of suh oherent strutures with remarkable fore-sight, and he pointed out the fundamental di�erene with the energy as-ade of 3D turbulene, whih had been reently formalized by Kolmogorovin 1941. Although short, his paper ontains far-reahing remarks on both2D and 3D turbulene, and its reading is highly reommended.The general priniples of equilibrium statistial mehanis are explainedin many textbooks of physis, but this is always a subtle subjet. Sine ap-pliations to 2D turbulene are unusual, they require a good understanding(and re-disussion) of the basi priniples, and it may be useful to reallthem in the ontext of vortex dynamis.The starting point of equilibrium statistial mehanis is to list the on-served quantities of the system, whih are lear onstraints to the dynamis.For a set of many point vorties, the only known onserved quantity is en-ergy, as is the ase for usual thermodynami systems (but we shall seeadditional onserved quantities with alternative models of 2D turbulene).Then it is assumed that the system evenly explores all its possible states (the\mirosopi states") allowed by the given value of its onserved quantities(here just energy). This assumption (the ergodi hypothesis) has been rig-orously demonstrated only for a system of hard spheres in elasti ollisions,but is believed to be true in many ases.



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 21The output of the theory is the probability distribution of \marosopi"states of interest, for instane the vortex density �eld. The entropy S of themarosopi state is de�ned as the logarithm of the \number" of possiblemirosopi states orresponding to this marosopi state. Then it followsfrom the ergodi hypothesis that the probability of this marosopi stateis just proportional to the exponential of the entropy. The most probablemarosopi state is therefore that whih maximizes the entropy. In thelimit of a very large number of partiles, this maximum tends to be verysharp: an overwhelming majority of mirosopi states tends to onentratenear the marosopi state of maximum entropy. Therefore deterministipreditions result from the statistis of many partiles, for instane thedensity of vorties will utuate less and less as the vortex density inreases.A mirosopi state is de�ned by the oordinates of eah of the N vor-ties. To ount the possible states, we need �rst to disretize the oordinatesinto elementary ells. Let us take a mesh h in eah oordinate4(and onsidera uid domain with surfae unity for simpliity), so that the total numberof possible states for a single vortex is just the ell number 1=h2 . For Nvorties it is 1=h2N (we assume that several vorties an oupy the sameell without restrition, whih is true for ideal point vorties). Among thesestates we must selet and ount the ones whih have a given energy Eint,rel.( 3.3).This is a tremendous task in general, but let us �rst neglet this inter-ation. Then we expet a uniform vortex density. To show this, onsiderthe density �eld n(r) as the marosopi state, and let us ount the orre-sponding number of on�gurations. We make a partition of the uid domainin p sub-domains, with area A = 1=p eah, and onsider the vortex num-bers n1; :::np in eah sub-domain as the marosopi state. We must �rstdistribute the vorties in pakets with n1; :::np vorties respetively. Thenumber of possibilities is N !n1!:::::np! (this is the total number of permutationsdivided by the number of permutations within eah paket, whih does nothange the distribution). Then for sub-domain 1 the number of possible4The uniform disretization used for the ounting seems here a natural hoie, but itmay be wrong with other oordinates. For instane a uniform disretization in the po-lar oordinates r; � would give very small ells drd� near the pole, resulting in exessivestatistial weight. The justi�ation lies in the Hamiltonian form (3.2) of the dynam-ial equations, from whih the Liouville theorem is readily demonstrated: onsideringthe evolution of many idential systems, this theorem states that the volume elementdx1::::dxNdy1::::dyN in phase spae is onserved with time. Indeed the divergene ofthe \veloity vetor" _x1; :::; _xN ; _y1; ::: _yN is learly 0, due to the Hamiltonian form (it isthe analog for the phase spae ow of a stream funtion for a usual 2D ow). Then theuniform sampling in the oordinates x1; :::; xN ; y1::::; yN will remain uniform with thetime evolution of the system. This is only true for the so-alled anonial oordinatesfor whih this usual anonial form (3.3) of the Hamiltonian system an be written. It isnot the ase, for instane, with polar oordinates.



22 The title will be set by the publisher.vortex on�gurations (positions) is (ph2)�n1 and we have to multiply bythe similar formula with the other sub-domains. The number of on�gu-rations with n1; :::np vorties is therefore N !n1!:::::np! (ph2)�N . The entropy isthe logarithm of this quantity. For large vortex numbers, we an use theSterling formula, n! ' n lnn, so that the entropy isS = �Xni lnni ! � Z n lnnd2r (3.5)in the ontinuous limit (up to an unimportant onstant, depending on thedisretization mesh).Maximizing this entropy with the onstraint of a given total vortex num-ber N = R nd2r gives a uniform density. To hek that, we introdue aLagrange parameter � assoiated with the onstraint N , and write the on-dition for the �rst variations ÆS ��ÆN = 0 . Di�erentiating the expressionof the entropy gives ÆS = � R (lnn+1)Ænd2r, so that the ondition on �rstvariations beomes Z (lnn+ 1 + �)Ænd2r (3.6)This has to be satis�ed for any variation Æn (funtion of position) around theoptimum state, whih is only possible if the term in parenthesis is uniform,so that the density n is uniform: non-interating partiles uniformly mixdue to entropy maximization.� The mean �eld approximation:Coming bak to the interating partiles, a great simpli�ation is providedby the mean �eld approximation, as developed by Joye and Montgomery in1973 [52℄. The idea is that, due to the long range interations, eah vortexfeels the inuene of the mean �eld  due to many others, so that we anwrite the interation energy with the ontinuous �eld expression asE = 12 Z  nd2r (3.7)replaing the vortiity ! in (2.16) by the loal density n: We suppose�rst that all the vorties have the same irulation ; but generalization toseveral vortex speies is straightforward by just adding their ontributionsto !: The �eld  is itself given by the Poisson equation (2.7), whih beomes�� = n:The ondition on energy brings the new onstraint (3.7) for entropy max-imization, and a orresponding Lagrange parameter � must be introduedaordingly. Then the ondition on �rst order variations beomesÆS � �ÆN � �ÆE = 0 (3.8)



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 23We alulate ÆE = (=2) R ( Æn+nÆ )d2r. In fat the seond term is equalto the �rst, as heked by using the Poisson equation and an integrationby parts. The ondition on �rst variations then beomes R (lnn + 1 + � +� )Ænd2r, whih implies thatn = n0exp(�� ) (3.9)(with n0 � e�� ). Combining (3.9) and the Poisson equation, we get theself-onsistent mean �eld equation�� = n0exp(�� ) ;  = 0 on boundaries (3.10)Sine the loally averaged vortiity �� is a funtion of  , this remarkablyrepresents a steady solution of the Euler equation. A general justi�ationof self-organization into large sale steady ows is thus provided: this is themost probable outome for the wandering of many small vorties.The two onstants n0 and � are indiretly given by the onstraints onenergy and total vortex number. In fat what is given is the produt n0(related to the total irulation of the system), while n0 tends to in�nity,and  tends to 0. The validity of the mean �eld approximation has beenrigorously demonstrated in this limit [36℄. Similarly the important param-eter is � instead of �; and we an rewrite (3.10) with the non-dimensionalvariable � = (n0)�1 ,��� = exp(�B�) ; � = 0 on boundaries (3.11)depending on the single parameter B = �2n0.Note that the expression (3.9) an be obtained in general for a partilein a �eld with potential energy   in ontat with a \thermal" bath withtemperature 1=�: This is the so-alled anonial approah, in ontrast withthe miro-anonial approah used her, dealing with an isolated system.These two approahes are generally equivalent, but it is not always so forsystems with long range interations. Note also that some textbooks on-sider statistial mehanis as the limit of large systems, making the volumegoes to in�nity. What is important is the limit of a large number of parti-les, whih is here onsidered in a given domain of �nite size. The systemis not extensive, on the ontrary its spatial on�nement is essential.� Disussion of results:Supposing for instane  > 0, it is lear from (3.10) that  is a onvex fun-tion of the oordinates, whih is everywhere positive. For positive \temper-ature" � > 0, the vortiity tends to be depleted where  is maximum, andmaximum near the domain boundary, where  is set to zero. By ontrastfor � < 0, the vortiity tends to be maximum at the vortex enter, leadingto sharper and sharper maximum of  as � is more negative.
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Fig. 7. Entropy (left) and inverse \temperature" � = dE=dS (right) versus energyE for the statistial equilibria of a set of N idential point vorties in a disk(from [95℄). For small energies (point A) vorties remain near the disk periphery,and the \temperature is positive", while for large energies they remain lumpedin a global vortex, more and more onentrated as energy is larger. Then the\temperature" is negative. The entropy maximum (point B) orresponds to auniform vortiity in the disk, with � = 0. The solid urves represents axisymmetriequilibria, while the point-dash urve represents a \bifurated state", in whihthe vortex spontaneously forms out of the disk axis. This bifurated state ismore likely than the axisymmetri one as it has a higher entropy. It has beenindeed observed in a laboratory experiment using a merury ow in a magneti�eld [33℄. Note however that, far from boundaries, the axisymmetri equilibriumstate is always predited (the bifuration is due to the on�nement by the diskperiphery).It is interesting to represent the entropy of the statistial equilibriumversus its energy, whih has always a bell shape, as shown in Fig. 7. Dueto (3.8), the derivative dS=dE (for N �xed) is just � the inverse of the tem-perature. Therefore the positive temperature is obtained for small energyand negative temperature for large energy. The maximum orresponds tothe uniform vortex density: the energy has just the right value to allowfor uniform density, whih is the state of maximum entropy in the abseneof energy onstraint, as shown above. Higher energy requires the vortiesto remain losely paked, while low energy requires them to remain near



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 25the boundaries. The existene of negative temperature states is forbiddenwith ordinary partiles whose Hamiltonian has a quadrati term in the mo-mentum (the usual kineti energy): then the entropy always inreases withenergy. However in the vortex system, suh a quadrati term is absent: neg-ative temperature states do our , and they orrespond to the interestingase of lumping of like sign vorties into large oherent vorties.For several vortex speies, with irulation i , the density of eah speiessatis�es a mean �eld relation (3.9). Then the relationship (3.10) betweenvortiity and stream funtion is replaed by a sum of exponentials (or anintegral for a ontinuous distribution of elementary vortex irulation ,�� =Xi iniexp(��i ) ;  = 0 on boundaries (3.12)For a symmetri set of positive and negative vorties with irulation�; weget a sinh funtion. Note however that symmetry breaking is also possible,so that n+ 6= n� even for an equal number of positive and negative vorties.This has been �rst shown by Pointin and Lundgren, 1976 [84℄ in a squaredomain.In Fig. 8 we show striking examples of symmetry breaking. The statisti-al equilibrium reahed by two initial vortex lines of opposite sign, forminga jet, is onsidered. The on�nement in a hannel with periodi boundaryonditions is neessary to get an equilibrium. However when the wall is farfrom the initial jet width d; and the allowed period L suÆiently long, weget an organization with the topology of the Karman vortex street (stateDD on the �gure). This may explain the observed trend of plane wakes toform suh a struture, even in the presene of a strong turbulene (althoughwakes freely expand with time so they never reah equilibrium). For otherparameters shown in Fig. 8, an additional symmetry breaking ours: vor-ties on one sign lump together while vorties of opposite sign are dispersed(whih favors entropy, while the oherent vortex is neessary to satisfy theenergy onstraint). The solitary vortex state (SV) qualitatively explainsthe organization of a turbulent jet observed in an annular hannel [100℄,modeling many dynamial aspets of the Great Red Spot of Jupiter.� Limitations:The point vortex statistial mehanis explains self-organization. Howeverit does not provide a onsistent and quantitative predition for the Eulersystem with ontinuous veloity �elds. Of ourse it is always possible to ap-proximate the ontinuous veloity �elds by a set of many point vorties witha small irulation  and spaing h , suh as h2 = !. The limit of smallspaing h provides a onsistent, stable and onvergent approximation [44℄.Vortex methods an be used indeed in pratie for numerial simulations of
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Fig. 8. (from [53℄) Statistial equilibria resulting from the mixing of two vortexlines of opposite sign, representing an initial jet in a x-periodi hannel, as skethedat the top of the �gure. The equilibrium states are represented as a funtion ofthe domain length L and the half jet width d (while the hannel width is set tounity). The di�erent ow on�gurations are represented by vortiity isolines forthe parameters indiated by the arrows. The boundaries between these on�gu-rations are drawn on the diagram. In addition to the x-independent states (XI),we get states breaking the translation symmetry, like the \sinuous mode" (DD).This mode is preferred for small initial jet width d and suÆiently large L, forwhih the e�et of boundary on�nement is minimum. For the other states (VCor SV), the additional symmetry breaking between positive and negative vortiesis obtained.the Euler equations [26℄ [27℄ [29℄. However any approximation to a dynam-ial system is valid for a �nite time, and it may break down for suÆientlylong time (whih inreases with the spatial resolution). The system of Nvorties will eventually behave di�erently from the ontinuous system, and



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 27the equilibrium statistial mehanis, dealing with the limit of very longtimes, is di�erent (in more mathematial terms, taking the results of thetwo limits h! 0 and t!1 depends on the order in whih they are taken).There is �rst the possibility that the maximum vortiity of the statistialequilibrium exeeds the maximum value of the initial ondition, whih isinonsistent with the Euler equations. Seondly there are several ways tomodel the same ontinuous initial ondition: we an for instane use eitheronstant vorties with a variable spaing h , or a onstant spaing h anddi�erent vortex irulations, proportional to the loal vortiity. The pointvortex statistial equilibrium will be di�erent in the two ases: in the �rstase we shall get the result (3.10), while in the seond ase we shall getthe result 3.12, with a sum of exponential terms. These diÆulties will besolved in setion 5 using a di�erent approah.4 Spetral properties, energy and enstrophy asadeSine Kolmogorov, the use of spetral representations is at the heart of thestudy of turbulene. This approah quanti�es the energy transfers amongthe di�erent sales of motion. Kolmogorov's ideas have been applied to 2Dturbulene by Kraihnan in 1967 [56℄, see [58℄ and [64℄ for good reviews.The most interesting result is the predition of an inverse energy asadetoward large sales, whose existene is now �rmly established both fromnumerial simulations and laboratory experiments. The existene of a di-ret enstrophy asade toward small sales has been also predited, but itsrelevane remains ontroversial. The emergene of isolated vorties playsan important role, at least in some ases.4.1 Spetrally trunated equilibrium states:Instead of using point vorties, a quite di�erent approah is to expand theveloity (and vortiity) �eld in the eigenmodes �n of the Laplaian for theuid domain. These are the Fourier modes for the usual periodi onditions.We therefore expand the vortiity as!(t; r) =X an(t)�n(r) ; with ��n = �k2n�n (4.1)and the streamfuntion is  = Pank�2n �n. Other basis, like wavelets,allow to make sale analysis depending on position, whih may be moresensible in the presene of oherent strutures, see [39℄ in this book. Howeverthe lassial Fourier have the advantage of nie dynamial properties, inaddition to their simpliity. In partiular eah mode �n is a steady solutionof the Euler equations, sine its vortiity ���n is a funtion of �n (seesetion 2.4). The energy E and enstrophy �2 are readily expressed, due to



28 The title will be set by the publisher.the orthonormality of the eigenmodes,E = 12X a2nk�2n ; �2 = 12X a2n (4.2)Sine the Euler equations ontain only quadrati terms in veloity, itan be written in the general form_an =Xr;s Anrsaras (4.3)with �xed interation oeÆients Anrs for the triad interations. TheseoeÆients satisfy the \detailed onservation of energy" among eah triadk�2n Anrs + k�2r Arsn + k�2s Asnr = 0 (4.4)as well as the detailed onservation of enstrophyAnrs +Arsn +Asnr = 0 (4.5)Starting with some initial ondition with energy limited to a few modes,higher and higher modes will be exited: this is the asade proess of tur-bulene. It an be understood as a tendeny of the system to explore all theavailable modes, a general e�et of entropy inrease. However a statistialequilibrium, maximizing entropy, is really reahed only if we arti�ially seta bound to the aessible modes, keeping a �nite number N of modes. Thisstops the fundamental irreversibility of turbulene but gives indiations onthe general trends of the system.The spetrally trunated system (4.3) then beomes a losed dynamialsystem whih onserves energy, and the general methods of equilibrium sta-tistial mehanis an be used. Although onservative, it does not have anHamiltonian form, unlike the vortex system (3.2). Still a Liouville theoremexists � _an=�an = 0 (4.6)whih is the required ondition for applying statistial mehanis (the vol-ume in phase spae is then onserved as mentioned in the footnote of setion3.4). This ondition is easily derived: the terms in (4.3) with n; r; s all dif-ferent give no ontribution to � _an=�an. The oeÆients Anss vanish by thestationary property of the eigenmode �s. Annn vanishes in partiular, andby (4.4), Ansn = Anns = 0: This exhausts the possibilities and we have(4.6).In the presene of a \thermal bath" with inverse temperature �; theprobability of a mirosopi state with energy E is in exp(��E), like wehave seen for point vorties in setion 3.4. Sine there is a seond onserved
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Fig. 9. Normalized modal energies (dots), averaged over 100 time steps, fromthe numerial solutions of the evolution equations (4.3) for the trunated spe-tral model, ompared to the statistial equilibrium predition (4.8) in solid line.This run (from [93℄) orresponds to a negative � regime with 70 % of the energyondensed in the fundamental mode.quantity �2; with assoiated Lagrange multiplyer �, the probability of astate a1; :::aN is proportional to exp(��E � ��2) . Due to the quadratiexpressions (4.2), we have just independent Gaussian probabilities for eahmode p(an) / exp[�(�k�2n + �)a2n=2℄ (4.7)so the mean energy of a mode isk�2n < a2n >= k�2n Z p(an)a2ndan= Z p(an)dan = 12(� + �k2n)�1 (4.8)For large wavenumbers, it is onvenient to the replae the mode numbern by the wavevetor k, and the disrete mode amplitudes an by the Fouriertransform !̂(k) of the vortiity �eld. Furthermore the energy spetrumE(k), or the enstrophy spetrum k2E(k) is used. It is de�ned by integrating!̂2(k) over a irle with jkj = k; so that for an isotropi �eld, k2E(k) =2�k!̂2(k) . The total energy is the integral of the energy spetrum, E =R10 E(k)dk , and similarly for the enstrophy, �2 = R10 k2E(k)dk. Theequilibrium spetrum is therefore in k=(� + �k2).For 3D turbulene, we have only the onservation of energy, so that� = 0; and the energy is equally spread over the modes. This is not inagreement with atual turbulene, but it justi�es the tendeny of energy tospread over all the aessible modes, and therefore to undergo an energyasade toward the small sales where a majority of modes is loated. In



30 The title will be set by the publisher.ontrast for 2D turbulene we an have a variety of states, depending on �and �; whih an be indiretly related to the mean energy and enstrophyof the system. A partiularly interesting ase orresponds to � ! ��k20 forwhih the energy an aumulate in the lowest available mode k0, as rep-resented in Fig. 9. This �gure also indiates that the statistial mehanispredition is well veri�ed by numerial omputations of the dynamial sys-tem (4.3), arti�ially trunated by keeping a �nite number of modes withoutdissipation.This helps to understand the self-organization into the lowest mode,with a model di�erent from that of point vorties. The arti�ial trunationof high modes have then little inuene. Note however that the trunationsuppresses onservation laws (2.11) other than enstrophy. Moreover the useof a anonial distribution is then questionable, as energy is onentratedin the single lowest mode, with large utuations. For instane the mostprobable state orresponds to the enter of the Gaussian (4.7), with zeroenergy. The use of a miro-anonial approah, keeping the energy onstant,would lead to a di�erent and more realisti result, although the trend foronentration in the lowest mode should be the same.4.2 The enstrophy and inverse energy asades of fored turbulene:� The double asade of Kraihnan(1967)In the absene of on�nement at small wavenumbers (e.g. boundaries) andarti�ial uto� at high wavenumbers the asades an freely develop. Tostudy stationary regimes, it is onvenient to onsider a statistially per-manent foring onentrated at a given wavenumber kI . The dimensionalanalysis leading to the Kolmogorov asade an be arried out in 2D as wellas in 3D and it yields the same inertial range,E(k) = C�2=3k�5=3 (4.9)The diretion of the energy ux is not given by dimensional analysis. How-ever a diret asade toward high wave numbers is forbidden by the abseneof energy dissipation (see 2.3). Therefore Kraihnan suggested a asadetoward large sales (small k). He further justi�es this asade diretion as atrend of the system to go toward the statistial equilibrium desribed above(although it never reahes it in the absene of spetral trunation). Thereis no need for energy dissipation at large sales, at least in the ideal ase ofan in�nite uid domain, sine the integral R k�5=3dk diverges at 0: energyprogressively aumulates toward lower and lower k: More physially, weshall see that a frition fore proportional to the veloity (Rayleigh frition)an progressively pump out the energy along the inverse asade.Now what happens toward the small sales? Enstrophy must be injetedby the foring, at a rate � = k2I �, where kI is the injetion wavenumber.
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Fig. 10. sketh of the lassial double asade of 2D turbulene (from Lesieur [64℄).Then an enstrophy asade is expeted, whih an be predited by dimen-sional analysis in the same way as the energy asade, just replaing energyby enstrophy, and � by �: This yields an energy spetrumE(k) = C 0�2=3k�3 (4.10)We shall see that these two asades are mutually exlusive (for in�nitelyextended asades): the rate of enstrophy transfer vanishes in the energyasade and the rate of energy transfer vanishes in the enstrophy asade.Therefore sine energy goes to the larger sales, the enstrophy asade mustbe toward small sales. Enstrophy an be dissipated at small sales byvisosity unlike energy. Even without visosity the enstrophy asade antheoretially extends with time to higher and higher wavenumbers. Fig. 10summarizes this theoretial double asading spetrum.For a more preise disussion of these asade proesses, let us expressthe foring as a vortiity soure f(x; y; t) added on the right hand side of(2.6), and introdue some energy dissipation. Then the mode enstrophies< a2n > satisfy the equations12 d < a2n >dt =< an _an >=Xr;s Anrs < arasan > + < fnan > �diss (4.11)where fn is the amplitude of f in the mode n: Note that the enstrophyprodution is the orrelation < fnan > between the vortiity and its souref , and the orresponding energy prodution k�2n < fnan >. The sums ofthese quantities over the modes are the total enstrophy prodution � andenergy prodution � respetively.For the onsidered homogeneous isotropi turbulene, the disrete modeamplitudes an is replaed by the Fourier transform !̂(k), and the energy



32 The title will be set by the publisher.equation (4.11) takes the form of a onservation equation for the energyspetrumE(k), �E�t = ����k + foring � diss (4.12)� an be viewed as the energy ux due to nonlinear interations and ��=�kits divergene. The same equation an be also written in a form displayingenstrophy onservationk2 �E�t = ��Z�k + foring � diss (4.13)with an enstrophy ux Z: These uxes are expliitly obtained [56℄ [64℄ byFourier transform of the Euler equations and integration over wavevetor di-retions. They are expressed as integral of the rates of triad energy transferT (k; p; q), depending on the triple orrelations < !̂(k)!̂(p)!̂(q) >, wherethe vetors (k;p;q) form a triangle (k+ p+ q = 0) with sides k; p; q;�(k) = 12 Z 1k dk0 Z k0 T (k0; p; q)dpdq � 12 Z k0 dk0 Z 1k T (k0; p; q)dpdq(4.14)Z(k) = 12 Z 1k k02dk0 Z k0 T (k0; p; q)dpdq � 12 Z k0 k02dk0 Z 1k T (k0; p; q)dpdq(4.15)At this stage a possible approah is to introdue a losure hypothesis toexpress the triple orrelations and obtain dynamial equations for the energyspetrum. This has been done by assuming that the utuations of the modeamplitudes have statistis lose to a Gaussian. After a failed attempt byMillionshthikov (the quasi-normal theory), this approah has been widelydeveloped by Kraihnan. His models have the property of relaxing thesystem toward the spetrally trunated statistial equilibrium in the abseneof foring and dissipation. With foring at a given wavenumber kI , theselosure models lead to the double asade skethed in Fig. 10 [3℄ [49℄,see [64℄for a review.However Kraihnan did not use losure hypothesis in his original paperof 1967. He assumes instead an in�nite asade, with foring and dissipationreplaed by onstant ux in wavenumber spae. He further assumes that thetransfer rate T (k; p; q) sales in power law: T (k; p; q) = k�mT (1; p=k; q=k),where T (1; p=k; q=k) depends only on the angles in the triad. Then the en-ergy ux (4.14) is expressed as k3�m (due to the triple integrals) multipliedby angular integrals over triad diretions p=k and q=k. The only possibilityfor a ux �(k) independent of k is therefore m = 3. By dimensional anal-ysis, T (k; p; q) � u3=k2, where u is the typial veloity at sale 1=k, andE(k) � u2=k. Therefore, T � k�3 implies u � k�1=3 , orresponding to an



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 33energy spetrum in k�5=3. This dimensional analysis is however valid onlyif the triple orrelations sale in u3 while the double orrelations sale inu2, i.e in the absene of intermitteny. The asade is more fundamentallyde�ned by the saling of the transfer rate than the saling of the energyspetrum (double orrelations).Suh onstant energy ux asades an be as well obtained in 3D, butin 2D one an furthermore imagine asades with a onstant enstrophy uxZ(k), orresponding to the k�3 energy spetrum. Then the energy ux �(k)should sale in k�2: However by using the detail onservation laws (4.4)and (4.5), whih translate into similar relations for T (k; p; q), Kraihnanshows that the angular integration in (4.14) exatly anels: the energyux is zero. Similarly the enstrophy ux anels in the energy asade. Asstressed by Kraihnan, a asade annot be viewed just as a arrying beltin wavenumber spae, transporting together the energy E(k) and its relatedenstrophy k2E(k). The transport is rather the result of overlapping triads,whih makes possible a ux of energy or enstrophy alone. Eyink [35℄ hasobtained mathematial results supporting this double asade theory. Hehas shown that the ux of higher vortiity moments, e.g. !4 is related tothe enstrophy asade and is also toward high wavenumbers.This work of Kraihnan provides onstraints on the nature of putativeasades, but it does not guarantee that suh states should be approahed.As mentioned above, losure models provide a �rst support of these ideas.The enstrophy asade has reeived a more preise theoretial justi�ationby a di�erent approah [37℄, presented at the same shool [38℄. The ideais derived from the study of the passive salar stirring in a random largesale strain. Bathelor in 1959 �rst predited k�1 spetra for the salarvariane, and this has been on�rmed by rigorous approahes. Vortiityin 2D turbulene is transported like a salar, and we notie that the k�3energy spetrum orresponds indeed to a k�1 enstrophy spetrum [57℄. Ofourse the strain is not limited to large sales: the strain produed by owstrutures at sale k�1 an be estimated as uk � (k3E(k))1=2 . This strain isindependent of k for a k�3 energy spetrum so the ontribution of all salesis the same, and the \nonloal interations" with the large sale strain isdominant (unlike in the k�5=3 spetrum), but only marginally. The preiseanalysis [37℄ gives a k�3 energy spetrum orreted by a logarithmi fator.Kraihnan also proposed [57℄ suh a logarithmi orretion to avoid somedivergene in the alulations.� Observations of the asades:It is diÆult to simultaneously observe the two asades due to the requiredspatial resolution and high Reynolds number: observing two deades foreah asade in a numerial omputation would require at least 104 gridpoints in eah diretion. Simulations or laboratory experiments must be
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Fig. 11. Laboratory observation of the inverse energy asade, from [97℄. Theexperimental ell is skethed on the left as a top view and side view below. Theow is maintained 2D in a horizontal merury layer by a vertial magneti �eldwhih prevents the built up of 3D perturbations. The eletri urrent, steadilyinjeted with alternating sign in an eletrode lattie, generates a square vortexlattie by interation with the magneti �eld. The ow is visualized from aboveby the streaks of partiles oating on the merury free surfae (the �eld of viewis limited to a entral band due to the onstraint of the eletromagnet). Thedynamis is ontrolled by a frition parameter Rh representing the ratio of theinertial e�et to the frition on the bottom surfae. For Rh <1.78, the ow issteady as shown on the left, over the apparatus sketh. For higher Rh instabilitiesdevelop, exiting larger sales of motion, as shown on the two photos on the righttop. The orresponding energy spetra reveal the built up of an inverse energyasade for Rh = 14:24, and the ondensation in the fundamental mode n = 1 forRh = 40:3. This mode orresponds to a global rotation of the ow, spontaneouslybreaking the symmetry between positive and negative vortiity. The spetra areobtained from the spatial Fourier transform of the eletri potential measuredalong a line of small eletrodes (; 1): the indued eletri potential is proportionalto the transverse veloity.optimized to study one of the asades.The existene of the inverse energy asade is now well establishedboth from diret numerial simulations [42℄ [96℄ and from laboratory ex-
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Fig. 12. Foring 2D turbulene with the same tehnique as in Fig. 11, but with anhexagonal lattie (from [76℄). The energy spetra indiate a persistent peak at theforing wavenumber, whih is removed if the mean veloity is subtrated from thedata, keeping only the turbulent part with a hint of a k�5=3 range. The spetralenergy transfer T (k) = �d�=dk have been also obtained from the triple veloityorrelations, assuming isotropy. One heks that the energy transfer indeed feedsthe small wavenumbers while it removes energy from the foring range.periments [97℄ [76℄ [83℄. Note that the experiments of Sommeria [97℄ havebeen performed with a steady foring (in a square vortex lattie), and theinverse asade is therefore spontaneously generated, see Fig. 11. Sponta-neous generation of an inverse energy asade has been also observed withan hexagonal lattie, see Fig. 12, although a signi�ant steady ow om-ponent oexists with the turbulene, unlike with the square lattie, moreeÆient at generating 2D turbulene (see also setion 3.3). In ontrast, boththe experiments of Paret and Tabeling [83℄ and the numerial simulationshave been performed with some random foring. The Kolmogorov onstantfound is about 7, whih means that this asade is less \eÆient" than in3D (for whih C = 1:5): for a given value of the spetrum E(k) the transferrate � is smaller than in 3D. Notie that this value of the oeÆient �ts wellwith the predition of Kraihnan using the test �eld losure model [57℄.Remarkably, intermitteny seems absent [83℄ [96℄, or at least very weak:the suessive moments of the two-point veloity di�erene < (Æu)n > salewith point separation r in rn=3 . The ideas of Kolmogorov (1941) turns outto be more appropriate for 2D than for 3D turbulene! Furthermore theprobability distribution for Æu is lose to a Gaussian at all sales. It annot
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Fig. 13. Laboratory observation of the diret enstrophy asade in a thin waterlayer, strati�ed in density by salinity to restrit 3D reirulation (from [82℄). Theow is generated by a set of magnets (sketh on the upper left) interating with auniform horizontal eletri urrent randomly swithed in time (urve below). Theow is thus generated at large sale allowing to fous the study on the enstrophyasade. Spetra in k�3 are indeed obtained (upper right), while the spetralisoontours below illustrate the isotropy of the asade, although the foring atsmall k is not isotropi, as revealed by the two peaks near the enter.be exatly a Gaussian as the energy transfer is assoiated with a non zerothird order moment, as seen above. However the asade is less eÆientthan in 3D (the Kolmogorov onstant is larger) so we an understand thatthe system is loser to an equilibrium with Gaussian statistis.To get a steady asade in a �nite size domain, some energy dissipationating at large sale is neessary. In laboratory experiments the frition onthe support of the uid layer, proportional to veloity, plays this role. Innumerial simulations, a large sale dissipation onsistent with the inverseenergy asade must be hosen [101℄. When the inverse asade is limitedby the domain size instead, the asade breaks down and ondensation ofenergy in the lowest mode is obtained as predited above from trunated



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 37spetral equilibria. This ondensation has been well observed both in labo-ratory experiments [97℄ [83℄ (see Fig. 11) and numerial omputations [96℄.The existene of the enstrophy asade is also on�rmed by laboratoryexperiments [82℄, represented in Fig. 13. Note that measurements of thesteep k�3 energy spetra over large wavenumber ranges is diÆult as itrequires a very high preision to distinguish the small sale utuations fromthe muh stronger large sales (obtaining two deades requires a preisionon veloity better than 10�3). Numerial simulations with high resolution[5℄, up to 40962 provide more extended spetral ranges, with a onstantenstrophy ux over 2 deades. The k�3 energy spetrum has logarithmiorretions, while a nearly perfet k�3 spetrum has been obtained witha slightly di�erent foring [67℄. Note that earlier simulations [63℄ pointout that the presene of oherent vorties modi�es the asade, leadingto steeper energy spetra. The permanent prodution of random vortiitytends however to prevent the build up of the oherent vorties [5℄, unlike infreely deaying ows disussed next.4.3 The enstrophy asade of freely evolving turbulene:Unlike in 3D, the behavior of freely evolving 2D turbulene is quite di�erentthan that of fored turbulene. This di�erene an be understood by onsid-ering that the dynamial time for eddies with sale k�1 is in (k3E(k))�1=2,so that in a k�5=3 energy spetrum the small sales have a muh shorterdynamial time than the large sales (it is in k�2=3). Therefore in a diretenergy asade the e�et of large sales is reasonably similar to a permanentforing for the smaller sales. This is not true for the e�et of small saleson the large sales in the inverse energy asade.A lassial predition for a freely evolving turbulene have been given byBathelor in 1969, assuming a self-similar spetral evolution, with a (single)time sale and length sale evolving in time. An enstrophy asade is stillpredited, with a spetrum in t�2k�3. The inverse energy asade is thenreplaed by a growth of the integral sale, suh that the total enstrophy ispredited to deay in t�2:Energy spetra lose to k�3 are indeed obtained in laboratory experi-ments or numerial simulations of freely deaying 2D turbulene. Experi-mentally, it has been �rst measured in grid turbulene in liquid metal dutows submitted to a transverse magneti �eld [55℄. This was the �rst exper-imental observation of 2D turbulene ever reported. Reent measurementsin soap �lms yield similar results [71℄. Numerial simulations starting withsome random �eld at wavenumber kI �rst show the onset of a k�3 energyspetral range, when the enstrophy dissipation is maximum [9℄ [8℄. Howeverthe spetra tend to beome progressively steeper as isolated vorties form,see below.Numerial simulations [16℄, as well as laboratory experiments [102℄, all



38 The title will be set by the publisher.indiate that enstrophy deays muh less rapidly than the Bathelor's pre-dition in t�2 (the exponent found in various ases is in the range 0.3-1instead of 2). This global deay is related to the spetral behavior in thelimit of small wavenumbers. Reent numerial simulations [80℄ allowing agood resolution at small wavenumber on�rms a behavior in k3 preditedwith losure models [3℄. This probably depends however on assumptionson the initial ondition [32℄. In laboratory experiments suh large salesare learly less universal, and more diÆult to ontrol than the small salebehavior.4.4 The emergene and evolution of isolated vorties:The emergene of isolated vorties is a fasinating aspet of 2D turbulene.This phenomenon has been �rst doumented by M Williams [107℄, andthen obtained in many similar numerial omputations. Most vorties aremonopoles but some dipoles, and even tripoles, an be temporarily formed.Suh vortex formation has been observed as well in laboratory experimentswith thin water layer [102℄ and more spetaularly in eletron plasma exper-iments [40℄, where the vortiity �eld is diretly visualized as eletron den-sity. This organization an be explained in terms of statistial mehanis,see setion 5, as a loal equilibrium around an initial vortiity maximum.One formed these vorties interat and merge, so they beome fewerand fewer, while their maximum vortiity only weakly deays. Thereforethey dominate more and more the bakground vortiity, whih deays byenstrophy asade. Note that some ontour dynamis omputations [34℄indiate the possibility of formation of new seondary vorties of varioussizes by the reorganization of vortiity �laments resulting from vortex in-terations. Persistene of non-axisymmetri vorties is also observed in suhomputations. These results are however not supported by eletron plasmaexperiments [75℄, as well as more lassial numerial omputations with in-reasing resolution [8℄: signi�ant vortex formation only ours during theinitial stage of organization from the random initial ondition. Statistialmehanis also indiates a general trend for merging and reorganization intoaxisymmetri vorties.The formation of organized vorties has a lear onsequene in terms ofglobal statistis. In partiular the Kurtosis Ku =< !4 > = < !2 >2 on-siderably inreases with time: it is just the inverse of the area proportionoupied by the vorties. Starting from a value Ku =3 haraterizing theGaussian statistis of the initial ondition, a typial value of Ku =50 anbe reahed, whih haraterizes a highly intermittent �eld: the distributionof vortiity levels has big \tails" orresponding to a signi�ant probabilityof �nding vortiity values muh larger than the vortiity root mean square.Steepening of the energy spetrum beyond the k�3 predition is also ob-served to be assoiated with vortex predominane, while k�3 spetra are



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 39observed in regions outside the vorties [39℄.The ondition of formation of suh organized vorties is still a debatedquestion. They are best observed for an initial ondition spetrum with adominant peak, while a wideband range of sales (like a k�5=3 inertial range)tends to prevent their formation. The onditions at large sales seem to havea signi�ant inuene. The e�et of the dissipation operator at small saleis also important: the lassially used hypervisous operators an spuri-ously enhane the vortex inuene (the peak vortiity an inrease), whilethe usual visosity makes then wider. \Contour surgery" methods lead todi�erent results as mentioned above. Well tested high resolution numerialstudies are still needed to make safe laims about the asymptoti inertiallimit, in partiular about the statistial distribution of vortex strength andsize.The evolution of the vortex population is an interesting theoretial issue.At moderate Reynolds numbers, the vorties have all a similar size andstrength. At higher Reynolds numbers, vorties with di�erent sizes oexist,but their probability distribution seems to reah a steady shape [8℄, so thatfurther evolution is ontrolled in all ases by an inrease of the typial vortexradius ra and a derease of the vortex number N: Power law evolutionsN / t�� and ra / t�=4are observed for these quantities, while the typialpeak vortiity remains onstant. The relation between the exponent forvortex radius and vortex number is justi�ed by the onservation of energy.This indeed implies the onservation of the typial ow veloity, whih isindued by the vorties with a saling in =l; where  / r2a is the vortexirulation and l / N�1=2 is the typial vortex separation. Therefore aonstant typial veloity indeed implies that Nr4a / onst: The total vortexarea Nr2a / t��=2 , then dereases with time, so that some vortiity ismixed away in the bakground during merging. Sine enstrophy beomesdominated by the vorties, this total vortex area is just proportional to theenstrophy.An exponent � ' 0:7 is obtained in diret numerial simulations [8℄ andlaboratory experiments [102℄, and it is reprodued by a model of \pun-tuated dynamis" [14℄: a set of N point vorties interat aording to theKirhho� equations (3.2,3.3), and a merging rule is used when two vortiesget loser than their radius. Suh a model has been reently improved [94℄using a proedure of \numerial renormalization" to reah muh longer evo-lution times: after eah merging, the domain of omputation is inreased,introduing randomly a new vortex to keep the same vortex density. Thisallows to keep a onstant vortex number in the omputations, while previousmethods required a very large initial vortex number to get good statistis atlater times. These alulations agree with the previous ones at early times,but a progressive inrease of the exponent � is observed, with a �nal value� = 1.



40 The title will be set by the publisher.This �nal value an be understood by an elementary kineti model,onsidering vorties like atoms in ballisti motion. The rate of binary ol-lisions is then proportional to the square N2 / t�2� of the vortex den-sity, to the vortex size ra / t�=4 (its ross-setion of interation) and tothe onstant vortex veloity. This would imply dN=dt / t�(7=4)� so that� = 4=3, learly inonsistent with the results. However Sire and Chava-nis [94℄ show that three-body ollisions are neessary to get merging. Typ-ially a vortex dipole (two opposite sign vorties) with separation / ra ol-lides with a monopole. In that ase the pair translates at veloity =ra / ra.Assuming unorrelated random pair formation, the density of dipoles is/ N �Nr2a (the vortex density multiplied by the probability of �nding an-other vortex at a distane / ra). The ollision probability therefore beomesdN=dt / N �N2r2a � ra � ra (the suessive produt of the vortex density,the dipole density, the ollision ross setion ra, and the dipole veloity).This yields the exponent � = 1:This work therefore lari�es the problem of puntuated vortex dynamis.Its pratial relevane for 2D turbulene is however remote, as it is limitedto very large time sales and domain sizes, with aordingly extremely highReynolds numbers. Furthermore the question of energy spetra is open. As-suming random unorrelated point vorties ompletely determines in prini-ple the statistis of the veloity �eld [20℄. In partiular the energy spetrumis [78℄ in k�1 for k > 1=l , where l is the typial distane between vor-ties (this an be understood by remarking that the Fourier transform of aDira funtion is onstant, leading to an enstrophy spetrum in k). There-fore some orrelations between vortex positions must our to explain thesteeper spetra numerially observed. Statistial mehanis of point vor-ties, beyond the mean �eld approximation disussed in setion 3.4, shouldbe relevant there.5 Equilibrium statistial mehanis and self-organization5.1 Statistial mehanis of non-singular vortiity �elds:We have seen in subsetion 3.4 that the statistial mehanis of point vor-ties explains self-organization of 2D turbulene into large steady oherentstrutures. However we have noted that the modeling of ontinuous owsby point vorties leads to some diÆulties. A solution to this problem hasbeen proposed by Kuz'min(1982), redisovered and justi�ed by Robert [85℄,Robert & Sommeria [88℄, and independently by Miller [74℄. This equilib-rium statistial theory is performed diretly on the Euler equations.5Then,5A similar statistial mehanis had been previously proposed [68℄ for the Vlasov equa-tion used to desribe the organization of galaxies with stellar dynamis. The analogieswith the Euler equations have been put forward only reently [25℄ [18℄



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 41the standard proedure for Hamiltonian systems of partiles is not available,but the method is still justi�ed (on a weaker basis) by a set of rigorous prop-erties [90℄. The result is again a steady solution of the Euler equations, onwhih �ne sale vortiity utuations are superimposed. The relationshipbetween vortiity and streamfuntion is di�erent that of the point vortexmodel, and it is now quite onsistent with the properties of the Euler equa-tions with nonsingular vortiity.� The marosopi desription:The Euler equations are known to develop very omplex vortiity �laments,at �ner and �ner sales, and a deterministi (\mirosopi") desriptionof the ow would require a rapidly inreasing amount of information astime goes on. We are rather interested in some loal vortiity average !.However to keep trak of the onservation laws, we need to introdue a morepreise \marosopi" desription, as the probability �(r; �) of �nding thevortiity level � in a small neighborhood of the position r (this is a Young'smeasure in mathematial terms). The loally averaged vortiity �eld is thenexpressed in terms of this probability density as:!(r) = Z �(r; �)�d� (5.1)This probability an be viewed as the loal area proportion oupied byeah vortiity level �; and it must satisfy at eah point the normalizationondition : Z �(r; �)d� = 1 (5.2)and the assoiated (marosopi) stream funtion satis�es in the uid do-main (D): ! = �� with  = 0 on (�D) (5.3)Note that sine the streamfuntion is expressed by spae integrals of vor-tiity, it smoothes out the loal vortiity utuations, supposed at very �nesale, so  has negligible utuations.It is then possible to express the onserved quantities as integrals ofthe marosopi �elds. A �rst set of onserved quantities is the globalprobability distribution of vortiity (�) (i.e. the total area of eah vortiitylevel): (�) = Z �(r; �)d2r (5.4)As a onsequene the integral of any funtion of the vortiity is onserved(the vortiity elements are just rearranged within the bounded uid domainas time goes on).



42 The title will be set by the publisher.The energy (2.16) is also onserved. As disussed above the streamfun-tion an be onsidered as smooth, so we an express the energy in terms ofthe loally averaged vortiity:E = 12 Z  !d2r (5.5)In a domain with rotational or translational symmetries, additional quan-tities are onserved like the angular momentum in the disk, as disussed insetion 2.3.� Entropy maximization:As in usual statistial mehanis, for instane in setion 3.4, we need todetermine the entropy (\ounting" the assoiated mirosopi states) ofa given marosopi state. The marosopi state whih maximizes theentropy, with the onstraint of the onserved quantities, will be the mostlikely to result from omplex stirring. The expression of the entropy is theusual mixing entropy,S = � Z �(r; �) ln �(r; �)d2rd� (5.6)The di�erene with point vorties lies in the loal normalization ondition(5.2): we ount the possible rearrangements of small vortiity parels whihexlude eah other on a given area unlike point vorties.6We therefore maximize the entropy with the onstraints (5.4), (5.5) and(5.2) due to the onserved quantities and to the normalization. This varia-tional problem is treated by introduing the orresponding Lagrange mul-tipliers �; �(�), �(�) so that the �rst variations satisfy:ÆS � �ÆE � Z �(�)Æ(�)d� � Z �(r)Æ Z �(r; �)d�!d2r = 0 (5.7)By analogy with usual thermodynamis, � an be viewed as the inversetemperature and �(�) the hemial potential of speies �. Introduing theexpressions (5.6) and (5.5) of entropy and energy, (5.7) beomes R [ln �+1+�(�) + �(r) + �� ℄ Æ� d2rd� = 0. This has to be satis�ed for any variationÆ�, implying that the integrand vanishes. The resulting optimal probabilitydensity �(r; �) is therefore related to the equilibrium streamfuntion  bythe relationship: �(r; �) = 1Z g(�)e��� (5.8)6This entropy an be further justi�ed by onsidering the system as the limit of a seriesof spetrally trunated approximations of inreasing resolution [90℄.



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 43where g(�) � e��(�) and Z � e�(r).This is like in the ase of point vorties, the vortiity level � replaingthe elementary vortex irulation . However the additional normalizationonstraint (5.2) has to be satis�ed at eah point, whih leads to :Z( ) = Z g(�)e��� d� (5.9)so that Z is a funtion of  ; whih we all the partition funtion by analogywith usual statistial mehanis. The loally averaged vortiity (5.1) is thenexpressed as a funtion of the streamfuntion:! = R g(�)�e��� d�R g(�)e��� d� = � 1�Z � lnZ� � f�;g( ) (5.10)and the resulting ow an be alulated by solving the orresponding partialdi�erential equation:�� = f�;g( ) with  = 0 on (�D) (5.11)Like in the point vortex ase, random mixing yields a steady solution of theEuler equations one the loal vortiity utuations have been averaged.The parameters � and g(�) are indiretly determined by the onservationlaws, and we all the resulting solutions of (5.11) the Gibbs states. This isonly a neessary ondition for a true statistial equilibrium: in addition theseond variation of the entropy must be negative. A good way to selet suhmaxima is to use a relaxation algorithm whih inreases the entropy whilepreserving the onserved quantities. The relaxation equations of setion 6ful�l this goal, provided an appropriate disretization is implemented. Arelaxation algorithm in disrete steps has been also implemented [106℄.5.2 The Gibbs states:� Case of vortex pathes:In the ase of an initial ondition made of pathes with vortiity 0 or a, wean write � in terms of the Dira distribution Æ as �(�; r) = p(r)Æ(��a) +(1� p(r))Æ(�) involving the loal area proportion p(r) of the level a and theomplementary 1� p for the level 0. Then the result (5.11) redues to�� = pa = a e��a g0 + e��a with  = 0 on (�D) (5.12)Making a formal analogy with quantum gas statistis, this an be alleda Fermi-Dira distribution by ontrast with the Boltzmann relation (3.10)for point vortex statistis. Similarly the loal exlusion of the vortiity



44 The title will be set by the publisher.pathes results in a saturation of the vortiity at the unmixed value a, whenexp(��a ) � g0 . In the opposite limit, the relation (5.12) redues to thepoint vortex result (3.10). We all it the dilute limit [88℄ as it orrespondsto a small initial vortiity area whih has been diluted among the dominantirrotational uid.For pratial alulations in the more general ase, the initial vortiity�eld has to be disretized in vortiity levels, so that the funtion f�;g anbe expressed by sums of exponential terms at both numerator and denom-inator. The result generally onverges already well when just a few levelsare used.An example of statistial equilibria is represented in Fig. 14. The geom-etry is a hannel, with periodi boundary onditions along x (whih an beviewed as a simpli�ed representation of an annulus). The mixing of a singlelevel vortiity path with a given initial area A is onsidered (here A =1/10of the total surfae). The aessible energy is then restrited between alower and an upper bound. At the lower bound, the vortiity is pushed tothe walls, without any possibility of mixing, so the entropy remains equal tozero. At the upper bound, mixing is also forbidden, and the vortiity formsa entral path. This state breaks the translational symmetry. The branhof x-independent states has lower entropy and is not a maximum beyondthe bifuration (it is numerially obtained by suppressing all x-dependentperturbation). The entropy versus energy has a bell shape urve, whoseslope is the inverse temperature �, equal to +1 at the low energy boundand to �1 at the high energy bound. Between these two bounds, the en-tropy reahes a maximum with � = 0, orresponding to a omplete mixing,with a uniform oarse grained vortiity.The point vortex mean �eld equilibrium is obtained from the presentresult by taking the limit of a small area A (for a �xed energy). An expliitfamily of solutions is then available in this hannel geometry: the Stuartvorties [98℄. This point vortex statistis leads to a similar bell shapedurve (like in Fig. 7), but without energy bound: the vorties an onen-trate without limit, in ontradition with the onservation of the maximumvortiity.Note that for negative temperature states, the equilibrium struture isself-on�ned along the transverse diretion by energy onservation. Thelateral walls have no inuene (unlike in the jet ase with zero global ir-ulation represented in Fig. 8). In ontrast the x wise periodiity sets thesale of the bifurated vortex state. The Gibbs state equation (5.12) hasalso solutions with smaller x-wise periods, but they are not entropy max-ima: the largest sale is always preferred, whih justi�es the tendeny forvortex merging and growth of the free shear layer.� General properties of the Gibbs states:
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Fig. 14. Statistial equilibrium for an initial single level vortiity path in a han-nel with periodi onditions along x (from [106℄). The entropy is plotted versusenergy, and representative vortiity �elds ! are given (isovortiity ontours). ForsuÆiently high energy, vortiity lumps in a large vortex, breaking the transla-tional symmetry.For any global distribution (�) of vortiity levels, the aessible energy isrestrited between a lower and an upper bound [13℄. At the upper bound,any vortiity mixing is forbidden, and the entropy remains equal to zero,with an inverse temperature � = �1. The behavior at the lower bounddepends on the total irulation �. For a non-zero irulation, the entropyversus energy has a bell shape urve, as in Fig. 14. At its maximum, � = 0,the oarse grained vortiity is uniform. With � = 0, a state of zero energyan be reahed, with omplete mixing, ! = 0, so the entropy is maximumfor E = 0. It dereases with inreasing energy, so the inverse temperature� is always negative. This is the ase for instane in a doubly periodi



46 The title will be set by the publisher.domain, for whih � = 0 by onstrution.General properties of the funtion f�;g an be shown [88℄. First of all itis always bounded between the minimum and maximum values of the initialvortiity, whih is expeted sine the vortiity ! results from a mixing ofthe vortiity levels. Seondly f�;g is always a monotoni funtion of  : Thisis most easily shown by di�erentiating the expression (5.10) of f�;g , whihyields an expression for the loal enstrophy7!2 � !2 � !2 = R g(�)�2e��� d�R g(�)e��� d� � (R g(�)�e��� d�R g(�)e��� d� )2 = � 1� f 0� g( )(5.13)Sine !2 � 0; the derivative f 0�;g is of the sign opposite to � : f�;g is aninreasing funtion for negative temperature and a dereasing funtion forpositive temperature.It an be shown [88℄ that the Gibbs state equation (5.11) has a uniquesolution for � larger than a negative bound, so there is no bifuration, inpartiular for � > 0. The Gibbs state is then nonlinearly stable in the senseof Arnold. In pratie stability is observed in all ases for the maximumentropy states, but there is no available demonstration in the presene ofbifuration. The statistial equilibria are also stable in all ases with respetto further mixing [88℄ : if we smooth out the utuations, taking ! as thenew initial state, the �nal state remains unmixed.*Linearized ases and minimum enstrophy:Near the maximum of the entropy versus energy, � ' 0; so one anlinearize the funtion f�;g, and (5.11) beomes a linear (Helmholtz) equa-tion. This \limit of strong mixing" provides nie possibilities for analytialresults and lassi�ation of the bifurations [21℄ [23℄. Furthermore, theGibbs state then depends only on the normalized energy E=�2 and iru-lation �=�1=22 . Expansion of f� g in powers of  an be performed, andeah suessive term depends on suessive higher moments of the vortiity.Therefore the statistial equilibrium for strong mixing does not depend onthe detail distribution of the vortiity levels (only on the normalized energyand irulation), but it beomes more and more dependent as the mixing isprevented by energy onservation.There is also a di�erent possibility for obtaining a linear relationshipf� g between vortiity and streamfuntion. It orresponds to a Gaussianfuntion g(�), as easily heked by substitution in (5.10). It orrespondsto a partiular distribution of vortiity levels (�), whih depends on theenergy.7This an be viewed as a relation between utuations and polarizability, like inmagnetism [24℄. Similarly the suessive moments are related to the suessive higherderivatives of f�;g [12℄.



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 47A linear relationship between vortiity and streamfuntion is also ob-tained by a priniple of \minimum enstrophy" [62℄ or \seletive deay" [45℄.The rational is that the enstrophy deays in the limit of small visosity,while energy, and possibly other robust integrals like the angular momen-tum, remain onstant. Then a natural idea is that the system evolves until itminimizes its enstrophy for a given energy (and possibly other onstraints).This yields a linear relationship between vortiity and stream funtion. Thispredition is good in some ases, but not of general validity. For instanein the ase of eletron plasma, with vortiity always positive (proportionalto the eletron density), this an yield spurious negative vortiity, in theabsene of an additional onstraint [11℄. The point of view of the statisti-al theory is that part of the initial enstrophy �2 is irreversibly transferredinto �ne grained (mirosopi) vortiity utuations, so that the �nal oarsegrained enstrophy �:g2 = (1=2) R !2d2r is always smaller than �2,�:g2 � 12 Z !2d2r = 12 Z !2d2r� 12 Z (!2 � !2)d2r < �2 (5.14)However �:g2 is truly minimized only in the linearized ases. In onlusion,a minimum enstrophy priniple appears as a partiular limit of entropymaximization, either in the limit of strong mixing either in the Gaussianase (see [21℄ for details).5.3 Tests and disussion:A �rst test of the statistial mehanis preditions is shown in Fig. 15 byomparison with numerial simulations of the Navier-Stokes equations atlow visosity. The shear ow in a hannel with periodi boundary ondi-tions develops vorties whih self-organize in a steady ow after omplexevolution. When plotted on a satter-plot of the vortiity versus stream-funtion, the points of the �eld ollapse on a urve, on�rming that theow approahes a steady solution of the Euler equations (although a slowdeay persists due the small visosity). The global ow struture indeedorresponds to what is predited by statistial mehanis, as shown in Fig.14. Moreover, a linear relationship is obtained in the vortex ore betweenln[!=(a � !)℄ and  , where a is the vortiity of the initial vortiity strip.This linearity is equivalent to (5.12). We observe however that the agree-ment is limited to the region of ative stirring and that little mixing oursoutside. As a onsequene, the maximum vortiity remains a little largerthan predited.Similar results have been obtained for the usual vortex merging [33℄.For a jet in a hannel, the states (DD) and (VC) predited in Fig. 8 havebeen remarkably heked by numerial simulations [53℄. In a laboratoryexperiment, the organization into a single vortex by merging of a few ini-tial vorties has been orretly predited, while disrepany progressively
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Fig. 15. Test of the statistial mehanis predition (5.12) from diret numerialsimulations of the Navier-Stokes equations (from [98℄).arises after suessive merging events [70℄. Similar onlusions arise fromomparisons with simulations of turbulene in a periodi domain [10℄.An explanation of this disrepany is that visosity modi�es the distribu-tion of vortiity levels in zones of strong strain. Under the e�et of a strains; we an estimate that the sale � of a vortiity struture exponentially de-reases � = �0 exp(�st), until smoothing ours by visous di�usion. Thishappens when the di�usion time �2=� equals the straining time s�1; sothat �20 exp(�2st) = �=s. Estimating s � U=L and �0 � L from the largesale L and typial veloity U , we �nd that visosity is inuent after a timet = (2s)�1 lnRe, whih inreases only logarithmially with the Reynoldsnumber Re. In ontrast the time for reahing the statistial equilibriumis ontrolled by vortiity, so that the predition will be good only in zones



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 49where vortiity dominates strain, in the vortex ore. The range of validityof the statistial theory is expeted to improve with inreasing Re, but onlylogarithmially.Capel and Pasmanter [12℄ have reently proposed a model to take intoaount the modi�ation of vortiity levels by a weak visosity. In a di�er-ent attempt, Turkington [105℄ has proposed to keep only the vortiity ex-trema as onserved quantities in the statistial theory, instead of the wholedistribution of vortiity levels. Finally, Chavanis and Sommeria [23℄ haveintrodued the onept of \restrited statistial equilibrium", maximizingentropy in a \bag" with free boundaries. It is assumed isolated from theoutside irrotational ow by kineti restrition to mixing, due to vanishingutuations (see next setion). The organization into steady dipoles, likeobserved in Fig. 5, an be explained by this method. Entropy maximizationwould indeed make the dipole spread to in�nity in the absene of restrition(while the monopoles are self-on�ned by energy onservation).In laboratory experiments, boundary layer detahment an bring vorti-ity in the uid interior and onsequently modify the statistial equilibrium.This e�et is striking in spin-up experiments in a retangular ontainer [47℄.The formation of vortex latties in an eletron plasma disk [40℄ seemsalso in ontradition with the statistial theory: alulations with a sin-gle non-zero vortiity level predit merging in a single vortex. However,if the vorties are taken as given objets, their interation with the bak-ground vortiity is remarkably desribed by statistial mehanis: both thelattie geometry and the density �eld in the bakground are quantitativelyaounted [51℄. These vortex lattie are probably meta-stable equilibriumstates (loal entropy maxima) with three vortiity levels: 0, an intermediatelevel in the bakground and the strong vortex ores. A slight hange in theinitial ondition makes them organize in the main equilibrium state with asingle vortex.In onlusion, although various restritions an prevent reahing thetrue statistial equilibrium, omplex stirring learly tends to inrease theentropy, whose expression (5.6) is supported by many arguments. This willbe used in next setion to model the evolution of 2D turbulene.6 Eddy di�usivity and sub-grid sale modeling6.1 Thermodynami approah:Di�usion proesses are lassially onsidered as a relaxation toward statisti-al equilibrium. The linear non-equilibrium thermodynamis states that theuxes driving the system toward equilibrium are proportional to the gradi-ent of the thermodynami \potentials", for instane speies onentration.We use a similar idea [89℄, expressed by means of a \Maximum Entropy Pro-dution"(MEP) priniple, to drive eddy uxes for 2D turbulene. The goal



50 The title will be set by the publisher.is two-fold: to ompute the statistial equilibrium orresponding to a giveninitial ondition, and to propose a subgrid-sale modelling for omputationsof the atual ow evolution with oarse resolution (LES).Like for equilibrium states, the ow is desribed in terms of a loal prob-ability �(r; �) of vortiity levels � at position r. However this probabilityis now assumed to evolve with time. The onservation of vortiity levels iswritten in terms of a transport equation for �, by both the expliit veloityu and an eddy ux J due to the subgrid-sales:�t�+ u:r� = �r:J ; with J :n = 0 ; on �D (6.1)At the wall the normal eddy ux J :n must vanish due to impermeability.The expliit veloity u derives from the streamfuntion  by (2.5), and itsurl is equal to !, related to the �eld � by�� = ! = Z �� d� ; with  = 0 on �D (6.2)We an dedue from (6.1) an equation for the loally averaged vortiity! by integration over the vortiity levels �,�t! + u:r! = �r:J! (6.3)where we have introdued the vortiity uxJ! = Z �J d� (6.4)We are mostly interested in the �eld !, as the loal utuations are inpratie sensitive to visous e�ets, but we annot diretly lose (6.3) and,like for equilibrium states, we need to work with the probabilities �, solvingthe equations (6.1) .Of ourse we �rst need to determine the ux J . We �rst express the rateof entropy inrease, by time di�erentiating (5.6), expressing �t� by (6.1),and noting that � ln � is onserved by the advetive term,_S = � Z J :r(ln �) d2rd� (6.5)In order to relax toward statistial equilibrium, the entropy must learlyinrease with time.In fat we determine J suh that, for a given �eld � at eah time t,J maximizes the entropy prodution _S , with the appropriate dynamialonstrains, whih are:-the onservation of the loal normalization (5.2), implyingZ J d� = 0 (6.6)



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 51-the energy onservation expressed from (5.5) and (6.3) as_E = Z J :r d2r = 0 (6.7)- a limitation on the eddy ux J , haraterized by a bound C(r); whihexists but is not spei�ed. Z J 22� d� � C(r) (6.8)A justi�ation of this hoie is that the quantity J =� an be onsideredas the veloity produing the ux J , so the integral R �(J =�)2d� is thetotal energy of this di�usion veloity, a natural quantity to bound. Anotherjusti�ation is that it yields results onsistent with the lassial approahof linear non-equilibrium thermodynamis [89℄.This variational problem is treated by introduing (at eah time t)Lagrange multipliers, denoted �(r); �; 1=AE for the three respetive on-straints. It an be shown by a onvexity argument that reahing the bound(6.8) is always favorable for inreasing _S, so that this onstraint an bereplaed by an equality. Therefore the onditionÆ _S � Z �(r)ÆJ d2rd� � �Æ _E + Z 1AE(r) ÆJ 22� d2rd� = 0 (6.9)must be satis�ed for any variations ÆJ (� r), whih yieldsJ = �AE(r; t) [r�+ ��(� � !)r ℄: (6.10)The Lagrange multiplier �(r) has been eliminated, using the ondition (6.6)of loal normalization onservation.The �rst term in the eddy ux (6.10) represents a usual di�usion: theux of the quantity � is proportional to its gradient. The seond termstates that vortiity di�usion is onstrained by the energy onservation ofthe indued ow: vortiity is not a passive quantity. Remembering theanalogy of  with an interation potential, this seond term an be alleda drift term, with a ux proportional to the \fore" r , like sedimentationin a gravitational �eld.At equilibrium, the ux must vanish, so the drift term balanes di�usion.One an hek that this yields again the Gibbs state (5.8), with � the orre-sponding inverse \temperature". During ow evolution this quantity variesand is determined by the ondition of energy onservation. Introduing(6.10) in the ondition (6.7) of energy onservation, we indeed obtain,� = �R AE(r!):(r )d2rR AE(r )2!2d2r (6.11)
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Fig. 16. Instability and �nal organization of a vortiity strip in an annular han-nel (at three suessive times from left to right). The relaxation model (top), withlow resolution (4000 grid points), is from T. Dumont, Laboratoire d'Analyse Num-rique, Univ. Lyon. It is ompared with a diret numerial simulation [69℄(bottom).where !2 � !2 � !2 � R �2�d� � (R ��d�)2 is the loal enstrophy.We have thus obtained a omplete set of dynamial equations (6.1,6.2),(6.10,6.11), whih exatly onserves the distribution of vortiity levels andenergy. This system relaxes to statistial equilibrium at an optimum rate.We an express the entropy prodution (6.5) as _S = R J 2(AE�)�1d2rd�so the eddy di�usivity AE must be positive to satisfy the ondition of en-tropy inrease. Exept for its sign, the di�usivity is not determined by thisthermodynami approah: it is related to the unknown bound (6.8) on theux.These relaxations equations are suitable to alulate the statistial equi-librium resulting from any initial ondition. One numerially implemented,it provides a onvenient way to solve the Gibbs state equation (5.8) withthe appropriate onstraints. Furthermore it selets an entropy maximumamong these solutions, sine it is obtained by an entropy inrease.88It an be proved that stable steady solutions of the relaxation equations are indeedentropy maxima (P.H. Chavanis, in preparation)



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 53For pratial implementation, the simplest ase is the evolution of vor-tiity pathes with only one non-zero vortiity level � = a: Then we haveonly one equation (6.1), and the vortiity is proportional to this density,! = �a. Fig. 16 shows an example of the evolution of a vortex ring inan annulus, ompared with a high resolution numerial simulation of thesame proess. Although the relaxation equation smooths out the loal vor-tiity utuations, it orretly handles the large sale dynamis. Moreoverthe �nal vortex remains in its statistial equilibrium, without any furtherdi�usion. Comparisons with diret numerial simulations (DNS) in vari-ous ases, with both positive and negative vortiity pathes (formation ofdipoles and tripoles) show good agreement [86℄.For general initial onditions, one has to disretize the vortiity levels �(in pratie good onvergene is already obtained with a few levels). Thevortiity ux an be diretly alulated by integration of (6.10) over thevortiity levels, J! = �AE(r; t) [r! + �!2r ℄, but the loal enstrophy!2 itself depends on the transport of the probability distribution �. Aneddy ux of momentum, in AE(r; t) [r2u� �!2u℄, is also assoiated [24℄.These relaxation equations have the advantage of being fully onsistentwith the properties of the Euler equations, and the omparison with DNSis quite good. While their justi�ation by the MEP priniple is somewhatphilosophial, a more preise justi�ation has been obtained by kineti ap-proahes, disussed in next setion. These approahes provide estimates ofthe di�usion oeÆient AE , and justify the presene of the drift term, butthey also stress some limitations.Other limitations an be seen from the struture of the equations them-selves. A �rst diÆulty is that the onstraint of energy onservation is onlyglobal. This is reasonable, due to the long range vortex interations, butin a very large domain we expet that two sub-systems will evolve inde-pendently. The integral ondition (6.11) should be replaed by a more loalondition (the temperature should not remain uniform but di�use with timetoward an equilibrium). Furthermore the equations are not invariant by ahange of referene frame, whih is again problemati in a large domain.The MEP has been extended [22℄ to solve all these diÆulties, but themodel is more omplex and has not been numerially implemented. Fur-thermore it involves additional unknown di�usivity oeÆients for energyand momentum.6.2 Kineti modelsThe relaxation equations were justi�ed in previous setion by thermody-namial arguments, without disussing the mehanisms. Further insighthas been reently provided by kineti models inspired from the analogieswith stellar systems and plasma physis [18℄.A �rst approah is provided by the point vortex model, whih has the



54 The title will be set by the publisher.advantage of �tting in the standard framework for N-body statistial me-hanis. The vorties are assumed randomly positioned with the densitylose to the mean �eld statistial equilibrium. Eah vortex di�uses by therandom lose enounters with the other vorties. Moreover eah vortexindues a veloity �eld (added to the dominant mean �eld) whih systemat-ially displaes all the other vorties in its neighborhood. Chavanis [17℄ �ndsthat the indued displaement (like a polarization e�et in eletrostatis)reats bak on the onsidered vortex. It results in a drift, in �AE��r ,explaining the seond term in the ux 6.10 (in the diluted ase � � ! forwhih the point vortex approximation applies). At negative temperatures,the drift tends to attrat together like-sign vorties, and its e�et exatlybalanes di�usion at equilibrium. Both e�ets are proportional to the sameoeÆient AE whih an be expliitly alulated. Suh a orrespondenebetween the drift oeÆient (frition) and di�usion is quite general, it issimilar to the Einstein formula for the Brownian motion9.Coming bak to non-singular vortiity �elds, we an lassially make adeomposition of the Euler vortiity equation (2.6) into expliit and impliitparts, ! = !+e!. We assume that ! is an ensemble average, whih thereforeommutes with the spatial derivatives. In partiular a utuating veloity~u(r) = R ~!(r0)K(r � r0)d2r0 is indued by these utuations, where theKernelK(r�r0) expresses the veloity indued at point r by a unit singularvortex at position r0, K(r�r0) = (1=2�)ez� (r�r0)=jr�r0j2 plus the e�etof the image vorties near the boundary). Assuming utuations with ashort (Lagrangian) orrelation time �, the di�usion oeÆient is lassiallygiven as AE = (1=4)�~u2 (Taylor, 1921). From the previous expression of~u, we get ~u2 = Z ~!(r0)~!(r00)K(r� r0):K(r� r0)d2r0 (6.12)Assuming a short orrelation length � for the vortiity, ~!(r0)~!(r00) =�2~!(r0)2Æ(r0 � r00), we an write a loal approximation of (6.12), assuming~!(r0)2 ' ~!(r)2, ~u(r)2 = �2~!(r)2 R L� (2�r0)�1dr0. We �nd that the vortiityutuations at all sales ontribute equally to the loal veloity utuations,and we have arbitrarily ut the integral between � and the domain sale L.Nevertheless the result, in ln(L=�), depends only weakly on these bounds,so the loal approximation yields a reasonable estimation,AE = ��28� ln(L� )~!2 (6.13)The di�usivity is proportional to the loal enstrophy !2 � ~!2 and in-reases with the sale �, typially the uto� sale. The orrelation time �9In this diluted ase � � ! (or point vortex statistis), the relaxation equations areequivalent to Fokker-Plank equations desribing di�usion with drift in a potential  



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 55an be estimated as !�1=22 , the time sale of the loal utuations, or asthe inverse of the strain rate of the expliit ow. Both times are of thesame order as the global time sales, so that the short orrelation is onlymarginally justi�ed, like the loal approximation made above. In any ase,the di�usivity vanishes for weak loal enstrophy utuations !2. This ex-plains to some extent the existene of the "restrited statistial equilibria"mentioned above: relaxation toward equilibrium is eÆient inside the ativeregion but weak mixing ours at the periphery, due to the vanishing of thevortiity utuations.Chavanis [19℄ has proposed a more preise analysis, whih furthermoreprovides the drift term in addition to di�usion. He starts from the equations�t! + L! = �r:eue! ; with L � u:r (6.14)�te! + Le! = �eur! (6.15)similar to the quasi-linear approximation made in plasma physis. The �rstone is the lassial Reynolds averaged Euler equation (2.6), with an eddyux J = eue!. The seond one is the equation for the utuations e! = !�!,negleting two terms,�eure! and eure!, assumed of weak inuene on !. Inontrast eur! builds up the eddy ux with a term �teue! = eu2r! produingdi�usion in (6.14).Assuming again a delta-orrelated vortiity �eld, Chavanis [19℄ �nds aneddy ux and a drift term as integrals over the Lagrangian trajetories ofthe expliit ow !. Quite remarkably, the resulting kineti equation satis�esa H-theorem: the entropy (5.6) always inreases with time. This result pro-vides a new, independent, support of the statistial equilibrium approah.The expressions of the ux are in general non-loal in time and spae. Theyredue to the loal ux (6.10) only lose to equilibrium. Therefore, the relax-ation equations obtained by the thermodynami approah provide the righttends, but are probably of limited auray to desribe the ow evolution.The initial hypothesis of random utuations is not easily justi�ed, inontrast with 3D turbulene. Some simulations suggest that the impliitsales are mostly strained by the large sales, whih suggests to de�ned! as a �ltered �eld rather than an ensemble average. Then new termsappear [61℄ in (6.14) and (6.15). Nevertheless, on longer time sales, haosshould develop and the probabilist approah may be more appropriate toapture the long time trends of the system.7 Conlusions:Our knowledge of 2D turbulene has made great progress in the last tenyears, due in partiular to the availability of high resolution omputations.
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Fig. 17. Wake behind a knife blade in a soap �lm, the ow omes from the left,(from M. Rutgers, 1996 (http://www.physis.ohio-state.edu/~maarten).Simulations at resolution 40962 are now urrently available, and simulationsat resolution 5122; whih were at the forefront of researh ten years ago, areaessible on a good home omputer. In spite of this great progress, witha growing onsensus on some aspets, many results are still under debate.There is a need for areful omputations at still higher resolution, ompar-ing various numerial methods, initial and foring onditions. One possiblereason for the observed disrepany may be that truly asymptoti results,forgetting the details of the initial onditions, require a very long time andhigh Reynolds numbers. The results on puntuated vortex dynamis dis-ussed in setion 4.4 support this point of view.Nevertheless some robust results are obtained in laboratory experiments.Many results of 2D turbulene seem to be remarkably insensitive to weak 3Dperturbations, whih are always present to some extent. The availability ofvarious laboratory experiments has been a strong motivation for the reentrise of interest and progress in 2D turbulene.The ourse has been foused on two fundamental aspets, the spetralasades and the self-organization into oherent strutures. The double-asade theory of Kraihnan has reeived a remarkable on�rmation by ex-periments and simulations. A new approah [38℄, adapting �eld theoretialmethods developed for the passive salar, brings a rigorous support to the



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 57enstrophy asade fored by random large sale motion. Conerning theinverse asade, the quasi-Gaussian statistis raises also hope for a deepertheoretial insight. In ontrast with the fored ase, the freely deaying tur-bulene progressively deviates from the lassial enstrophy asade law, asoherent vorties emerge and beome more and more isolated, inreasing theintermitteny. The statistis and kinetis of this vortex system representshallenging problems of urrent interest.The self-organization into oherent strutures is well explained by sta-tistial mehanis of vortiity. This theory provides good preditions inases of rapid stirring, heked in both numerial simulations and labora-tory experiments. Although various limitations an prevent the system forreahing true equilibrium, it still reveals the trends of the evolution. Thisprovides new ideas for developing LES adapted to the peuliar properties of2D turbulene. It supports the use of an ordinary (positive) eddy visosity,whose energy dissipation is ompensated by a drift term, ating at largesale. At statistial equilibrium these two terms balane eah other. Theseresults have been reently further justi�ed in terms of kineti models, butthe di�usion ux and drift appear in general as integrals over spae andprevious times, rather than loal e�ets.Many questions about 2D turbulene have been left aside. The prob-lem of preditability is for instane of great interest for appliations to theatmosphere, see e. g. [64℄ for a disussion using losure models. Lorenz�rst addressed this question with severely trunated spetral models, theonly models aessible to simulation at that time, and found his famous\buttery" e�et: the exponential growth of errors assoiated with haosin low dimensional systems. However when all the degrees of freedom arereovered, a new regularity ours, of statistial nature, as illustrated bythe formation of organized strutures at statistial equilibrium. Then thebuttery e�et disappears [87℄.The transport of a salar is another important subjet not disussedin this ourse, but with ative reent theoretial progress both in 3D and2D (see [38℄). In fat most results and questions in usual turbulene have aounterpart in 2D, for instane in the lassial shear ow problems. Channelor plane boundary layer ows are stable in the 2D ase. By ontrast theboundary layer detahment, with Kelvin-Helmholtz instability and vortexroll-up is basially a 2D proess. Its analogy with deaying homogeneous2D turbulene has been stressed [65℄. Jets or wakes tend to organize indipoles [31℄, and Fig.17 shows the fasinating struture of the wake behinda knife in a soap �lm. Understanding the role of these oherent struturesin the global statistis of these 2D ows may be helpful for the 3D ases.Many results in 2D turbulene an be relevant to a rotating and densitystrati�ed medium, like ourring in atmosphere, oeans, and even proto-planetary disks [7℄. The statistial mehanis approahes of setion 5 and 6



58 The title will be set by the publisher.have been extended to the quasi-geostrophi model [50℄ [73℄ [99℄, with appli-ation to the Great Red Spot of Jupiter [6℄. Extension to the more generalshallow water system [24℄ an be readily applied to multilayer (isopynal)models used in oeanography.One should �nally note the fasinating analogies with di�erent physialsystems. We have seen above that an eletron plasma in a magneti �eldsatisfy the 2D Euler equations. A neutral plasma an be desribed bymore omplex 2D models, in analogy with some geostrophi planetary owproblems. The Vlasov equation, for plasma or stellar systems, has alsoformal analogies [25℄ [18℄ with the Euler equation, but in the 6D phasespae rather than in 2D. These analogies are further motivations to betterunderstand 2D turbulene.Referenes[1℄ H. Aref, \Integrable, haoti, and turbulent vortex motion in two-dimensionalows", Ann. Rev. Fuid Meh. 15, 345-89, 1983.[2℄ C. Bardos \Existene et uniit�e de la solution de l'�equation d'Euler en dimensiondeux", J. Math. Anal. Appl. 40, 769-790, 1972.[3℄ C. Basdevant, M. Lesieur and R. Sadourny, \Subgrid sale modelling of enstrophytransfer in two-dimensional turbulene", J. Atmos. Si. 35, 1028-1042, 1978.[4℄ G. K. Bathelor, \An introdution to uid dynamis", Cambridge University Press,1967.[5℄ V. Borue, \Spetral exponents of enstrophy asade in stationary two-dimensionalhomogeneous turbulene", Phys. Rev. Letters 71 (24), 1993.[6℄ F. Bouhet and J. Sommeria, \Emergene of intense jets and Jupiter Great RedSpot as maximum entropy strutures", submitted to J. Fluid Meh. (e-printphysis/0003079).[7℄ A. Brao, P. H. Chavanis, A. Provenzale and E. Spiegel \Partile aggregation ina turbulent Keplerian ow" Phys. Fluids 11, 2280-2286, 1999.[8℄ A. Brao, J.C. MWilliams, G. Murante, A. Provenzale and J.B. Weiss, \Revis-iting freely deaying two-dimensional turbulene at millenium resolution", Phys.Fluids 12 (11), 2931-2942, 2000.[9℄ M. Brahet, M. Meneguzzi and S. Sulem, \The dynamis of freely deaying two-dimensional turbulene", J. Fluid Meh. 194, 333-349, 1988.[10℄ H. Brands, J. Stulemeyer, R.A. Pasmanter and T.J. Shep, \A mean �eld preditionof the asymptoti state of deaying 2D turbulene" Phys. Fluids 9 (10), 2815, 1997;omments by W.J. Matthaeus and D. Montgomery and authors' answer, Phys.Fluids 10 (5), 1237-1238, 1998.[11℄ H. Brands, P. H. Chavanis, R. Pasmanter and J. Sommeria \Maximum entropyversus minimum enstrophy vorties", Phys. Fluids 11 (11), 3465-3477, 1999.[12℄ H.W. Capel and R.A. Pasmanter \Evolution of the vortiity-area density dur-ing the formation of oherent strutures in two-dimensional ows" (e-print hao-dyn/9908010).[13℄ G.F. Carnevale and G. K. Vallis "Pseudo-advetive relaxation to stable states ofinvisid two-dimensional uids" J. Fluid Meh. 213, pp 549-571, 1990.[14℄ G. F. Carnevale, J. C. M Williams, Y. Pomeau, J. B. Weiss and W. R. Young\Evolution of vortex statistis in two-dimensional turbulene", Phys. Rev. Lett.66, 2735-2738, 1991.
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