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1 Introduction

Courses on turbulence generally begin with the delicate question of defining
turbulence. As usual for important concepts, a clearcut definition is not
possible,

and the problem is still worse for two-dimensional (2D) turbulence. It
can be said that turbulence is a flow which is disordered in time and space.
The following properties more precisely characterize turbulence, see for in-
stance Lesieur [64]

-Unpredictability of flow realization , in the sense of amplification of
small errors (but the statistical properties are generally quite reproducible).

-Continuum flow phenomena, governed by the equations of fluid me-
chanics (which excludes for instance Brownian motion), and dominated by
advective inertial effects (which excludes random wave phenomena, domi-
nated by some restoring force).

-Interaction of a wide range of eddy scales (spatial complexity), which
implies high Reynolds numbers and excludes chaos of low-dimensional dy-
namical systems.

-Increased mixing properties for transported quantities (e.g. chemicals,
heat)

Then 2D turbulence is naturally defined as a turbulent flow depending
only on two space coordinates z,y or alternatively as a flow confined to a
surface (which does not need to be plane, for instance a sphere). In the
former case, there is a possibly non-zero third velocity component u,, along
the z direction, but independent of z. Then the equation of motion states
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that this velocity component is passively transported (like the concentra-
tion of a chemical) by the flow u,,u, in the plane, so this third velocity
component can be ignored in the theoretical description.

Two additional properties are often considered in defining turbulence
(see e.g. Tennekes and Lumley [103]): the existence of strong vorticity fluc-
tuations and strong energy dissipation. Although vorticity dynamics is also
essential in 2D turbulence, there is no mechanism of vorticity amplification.
We shall see in section 2 that as a consequence energy dissipation is forbid-
den in the limit of small viscosity: this is the main dynamical signature of
a 2D turbulence dynamics. In that sense, 2D turbulence is quite different
from usual turbulence, but still the defining properties listed above can be
satisfied in two dimensions.

Fig. 1. Grid turbulence in a soap film (from M. Rutgers, 1996
(http://www.physics.ohio-state.edu/ maarten). The fluid is moving from left to
right, at velocity 2 m/s, across the comb with mesh 0.3 cm, while the total width
is 4 cm. Visualization is provided by interference fringes due to small fluctuations
of the film thickness (this is like the color patterns in usual soap bubbles). The
increase of turbulent scale with distance to the grid is clearly visible, and it has
been measured by laser Doppler velocimetry [71] . Note that this technique for
producing 2D turbulence has been first developed by Couder [30]

The very existence of 2D turbulence has been questioned in the past.
It has been considered as “a statistical extension of XIX th century fluid
dynamics”, limited to ideal 2D flow problems remote from the real phys-
ical world. Indeed the two cases of 2D turbulence considered above may
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seem at first sight equally unrealistic: z independent flows are (by defini-
tion) unstable when they become turbulent, and develop three-dimensional
instabilities, while confinement to a thin layer requires external forces associ-
ated with severe friction effects or other perturbations. At the beginning of a
classical review paper on 2D turbulence by Kraichnan and Montgomery [58],
20 years ago, it was said that “Two-dimensional turbulence has the special
distinction that it is nowhere realized in nature or in the laboratory but only
in computer simulations”. Since then, laboratory realization have been ob-
tained for an astounding variety of physical configurations: thin liquid films
(Fig. 1), flows in rotating tanks, liquid metal flows or electron plasma in
the presence of a uniform magnetic field. Observations of eddy fields in the
ocean, or in Jupiter’s atmosphere (Fig. 2) provide a strong motivation for
studies of 2D turbulence. These systems are more closely approached by 2D
turbulence concepts than the Earth atmosphere, for which the thermal forc-
ing and the friction by 3D turbulence in the boundary layer have important
influence (see [66] for a recent discussion of the relevance of 2D turbulence
to the Earth atmosphere). The existence of coherent eddies like the Great
Red Spot is a striking feature of 2D turbulence, as discussed in sections 3.4
and 5. Of course 2D turbulence can be only an approximation of reality,
but the theoretical concepts developed for this ideal case appear more and
more useful in understanding the strange properties of turbulence in some
real flows, and they can provide quantitative predictions.

Another difficulty for observing 2D turbulence, even for an ideally 2D
flow dynamics, is that the onset of turbulence is not guaranteed: for in-
stance simple shear flow, like Poiseuille flow, remain stable at any Reynolds
number, which is never the case in usual turbulence: all flows become turbu-
lent at sufficiently high Reynolds number, and reach a seemingly universal
Kolmogorov regime. Therefore the influence of the forcing mechanism, or
initial condition, is more important than in usual, 3D turbulence. It must
be further remarked that 2D turbulence tends to eventually organize into
steady coherent flows, loosing the unpredictability character. However this
organization is itself the result of spatial complexity and mixing occurring
in a transient stage.

Beside its practical relevance, a strong incentive to study 2D turbu-
lence is its strange statistical properties, which were recognized in the early
theoretical studies, in particular by Onsager (1949) [79] and Kraichnan
(1967) [56]. The conservation of vorticity by fluid particles prevents the
energy cascade towards small scales (see section 4), resulting in the conser-
vation of energy in the limit of small viscosity, in strong contrast with 3D
turbulence. The flow organization into steady coherent structures is also
a remarkable feature of 2D turbulence, as already mentioned. A reason-
able understanding of 2D turbulence is a prerequisite before studying more
complex turbulence problems in atmospheric or oceanic contexts.



6 The title will be set by the publisher.

Fig. 2. The Great Red Spot (top) and White Oval (bottom) of Jupiter are large
vortices remaining remarkably coherent among turbulent eddies, as seen here by
the Voyager 1 spacecraft in February 1979. The length of the Great Red Spot
is 22 000 km. The mean zonal flow made of alternating jets is probably deeply
rooted in the fluid planetary interior, while the observed turbulence is limited
to a shallow active layer, dynamically separated from below by a stable density
stratification. This observation of a very active turbulence, made visible by cloud
motion, was a great surprise due to the weak available forcing. The high velocities
can only be explained by assuming that the dynamics is fundamentally 2D, with
negligible energy dissipation (although it is of course a layer-wise complex system),
as shown by the following arguments. The observed clouds are at a pressure level
3 bars, which must be equal to the column weight for the atmosphere above. Since
the gravity is 25 ms™2, the corresponding mass is 1.2 10? kg/m?, so the surface
density ¥ of the active layer has at least this value (we do not know how deep
is the active layer below the observed cloud level). With typical velocities U=50
m/s, the corresponding energy density E = ©U?/2 is at least 15 10° J/m?>. The
free decay time, equal to the forcing time in a permanent regime, is E/P, where
P is the injected power. The heat flux coming from the planetary interior is 5
W/m?, of the same order as the solar heat flux. The efficiency of conversion to
mechanical energy by convective effects is not more than the Carnot efficiency,
about 1 % since the typical temperature differences involved are only a few K, for
a mean temperature 200 K. Therefore the forcing power is of P ~ 0.05 W/m?,
so the decay time E/P is at least 30 10”s, ten earth years, much longer than the
eddy turnover time of a few days. For 3D turbulence, the decay time would be
by contrast of the same order as the turnover time.
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2 Equations and conservation laws

2.1 Euler vs Navier-Stokes equations:

Turbulence is generally described as a complex solution of the Navier-Stokes
equations, restricted here to an incompressible fluid. The status of viscosity
in the description of turbulence is a often a subject of debate. The Euler
equations (without viscosity) provide the most direct approach, historically
also, but lead to many paradoxes, which are avoided by introducing viscos-
ity. Viscous flows are well understood, and going progressively to turbulence
by decreasing viscosity is a reassuring approach. The development of bifur-
cation theories and chaos comforted this view. However the use of viscosity
probably skips the true insight into fluid turbulence, whose genuine prop-
erties are clearly controlled by inertial effects, which lead to a breakdown
of spatial regularity. This is described by the Euler equations. Its strange
behavior is repelling, but it may just correspond to the main difficulty of
turbulence that cannot be avoided. In 3D turbulence, the introduction of
viscosity is justified on physical grounds, as all real fluids are viscous (ex-
cept superfluid). Furthermore, the regularity of the Euler equations in 3D
is not known, so that it may not be a well posed problem (i.e. there is not
a unique solution for a given initial condition).

These arguments are not valid in two dimensions. In many physical
systems, the motion is not 2D down to the smallest scales. The dissipative
mechanisms then depend on the system, for instance they are quite different
in atmospheric flows, electron plasma or laboratory scale fluid experiments.
Yet properties of 2D turbulence are expected to be common to these different
systems. Furthermore, the inviscid equations are well posed: starting from
any regular initial velocity field, the Euler equations have a unique regular
solution for all time ( [108] [54] [2]). This property can be extended to any
initial conditions with bounded measurable initial vorticity fields [28], for
instance patches with uniform vorticity inside and vorticity discontinuity at
the edge.

The inviscid dynamics develops increasing spatial complexity, with
smaller and smaller scales of motion. This does not lead to mathematical
singularities, as stated above, but actual computations are restricted to a
finite resolution, and some smoothing is then necessary. For that purpose
we introduce a smoothing operator V , which can be for instance an ordinary
Laplacian A, a higher order smoothing operator (hyper-viscosity) (—1)" A",
or some spatial filtering of small scale oscillations. Such smoothing always
alters the dynamics to some extent, as it will be discussed in section 6.

Therefore we start with the Euler equations with a smoothing operator
V.

Ou+u.Vu=-Vp+Vu (2.1)
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Vu=0 (2.2)

un =0, on boundaries(n normal) (2.3)

Note that the impermeability boundary condition (2.3) is sufficient for the
Euler equations, while a smoothing operator requires an additional condi-
tion, whose choice is not obvious. The choice of a physical viscosity, with
no-slip condition, may not be appropriate, as physical effects beyond the 2D
model often occur in boundary layers, and resolving the thin boundary layer
raises numerical difficulties at high Reynolds number. To avoid boundary
problems, periodic boundary conditions (equivalent to a toric surface), or a
spherical geometry, are often considered for fundamental studies.

2.2 Vorticity representation:

It is often convenient to use a representation in terms of vorticity w(¢,r)
and stream function ¥ (¢,r),

w=(V xu), (2.4)
u=V x (Ye;) = —e, x Vi) (2.5)
Oiw +uVw =V x (Vu) (2.6)

We can identify the vorticity vector, along the z direction (with unit vector
e,), with its z component, a scalar. The evolution equation (2.6), obtained
by taking the curl of (2.1) just states that vorticity is advected and conserved
by the flow (in the absence of the smoothing operator V ). The stream
function ¢ and resulting flow u are themselves determined from the vorticity
field by solving the Poisson equation, obtained by combining (2.5) and (2.4),

—AY =w , 1 =0 on boundaries, (2.7)

so that the whole flow evolution is determined by the scalar vorticity field
only.

This Poisson equation (2.7) can be solved in terms of a Green function
Gy(r,r'), representing the flow induced at point r by a singular point vortex
(a Dirac vorticity distribution §(r — r') located at position r') |

P(t,r) = /Gw(r,r')w(t,r')er' (2.8)

with — AGy =d(r —1') , Gy = 0 on boundaries, (2.9)
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The flows induced by all elementary vorticity elements at positions r’ are
summed in the integral (2.8).
Far from boundaries, G has the axisymmetric form,

Gy(r,r') = —(27m) tn(|r — ¢'|/L) (2.10)

where L is the typical domain size, which comes into play as an additive
constant, due to the arbitrary choice v» = 0 at the boundary. The corre-
sponding azimuthal velocity, in 1/|r — 1’|, is analogous to the magnetic field
produced by a line current representing the vortex line. Near boundaries,
the effect of virtual mirror vortices outside the fluid domain must be added.

Such a vorticity representation is particularly useful in 2D. It can be
used also in 3D, but the evolution of vorticity is more complex due to vortex
stretching, possibly leading to complex singularities, and a vector potential
must then replace the scalar stream function.

2.3 Conservation laws:

e Casimirs:

The incompressibility V.u = 0 ensures that any material area is conserved
as its contour is transported by the fluid motion. Furthermore we have seen
that the vorticity scalar w is conserved for each fluid particle (in the absence
of smoothing operator V ). This is a consequence of the more general
Kelvin’s theorem stating that w/H = const. for a small vortex tube element
with length H, which remains constant in the 2D case. Physically this is due
to the conservation of angular momentum for a small fluid element, defined
with respect to the center of gravity of the element. The conservation of
w for each fluid element implies that the corresponding value f(w) is also
conserved for any continuous function f, so that, since the surface element
d?r is also conserved, any functional of the form

Cr = /f(w)d2r (2.11)

(called a Casimir integral) is conserved. This can be more straightforwardly
demonstrated (for a differentiable function f), by multiplying (2.6) by the
derivative f'(w), which yields &; f (w) + V.(f(w)u) = f'(w)(V x Vu) (taking
into account that V.u = 0 ). The domain integral of the second term trans-
forms into a boundary integral which vanishes due to the impermeability

condition u.n = 0, so that the time derivative

Cr = /f’(w)(V x Yu)d’r (2.12)

indeed vanishes in the absence of the smoothing operator V .
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In the case of a power function f(w) x w™, we get for n = 1 and 2
respectively the conservation of the circulation I' and enstrophy I's ,

1
r= /wer , To = §/w2d2r (2.13)
With a constant viscosity smoothing operator Vu = vAu, the time evolution
(2.12) of these quantities can be rewritten by replacing the integral of a
divergence by boundary flux,

I= I/%n.Vw , Dy = —I//(VUJ)QdQI‘ + I/fn.wVw (2.14)

(an integration by parts has been used to express I's ). Note that the
circulation is still conserved in the presence of viscosity, except for possi-
ble boundary effects. These vanish for “super-slip” boundary conditions
n.Vw = 0 (but not for the more common “free slip” boundary condition
w = 0). The enstrophy I's decays by viscous effects in the interior, and
boundary effects vanish both for free slip (w = 0) and super-slip n.Vw = 0
boundary conditions.

The extrema wy,i, and wy,q, of the vorticity field remains constant for
the Euler equation (in the absence of forcing or friction effects): vorticity
is just transported and cannot be amplified by the inertial flow evolution,
unlike in three dimensions (these conservation laws can be also obtained
from Casimirs with functions f dominated by the extremal values of w, for
instance f(w) = exp +nw with n very large). Viscosity can only lower the
maximum with time and raise the minimum, as by definition Aw > 0 at the
vorticity minimum, and Aw < 0 at the maximum.

¢ Energy:

The kinetic energy & = & [ u?d’r is conserved by the Euler equations. This
is easily seen by taking the scalar product of (2.1) with u (with ¥V = 0).
Rewriting the advective term with the classical identity u.Vu = w x u +
V(u?/2), the first term is orthogonal to u, while the second is incorporated
in the pressure, and the u.Vp' = V.(p'u), whose domain integral vanishes
due to the impermeability condition. Note that this demonstration equally
applies in 3D, but it requires differentiability of the velocity field, while we
expect that in 3D, energy dissipation would occur after a finite time due to
the formation of singularities (then the Euler equations themselves could be
only defined in the sense of distributions, not ordinary fields). By contrast,
in 2D, the flow remains regular for all times, so energy is truly conserved.

A more classical point of view is to consider the effect of a small viscosity.
Then the energy varies as £ = yfu.Aud2r . Noting the identities Au =
—V X w (since V.u =0), and u.(V x w) = V.(w x u) + w? , we get
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E=—-wl, - y%(w X u).n (2.15)

The boundary term vanishes both for the no-slip (u = 0) and free slip
(w = 0) boundary conditions, and the interior term always makes the energy
decay, as expected.

The enstrophy T'y also decays by (2.14), in the absence of boundary
effects. Then the rate of energy decay (2.15) is bounded by the initial en-
strophy, and tends to 0 in the limit of small viscosity v: energy is conserved
in this limit.! By contrast in fully developed 3D turbulence the enstrophy
increases as the viscosity is reduced (smaller and smaller scales are excited),
such that the product of these two quantities, determining the energy dis-
sipation, becomes independent of viscosity: it is controlled by the inertial
cascade process.

Hyper-viscosity terms are often introduced in simulations of 2D turbu-
lence to better approach the inviscid limit of zero energy dissipation. Then
vorticity fluctuations are smoothed out like with viscosity, the enstrophy
I’y decays , but as a spurious effect the extrema wyp,in and wpme, may be
amplified (also higher order boundary conditions need to be introduced).

In 2D flows it is often convenient to rewrite the energy using an integra-
tion by parts, so that

£ = %/gz;wd?r (2.16)

Note that the integration by parts also yields a boundary term ¢ ¢u.dl, but
it vanishes thanks to the boundary condition ) = 0 . Another choice ¢ =
const. would introduce a boundary term in I' X const. which is unimportant
as it is constant in time. Note that when considering vortices interacting
in a limited region of an infinite domain, the physical energy %quer
diverges for a non-zero circulation I' (as the induced velocity only decays in
T'/r the energy integral logarithmically diverges), and only the form (2.16)
can be used (see [4]). This kinetic energy has remarkably the same form as
the electrostatic energy of a charge density field w inducing a potential 1,
satisfying the Poisson equation (2.7).

e Momentum and angular momentum:

In an infinite domain the momentum vector P = [wr x e, d?r is conserved,
as well as the angular momentum with respect to any origin L = [ wr? d°r,

I This conclusion is unchanged with other boundary conditions, for instance no-slip:
then a boundary layer of thickness § = (vL/U)/2 forms (U typical velocity), contributing
to enstrophy as I's ~ U2L/§. Then the energy dissipation vT's is in #!/2, which also tends
to zero in the inviscid limit.



12 The title will be set by the publisher.

see for instance [4] or [23]. These conservation laws are associated with
symmetries of the system: invariance by translation for P and invariance
by rotation for L. and they are conserved as well in domains whose bound-
aries respect these symmetries: the x-wise momentum component is also
conserved in a channel along the x-direction (see e.g. [98]), and the angu-
lar momentum in a disk (taking the origin at the center). Note that this
global angular momentum L has to be distinguished from the local angular
momentum of a fluid particle, which is conserved for all geometries.

Finally the circulation § u.dl along any boundary contour is conserved.
For a simply connected domain, this is just the circulation I' already con-
sidered, but the circulation along any obstacle is also conserved, and is not
related to [ wd?r, for instance along the inner wall of an annular domain.
This conservation law is directly demonstrated from (2.1), rewriting the ad-
vective term with the identity u.Vu = w x u + V(u?/2), whose integral
vanishes on the wall since w x u is normal to the wall (as u is along the
wall due to the impermeability condition) and a closed contour integral of
a gradient vanishes.

e Other conservation laws:

We have listed here all the explicit conservation laws for the 2D Euler equa-
tions: it can be shown [92] that there are no other conserved quantities
with an explicit form [ F(r,u(r),0;u;(r)) d’r . Other conservation laws
however exist, for instance “topological constraints”: two initial uniform
vorticity patches remain always distinct and they cannot fully merge in a
single patch. However this constraint plays little role in practice, as the two
patches can irreversibly deform and become more and more intertwined in
the merging process discussed in next section.

2.4 Steady solutions of the Euler equations:

It is often useful to discuss steady solutions of the 2D Euler equations, as
they will appear as the result of turbulent mixing. For steady flows the
particle trajectories are streamlines, so that w, which is conserved along
trajectories, will be constant along any streamline. This means that w is a
function of ¢ only, at least in some sub-region: w = F(¢). In fact the same
value of ¢ can occur on several streamlines, so that different functions F
can characterize different regions, as will be shown in the example of the
dipole, next section. Reciprocally, it is clear that if w = F(v), then the
advective term u.Vw = —V x Vw vanishes as Vw = F'(1)V4 is parallel
to V. Therefore the property of steady flow is indeed equivalent to the
property w = F(¢) in subregions. The interface between these subregions
must be a streamline with velocity continuous across it (but discontinuous
vorticity in general).
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It is also useful to consider steadily translating solutions, with a con-
stant translation velocity vector U, such that w(t,r) = w(r — Ut). This
is equivalent to a steady solution in a reference frame translating at veloc-
ity U, with the same vorticity and stream function ¢’ = b — U.r, so that
w = F(¢» — U.r). Note that this is only possible in an infinite domain or a
channel along the U direction.

Similarly we can consider purely rotating solutions w(t,r) = w(r — (2 x
r)t), which is possible in an infinite domain or a circular geometry (disk or
annulus). The general form of such flow patterns in solid body rotation is
w = F (3 + Qr%/2). This can be shown directly on the Euler equations, or

by using a rotating reference frame at angular velocity .2

3 Vortex dynamics

As turbulence is part of fluid dynamics, it is always useful to keep in mind
elementary flow processes. This is particularly true for 2D turbulence, which
displays “coherent structures” more clearly than 3D turbulence. Some dis-
cussion of inviscid vortex dynamics is therefore useful. Interesting results
were already obtained in the XIXth century, and some of them “rediscov-
ered” and extended recently in the context of 2D turbulence and ocean-
atmosphere dynamics. The classical textbooks of Lamb (1932) [60] and
Batchelor [4] provide good introductions to this field, and more advanced
properties of discrete vortices are treated by Chorin [26] [27] and Aref [1],
and vortex patches by Saffman [91]. The use of point vortices as a numeri-
cal discretization of continuous fluid motion is treated in a recent book by
Cottet and Koumoutsakos [29]. The main motivation of the XIXth century
researchers was different: they were seeking mechanical models to build
theories of electromagnetism and atomic physics.

3.1 Systems of discrete vortices:

Replacing the continuous vorticity field by a set of singular point vortices
(or vortex lines in the z direction) can be a good approach to many 2D flow
phenomena. Relation (2.8) then reduces to the discrete sum of the flows

2While the invariance of the system by translation (Galilean change of reference frame)
is warranted as a general physical principle, this is not so for a rotating reference frame,
in which centrifugal and Coriolis force appear. However both forces are pure gradients
in incompressible 2D flows, so they are exactly balanced by pressure gradients. Indeed
the centrifugal force is proportional to V(Qr2/2), with a constant density factor, and the
Coriolis force is proportional to —2Q x u = QVy. Note that the so-called geostrophic
balance between Coriolis force and pressure gradient is only realized in 2D flows.
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induced by each point vortex at position r;(t) and circulation ;,
Y(t,x) =Y 7 Gy(r,r;(h)). (3.1)
J

Each vortex is transported by the flow induced by all the other vortices.
The self interaction of the vortex (leading to a diverging ) can be ignored,
as seen by defining a point vortex as the limit of small vorticity patches with
vorticity a; — oo and infinitely small area 7;/a;, such that the circulation
~; remains constant. Then self-interaction just produces a local rotation of
the patch with no influence on the limiting point vortex. Furthermore the
circulation ~y; of each vortex is conserved in the flow evolution, since both
the small vortex patch area and vorticity a; are conserved. Thus each vortex
i is transported by the velocity derived from the stream function (3.1), with
the sum restricted to i # j which yields (the sum is made on indices i < j
to avoid double counting of the same term),

#; = 0Eint /0Yi , Ui = —0FEin:/0z; (3.2)

with By = Z’yi’ijw(ri,rj) (3.3)
i<j
The N point vortices therefore move like IV interacting particles. The study
of point vortices was initiated by Helmholtz in 1858, and this general dy-
namical equation first derived by Kirchhoff.

The dynamical equation is first order in time, unlike the usual second
order Newton equation. However it has quite remarkably a Hamiltonian
structure, but the conjugate variables are the space coordinates x; and y;
instead of the positions and momenta of the particles. The Hamiltonian
FEins is conserved with flow evolution, and it corresponds to an interaction
energy of vortices. Note that the true physical energy is infinite due to
the self-energy associated with each vortex (the velocity tends to infinity
in 1/r around each vortex core but this has no influence in the vortex
interaction). The expression (2.10) of the interaction energy is like the
electrostatic interaction energy for long charged rods (notice however that it
corresponds physically to a kinetic energy of the flow, and the analogy with
electrostatics is not complete, due to the different dynamical equation). The
pair interaction decays only slowly with distance, so that vortex interactions
are highly non-local, and we expect collective effects to be important, rather
than binary collisions.

3.2 Vortex pairs

e Case of point vortices:
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Suppose two point vortices of like sign and circulation v are separated by a
distance d far from boundaries. Then (3.2) just states that the two vortices
rotate at velocity v/(2nd), keeping a constant distance d (Fig. 3a). Two
vortices with unequal strength rotate around their “center of mass”. If the
two vortices have equal circulation with opposite sign, the center of mass
does not exist, and both vortices translate with constant spacing d. (Fig.3b)

Note that in superfluids, vortices of opposite sign tend to eventually
attract and annihilate each other. This is due to interactions with additional
degrees of freedom, which can extracts energy from the fluid system. An
external force on a vortex, for instance due to pinning on a solid substrate,
can result in drift of the vortex core with respect to the local flow, and
the occurrence of a Magnus force perpendicular to this drift, resulting in
reduction of the vortex distance. Such effects are absent in the ideal flow
problems considered here, and the distance d does remain constant.

In the translating case it is interesting to note that a region of the flow is
transported and follows the translating motion. Therefore this flow contains
momentum, representing the translating motion of some fluid area, see Fig.
4 left (this is the 2D analog of a vortex ring).

Fig. 3. Sketch of the motion of a vortex pair. (a) rotation with like signs and (b)
translation with opposite signs.

Fig. 4. Flow (left) in a point vortex pair and (right) in a Chaplygin’s continuous
pair. The streamlines are represented in a reference frame moving with the struc-
ture (so the flow is steady). Note that the fluid area inside the closed streamlines
is entrained by the pair in its motion.
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e Translating vortex pairs with continuous vorticity:

The translating motion of vortex pairs with opposite sign is a remarkably
robust feature, obtained when flow momentum is injected, even when vor-
tices are far from pointwise. Fig. 5 shows how an initial jet organizes into
a vortex pair in a stratified fluid [46]. Similar results had been previously
obtained from a wake in a soap film [31] or in an electromagnetically driven
flow [77]. We see that, remarkably, the turbulence “self-organizes” into sim-
ple coherent structures, here vortex pairs, and this will be the subject of
section 5.

A vortex pair solution proposed by Chaplygin in 1902 [15] (see also the
review paper [72]) provides a more realistic description of such features,
using continuous vorticity fields. We have seen in subsection 2.4 that a
general steadily translating solution is obtained with a vorticity of the form
w=—AyY = F(p—U.r) in some region. A natural idea is to choose a linear
function F, then solving a Helmholtz equation for ¢ in the vortex domain,
matching an irrotational flow outside with continuous velocity. It turns out
that a good matching is then obtained only with a circular domain, and one
obtains Chaplygin’s solution

20 Ji(kr) a’

Y= TJO(ka)Sine forr<a 1/):U(r—7)sin9 forr>a (34)

in terms of the polar coordinates r and 6, where Jy and J; are Bessel
functions and ka the first zero of Jj.

Note that this solution, represented in Fig. 4 right, emerges in many
experiments and numerical simulations by spontaneous organization after
complex flow evolution. Similar asymmetric dipoles, with a rotating motion
are also obtained. For any initial momentum, angular momentum, and en-
ergy, one can determine a corresponding dipole or axisymmetric monopole
solution [23], which is expected to be obtained after complex vorticity stir-
ring in some region of space. However non-linear relationships between
vorticity and streamfunction can be obtained as well [77].

e Vortex merging:

Two vorticity patches with the same sign rotate around each other like point
vortices when their distance is sufficiently large in comparison with their
size. Each patch is just slightly deformed by vortex interactions: this is like
tidal effects between two gravitating bodies. This is however no longer true
below some critical distance: the two vortices irreversibly deform leading
to a single vortex, as shown in Fig. 6. This figure is obtained from an
experiment with an electron plasma trapped in a magnetic field, which
remarkably follows the 2D Euler equations. The flow eventually tends to
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Fig. 5. organization of a short jet injected in a density stratified flow (from
ref. [46]). We see in the successive views of the same jet the initial 3D stage,
followed by a collapse to a quasi-2D state, which organizes into a dipole.

an axisymmetric configuration when small scale vorticity oscillations are
smoothed out. The threshold of distance leading to irreversible deformation
has been studied in detail using contour dynamics for vortex patches [81].
The resulting final merging can be understood on general grounds as a
process of entropy maximization (see section 5): the most probable state of
the system is axisymmetric.

The initial vortex deformation leading to merging is due to the effect of
the strain induced by the other vortex. This is a motivation for studying
the influence of a uniform pure strain on a single vortex. A weak vortex is
clearly passively deformed by the strain, while it resists deformation when
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its vorticity reaches a value of the same order as the strain rate.

The same merging mechanism is observed for vortices of unequal size
and strength (but equal sign). This has been checked with electron plasma
experiments [75] as well as various numerical simulations.?

e Interaction of more than two point vortices:

Interaction of three point vortices yields a variety of motion. The problem
has some similarity [78] with a triad in Fourier space, which shall be dis-
cussed in section 4. An interesting curiosity is the possibility, for particular
initial conditions and vortex circulations, that the three vortices spiral in-
ward to a singular point [1]. Singularities are however forbidden in the case
of more realistic finite core vortices. For four vortices and more, chaotic mo-
tion is possible, as well as stable configurations. Tripoles made of a central
vortex and two satellite vortices of opposite sign have been observed both
in laboratory [48] and oceanic flows. With point vortices, stable patterns
are obtained for more than three vortices, but none of them seem robust for
extended vortices: two vortices of the same sign tend to merge.

3.3 Instability of shear flows and vortex lattices:

e Parallel flows:

The classical stability criterion of Rayleigh applies to 2D inviscid flows.
Thus classical flows with vorticity extrema, shear layers, jets and wakes
develop 2D turbulence. The turbulent region grows linearly with time or
stream-wise coordinate, in a similar way whether or not 3D perturbations
are allowed to develop [65].

By contrast Poiseuille flows and boundary layers behave quite differently.
These flows are linearly stable according to the Rayleigh criterion (they have
no vorticity extrema), and they indeed remain stable in purely 2D flows,
whatever the Reynolds number. The instabilities occurring in these flows
are genuinely three-dimensional and are suppressed by the constraint of
two-dimensionality.

e Vortex lattices:

Vortex lattices can initiate 2D turbulence when they are unstable. The
square lattice of alternating sign vortices is highly unstable and initiates

3Note however that contour dynamics simulations indicate a variety of other possibili-
ties for unequal size vortices [34]: in some cases merging is only partial, and small satellite
vortices are produced. Such processes could be relevant in controlling the population of
vortices of different size in 2D turbulence as discussed in section 4, so this problem would
require more careful examination, comparing different numerical methods.
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Fig. 6. Vortex merger in an electron plasma experiment (from [75]). Maps of the
vorticity field are represented at four successive times (0, 16, 41 and 76 us). The
initial distance of the vortex centers is 1.2 times the vortex diameter. The exper-
imental device is sketched at the top of the figure. The electrons are extracted
from a source in the high vacuum cylindrical cell. Then they are transversally
confined by the uniform axial magnetic field B, and they drift with the velocity
u = ¢(E x B.)/B. perpendicular to the electric field E induced by the electron
space charge. This drift flow remarkably satisfies the Euler equations: the incom-
pressibility condition V.u = 0 is a consequence of V x E = 0 while the vorticity
V x u «x V.E = n/eo is proportional to the charge density m, conserved by the
flow. This charge density field is visualized and measured by suddenly accelerating
the electrons on the collector (destroying the system).

the inverse energy cascade of 2D turbulence. In contrast, triangular lattices
of equal sign vortices and hexagonal lattices with alternating sign vortices
turn out to be stable [104]. Such stability properties can be more easily
determined if one restricts the analysis to perturbations at large scales with
respect to the lattice mesh, so that asymptotic expansions can be used. It is
then shown that a minimal degree of anisotropy is needed to get instability
[43].

In conclusion, while 3D flows at very high Reynolds systematically de-
velop turbulence, with quasi-universal behavior, this is not true in 2D. There
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is much more influence of the generating mechanism, and turbulence may
not be produced at all in some cases.

3.4 Statistical mechanics of point vortices:

e The statistical mechanics approach:

Statistical mechanics, as developed by Maxwell, Boltzmann, Gibbs and their
followers, has been remarkably successful in predicting the behavior of sys-
tems with many degrees of freedom. Its main success has been in predicting
the statistical (thermodynamic) equilibrium for a conservative (Hamilto-
nian) systems, for instance a gas made of many molecules. 3D turbulence is,
in contrast, a strongly dissipative system. However, 2D turbulence conserves
energy, which raises hope for equilibrium statistical mechanics approaches.
This is not an obvious matter however, since 2D turbulence undergoes ir-
reversible transformations with dissipation of vorticity fluctuations (enstro-
phy), instead of energy. The point vortex model is precisely a Hamiltonian
system, as we have seen in subsection 3.1, so that the standard methods
of equilibrium statistical mechanics readily apply. The relevance to actual
continuous flows will be discussed later.

The statistical mechanics of point vortices was first discussed by Onsager
in 1949 [79]. First of all, it is an interesting exercise in statistical mechanics,
since “negative temperature” states are obtained. In such states vortices of
like sign tend to clump together, forming large coherent vortices. Onsager
stressed the importance of such coherent structures with remarkable fore-
sight, and he pointed out the fundamental difference with the energy cas-
cade of 3D turbulence, which had been recently formalized by Kolmogorov
in 1941. Although short, his paper contains far-reaching remarks on both
2D and 3D turbulence, and its reading is highly recommended.

The general principles of equilibrium statistical mechanics are explained
in many textbooks of physics, but this is always a subtle subject. Since ap-
plications to 2D turbulence are unusual, they require a good understanding
(and re-discussion) of the basic principles, and it may be useful to recall
them in the context of vortex dynamics.

The starting point of equilibrium statistical mechanics is to list the con-
served quantities of the system, which are clear constraints to the dynamics.
For a set of many point vortices, the only known conserved quantity is en-
ergy, as is the case for usual thermodynamic systems (but we shall see
additional conserved quantities with alternative models of 2D turbulence).
Then it is assumed that the system evenly explores all its possible states (the
“microscopic states”) allowed by the given value of its conserved quantities
(here just energy). This assumption (the ergodic hypothesis) has been rig-
orously demonstrated only for a system of hard spheres in elastic collisions,
but is believed to be true in many cases.
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The output of the theory is the probability distribution of “macroscopic”
states of interest, for instance the vortex density field. The entropy S of the
macroscopic state is defined as the logarithm of the “number” of possible
microscopic states corresponding to this macroscopic state. Then it follows
from the ergodic hypothesis that the probability of this macroscopic state
is just proportional to the exponential of the entropy. The most probable
macroscopic state is therefore that which maximizes the entropy. In the
limit of a very large number of particles, this maximum tends to be very
sharp: an overwhelming majority of microscopic states tends to concentrate
near the macroscopic state of maximum entropy. Therefore deterministic
predictions result from the statistics of many particles, for instance the
density of vortices will fluctuate less and less as the vortex density increases.

A microscopic state is defined by the coordinates of each of the N vor-
tices. To count the possible states, we need first to discretize the coordinates
into elementary cells. Let us take a mesh A in each coordinate?(and consider
a fluid domain with surface unity for simplicity), so that the total number
of possible states for a single vortex is just the cell number 1/h% . For N
vortices it is 1/h?N (we assume that several vortices can occupy the same
cell without restriction, which is true for ideal point vortices). Among these
states we must select and count the ones which have a given energy F;p;,
rel.( 3.3).

This is a tremendous task in general, but let us first neglect this inter-
action. Then we expect a uniform vortex density. To show this, consider
the density field n(r) as the macroscopic state, and let us count the corre-
sponding number of configurations. We make a partition of the fluid domain
in p sub-domains, with area A = 1/p each, and consider the vortex num-
bers n1,...n, in each sub-domain as the macroscopic state. We must first
distribute the vortices in packets with ni,...n, vortices respectively. The
divided by the number of permutations within each packet, which does not
change the distribution). Then for sub-domain 1 the number of possible

4The uniform discretization used for the counting seems here a natural choice, but it
may be wrong with other coordinates. For instance a uniform discretization in the po-
lar coordinates r, 6 would give very small cells drdf near the pole, resulting in excessive
statistical weight. The justification lies in the Hamiltonian form (3.2) of the dynam-
ical equations, from which the Liouwille theorem is readily demonstrated: considering
the evolution of many identical systems, this theorem states that the volume element
dzxy....dxndy;....dyn in phase space is conserved with time. Indeed the divergence of
the “velocity vector” #i,...,2n,91,...yn is clearly 0, due to the Hamiltonian form (it is
the analog for the phase space flow of a stream function for a usual 2D flow). Then the
uniform sampling in the coordinates zi,...,zn,¥y1....,yn Wwill remain uniform with the
time evolution of the system. This is only true for the so-called canonical coordinates
for which this usual canonical form (3.3) of the Hamiltonian system can be written. It is
not the case, for instance, with polar coordinates.
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vortex configurations (positions) is (ph?)™™ and we have to multiply by
the similar formula with the other sub-domains. The number of configu-
the logarithm of this quantity. For large vortex numbers, we can use the
Sterling formula, n! ~ nlnn, so that the entropy is

Sz—Znilnni—)—/nlnner (3.5)

in the continuous limit (up to an unimportant constant, depending on the
discretization mesh).

Maximizing this entropy with the constraint of a given total vortex num-
ber N = [nd’r gives a uniform density. To check that, we introduce a
Lagrange parameter « associated with the constraint N, and write the con-
dition for the first variations §S — ad N = 0 . Differentiating the expression
of the entropy gives S = — [(Inn + 1)dnd>r, so that the condition on first
variations becomes

/(lnn + 1+ a)énd’r (3.6)

This has to be satisfied for any variation én (function of position) around the
optimum state, which is only possible if the term in parenthesis is uniform,
so that the density n is uniform: non-interacting particles uniformly mix
due to entropy maximization.

e The mean field approximation:

Coming back to the interacting particles, a great simplification is provided
by the mean field approximation, as developed by Joyce and Montgomery in
1973 [52]. The idea is that, due to the long range interactions, each vortex
feels the influence of the mean field ¢/ due to many others, so that we can
write the interaction energy with the continuous field expression as

E = %/zpmd% (3.7)

replacing the vorticity w in (2.16) by the local density ny. We suppose
first that all the vortices have the same circulation =, but generalization to
several vortex species is straightforward by just adding their contributions
to w. The field 1) is itself given by the Poisson equation (2.7), which becomes
—Ay) = yn.

The condition on energy brings the new constraint (3.7) for entropy max-
imization, and a corresponding Lagrange parameter $ must be introduced
accordingly. Then the condition on first order variations becomes

5S — a6N — B6E =0 (3.8)
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We calculate 6E = (v/2) [(dn +ndip)d?r. In fact the second term is equal
to the first, as checked by using the Poisson equation and an integration
by parts. The condition on first variations then becomes [(Inn + 1+ a +
By1))énd*r, which implies that

n = noexp(—pfyy) (3.9)

(with ng = e~® ). Combining (3.9) and the Poisson equation, we get the
self-consistent mean field equation

— Ay = yngexp(—pByY) , 1 =0 on boundaries (3.10)

Since the locally averaged vorticity —Au is a function of ¢, this remarkably
represents a steady solution of the Euler equation. A general justification
of self-organization into large scale steady flows is thus provided: this is the
most probable outcome for the wandering of many small vortices.

The two constants ng and § are indirectly given by the constraints on
energy and total vortex number. In fact what is given is the product yng
(related to the total circulation of the system), while ng tends to infinity,
and v tends to 0. The validity of the mean field approximation has been
rigorously demonstrated in this limit [36]. Similarly the important param-
eter is B instead of 3, and we can rewrite (3.10) with the non-dimensional
variable ¢ = (yng)~'¢ ,

—A¢ =exp(—Bg¢) , ¢ =0 on boundaries (3.11)

depending on the single parameter B = $v%nq.

Note that the expression (3.9) can be obtained in general for a particle
in a field with potential energy 1+ in contact with a “thermal” bath with
temperature 1/8. This is the so-called canonical approach, in contrast with
the micro-canonical approach used her, dealing with an isolated system.
These two approaches are generally equivalent, but it is not always so for
systems with long range interactions. Note also that some textbooks con-
sider statistical mechanics as the limit of large systems, making the volume
goes to infinity. What is important is the limit of a large number of parti-
cles, which is here considered in a given domain of finite size. The system
is not extensive, on the contrary its spatial confinement is essential.

e Discussion of results:

Supposing for instance v > 0, it is clear from (3.10) that ¢ is a convex func-
tion of the coordinates, which is everywhere positive. For positive “temper-
ature” B > 0, the vorticity tends to be depleted where ¢ is maximum, and
maximum near the domain boundary, where 1 is set to zero. By contrast
for § < 0, the vorticity tends to be maximum at the vortex center, leading
to sharper and sharper maximum of ¢ as  is more negative.
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Fig. 7. Entropy (left) and inverse “temperature” 3 = dE/dS (right) versus energy
E for the statistical equilibria of a set of IV identical point vortices in a disk
(from [95]). For small energies (point A) vortices remain near the disk periphery,
and the “temperature is positive”, while for large energies they remain clumped
in a global vortex, more and more concentrated as energy is larger. Then the
“temperature” is negative. The entropy maximum (point B) corresponds to a
uniform vorticity in the disk, with 8 = 0. The solid curves represents axisymmetric
equilibria, while the point-dash curve represents a “bifurcated state”, in which
the vortex spontaneously forms out of the disk axis. This bifurcated state is
more likely than the axisymmetric one as it has a higher entropy. It has been
indeed observed in a laboratory experiment using a mercury flow in a magnetic
field [33]. Note however that, far from boundaries, the axisymmetric equilibrium
state is always predicted (the bifurcation is due to the confinement by the disk

periphery).

It is interesting to represent the entropy of the statistical equilibrium
versus its energy, which has always a bell shape, as shown in Fig. 7. Due
to (3.8), the derivative dS/dE (for N fixed) is just § the inverse of the tem-
perature. Therefore the positive temperature is obtained for small energy
and negative temperature for large energy. The maximum corresponds to
the uniform vortex density: the energy has just the right value to allow
for uniform density, which is the state of maximum entropy in the absence
of energy constraint, as shown above. Higher energy requires the vortices
to remain closely packed, while low energy requires them to remain near
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the boundaries. The existence of negative temperature states is forbidden
with ordinary particles whose Hamiltonian has a quadratic term in the mo-
mentum (the usual kinetic energy): then the entropy always increases with
energy. However in the vortex system, such a quadratic term is absent: neg-
ative temperature states do occur , and they correspond to the interesting
case of clumping of like sign vortices into large coherent vortices.

For several vortex species, with circulation ; , the density of each species
satisfies a mean field relation (3.9). Then the relationship (3.10) between
vorticity and stream function is replaced by a sum of exponentials (or an
integral for a continuous distribution of elementary vortex circulation 7,

—Ay = Z’ymiexp(—ﬂfyiz/)) , ¥ =0 on boundaries (3.12)

For a symmetric set of positive and negative vortices with circulation £+, we
get a sinh function. Note however that symmetry breaking is also possible,
so that ny # n_ even for an equal number of positive and negative vortices.
This has been first shown by Pointin and Lundgren, 1976 [84] in a square
domain.

In Fig. 8 we show striking examples of symmetry breaking. The statisti-
cal equilibrium reached by two initial vortex lines of opposite sign, forming
a jet, is considered. The confinement in a channel with periodic boundary
conditions is necessary to get an equilibrium. However when the wall is far
from the initial jet width d, and the allowed period L sufficiently long, we
get an organization with the topology of the Karman vortex street (state
DD on the figure). This may explain the observed trend of plane wakes to
form such a structure, even in the presence of a strong turbulence (although
wakes freely expand with time so they never reach equilibrium). For other
parameters shown in Fig. 8, an additional symmetry breaking occurs: vor-
tices on one sign clump together while vortices of opposite sign are dispersed
(which favors entropy, while the coherent vortex is necessary to satisfy the
energy constraint). The solitary vortex state (SV) qualitatively explains
the organization of a turbulent jet observed in an annular channel [100]
modeling many dynamical aspects of the Great Red Spot of Jupiter.

3

e Limitations:

The point vortex statistical mechanics explains self-organization. However
it does not provide a consistent and quantitative prediction for the Euler
system with continuous velocity fields. Of course it is always possible to ap-
proximate the continuous velocity fields by a set of many point vortices with
a small circulation v and spacing h , such as h?y = w. The limit of small
spacing h provides a consistent, stable and convergent approximation [44].
Vortex methods can be used indeed in practice for numerical simulations of
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Fig. 8. (from [53]) Statistical equilibria resulting from the mixing of two vortex
lines of opposite sign, representing an initial jet in a x-periodic channel, as sketched
at the top of the figure. The equilibrium states are represented as a function of
the domain length L and the half jet width d (while the channel width is set to
unity). The different flow configurations are represented by vorticity isolines for
the parameters indicated by the arrows. The boundaries between these configu-
rations are drawn on the diagram. In addition to the x-independent states (XI),
we get states breaking the translation symmetry, like the “sinuous mode” (DD).
This mode is preferred for small initial jet width d and sufficiently large L, for
which the effect of boundary confinement is minimum. For the other states (VC
or SV), the additional symmetry breaking between positive and negative vortices
is obtained.

the Euler equations [26] [27] [29]. However any approximation to a dynam-
ical system is valid for a finite time, and it may break down for sufficiently
long time (which increases with the spatial resolution). The system of N
vortices will eventually behave differently from the continuous system, and
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the equilibrium statistical mechanics, dealing with the limit of very long
times, is different (in more mathematical terms, taking the results of the
two limits h — 0 and ¢ — oo depends on the order in which they are taken).

There is first the possibility that the maximum vorticity of the statistical
equilibrium exceeds the maximum value of the initial condition, which is
inconsistent with the Euler equations. Secondly there are several ways to
model the same continuous initial condition: we can for instance use either
constant vortices with a variable spacing h , or a constant spacing h and
different vortex circulations, proportional to the local vorticity. The point
vortex statistical equilibrium will be different in the two cases: in the first
case we shall get the result (3.10), while in the second case we shall get
the result 3.12, with a sum of exponential terms. These difficulties will be
solved in section 5 using a different approach.

4  Spectral properties, energy and enstrophy cascade

Since Kolmogorov, the use of spectral representations is at the heart of the
study of turbulence. This approach quantifies the energy transfers among
the different scales of motion. Kolmogorov’s ideas have been applied to 2D
turbulence by Kraichnan in 1967 [56], see [58] and [64] for good reviews.
The most interesting result is the prediction of an inverse energy cascade
toward large scales, whose existence is now firmly established both from
numerical simulations and laboratory experiments. The existence of a di-
rect enstrophy cascade toward small scales has been also predicted, but its
relevance remains controversial. The emergence of isolated vortices plays
an important role, at least in some cases.

4.1 Spectrally truncated equilibrium states:

Instead of using point vortices, a quite different approach is to expand the
velocity (and vorticity) field in the eigenmodes ¢, of the Laplacian for the
fluid domain. These are the Fourier modes for the usual periodic conditions.
We therefore expand the vorticity as

w(t,r) =Y an(t)gn(r) , with Ag, = —k2én (4.1)

and the streamfunction is ¢ = Y ank,2¢,. Other basis, like wavelets,
allow to make scale analysis depending on position, which may be more
sensible in the presence of coherent structures, see [39] in this book. However
the classical Fourier have the advantage of nice dynamical properties, in
addition to their simplicity. In particular each mode ¢,, is a steady solution
of the Euler equations, since its vorticity —Ag¢, is a function of ¢, (see
section 2.4). The energy E and enstrophy I's are readily expressed, due to
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the orthonormality of the eigenmodes,

E:%Zaikf , Fg:%Zai (4.2)

Since the Euler equations contain only quadratic terms in velocity, it
can be written in the general form

a, = Z AnrsQrayg (4.3)
r,.s

with fixed interaction coefficients A4,,,, for the triad interactions. These
coefficients satisfy the “detailed conservation of energy” among each triad

k72 Apps + k72 Avgn + k72 Agnr = 0 (4.4)
as well as the detailed conservation of enstrophy
Anrs + Arsn + Asnr =0 (45)

Starting with some initial condition with energy limited to a few modes,
higher and higher modes will be excited: this is the cascade process of tur-
bulence. It can be understood as a tendency of the system to explore all the
available modes, a general effect of entropy increase. However a statistical
equilibrium, maximizing entropy, is really reached only if we artificially set
a bound to the accessible modes, keeping a finite number N of modes. This
stops the fundamental irreversibility of turbulence but gives indications on
the general trends of the system.

The spectrally truncated system (4.3) then becomes a closed dynamical
system which conserves energy, and the general methods of equilibrium sta-
tistical mechanics can be used. Although conservative, it does not have an
Hamiltonian form, unlike the vortex system (3.2). Still a Liouville theorem
exists

it /Ban = 0 (4.6)

which is the required condition for applying statistical mechanics (the vol-
ume in phase space is then conserved as mentioned in the footnote of section
3.4). This condition is easily derived: the terms in (4.3) with n,r, s all dif-
ferent give no contribution to da, /da,. The coefficients A, s vanish by the
stationary property of the eigenmode ¢5. A, ., vanishes in particular, and
by (4.4), Apsn = Apns = 0. This exhausts the possibilities and we have
(4.6).

In the presence of a “thermal bath” with inverse temperature 3, the
probability of a microscopic state with energy E is in exp(—8E), like we
have seen for point vortices in section 3.4. Since there is a second conserved
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Fig. 9. Normalized modal energies (dots), averaged over 100 time steps, from
the numerical solutions of the evolution equations (4.3) for the truncated spec-
tral model, compared to the statistical equilibrium prediction (4.8) in solid line.
This run (from [93]) corresponds to a negative 8 regime with 70 % of the energy
condensed in the fundamental mode.

quantity I's, with associated Lagrange multiplyer «, the probability of a
state ay,...ay is proportional to exp(—BE — al's) . Due to the quadratic
expressions (4.2), we have just independent Gaussian probabilities for each
mode

plan) o exp[—(Bk;* + a)a’ /2] (4.7)

so the mean energy of a mode is

1
k;Q < ai >= k;Q /p(an)azdan//p(an)dan = 5(6 + aki)_l (4.8)

For large wavenumbers, it is convenient to the replace the mode number
n by the wavevector k, and the discrete mode amplitudes a,, by the Fourier
transform (k) of the vorticity field. Furthermore the energy spectrum
E(k), or the enstrophy spectrum k2FE(k) is used. It is defined by integrating
@2 (k) over a circle with [k| = k, so that for an isotropic field, k?E(k) =
27k&?(k) . The total energy is the integral of the energy spectrum, & =
J.° E(k)dk , and similarly for the enstrophy, Iy = [;* k*E(k)dk. The
equilibrium spectrum is therefore in k/(8 + ak?).

For 3D turbulence, we have only the conservation of energy, so that
a = 0, and the energy is equally spread over the modes. This is not in
agreement with actual turbulence, but it justifies the tendency of energy to
spread over all the accessible modes, and therefore to undergo an energy
cascade toward the small scales where a majority of modes is located. In



30 The title will be set by the publisher.

contrast for 2D turbulence we can have a variety of states, depending on
and «, which can be indirectly related to the mean energy and enstrophy
of the system. A particularly interesting case corresponds to 3 — —ak? for
which the energy can accumulate in the lowest available mode kg, as rep-
resented in Fig. 9. This figure also indicates that the statistical mechanics
prediction is well verified by numerical computations of the dynamical sys-
tem (4.3), artificially truncated by keeping a finite number of modes without
dissipation.

This helps to understand the self-organization into the lowest mode,
with a model different from that of point vortices. The artificial truncation
of high modes have then little influence. Note however that the truncation
suppresses conservation laws (2.11) other than enstrophy. Moreover the use
of a canonical distribution is then questionable, as energy is concentrated
in the single lowest mode, with large fluctuations. For instance the most
probable state corresponds to the center of the Gaussian (4.7), with zero
energy. The use of a micro-canonical approach, keeping the energy constant,
would lead to a different and more realistic result, although the trend for
concentration in the lowest mode should be the same.

4.2 The enstrophy and inverse energy cascades of forced turbulence:

¢ The double cascade of Kraichnan(1967)

In the absence of confinement at small wavenumbers (e.g. boundaries) and
artificial cutoff at high wavenumbers the cascades can freely develop. To
study stationary regimes, it is convenient to consider a statistically per-
manent forcing concentrated at a given wavenumber kj. The dimensional
analysis leading to the Kolmogorov cascade can be carried out in 2D as well
as in 3D and it yields the same inertial range,

E(k) = Ce¥/3k=5/3 (4.9)

The direction of the energy flux is not given by dimensional analysis. How-
ever a direct cascade toward high wave numbers is forbidden by the absence
of energy dissipation (see 2.3). Therefore Kraichnan suggested a cascade
toward large scales (small k). He further justifies this cascade direction as a
trend of the system to go toward the statistical equilibrium described above
(although it never reaches it in the absence of spectral truncation). There
is no need for energy dissipation at large scales, at least in the ideal case of
an infinite fluid domain, since the integral [k=%/3dk diverges at 0: energy
progressively accumulates toward lower and lower k. More physically, we
shall see that a friction force proportional to the velocity (Rayleigh friction)
can progressively pump out the energy along the inverse cascade.

Now what happens toward the small scales? Enstrophy must be injected
by the forcing, at a rate n = k?e, where kr is the injection wavenumber.
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Fig. 10. sketch of the classical double cascade of 2D turbulence (from Lesieur [64]).

Then an enstrophy cascade is expected, which can be predicted by dimen-
sional analysis in the same way as the energy cascade, just replacing energy
by enstrophy, and € by 5. This yields an energy spectrum

E(k) = C'np*/?k? (4.10)

We shall see that these two cascades are mutually exclusive (for infinitely
extended cascades): the rate of enstrophy transfer vanishes in the energy
cascade and the rate of energy transfer vanishes in the enstrophy cascade.
Therefore since energy goes to the larger scales, the enstrophy cascade must
be toward small scales. Enstrophy can be dissipated at small scales by
viscosity unlike energy. Even without viscosity the enstrophy cascade can
theoretically extends with time to higher and higher wavenumbers. Fig. 10
summarizes this theoretical double cascading spectrum.

For a more precise discussion of these cascade processes, let us express
the forcing as a vorticity source f(z,y,t) added on the right hand side of
(2.6), and introduce some energy dissipation. Then the mode enstrophies

< a? > satisfy the equations

ld<al >
5% =< apay >= ZAn'r‘s < ar@sa, > + < fpa, > —diss (4.11)

r.s

where f, is the amplitude of f in the mode n. Note that the enstrophy
production is the correlation < f,a, > between the vorticity and its source
f, and the corresponding energy production k2 < fna, >. The sums of
these quantities over the modes are the total enstrophy production n and
energy production € respectively.

For the considered homogeneous isotropic turbulence, the discrete mode
amplitudes a, is replaced by the Fourier transform @(k), and the energy
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equation (4.11) takes the form of a conservation equation for the energy
spectrumE (k),
oE ol
ot~ 9k
IT can be viewed as the energy flux due to nonlinear interactions and 0Il/9k
its divergence. The same equation can be also written in a form displaying
enstrophy conservation

+ forcing — diss (4.12)

oE 07

2 _
b ot 0k

+ forcing — diss (4.13)
with an enstrophy flux Z. These fluxes are explicitly obtained [56] [64] by
Fourier transform of the Euler equations and integration over wavevector di-
rections. They are expressed as integral of the rates of triad energy transfer
T(k,p,q), depending on the triple correlations < @&(k)w(p)w(q) >, where
the vectors (k, p,q) form a triangle (k + p + q = 0) with sides &, p, q,

/ dk’/ k' p,q)dpdq — —/ dk’/ q)dpdq

(4.14)

1 1 k o0
2() = /k K2 /0 T p.aipds — 5 [ Kai /k T(K',p, q)dpdg
(4.15)

At this stage a possible approach is to introduce a closure hypothesis to
express the triple correlations and obtain dynamical equations for the energy
spectrum. This has been done by assuming that the fluctuations of the mode
amplitudes have statistics close to a Gaussian. After a failed attempt by
Millionshtchikov (the quasi-normal theory), this approach has been widely
developed by Kraichnan. His models have the property of relaxing the
system toward the spectrally truncated statistical equilibrium in the absence
of forcing and dissipation. With forcing at a given wavenumber kj, these
closure models lead to the double cascade sketched in Fig. 10 [3] [49],
see [64]for a review.

However Kraichnan did not use closure hypothesis in his original paper
of 1967. He assumes instead an infinite cascade, with forcing and dissipation
replaced by constant flux in wavenumber space. He further assumes that the
transfer rate T'(k, p, q) scales in power law: T'(k,p,q) = k~™T(1,p/k, q/k),
where T'(1,p/k, q/k) depends only on the angles in the triad. Then the en-
ergy flux (4.14) is expressed as k3~™ (due to the triple integrals) multiplied
by angular integrals over triad directions p/k and g/k. The only possibility
for a flux II(k) independent of k is therefore m = 3. By dimensional anal-
ysis, T'(k,p,q) ~ u®/k?, where u is the typical velocity at scale 1/k, and
E(k) ~ u?/k. Therefore, T ~ k=3 implies u ~ k='/3 | corresponding to an
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energy spectrum in k~°/3. This dimensional analysis is however valid only
if the triple correlations scale in «® while the double correlations scale in
u?, i.e in the absence of intermittency. The cascade is more fundamentally
defined by the scaling of the transfer rate than the scaling of the energy
spectrum (double correlations).

Such constant energy flux cascades can be as well obtained in 3D, but
in 2D one can furthermore imagine cascades with a constant enstrophy flux
Z(k), corresponding to the k2 energy spectrum. Then the energy flux II(k)
should scale in k~2. However by using the detail conservation laws (4.4)
and (4.5), which translate into similar relations for T'(k,p, q), Kraichnan
shows that the angular integration in (4.14) exactly cancels: the energy
flux is zero. Similarly the enstrophy flux cancels in the energy cascade. As
stressed by Kraichnan, a cascade cannot be viewed just as a carrying belt
in wavenumber space, transporting together the energy E(k) and its related
enstrophy k?E(k). The transport is rather the result of overlapping triads,
which makes possible a flux of energy or enstrophy alone. Eyink [35] has
obtained mathematical results supporting this double cascade theory. He
has shown that the flux of higher vorticity moments, e.g. w* is related to
the enstrophy cascade and is also toward high wavenumbers.

This work of Kraichnan provides constraints on the nature of putative
cascades, but it does not guarantee that such states should be approached.
As mentioned above, closure models provide a first support of these ideas.
The enstrophy cascade has received a more precise theoretical justification
by a different approach [37], presented at the same school [38]. The idea
is derived from the study of the passive scalar stirring in a random large
scale strain. Batchelor in 1959 first predicted k="' spectra for the scalar
variance, and this has been confirmed by rigorous approaches. Vorticity
in 2D turbulence is transported like a scalar, and we notice that the k=
energy spectrum corresponds indeed to a k! enstrophy spectrum [57]. Of
course the strain is not limited to large scales: the strain produced by flow
structures at scale k~! can be estimated as uk ~ (k* E(k))'/? . This strain is
independent of k for a k2 energy spectrum so the contribution of all scales
is the same, and the “nonlocal interactions” with the large scale strain is
dominant (unlike in the k—5/3 spectrum), but only marginally. The precise
analysis [37] gives a k=2 energy spectrum corrected by a logarithmic factor.
Kraichnan also proposed [57] such a logarithmic correction to avoid some
divergence in the calculations.

e Observations of the cascades:

It is difficult to simultaneously observe the two cascades due to the required
spatial resolution and high Reynolds number: observing two decades for
each cascade in a numerical computation would require at least 10* grid
points in each direction. Simulations or laboratory experiments must be
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Fig. 11. Laboratory observation of the inverse energy cascade, from [97]. The
experimental cell is sketched on the left as a top view and side view below. The
flow is maintained 2D in a horizontal mercury layer by a vertical magnetic field
which prevents the built up of 3D perturbations. The electric current, steadily
injected with alternating sign in an electrode lattice, generates a square vortex
lattice by interaction with the magnetic field. The flow is visualized from above
by the streaks of particles floating on the mercury free surface (the field of view
is limited to a central band due to the constraint of the electromagnet). The
dynamics is controlled by a friction parameter Rh representing the ratio of the
inertial effect to the friction on the bottom surface. For Rh <1.78, the flow is
steady as shown on the left, over the apparatus sketch. For higher Rh instabilities
develop, exciting larger scales of motion, as shown on the two photos on the right
top. The corresponding energy spectra reveal the built up of an inverse energy
cascade for Rh = 14.24, and the condensation in the fundamental mode n = 1 for
Rh = 40.3. This mode corresponds to a global rotation of the flow, spontaneously
breaking the symmetry between positive and negative vorticity. The spectra are
obtained from the spatial Fourier transform of the electric potential measured
along a line of small electrodes (@) 1): the induced electric potential is proportional
to the transverse velocity.

optimized to study one of the cascades.

The existence of the inverse energy cascade is now well established
both from direct numerical simulations [42] [96] and from laboratory ex-
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Fig. 12. Forcing 2D turbulence with the same technique as in Fig. 11, but with an
hexagonal lattice (from [76]). The energy spectra indicate a persistent peak at the
forcing wavenumber, which is removed if the mean velocity is subtracted from the
data, keeping only the turbulent part with a hint of a ko3 range. The spectral
energy transfer 7 (k) = —dII/dk have been also obtained from the triple velocity
correlations, assuming isotropy. One checks that the energy transfer indeed feeds

the small wavenumbers while it removes energy from the forcing range.

periments [97] [76] [83]. Note that the experiments of Sommeria [97] have
been performed with a steady forcing (in a square vortex lattice), and the
inverse cascade is therefore spontaneously generated, see Fig. 11. Sponta-
neous generation of an inverse energy cascade has been also observed with
an hexagonal lattice, see Fig. 12, although a significant steady flow com-
ponent coexists with the turbulence, unlike with the square lattice, more
efficient at generating 2D turbulence (see also section 3.3). In contrast, both
the experiments of Paret and Tabeling [83] and the numerical simulations
have been performed with some random forcing. The Kolmogorov constant
found is about 7, which means that this cascade is less “efficient” than in
3D (for which C' = 1.5): for a given value of the spectrum E(k) the transfer
rate € is smaller than in 3D. Notice that this value of the coefficient fits well
with the prediction of Kraichnan using the test field closure model [57].
Remarkably, intermittency seems absent [83] [96], or at least very weak:
the successive moments of the two-point velocity difference < (du)” > scale
with point separation r in 7/% . The ideas of Kolmogorov (1941) turns out
to be more appropriate for 2D than for 3D turbulence! Furthermore the
probability distribution for du is close to a Gaussian at all scales. It cannot
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Fig. 13. Laboratory observation of the direct enstrophy cascade in a thin water
layer, stratified in density by salinity to restrict 3D recirculation (from [82]). The
flow is generated by a set of magnets (sketch on the upper left) interacting with a
uniform horizontal electric current randomly switched in time (curve below). The
flow is thus generated at large scale allowing to focus the study on the enstrophy
cascade. Spectra in k=2 are indeed obtained (upper right), while the spectral
isocontours below illustrate the isotropy of the cascade, although the forcing at
small k is not isotropic, as revealed by the two peaks near the center.

be exactly a Gaussian as the energy transfer is associated with a non zero
third order moment, as seen above. However the cascade is less efficient
than in 3D (the Kolmogorov constant is larger) so we can understand that
the system is closer to an equilibrium with Gaussian statistics.

To get a steady cascade in a finite size domain, some energy dissipation
acting at large scale is necessary. In laboratory experiments the friction on
the support of the fluid layer, proportional to velocity, plays this role. In
numerical simulations, a large scale dissipation consistent with the inverse
energy cascade must be chosen [101]. When the inverse cascade is limited
by the domain size instead, the cascade breaks down and condensation of
energy in the lowest mode is obtained as predicted above from truncated



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 37

spectral equilibria. This condensation has been well observed both in labo-
ratory experiments [97] [83] (see Fig. 11) and numerical computations [96].

The existence of the enstrophy cascade is also confirmed by laboratory
experiments [82], represented in Fig. 13. Note that measurements of the
steep k3 energy spectra over large wavenumber ranges is difficult as it
requires a very high precision to distinguish the small scale fluctuations from
the much stronger large scales (obtaining two decades requires a precision
on velocity better than 1073). Numerical simulations with high resolution
[5], up to 40962 provide more extended spectral ranges, with a constant
enstrophy flux over 2 decades. The k™ energy spectrum has logarithmic
corrections, while a nearly perfect k=3 spectrum has been obtained with
a slightly different forcing [67]. Note that earlier simulations [63] point
out that the presence of coherent vortices modifies the cascade, leading
to steeper energy spectra. The permanent production of random vorticity
tends however to prevent the build up of the coherent vortices [5], unlike in
freely decaying flows discussed next.

4.3 The enstrophy cascade of freely evolving turbulence:

Unlike in 3D, the behavior of freely evolving 2D turbulence is quite different
than that of forced turbulence. This difference can be understood by consid-
ering that the dynamical time for eddies with scale k! is in (k*F(k))~'/2,
so that in a k~5/3 energy spectrum the small scales have a much shorter
dynamical time than the large scales (it is in k= 2/). Therefore in a direct
energy cascade the effect of large scales is reasonably similar to a permanent
forcing for the smaller scales. This is not true for the effect of small scales
on the large scales in the inverse energy cascade.

A classical prediction for a freely evolving turbulence have been given by
Batchelor in 1969, assuming a self-similar spectral evolution, with a (single)
time scale and length scale evolving in time. An enstrophy cascade is still
predicted, with a spectrum in ¢t 2k~3. The inverse energy cascade is then
replaced by a growth of the integral scale, such that the total enstrophy is
predicted to decay in ¢~2.

Energy spectra close to k=2 are indeed obtained in laboratory experi-
ments or numerical simulations of freely decaying 2D turbulence. Experi-
mentally, it has been first measured in grid turbulence in liquid metal duct
flows submitted to a transverse magnetic field [55]. This was the first exper-
imental observation of 2D turbulence ever reported. Recent measurements
in soap films yield similar results [71]. Numerical simulations starting with
some random field at wavenumber k; first show the onset of a k=3 energy
spectral range, when the enstrophy dissipation is maximum [9] [8]. However
the spectra tend to become progressively steeper as isolated vortices form,
see below.

Numerical simulations [16], as well as laboratory experiments [102], all
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indicate that enstrophy decays much less rapidly than the Batchelor’s pre-
diction in ¢=2 (the exponent found in various cases is in the range 0.3-1
instead of 2). This global decay is related to the spectral behavior in the
limit of small wavenumbers. Recent numerical simulations [80] allowing a
good resolution at small wavenumber confirms a behavior in k® predicted
with closure models [3]. This probably depends however on assumptions
on the initial condition [32]. In laboratory experiments such large scales
are clearly less universal, and more difficult to control than the small scale
behavior.

4.4 The emergence and evolution of isolated vortices:

The emergence of isolated vortices is a fascinating aspect of 2D turbulence.
This phenomenon has been first documented by Mc Williams [107], and
then obtained in many similar numerical computations. Most vortices are
monopoles but some dipoles, and even tripoles, can be temporarily formed.
Such vortex formation has been observed as well in laboratory experiments
with thin water layer [102] and more spectacularly in electron plasma exper-
iments [40], where the vorticity field is directly visualized as electron den-
sity. This organization can be explained in terms of statistical mechanics,
see section 5, as a local equilibrium around an initial vorticity maximum.

Once formed these vortices interact and merge, so they become fewer
and fewer, while their maximum vorticity only weakly decays. Therefore
they dominate more and more the background vorticity, which decays by
enstrophy cascade. Note that some contour dynamics computations [34]
indicate the possibility of formation of new secondary vortices of various
sizes by the reorganization of vorticity filaments resulting from vortex in-
teractions. Persistence of non-axisymmetric vortices is also observed in such
computations. These results are however not supported by electron plasma
experiments [75], as well as more classical numerical computations with in-
creasing resolution [8]: significant vortex formation only occurs during the
initial stage of organization from the random initial condition. Statistical
mechanics also indicates a general trend for merging and reorganization into
axisymmetric vortices.

The formation of organized vortices has a clear consequence in terms of
global statistics. In particular the Kurtosis Ku =< w* > / < w? >? con-
siderably increases with time: it is just the inverse of the area proportion
occupied by the vortices. Starting from a value Ku =3 characterizing the
Gaussian statistics of the initial condition, a typical value of Ku =50 can
be reached, which characterizes a highly intermittent field: the distribution
of vorticity levels has big “tails” corresponding to a significant probability
of finding vorticity values much larger than the vorticity root mean square.
Steepening of the energy spectrum beyond the k=2 prediction is also ob-
served to be associated with vortex predominance, while k=3 spectra are
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observed in regions outside the vortices [39].

The condition of formation of such organized vortices is still a debated
question. They are best observed for an initial condition spectrum with a
dominant peak, while a wideband range of scales (like a k~5/3 inertial range)
tends to prevent their formation. The conditions at large scales seem to have
a significant influence. The effect of the dissipation operator at small scale
is also important: the classically used hyperviscous operators can spuri-
ously enhance the vortex influence (the peak vorticity can increase), while
the usual viscosity makes then wider. “Contour surgery” methods lead to
different results as mentioned above. Well tested high resolution numerical
studies are still needed to make safe claims about the asymptotic inertial
limit, in particular about the statistical distribution of vortex strength and
size.

The evolution of the vortex population is an interesting theoretical issue.
At moderate Reynolds numbers, the vortices have all a similar size and
strength. At higher Reynolds numbers, vortices with different sizes coexist,
but their probability distribution seems to reach a steady shape [8], so that
further evolution is controlled in all cases by an increase of the typical vortex
radius r, and a decrease of the vortex number N. Power law evolutions
N x t=¢ and r, o t¢/*are observed for these quantities, while the typical
peak vorticity remains constant. The relation between the exponent for
vortex radius and vortex number is justified by the conservation of energy.
This indeed implies the conservation of the typical flow velocity, which is
induced by the vortices with a scaling in 7/l, where v o r2 is the vortex
circulation and | o« N~'/2 is the typical vortex separation. Therefore a
constant typical velocity indeed implies that Nr? o const. The total vortex
area Nr2 o< t7¢/2 | then decreases with time, so that some vorticity is
mixed away in the background during merging. Since enstrophy becomes
dominated by the vortices, this total vortex area is just proportional to the
enstrophy.

An exponent ¢ ~ 0.7 is obtained in direct numerical simulations [8] and
laboratory experiments [102], and it is reproduced by a model of “punc-
tuated dynamics” [14]: a set of N point vortices interact according to the
Kirchhoff equations (3.2,3.3), and a merging rule is used when two vortices
get closer than their radius. Such a model has been recently improved [94]
using a procedure of “numerical renormalization” to reach much longer evo-
lution times: after each merging, the domain of computation is increased,
introducing randomly a new vortex to keep the same vortex density. This
allows to keep a constant vortex number in the computations, while previous
methods required a very large initial vortex number to get good statistics at
later times. These calculations agree with the previous ones at early times,
but a progressive increase of the exponent £ is observed, with a final value

£=1.
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This final value can be understood by an elementary kinetic model,
considering vortices like atoms in ballistic motion. The rate of binary col-
lisions is then proportional to the square N2 oc t~2¢ of the vortex den-
sity, to the vortex size r, oc t¢/* (its cross-section of interaction) and to
the constant vortex velocity. This would imply dN/dt t—(7/1¢ g0 that
& = 4/3, clearly inconsistent with the results. However Sire and Chava-
nis [94] show that three-body collisions are necessary to get merging. Typ-
ically a vortex dipole (two opposite sign vortices) with separation o r, col-
lides with a monopole. In that case the pair translates at velocity v/rq o rq.
Assuming uncorrelated random pair formation, the density of dipoles is
o N x Nr2 (the vortex density multiplied by the probability of finding an-
other vortex at a distance o r,). The collision probability therefore becomes
dN/dt x N x N?r2 x r, x r, (the successive product of the vortex density,
the dipole density, the collision cross section r,, and the dipole velocity).
This yields the exponent & = 1.

This work therefore clarifies the problem of punctuated vortex dynamics.
Its practical relevance for 2D turbulence is however remote, as it is limited
to very large time scales and domain sizes, with accordingly extremely high
Reynolds numbers. Furthermore the question of energy spectra is open. As-
suming random uncorrelated point vortices completely determines in princi-
ple the statistics of the velocity field [20]. In particular the energy spectrum
is [78] in k=! for k > 1/I , where [ is the typical distance between vor-
tices (this can be understood by remarking that the Fourier transform of a
Dirac function is constant, leading to an enstrophy spectrum in k). There-
fore some correlations between vortex positions must occur to explain the
steeper spectra numerically observed. Statistical mechanics of point vor-
tices, beyond the mean field approximation discussed in section 3.4, should
be relevant there.

5 Equilibrium statistical mechanics and self-organization

5.1 Statistical mechanics of non-singular vorticity fields:

We have seen in subsection 3.4 that the statistical mechanics of point vor-
tices explains self-organization of 2D turbulence into large steady coherent
structures. However we have noted that the modeling of continuous flows
by point vortices leads to some difficulties. A solution to this problem has
been proposed by Kuz’min(1982), rediscovered and justified by Robert [85],
Robert & Sommeria [88], and independently by Miller [74]. This equilib-
rium statistical theory is performed directly on the Euler equations.’Then,

5 A similar statistical mechanics had been previously proposed [68] for the Vlasov equa-
tion used to describe the organization of galaxies with stellar dynamics. The analogies
with the Euler equations have been put forward only recently [25] [18]
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the standard procedure for Hamiltonian systems of particles is not available,
but the method is still justified (on a weaker basis) by a set of rigorous prop-
erties [90]. The result is again a steady solution of the Euler equations, on
which fine scale vorticity fluctuations are superimposed. The relationship
between vorticity and streamfunction is different that of the point vortex
model, and it is now quite consistent with the properties of the Euler equa-
tions with nonsingular vorticity.

e The macroscopic description:

The Euler equations are known to develop very complex vorticity filaments,
at finer and finer scales, and a deterministic (“microscopic”) description
of the flow would require a rapidly increasing amount of information as
time goes on. We are rather interested in some local vorticity average w.
However to keep track of the conservation laws, we need to introduce a more
precise “macroscopic” description, as the probability p(r, o) of finding the
vorticity level ¢ in a small neighborhood of the position r (this is a Young’s
measure in mathematical terms). The locally averaged vorticity field is then
expressed in terms of this probability density as:

w(r) = /p(r,o)oda (5.1)

This probability can be viewed as the local area proportion occupied by
each vorticity level o, and it must satisfy at each point the normalization
condition :

/p(r,a)do =1 (5.2)

and the associated (macroscopic) stream function satisfies in the fluid do-
main (D):
w=—-A¢y with =0 on (D) (5.3)

Note that since the streamfunction is expressed by space integrals of vor-
ticity, it smoothes out the local vorticity fluctuations, supposed at very fine
scale, so ¢ has negligible fluctuations.

It is then possible to express the conserved quantities as integrals of
the macroscopic fields. A first set of conserved quantities is the global
probability distribution of vorticity (o) (i.e. the total area of each vorticity
level):

1) = [ ole,o)s (5.4)

As a consequence the integral of any function of the vorticity is conserved
(the vorticity elements are just rearranged within the bounded fluid domain
as time goes on).
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The energy (2.16) is also conserved. As discussed above the streamfunc-
tion can be considered as smooth, so we can express the energy in terms of
the locally averaged vorticity:

- %/wd?r (5.5)

In a domain with rotational or translational symmetries, additional quan-
tities are conserved like the angular momentum in the disk, as discussed in
section 2.3.

¢ Entropy maximization:

As in usual statistical mechanics, for instance in section 3.4, we need to
determine the entropy (“counting” the associated microscopic states) of
a given macroscopic state. The macroscopic state which maximizes the
entropy, with the constraint of the conserved quantities, will be the most
likely to result from complex stirring. The expression of the entropy is the
usual mixing entropy,

S = —/p(r,a) In p(r, 0)d*rdo (5.6)

The difference with point vortices lies in the local normalization condition
(5.2): we count the possible rearrangements of small vorticity parcels which
exclude each other on a given area unlike point vortices.®

We therefore maximize the entropy with the constraints (5.4), (5.5) and
(5.2) due to the conserved quantities and to the normalization. This varia-
tional problem is treated by introducing the corresponding Lagrange mul-
tipliers 8, a(g), ((o) so that the first variations satisfy:

8S — B6E — / 0)dy(o do—/§ (/ ra)do>d2r:0 (5.7)

By analogy with usual thermodynamics, 5 can be viewed as the inverse
temperature and (o) the chemical potential of species o. Introducing the
expressions (5.6) and (5.5) of entropy and energy, (5.7) becomes [[Inp+1+
a(o) +((r) + Borp] 8p d?rdo = 0. This has to be satisfied for any variation
dp, implying that the integrand vanishes. The resulting optimal probability
density p(r,o) is therefore related to the equilibrium streamfunction v by

the relationship:
1
p(r,o) = 79(0)6_5"’” (5.8)

6This entropy can be further justified by considering the system as the limit of a series
of spectrally truncated approximations of increasing resolution [90].
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where g(0) = e () and Z = <),

This is like in the case of point vortices, the vorticity level o replacing
the elementary vortex circulation y. However the additional normalization
constraint (5.2) has to be satisfied at each point, which leads to :

2($) = / g(0)e "% do (5.9)

so that Z is a function of ¢, which we call the partition function by analogy
with usual statistical mechanics. The locally averaged vorticity (5.1) is then
expressed as a function of the streamfunction:

Jg(o)oe P¥do 1 8InZ
[g(o)e Bovde —  BZ Oy

W= = f3,4(¥) (5.10)

and the resulting flow can be calculated by solving the corresponding partial
differential equation:

“AY = f5,() with ¢ =0 on (9D) (5.11)

Like in the point vortex case, random mixing yields a steady solution of the
Euler equations once the local vorticity fluctuations have been averaged.
The parameters 5 and g(o) are indirectly determined by the conservation
laws, and we call the resulting solutions of (5.11) the Gibbs states. This is
only a necessary condition for a true statistical equilibrium: in addition the
second variation of the entropy must be negative. A good way to select such
maxima is to use a relaxation algorithm which increases the entropy while
preserving the conserved quantities. The relaxation equations of section 6
fulfil this goal, provided an appropriate discretization is implemented. A
relaxation algorithm in discrete steps has been also implemented [106].

5.2 The Gibbs states:

e Case of vortex patches:

In the case of an initial condition made of patches with vorticity 0 or a, we
can write p in terms of the Dirac distribution ¢ as p(o,r) = p(r)d(,—a) +
(1—p(r))é(,) involving the local area proportion p(r) of the level a and the
complementary 1 — p for the level 0. Then the result (5.11) reduces to

e—Bay

AV=va=q—rm1nr———
Y = pa ago-l-e*ﬁ‘“l’

with ¢ =0 on (JD) (5.12)
Making a formal analogy with quantum gas statistics, this can be called
a Fermi-Dirac distribution by contrast with the Boltzmann relation (3.10)
for point vortex statistics. Similarly the local exclusion of the vorticity
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patches results in a saturation of the vorticity at the unmixed value a, when
exp(—pBay) > go . In the opposite limit, the relation (5.12) reduces to the
point vortex result (3.10). We call it the dilute limit [88] as it corresponds
to a small initial vorticity area which has been diluted among the dominant
irrotational fluid.

For practical calculations in the more general case, the initial vorticity
field has to be discretized in vorticity levels, so that the function fz, can
be expressed by sums of exponential terms at both numerator and denom-
inator. The result generally converges already well when just a few levels
are used.

An example of statistical equilibria is represented in Fig. 14. The geom-
etry is a channel, with periodic boundary conditions along z (which can be
viewed as a simplified representation of an annulus). The mixing of a single
level vorticity patch with a given initial area A is considered (here A =1/10
of the total surface). The accessible energy is then restricted between a
lower and an upper bound. At the lower bound, the vorticity is pushed to
the walls, without any possibility of mixing, so the entropy remains equal to
zero. At the upper bound, mixing is also forbidden, and the vorticity forms
a central patch. This state breaks the translational symmetry. The branch
of z-independent states has lower entropy and is not a maximum beyond
the bifurcation (it is numerically obtained by suppressing all x-dependent
perturbation). The entropy versus energy has a bell shape curve, whose
slope is the inverse temperature 3, equal to +oc at the low energy bound
and to —oo at the high energy bound. Between these two bounds, the en-
tropy reaches a maximum with 8 = 0, corresponding to a complete mixing,
with a uniform coarse grained vorticity.

The point vortex mean field equilibrium is obtained from the present
result by taking the limit of a small area A (for a fixed energy). An explicit
family of solutions is then available in this channel geometry: the Stuart
vortices [98]. This point vortex statistics leads to a similar bell shaped
curve (like in Fig. 7), but without energy bound: the vortices can concen-
trate without limit, in contradiction with the conservation of the maximum
vorticity.

Note that for negative temperature states, the equilibrium structure is
self-confined along the transverse direction by energy conservation. The
lateral walls have no influence (unlike in the jet case with zero global cir-
culation represented in Fig. 8). In contrast the z wise periodicity sets the
scale of the bifurcated vortex state. The Gibbs state equation (5.12) has
also solutions with smaller z-wise periods, but they are not entropy max-
ima: the largest scale is always preferred, which justifies the tendency for
vortex merging and growth of the free shear layer.

e General properties of the Gibbs states:
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Fig. 14. Statistical equilibrium for an initial single level vorticity patch in a chan-
nel with periodic conditions along z (from [106]). The entropy is plotted versus
energy, and representative vorticity fields @ are given (isovorticity contours). For
sufficiently high energy, vorticity clumps in a large vortex, breaking the transla-
tional symmetry.

For any global distribution (o) of vorticity levels, the accessible energy is
restricted between a lower and an upper bound [13]. At the upper bound,
any vorticity mixing is forbidden, and the entropy remains equal to zero,
with an inverse temperature § = —oc. The behavior at the lower bound
depends on the total circulation I'. For a non-zero circulation, the entropy
versus energy has a bell shape curve, as in Fig. 14. At its maximum, § = 0,
the coarse grained vorticity is uniform. With I' = 0, a state of zero energy
can be reached, with complete mixing, @ = 0, so the entropy is maximum
for E = 0. It decreases with increasing energy, so the inverse temperature
B is always negative. This is the case for instance in a doubly periodic
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domain, for which T' = 0 by construction.

General properties of the function fs , can be shown [88]. First of all it
is always bounded between the minimum and maximum values of the initial
vorticity, which is expected since the vorticity @ results from a mizing of
the vorticity levels. Secondly f3,, is always a monotonic function of . This
is most easily shown by differentiating the expression (5.10) of fgz,, , which
yields an expression for the local enstrophy”

o[9[ gl)re T, 1
S = T e rrds  Tyloeds ) = gl
(5.13)

Since ws > 0, the derivative fé’g is of the sign opposite to 3 : fg,4 is an
increasing function for negative temperature and a decreasing function for
positive temperature.

It can be shown [88] that the Gibbs state equation (5.11) has a unique
solution for 8 larger than a negative bound, so there is no bifurcation, in
particular for § > 0. The Gibbs state is then nonlinearly stable in the sense
of Arnold. In practice stability is observed in all cases for the maximum
entropy states, but there is no available demonstration in the presence of
bifurcation. The statistical equilibria are also stable in all cases with respect
to further mixing [88] : if we smooth out the fluctuations, taking @ as the
new initial state, the final state remains unmixed.

*Linearized cases and minimum enstrophy:

Near the maximum of the entropy versus energy, # ~ 0, so one can
linearize the function f3,, and (5.11) becomes a linear (Helmholtz) equa-
tion. This “limit of strong mixing” provides nice possibilities for analytical
results and classification of the bifurcations [21] [23]. Furthermore, the
Gibbs state then depends only on the normalized energy E/T's and circu-

lation F/F;m. Expansion of fz, in powers of ¢ can be performed, and
each successive term depends on successive higher moments of the vorticity.
Therefore the statistical equilibrium for strong mixing does not depend on
the detail distribution of the vorticity levels (only on the normalized energy
and circulation), but it becomes more and more dependent as the mixing is
prevented by energy conservation.

There is also a different possibility for obtaining a linear relationship
fs 4 between vorticity and streamfunction. It corresponds to a Gaussian
function g(o), as easily checked by substitution in (5.10). It corresponds
to a particular distribution of vorticity levels v(o), which depends on the
energy.

"This can be viewed as a relation between fluctuations and polarizability, like in
magnetism [24]. Similarly the successive moments are related to the successive higher
derivatives of fg 4 [12].
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A linear relationship between vorticity and streamfunction is also ob-
tained by a principle of “minimum enstrophy” [62] or “selective decay” [45].
The rational is that the enstrophy decays in the limit of small viscosity,
while energy, and possibly other robust integrals like the angular momen-
tum, remain constant. Then a natural idea is that the system evolves until it
minimizes its enstrophy for a given energy (and possibly other constraints).
This yields a linear relationship between vorticity and stream function. This
prediction is good in some cases, but not of general validity. For instance
in the case of electron plasma, with vorticity always positive (proportional
to the electron density), this can yield spurious negative vorticity, in the
absence of an additional constraint [11]. The point of view of the statisti-
cal theory is that part of the initial enstrophy I'y is irreversibly transferred
into fine grained (microscopic) vorticity fluctuations, so that the final coarse
grained enstrophy I's? = (1/2) [@?dr is always smaller than I's,

1 1 [— 1 [ —
ry? = 3 /52d2r =3 /w2d2r ~5 /(o.;2 —w?)d’r < Ty (5.14)

However I's? is truly minimized only in the linearized cases. In conclusion,
a minimum enstrophy principle appears as a particular limit of entropy
maximization, either in the limit of strong mixing either in the Gaussian
case (see [21] for details).

5.3 Tests and discussion:

A first test of the statistical mechanics predictions is shown in Fig. 15 by
comparison with numerical simulations of the Navier-Stokes equations at
low viscosity. The shear flow in a channel with periodic boundary condi-
tions develops vortices which self-organize in a steady flow after complex
evolution. When plotted on a scatter-plot of the vorticity versus stream-
function, the points of the field collapse on a curve, confirming that the
flow approaches a steady solution of the Euler equations (although a slow
decay persists due the small viscosity). The global flow structure indeed
corresponds to what is predicted by statistical mechanics, as shown in Fig.
14. Moreover, a linear relationship is obtained in the vortex core between
Inw/(a — w)] and 9, where a is the vorticity of the initial vorticity strip.
This linearity is equivalent to (5.12). We observe however that the agree-
ment is limited to the region of active stirring and that little mixing occurs
outside. As a consequence, the maximum vorticity remains a little larger
than predicted.

Similar results have been obtained for the usual vortex merging [33].
For a jet in a channel, the states (DD) and (VC) predicted in Fig. 8 have
been remarkably checked by numerical simulations [53]. In a laboratory
experiment, the organization into a single vortex by merging of a few ini-
tial vortices has been correctly predicted, while discrepancy progressively
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Fig. 15. Test of the statistical mechanics prediction (5.12) from direct numerical
simulations of the Navier-Stokes equations (from [98]).

arises after successive merging events [70]. Similar conclusions arise from
comparisons with simulations of turbulence in a periodic domain [10].

An explanation of this discrepancy is that viscosity modifies the distribu-
tion of vorticity levels in zones of strong strain. Under the effect of a strain
s, we can estimate that the scale n of a vorticity structure exponentially de-
creases 11 = ng exp(—st), until smoothing occurs by viscous diffusion. This
happens when the diffusion time n?/v equals the straining time s~!, so
that 73 exp(—2st) = v/s. Estimating s ~ U/L and 1y ~ L from the large
scale L and typical velocity U, we find that viscosity is influent after a time
t = (2s)"!In Re, which increases only logarithmically with the Reynolds
number Re. In contrast the time for reaching the statistical equilibrium
is controlled by vorticity, so that the prediction will be good only in zones
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where vorticity dominates strain, in the vortex core. The range of validity
of the statistical theory is expected to improve with increasing Re, but only
logarithmically.

Capel and Pasmanter [12] have recently proposed a model to take into
account the modification of vorticity levels by a weak viscosity. In a differ-
ent attempt, Turkington [105] has proposed to keep only the vorticity ex-
trema as conserved quantities in the statistical theory, instead of the whole
distribution of vorticity levels. Finally, Chavanis and Sommeria [23] have
introduced the concept of “restricted statistical equilibrium”, maximizing
entropy in a “bag” with free boundaries. It is assumed isolated from the
outside irrotational flow by kinetic restriction to mixing, due to vanishing
fluctuations (see next section). The organization into steady dipoles, like
observed in Fig. 5, can be explained by this method. Entropy maximization
would indeed make the dipole spread to infinity in the absence of restriction
(while the monopoles are self-confined by energy conservation).

In laboratory experiments, boundary layer detachment can bring vortic-
ity in the fluid interior and consequently modify the statistical equilibrium.
This effect is striking in spin-up experiments in a rectangular container [47].

The formation of vortex lattices in an electron plasma disk [40] seems
also in contradiction with the statistical theory: calculations with a sin-
gle non-zero vorticity level predict merging in a single vortex. However,
if the vortices are taken as given objects, their interaction with the back-
ground vorticity is remarkably described by statistical mechanics: both the
lattice geometry and the density field in the background are quantitatively
accounted [51]. These vortex lattice are probably meta-stable equilibrium
states (local entropy maxima) with three vorticity levels: 0, an intermediate
level in the background and the strong vortex cores. A slight change in the
initial condition makes them organize in the main equilibrium state with a
single vortex.

In conclusion, although various restrictions can prevent reaching the
true statistical equilibrium, complex stirring clearly tends to increase the
entropy, whose expression (5.6) is supported by many arguments. This will
be used in next section to model the evolution of 2D turbulence.

6 Eddy diffusivity and sub-grid scale modeling

6.1 Thermodynamic approach:

Diffusion processes are classically considered as a relaxation toward statisti-
cal equilibrium. The linear non-equilibrium thermodynamics states that the
fluxes driving the system toward equilibrium are proportional to the gradi-
ent of the thermodynamic “potentials”, for instance species concentration.
We use a similar idea [89], expressed by means of a “Maximum Entropy Pro-
duction” (MEP) principle, to drive eddy fluxes for 2D turbulence. The goal
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is two-fold: to compute the statistical equilibrium corresponding to a given
initial condition, and to propose a subgrid-scale modelling for computations
of the actual flow evolution with coarse resolution (LES).

Like for equilibrium states, the flow is described in terms of a local prob-
ability p(r,o) of vorticity levels o at position r. However this probability
is now assumed to evolve with time. The conservation of vorticity levels is
written in terms of a transport equation for p, by both the explicit velocity
u and an eddy flux J due to the subgrid-scales:

Op+uVp=-V.J , withJn=0, ondD (6.1)

At the wall the normal eddy flux 7.n must vanish due to impermeability.
The explicit velocity u derives from the streamfunction ¢ by (2.5), and its
curl is equal to w, related to the field p by

—AYp=w= /Upda, with ¢ = 0 on 0D (6.2)

We can deduce from (6.1) an equation for the locally averaged vorticity
w by integration over the vorticity levels o,

ow +uVw = -V.7, (6.3)

where we have introduced the vorticity flux
Jo = /Ujda' (64)

We are mostly interested in the field @, as the local fluctuations are in
practice sensitive to viscous effects, but we cannot directly close (6.3) and,
like for equilibrium states, we need to work with the probabilities p, solving
the equations (6.1) .

Of course we first need to determine the flux 7. We first express the rate
of entropy increase, by time differentiating (5.6), expressing d;p by (6.1),

and noting that pln p is conserved by the advective term,
S=- / J.V(ln p) d*rdo (6.5)

In order to relax toward statistical equilibrium, the entropy must clearly
increase with time.

In fact we determine J such that, for a given field p at each time ¢,
J mazimizes the entropy production S , with the appropriate dynamical
constrains, which are:

-the conservation of the local normalization (5.2), implying

/ Tdo =0 (6.6)
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-the energy conservation expressed from (5.5) and (6.3) as

_ /j.wd?r ~0 (6.7)

- a limitation on the eddy flux 7, characterized by a bound C(r), which
exists but is not specified.

/—do < Cr) (6.8)

A justification of this choice is that the quantity J/p can be considered
as the velocity producing the flux J, so the integral [ p(J/p)®do is the
total energy of this diffusion velocity, a natural quantity to bound. Another
justification is that it yields results consistent with the classical approach
of linear non-equilibrium thermodynamics [89].

This variational problem is treated by introducing (at each time t)
Lagrange multipliers, denoted ((r),,1/Ag for the three respective con-
straints. It can be shown by a convexity argument that reaching the bound
(6.8) is always favorable for increasing S, so that this constraint can be
replaced by an equality. Therefore the condition

2
57 d’rdoc = 0  (6.9)

55 — /g(r)aj drde — BOE + /AEl( o

must be satisfied for any variations 6.7 (o r), which yields

J = —Ag(r,t) [Vp+ Bplo —w)VY]. (6.10)

The Lagrange multiplier {(r) has been eliminated, using the condition (6.6)
of local normalization conservation.

The first term in the eddy flux (6.10) represents a usual diffusion: the
flux of the quantity p is proportional to its gradient. The second term
states that vorticity diffusion is constrained by the energy conservation of
the induced flow: vorticity is not a passive quantity. Remembering the
analogy of ¥ with an interaction potential, this second term can be called
a drift term, with a flux proportional to the “force” Vi), like sedimentation
in a gravitational field.

At equilibrium, the flux must vanish, so the drift term balances diffusion.
One can check that this yields again the Gibbs state (5.8), with § the corre-
sponding inverse “temperature”. During flow evolution this quantity varies
and is determined by the condition of energy conservation. Introducing
(6.10) in the condition (6.7) of energy conservation, we indeed obtain,

[ Ap(V®).(Veh)d>r
[ Ag(Vi) wadr

B=-— (6.11)
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Fig. 16. Instability and final organization of a vorticity strip in an annular chan-
nel (at three successive times from left to right). The relaxation model (top), with
low resolution (4000 grid points), is from T. Dumont, Laboratoire d’Analyse Num-
rique, Univ. Lyon. It is compared with a direct numerical simulation [69](bottom).

where wy = w2 — % = [0?pdo — ([ opdo)? is the local enstrophy.

We have thus obtained a complete set of dynamical equations (6.1,6.2),
(6.10,6.11), which exactly conserves the distribution of vorticity levels and
energy. This system relaxes to statistical equilibrium at an optimum rate.
We can express the entropy production (6.5) as S = [ J?(Agp) 'd*rdo
so the eddy diffusivity Ag must be positive to satisfy the condition of en-
tropy increase. Except for its sign, the diffusivity is not determined by this
thermodynamic approach: it is related to the unknown bound (6.8) on the
flux.

These relaxations equations are suitable to calculate the statistical equi-
librium resulting from any initial condition. Once numerically implemented,
it provides a convenient way to solve the Gibbs state equation (5.8) with
the appropriate constraints. Furthermore it selects an entropy mazimum
among these solutions, since it is obtained by an entropy increase.®

81t can be proved that stable steady solutions of the relaxation equations are indeed
entropy maxima (P.H. Chavanis, in preparation)
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For practical implementation, the simplest case is the evolution of vor-
ticity patches with only one non-zero vorticity level ¢ = a. Then we have
only one equation (6.1), and the vorticity is proportional to this density,
w = pa. Fig. 16 shows an example of the evolution of a vortex ring in
an annulus, compared with a high resolution numerical simulation of the
same process. Although the relaxation equation smooths out the local vor-
ticity fluctuations, it correctly handles the large scale dynamics. Moreover
the final vortex remains in its statistical equilibrium, without any further
diffusion. Comparisons with direct numerical simulations (DNS) in vari-
ous cases, with both positive and negative vorticity patches (formation of
dipoles and tripoles) show good agreement [86].

For general initial conditions, one has to discretize the vorticity levels o
(in practice good convergence is already obtained with a few levels). The
vorticity flux can be directly calculated by integration of (6.10) over the
vorticity levels, J, = —Ag(r,t) [V + Bw2V1], but the local enstrophy
wy itself depends on the transport of the probability distribution p. An
eddy flux of momentum, in Ag(r,t) [V?u — fwau], is also associated [24].

These relaxation equations have the advantage of being fully consistent
with the properties of the Euler equations, and the comparison with DNS
is quite good. While their justification by the MEP principle is somewhat
philosophical, a more precise justification has been obtained by kinetic ap-
proaches, discussed in next section. These approaches provide estimates of
the diffusion coefficient Ag, and justify the presence of the drift term, but
they also stress some limitations.

Other limitations can be seen from the structure of the equations them-
selves. A first difficulty is that the constraint of energy conservation is only
global. This is reasonable, due to the long range vortex interactions, but
in a very large domain we expect that two sub-systems will evolve inde-
pendently. The integral condition (6.11) should be replaced by a more local
condition (the temperature should not remain uniform but diffuse with time
toward an equilibrium). Furthermore the equations are not invariant by a
change of reference frame, which is again problematic in a large domain.
The MEP has been extended [22] to solve all these difficulties, but the
model is more complex and has not been numerically implemented. Fur-
thermore it involves additional unknown diffusivity coefficients for energy
and momentum.

6.2 Kinetic models

The relaxation equations were justified in previous section by thermody-
namical arguments, without discussing the mechanisms. Further insight
has been recently provided by kinetic models inspired from the analogies
with stellar systems and plasma physics [18].

A first approach is provided by the point vortex model, which has the



54 The title will be set by the publisher.

advantage of fitting in the standard framework for N-body statistical me-
chanics. The vortices are assumed randomly positioned with the density
close to the mean field statistical equilibrium. Each vortex diffuses by the
random close encounters with the other vortices. Moreover each vortex
induces a velocity field (added to the dominant mean field) which systemat-
ically displaces all the other vortices in its neighborhood. Chavanis [17] finds
that the induced displacement (like a polarization effect in electrostatics)
reacts back on the considered vortex. It results in a drift, in —AgBoV,
explaining the second term in the flux 6.10 (in the diluted case o > w for
which the point vortex approximation applies). At negative temperatures,
the drift tends to attract together like-sign vortices, and its effect exactly
balances diffusion at equilibrium. Both effects are proportional to the same
coefficient Ag which can be explicitly calculated. Such a correspondence
between the drift coefficient (friction) and diffusion is quite general, it is
similar to the Einstein formula for the Brownian motion®.

Coming back to non-singular vorticity fields, we can classically make a
decomposition of the Euler vorticity equation (2.6) into explicit and implicit
parts, w = w+w. We assume that @ is an ensemble average, which therefore
commutes with the spatial derivatives. In particular a fluctuating velocity
u(r) = [@(r)K(r — r')d?*r’ is induced by these fluctuations, where the
Kernel K(r —r') expresses the velocity induced at point r by a unit singular
vortex at position r', K(r—r') = (1/27)e, x (r —r')/|r —r'|2 plus the effect
of the image vortices near the boundary). Assuming fluctuations with a
short (Lagrangian) correlation time 7., the diffusion coefficient is classically
given as Ag = (1/4)7.4% (Taylor, 1921). From the previous expression of
u, we get

a2 = /of;(r’)rl;(r”)K(r — 1) K(r —r')d’r' (6.12)

Assuming a short correlation length e for the vorticity, @(r’)o(x") =

€20(r')26(r' — '), we can write a local approximation of (6.12), assuming
o(r')? ~ o(r)?, a(r)? = 2o(r)? feL(Zﬂ'r’)’ldr’. We find that the vorticity
fluctuations at all scales contribute equally to the local velocity fluctuations,
and we have arbitrarily cut the integral between € and the domain scale L.
Nevertheless the result, in In(L/e), depends only weakly on these bounds,
so the local approximation yields a reasonable estimation,

2
Ap = Tk

o In(S )02 (6.13)

The diffusivity is proportional to the local enstrophy ws = @2 and in-
creases with the scale €, typically the cutoff scale. The correlation time 7,

91n this diluted case o >> @ (or point vortex statistics), the relaxation equations are
equivalent to Fokker-Planck equations describing diffusion with drift in a potential ¢
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can be estimated as w;1/2, the time scale of the local fluctuations, or as
the inverse of the strain rate of the explicit flow. Both times are of the
same order as the global time scales, so that the short correlation is only
marginally justified, like the local approximation made above. In any case,
the diffusivity vanishes for weak local enstrophy fluctuations w,. This ex-
plains to some extent the existence of the ”restricted statistical equilibria”
mentioned above: relaxation toward equilibrium is efficient inside the active
region but weak mixing occurs at the periphery, due to the vanishing of the
vorticity fluctuations.

Chavanis [19] has proposed a more precise analysis, which furthermore
provides the drift term in addition to diffusion. He starts from the equations

oW+ Lw=—-V.aw , with L=V (6.14)

0w + Lw = —uVw (6.15)

similar to the quasi-linear approximation made in plasma physics. The first
one is the classical Reynolds averaged Euler equation (2.6), with an eddy
flux J = uw. The second one is the equation for the fluctuations w = w—w,
neglecting two terms,—uVa and uV®, assumed of weak influence on @. In
contrast UV@ builds up the eddy flux with a term 8,0 = u2 V@ producing
diffusion in (6.14).

Assuming again a delta-correlated vorticity field, Chavanis [19] finds an
eddy flux and a drift term as integrals over the Lagrangian trajectories of
the explicit flow w. Quite remarkably, the resulting kinetic equation satisfies
a H-theorem: the entropy (5.6) always increases with time. This result pro-
vides a new, independent, support of the statistical equilibrium approach.
The expressions of the flux are in general non-local in time and space. They
reduce to the local flux (6.10) only close to equilibrium. Therefore, the relax-
ation equations obtained by the thermodynamic approach provide the right
tends, but are probably of limited accuracy to describe the flow evolution.

The initial hypothesis of random fluctuations is not easily justified, in
contrast with 3D turbulence. Some simulations suggest that the implicit
scales are mostly strained by the large scales, which suggests to defined
w as a filtered field rather than an ensemble average. Then new terms
appear [61] in (6.14) and (6.15). Nevertheless, on longer time scales, chaos
should develop and the probabilist approach may be more appropriate to
capture the long time trends of the system.

7 Conclusions:

Our knowledge of 2D turbulence has made great progress in the last ten
years, due in particular to the availability of high resolution computations.
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Fig. 17. Wake behind a knife blade in a soap film, the flow comes from the left,
(from M. Rutgers, 1996 (http://www.physics.ohio-state.edu/ maarten).

Simulations at resolution 40962 are now currently available, and simulations
at resolution 5122, which were at the forefront of research ten years ago, are
accessible on a good home computer. In spite of this great progress, with
a growing consensus on some aspects, many results are still under debate.
There is a need for careful computations at still higher resolution, compar-
ing various numerical methods, initial and forcing conditions. One possible
reason for the observed discrepancy may be that truly asymptotic results,
forgetting the details of the initial conditions, require a very long time and
high Reynolds numbers. The results on punctuated vortex dynamics dis-
cussed in section 4.4 support this point of view.

Nevertheless some robust results are obtained in laboratory experiments.
Many results of 2D turbulence seem to be remarkably insensitive to weak 3D
perturbations, which are always present to some extent. The availability of
various laboratory experiments has been a strong motivation for the recent
rise of interest and progress in 2D turbulence.

The course has been focused on two fundamental aspects, the spectral
cascades and the self-organization into coherent structures. The double-
cascade theory of Kraichnan has received a remarkable confirmation by ex-
periments and simulations. A new approach [38], adapting field theoretical
methods developed for the passive scalar, brings a rigorous support to the
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enstrophy cascade forced by random large scale motion. Concerning the
inverse cascade, the quasi-Gaussian statistics raises also hope for a deeper
theoretical insight. In contrast with the forced case, the freely decaying tur-
bulence progressively deviates from the classical enstrophy cascade law, as
coherent vortices emerge and become more and more isolated, increasing the
intermittency. The statistics and kinetics of this vortex system represents
challenging problems of current interest.

The self-organization into coherent structures is well explained by sta-
tistical mechanics of vorticity. This theory provides good predictions in
cases of rapid stirring, checked in both numerical simulations and labora-
tory experiments. Although various limitations can prevent the system for
reaching true equilibrium, it still reveals the trends of the evolution. This
provides new ideas for developing LES adapted to the peculiar properties of
2D turbulence. It supports the use of an ordinary (positive) eddy viscosity,
whose energy dissipation is compensated by a drift term, acting at large
scale. At statistical equilibrium these two terms balance each other. These
results have been recently further justified in terms of kinetic models, but
the diffusion flux and drift appear in general as integrals over space and
previous times, rather than local effects.

Many questions about 2D turbulence have been left aside. The prob-
lem of predictability is for instance of great interest for applications to the
atmosphere, see e. g. [64] for a discussion using closure models. Lorenz
first addressed this question with severely truncated spectral models, the
only models accessible to simulation at that time, and found his famous
“butterfly” effect: the exponential growth of errors associated with chaos
in low dimensional systems. However when all the degrees of freedom are
recovered, a new regularity occurs, of statistical nature, as illustrated by
the formation of organized structures at statistical equilibrium. Then the
butterfly effect disappears [87].

The transport of a scalar is another important subject not discussed
in this course, but with active recent theoretical progress both in 3D and
2D (see [38]). In fact most results and questions in usual turbulence have a
counterpart in 2D, for instance in the classical shear flow problems. Channel
or plane boundary layer flows are stable in the 2D case. By contrast the
boundary layer detachment, with Kelvin-Helmholtz instability and vortex
roll-up is basically a 2D process. Its analogy with decaying homogeneous
2D turbulence has been stressed [65]. Jets or wakes tend to organize in
dipoles [31], and Fig.17 shows the fascinating structure of the wake behind
a knife in a soap film. Understanding the role of these coherent structures
in the global statistics of these 2D flows may be helpful for the 3D cases.

Many results in 2D turbulence can be relevant to a rotating and density

stratified medium, like occurring in atmosphere, oceans, and even proto-
planetary disks [7]. The statistical mechanics approaches of section 5 and 6
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have been extended to the quasi-geostrophic model [50] [73] [99], with appli-
cation to the Great Red Spot of Jupiter [6]. Extension to the more general
shallow water system [24] can be readily applied to multilayer (isopycnal)
models used in oceanography.

One should finally note the fascinating analogies with different physical
systems. We have seen above that an electron plasma in a magnetic field
satisfy the 2D Euler equations. A neutral plasma can be described by
more complex 2D models, in analogy with some geostrophic planetary flow
problems. The Vlasov equation, for plasma or stellar systems, has also
formal analogies [25] [18] with the Euler equation, but in the 6D phase
space rather than in 2D. These analogies are further motivations to better
understand 2D turbulence.
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