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TWO-DIMENSIONAL TURBULENCEJoel SommeriaLEGI/CORIOLIS, 21 avenue des Martyrs, 38000 Grenoble, Fran
e.sommeria�hmg.inpg.frhttp://www.
oriolis-legi.orgContents1 Introdu
tionCourses on turbulen
e generally begin with the deli
ate question of de�ningturbulen
e. As usual for important 
on
epts, a 
lear
ut de�nition is notpossible,and the problem is still worse for two-dimensional (2D) turbulen
e. It
an be said that turbulen
e is a 
ow whi
h is disordered in time and spa
e.The following properties more pre
isely 
hara
terize turbulen
e, see for in-stan
e Lesieur [64℄-Unpredi
tability of 
ow realization , in the sense of ampli�
ation ofsmall errors (but the statisti
al properties are generally quite reprodu
ible).-Continuum 
ow phenomena, governed by the equations of 
uid me-
hani
s (whi
h ex
ludes for instan
e Brownian motion), and dominated byadve
tive inertial e�e
ts (whi
h ex
ludes random wave phenomena, domi-nated by some restoring for
e).-Intera
tion of a wide range of eddy s
ales (spatial 
omplexity), whi
himplies high Reynolds numbers and ex
ludes 
haos of low-dimensional dy-nami
al systems.-In
reased mixing properties for transported quantities (e.g. 
hemi
als,heat)Then 2D turbulen
e is naturally de�ned as a turbulent 
ow dependingonly on two spa
e 
oordinates x; y or alternatively as a 
ow 
on�ned to asurfa
e (whi
h does not need to be plane, for instan
e a sphere). In theformer 
ase, there is a possibly non-zero third velo
ity 
omponent uz, alongthe z dire
tion, but independent of z. Then the equation of motion states
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4 The title will be set by the publisher.that this velo
ity 
omponent is passively transported (like the 
on
entra-tion of a 
hemi
al) by the 
ow ux; uy in the plane, so this third velo
ity
omponent 
an be ignored in the theoreti
al des
ription.Two additional properties are often 
onsidered in de�ning turbulen
e(see e.g. Tennekes and Lumley [103℄): the existen
e of strong vorti
ity 
u
-tuations and strong energy dissipation. Although vorti
ity dynami
s is alsoessential in 2D turbulen
e, there is no me
hanism of vorti
ity ampli�
ation.We shall see in se
tion 2 that as a 
onsequen
e energy dissipation is forbid-den in the limit of small vis
osity: this is the main dynami
al signature ofa 2D turbulen
e dynami
s. In that sense, 2D turbulen
e is quite di�erentfrom usual turbulen
e, but still the de�ning properties listed above 
an besatis�ed in two dimensions.

Fig. 1. Grid turbulen
e in a soap �lm (from M. Rutgers, 1996(http://www.physi
s.ohio-state.edu/~maarten). The 
uid is moving from left toright, at velo
ity 2 m/s, a
ross the 
omb with mesh 0.3 
m, while the total widthis 4 
m. Visualization is provided by interferen
e fringes due to small 
u
tuationsof the �lm thi
kness (this is like the 
olor patterns in usual soap bubbles). Thein
rease of turbulent s
ale with distan
e to the grid is 
learly visible, and it hasbeen measured by laser Doppler velo
imetry [71℄ . Note that this te
hnique forprodu
ing 2D turbulen
e has been �rst developed by Couder [30℄The very existen
e of 2D turbulen
e has been questioned in the past.It has been 
onsidered as \a statisti
al extension of XIX th 
entury 
uiddynami
s", limited to ideal 2D 
ow problems remote from the real phys-i
al world. Indeed the two 
ases of 2D turbulen
e 
onsidered above may



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 5seem at �rst sight equally unrealisti
: z independent 
ows are (by de�ni-tion) unstable when they be
ome turbulent, and develop three-dimensionalinstabilities, while 
on�nement to a thin layer requires external for
es asso
i-ated with severe fri
tion e�e
ts or other perturbations. At the beginning of a
lassi
al review paper on 2D turbulen
e by Krai
hnan and Montgomery [58℄,20 years ago, it was said that \Two-dimensional turbulen
e has the spe
ialdistin
tion that it is nowhere realized in nature or in the laboratory but onlyin 
omputer simulations". Sin
e then, laboratory realization have been ob-tained for an astounding variety of physi
al 
on�gurations: thin liquid �lms(Fig. 1), 
ows in rotating tanks, liquid metal 
ows or ele
tron plasma inthe presen
e of a uniform magneti
 �eld. Observations of eddy �elds in theo
ean, or in Jupiter's atmosphere (Fig. 2) provide a strong motivation forstudies of 2D turbulen
e. These systems are more 
losely approa
hed by 2Dturbulen
e 
on
epts than the Earth atmosphere, for whi
h the thermal for
-ing and the fri
tion by 3D turbulen
e in the boundary layer have importantin
uen
e (see [66℄ for a re
ent dis
ussion of the relevan
e of 2D turbulen
eto the Earth atmosphere). The existen
e of 
oherent eddies like the GreatRed Spot is a striking feature of 2D turbulen
e, as dis
ussed in se
tions 3.4and 5. Of 
ourse 2D turbulen
e 
an be only an approximation of reality,but the theoreti
al 
on
epts developed for this ideal 
ase appear more andmore useful in understanding the strange properties of turbulen
e in somereal 
ows, and they 
an provide quantitative predi
tions.Another diÆ
ulty for observing 2D turbulen
e, even for an ideally 2D
ow dynami
s, is that the onset of turbulen
e is not guaranteed: for in-stan
e simple shear 
ow, like Poiseuille 
ow, remain stable at any Reynoldsnumber, whi
h is never the 
ase in usual turbulen
e: all 
ows be
ome turbu-lent at suÆ
iently high Reynolds number, and rea
h a seemingly universalKolmogorov regime. Therefore the in
uen
e of the for
ing me
hanism, orinitial 
ondition, is more important than in usual, 3D turbulen
e. It mustbe further remarked that 2D turbulen
e tends to eventually organize intosteady 
oherent 
ows, loosing the unpredi
tability 
hara
ter. However thisorganization is itself the result of spatial 
omplexity and mixing o

urringin a transient stage.Beside its pra
ti
al relevan
e, a strong in
entive to study 2D turbu-len
e is its strange statisti
al properties, whi
h were re
ognized in the earlytheoreti
al studies, in parti
ular by Onsager (1949) [79℄ and Krai
hnan(1967) [56℄. The 
onservation of vorti
ity by 
uid parti
les prevents theenergy 
as
ade towards small s
ales (see se
tion 4), resulting in the 
onser-vation of energy in the limit of small vis
osity, in strong 
ontrast with 3Dturbulen
e. The 
ow organization into steady 
oherent stru
tures is alsoa remarkable feature of 2D turbulen
e, as already mentioned. A reason-able understanding of 2D turbulen
e is a prerequisite before studying more
omplex turbulen
e problems in atmospheri
 or o
eani
 
ontexts.
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Fig. 2. The Great Red Spot (top) and White Oval (bottom) of Jupiter are largevorti
es remaining remarkably 
oherent among turbulent eddies, as seen here bythe Voyager 1 spa
e
raft in February 1979. The length of the Great Red Spotis 22 000 km. The mean zonal 
ow made of alternating jets is probably deeplyrooted in the 
uid planetary interior, while the observed turbulen
e is limitedto a shallow a
tive layer, dynami
ally separated from below by a stable densitystrati�
ation. This observation of a very a
tive turbulen
e, made visible by 
loudmotion, was a great surprise due to the weak available for
ing. The high velo
ities
an only be explained by assuming that the dynami
s is fundamentally 2D, withnegligible energy dissipation (although it is of 
ourse a layer-wise 
omplex system),as shown by the following arguments. The observed 
louds are at a pressure level3 bars, whi
h must be equal to the 
olumn weight for the atmosphere above. Sin
ethe gravity is 25 ms�2; the 
orresponding mass is 1.2 104 kg/m2, so the surfa
edensity � of the a
tive layer has at least this value (we do not know how deepis the a
tive layer below the observed 
loud level). With typi
al velo
ities U=50m/s, the 
orresponding energy density E = �U2=2 is at least 15 106 J/m2: Thefree de
ay time, equal to the for
ing time in a permanent regime, is E=P; whereP is the inje
ted power. The heat 
ux 
oming from the planetary interior is 5W/m2, of the same order as the solar heat 
ux. The eÆ
ien
y of 
onversion tome
hani
al energy by 
onve
tive e�e
ts is not more than the Carnot eÆ
ien
y,about 1 % sin
e the typi
al temperature di�eren
es involved are only a few K, fora mean temperature 200 K. Therefore the for
ing power is of P � 0.05 W/m2,so the de
ay time E=P is at least 30 107s, ten earth years, mu
h longer than theeddy turnover time of a few days. For 3D turbulen
e, the de
ay time would beby 
ontrast of the same order as the turnover time.



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 72 Equations and 
onservation laws2.1 Euler vs Navier-Stokes equations:Turbulen
e is generally des
ribed as a 
omplex solution of the Navier-Stokesequations, restri
ted here to an in
ompressible 
uid. The status of vis
osityin the des
ription of turbulen
e is a often a subje
t of debate. The Eulerequations (without vis
osity) provide the most dire
t approa
h, histori
allyalso, but lead to many paradoxes, whi
h are avoided by introdu
ing vis
os-ity. Vis
ous 
ows are well understood, and going progressively to turbulen
eby de
reasing vis
osity is a reassuring approa
h. The development of bifur-
ation theories and 
haos 
omforted this view. However the use of vis
osityprobably skips the true insight into 
uid turbulen
e, whose genuine prop-erties are 
learly 
ontrolled by inertial e�e
ts, whi
h lead to a breakdownof spatial regularity. This is des
ribed by the Euler equations. Its strangebehavior is repelling, but it may just 
orrespond to the main diÆ
ulty ofturbulen
e that 
annot be avoided. In 3D turbulen
e, the introdu
tion ofvis
osity is justi�ed on physi
al grounds, as all real 
uids are vis
ous (ex-
ept super
uid). Furthermore, the regularity of the Euler equations in 3Dis not known, so that it may not be a well posed problem (i.e. there is nota unique solution for a given initial 
ondition).These arguments are not valid in two dimensions. In many physi
alsystems, the motion is not 2D down to the smallest s
ales. The dissipativeme
hanisms then depend on the system, for instan
e they are quite di�erentin atmospheri
 
ows, ele
tron plasma or laboratory s
ale 
uid experiments.Yet properties of 2D turbulen
e are expe
ted to be 
ommon to these di�erentsystems. Furthermore, the invis
id equations are well posed: starting fromany regular initial velo
ity �eld, the Euler equations have a unique regularsolution for all time ( [108℄ [54℄ [2℄). This property 
an be extended to anyinitial 
onditions with bounded measurable initial vorti
ity �elds [28℄, forinstan
e pat
hes with uniform vorti
ity inside and vorti
ity dis
ontinuity atthe edge.The invis
id dynami
s develops in
reasing spatial 
omplexity, withsmaller and smaller s
ales of motion. This does not lead to mathemati
alsingularities, as stated above, but a
tual 
omputations are restri
ted to a�nite resolution, and some smoothing is then ne
essary. For that purposewe introdu
e a smoothing operator V , whi
h 
an be for instan
e an ordinaryLapla
ian �, a higher order smoothing operator (hyper-vis
osity) (�1)n�n,or some spatial �ltering of small s
ale os
illations. Su
h smoothing alwaysalters the dynami
s to some extent, as it will be dis
ussed in se
tion 6.Therefore we start with the Euler equations with a smoothing operatorV . �tu+ u:ru = �rp+ Vu (2.1)



8 The title will be set by the publisher.r:u = 0 (2.2)u:n = 0 ; on boundaries(n normal) (2.3)Note that the impermeability boundary 
ondition (2.3) is suÆ
ient for theEuler equations, while a smoothing operator requires an additional 
ondi-tion, whose 
hoi
e is not obvious. The 
hoi
e of a physi
al vis
osity, withno-slip 
ondition, may not be appropriate, as physi
al e�e
ts beyond the 2Dmodel often o

ur in boundary layers, and resolving the thin boundary layerraises numeri
al diÆ
ulties at high Reynolds number. To avoid boundaryproblems, periodi
 boundary 
onditions (equivalent to a tori
 surfa
e), or aspheri
al geometry, are often 
onsidered for fundamental studies.2.2 Vorti
ity representation:It is often 
onvenient to use a representation in terms of vorti
ity !(t; r)and stream fun
tion  (t; r), ! = (r� u)z (2.4)u = r� ( ez) � �ez �r (2.5)�t! + u:r! = r� (Vu) (2.6)We 
an identify the vorti
ity ve
tor, along the z dire
tion (with unit ve
torez), with its z 
omponent, a s
alar. The evolution equation (2.6), obtainedby taking the 
url of (2.1) just states that vorti
ity is adve
ted and 
onservedby the 
ow (in the absen
e of the smoothing operator V ). The streamfun
tion  and resulting 
ow u are themselves determined from the vorti
ity�eld by solving the Poisson equation, obtained by 
ombining (2.5) and (2.4),�� = ! ;  = 0 on boundaries; (2.7)so that the whole 
ow evolution is determined by the s
alar vorti
ity �eldonly.This Poisson equation (2.7) 
an be solved in terms of a Green fun
tionG (r; r0), representing the 
ow indu
ed at point r by a singular point vortex(a Dira
 vorti
ity distribution Æ(r� r0) lo
ated at position r0) , (t; r) = Z G (r; r0)!(t; r0)d2r0 (2.8)with ��G = Æ(r� r0) ; G = 0 on boundaries; (2.9)



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 9The 
ows indu
ed by all elementary vorti
ity elements at positions r0 aresummed in the integral (2.8).Far from boundaries, G has the axisymmetri
 form,G (r; r0) = �(2�)�1 ln(jr � r0j=L) (2.10)where L is the typi
al domain size, whi
h 
omes into play as an additive
onstant, due to the arbitrary 
hoi
e  = 0 at the boundary. The 
orre-sponding azimuthal velo
ity, in 1=jr� r0j, is analogous to the magneti
 �eldprodu
ed by a line 
urrent representing the vortex line. Near boundaries,the e�e
t of virtual mirror vorti
es outside the 
uid domain must be added.Su
h a vorti
ity representation is parti
ularly useful in 2D. It 
an beused also in 3D, but the evolution of vorti
ity is more 
omplex due to vortexstret
hing, possibly leading to 
omplex singularities, and a ve
tor potentialmust then repla
e the s
alar stream fun
tion.2.3 Conservation laws:� Casimirs:The in
ompressibility r:u = 0 ensures that any material area is 
onservedas its 
ontour is transported by the 
uid motion. Furthermore we have seenthat the vorti
ity s
alar ! is 
onserved for ea
h 
uid parti
le (in the absen
eof smoothing operator V ). This is a 
onsequen
e of the more generalKelvin's theorem stating that !=H = 
onst: for a small vortex tube elementwith length H , whi
h remains 
onstant in the 2D 
ase. Physi
ally this is dueto the 
onservation of angular momentum for a small 
uid element, de�nedwith respe
t to the 
enter of gravity of the element. The 
onservation of! for ea
h 
uid element implies that the 
orresponding value f(!) is also
onserved for any 
ontinuous fun
tion f , so that, sin
e the surfa
e elementd2r is also 
onserved, any fun
tional of the formCf = Z f(!)d2r (2.11)(
alled a Casimir integral) is 
onserved. This 
an be more straightforwardlydemonstrated (for a di�erentiable fun
tion f), by multiplying (2.6) by thederivative f 0(!), whi
h yields �tf(!)+r:(f(!)u) = f 0(!)(r�Vu) (takinginto a

ount that r:u = 0 ). The domain integral of the se
ond term trans-forms into a boundary integral whi
h vanishes due to the impermeability
ondition u:n = 0, so that the time derivative_Cf = Z f 0(!)(r� Vu)d2r (2.12)indeed vanishes in the absen
e of the smoothing operator V .



10 The title will be set by the publisher.In the 
ase of a power fun
tion f(!) / !n, we get for n = 1 and 2respe
tively the 
onservation of the 
ir
ulation � and enstrophy �2 ,� = Z !d2r ; �2 = 12 Z !2d2r (2.13)With a 
onstant vis
osity smoothing operator Vu = ��u, the time evolution(2.12) of these quantities 
an be rewritten by repla
ing the integral of adivergen
e by boundary 
ux,_� = � I n:r! ; _�2 = �� Z (r!)2d2r+ � I n:!r! (2.14)(an integration by parts has been used to express _�2 ). Note that the
ir
ulation is still 
onserved in the presen
e of vis
osity, ex
ept for possi-ble boundary e�e
ts. These vanish for \super-slip" boundary 
onditionsn:r! = 0 (but not for the more 
ommon \free slip" boundary 
ondition! = 0). The enstrophy �2 de
ays by vis
ous e�e
ts in the interior, andboundary e�e
ts vanish both for free slip (! = 0) and super-slip n:r! = 0boundary 
onditions.The extrema !min and !max of the vorti
ity �eld remains 
onstant forthe Euler equation (in the absen
e of for
ing or fri
tion e�e
ts): vorti
ityis just transported and 
annot be ampli�ed by the inertial 
ow evolution,unlike in three dimensions (these 
onservation laws 
an be also obtainedfrom Casimirs with fun
tions f dominated by the extremal values of !; forinstan
e f(!) = exp�n! with n very large). Vis
osity 
an only lower themaximum with time and raise the minimum, as by de�nition �! � 0 at thevorti
ity minimum, and �! � 0 at the maximum.� Energy:The kineti
 energy E = 12 R u2d2r is 
onserved by the Euler equations. Thisis easily seen by taking the s
alar produ
t of (2.1) with u (with V = 0).Rewriting the adve
tive term with the 
lassi
al identity u:ru = ! � u +r(u2=2), the �rst term is orthogonal to u; while the se
ond is in
orporatedin the pressure, and the u:rp0 = r:(p0u), whose domain integral vanishesdue to the impermeability 
ondition. Note that this demonstration equallyapplies in 3D, but it requires di�erentiability of the velo
ity �eld, while weexpe
t that in 3D, energy dissipation would o

ur after a �nite time due tothe formation of singularities (then the Euler equations themselves 
ould beonly de�ned in the sense of distributions, not ordinary �elds). By 
ontrast,in 2D, the 
ow remains regular for all times, so energy is truly 
onserved.A more 
lassi
al point of view is to 
onsider the e�e
t of a small vis
osity.Then the energy varies as _E = � R u:�ud2r . Noting the identities �u =�r� ! (sin
e r:u = 0), and u:(r� !) = r:(! � u) + !2 , we get



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 11_E = �2��2 � � I (! � u):n (2.15)The boundary term vanishes both for the no-slip (u = 0) and free slip(! = 0) boundary 
onditions, and the interior term always makes the energyde
ay, as expe
ted.The enstrophy �2 also de
ays by (2.14), in the absen
e of boundarye�e
ts. Then the rate of energy de
ay (2.15) is bounded by the initial en-strophy, and tends to 0 in the limit of small vis
osity �: energy is 
onservedin this limit.1 By 
ontrast in fully developed 3D turbulen
e the enstrophyin
reases as the vis
osity is redu
ed (smaller and smaller s
ales are ex
ited),su
h that the produ
t of these two quantities, determining the energy dis-sipation, be
omes independent of vis
osity: it is 
ontrolled by the inertial
as
ade pro
ess.Hyper-vis
osity terms are often introdu
ed in simulations of 2D turbu-len
e to better approa
h the invis
id limit of zero energy dissipation. Thenvorti
ity 
u
tuations are smoothed out like with vis
osity, the enstrophy�2 de
ays , but as a spurious e�e
t the extrema !min and !max may beampli�ed (also higher order boundary 
onditions need to be introdu
ed).In 2D 
ows it is often 
onvenient to rewrite the energy using an integra-tion by parts, so that E = 12 Z  !d2r (2.16)Note that the integration by parts also yields a boundary term H  u:dl, butit vanishes thanks to the boundary 
ondition  = 0 . Another 
hoi
e  =
onst: would introdu
e a boundary term in ��
onst: whi
h is unimportantas it is 
onstant in time. Note that when 
onsidering vorti
es intera
tingin a limited region of an in�nite domain, the physi
al energy 12 R u2d2rdiverges for a non-zero 
ir
ulation � (as the indu
ed velo
ity only de
ays in�=r the energy integral logarithmi
ally diverges), and only the form (2.16)
an be used (see [4℄). This kineti
 energy has remarkably the same form asthe ele
trostati
 energy of a 
harge density �eld ! indu
ing a potential  ,satisfying the Poisson equation (2.7).� Momentum and angular momentum:In an in�nite domain the momentum ve
tor P = R !r�ez d2r is 
onserved,as well as the angular momentum with respe
t to any origin L = R !r2 d2r,1This 
on
lusion is un
hanged with other boundary 
onditions, for instan
e no-slip:then a boundary layer of thi
kness Æ = (�L=U)1=2 forms (U typi
al velo
ity), 
ontributingto enstrophy as �2 � U2L=Æ. Then the energy dissipation ��2 is in �1=2; whi
h also tendsto zero in the invis
id limit.



12 The title will be set by the publisher.see for instan
e [4℄ or [23℄. These 
onservation laws are asso
iated withsymmetries of the system: invarian
e by translation for P and invarian
eby rotation for L: and they are 
onserved as well in domains whose bound-aries respe
t these symmetries: the x-wise momentum 
omponent is also
onserved in a 
hannel along the x-dire
tion (see e.g. [98℄), and the angu-lar momentum in a disk (taking the origin at the 
enter). Note that thisglobal angular momentum L has to be distinguished from the lo
al angularmomentum of a 
uid parti
le, whi
h is 
onserved for all geometries.Finally the 
ir
ulation H u:dl along any boundary 
ontour is 
onserved.For a simply 
onne
ted domain, this is just the 
ir
ulation � already 
on-sidered, but the 
ir
ulation along any obsta
le is also 
onserved, and is notrelated to R !d2r, for instan
e along the inner wall of an annular domain.This 
onservation law is dire
tly demonstrated from (2.1), rewriting the ad-ve
tive term with the identity u:ru = ! � u + r(u2=2), whose integralvanishes on the wall sin
e ! � u is normal to the wall (as u is along thewall due to the impermeability 
ondition) and a 
losed 
ontour integral ofa gradient vanishes.� Other 
onservation laws:We have listed here all the expli
it 
onservation laws for the 2D Euler equa-tions: it 
an be shown [92℄ that there are no other 
onserved quantitieswith an expli
it form R F (r;u(r); �iuj(r)) d2r . Other 
onservation lawshowever exist, for instan
e \topologi
al 
onstraints": two initial uniformvorti
ity pat
hes remain always distin
t and they 
annot fully merge in asingle pat
h. However this 
onstraint plays little role in pra
ti
e, as the twopat
hes 
an irreversibly deform and be
ome more and more intertwined inthe merging pro
ess dis
ussed in next se
tion.2.4 Steady solutions of the Euler equations:It is often useful to dis
uss steady solutions of the 2D Euler equations, asthey will appear as the result of turbulent mixing. For steady 
ows theparti
le traje
tories are streamlines, so that !, whi
h is 
onserved alongtraje
tories, will be 
onstant along any streamline. This means that ! is afun
tion of  only, at least in some sub-region: ! = F ( ). In fa
t the samevalue of  
an o

ur on several streamlines, so that di�erent fun
tions F
an 
hara
terize di�erent regions, as will be shown in the example of thedipole, next se
tion. Re
ipro
ally, it is 
lear that if ! = F ( ), then theadve
tive term u:r! = �r �r! vanishes as r! = F 0( )r is parallelto r : Therefore the property of steady 
ow is indeed equivalent to theproperty ! = F ( ) in subregions. The interfa
e between these subregionsmust be a streamline with velo
ity 
ontinuous a
ross it (but dis
ontinuousvorti
ity in general).
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onsider steadily translating solutions, with a 
on-stant translation velo
ity ve
tor U, su
h that !(t; r) = !(r � Ut). Thisis equivalent to a steady solution in a referen
e frame translating at velo
-ity U; with the same vorti
ity and stream fun
tion  0 =  �U:r, so that! = F ( �U:r). Note that this is only possible in an in�nite domain or a
hannel along the U dire
tion.Similarly we 
an 
onsider purely rotating solutions !(t; r) = !(r� (
�r)t), whi
h is possible in an in�nite domain or a 
ir
ular geometry (disk orannulus). The general form of su
h 
ow patterns in solid body rotation is! = F ( + 
r2=2). This 
an be shown dire
tly on the Euler equations, orby using a rotating referen
e frame at angular velo
ity 
.23 Vortex dynami
sAs turbulen
e is part of 
uid dynami
s, it is always useful to keep in mindelementary 
ow pro
esses. This is parti
ularly true for 2D turbulen
e, whi
hdisplays \
oherent stru
tures" more 
learly than 3D turbulen
e. Some dis-
ussion of invis
id vortex dynami
s is therefore useful. Interesting resultswere already obtained in the XIXth 
entury, and some of them \redis
ov-ered" and extended re
ently in the 
ontext of 2D turbulen
e and o
ean-atmosphere dynami
s. The 
lassi
al textbooks of Lamb (1932) [60℄ andBat
helor [4℄ provide good introdu
tions to this �eld, and more advan
edproperties of dis
rete vorti
es are treated by Chorin [26℄ [27℄ and Aref [1℄,and vortex pat
hes by Sa�man [91℄. The use of point vorti
es as a numeri-
al dis
retization of 
ontinuous 
uid motion is treated in a re
ent book byCottet and Koumoutsakos [29℄. The main motivation of the XIXth 
enturyresear
hers was di�erent: they were seeking me
hani
al models to buildtheories of ele
tromagnetism and atomi
 physi
s.3.1 Systems of dis
rete vorti
es:Repla
ing the 
ontinuous vorti
ity �eld by a set of singular point vorti
es(or vortex lines in the z dire
tion) 
an be a good approa
h to many 2D 
owphenomena. Relation (2.8) then redu
es to the dis
rete sum of the 
ows2While the invarian
e of the system by translation (Galilean 
hange of referen
e frame)is warranted as a general physi
al prin
iple, this is not so for a rotating referen
e frame,in whi
h 
entrifugal and Coriolis for
e appear. However both for
es are pure gradientsin in
ompressible 2D 
ows, so they are exa
tly balan
ed by pressure gradients. Indeedthe 
entrifugal for
e is proportional to r(
r2=2), with a 
onstant density fa
tor, and theCoriolis for
e is proportional to �2
 � u = 
r . Note that the so-
alled geostrophi
balan
e between Coriolis for
e and pressure gradient is only realized in 2D 
ows.
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ed by ea
h point vortex at position rj(t) and 
ir
ulation 
j , (t; r) =Xj 
jG (r; rj(t)): (3.1)Ea
h vortex is transported by the 
ow indu
ed by all the other vorti
es.The self intera
tion of the vortex (leading to a diverging  ) 
an be ignored,as seen by de�ning a point vortex as the limit of small vorti
ity pat
hes withvorti
ity ai ! 1 and in�nitely small area 
i=ai; su
h that the 
ir
ulation
i remains 
onstant. Then self-intera
tion just produ
es a lo
al rotation ofthe pat
h with no in
uen
e on the limiting point vortex. Furthermore the
ir
ulation 
i of ea
h vortex is 
onserved in the 
ow evolution, sin
e boththe small vortex pat
h area and vorti
ity ai are 
onserved. Thus ea
h vortexi is transported by the velo
ity derived from the stream fun
tion (3.1), withthe sum restri
ted to i 6= j whi
h yields (the sum is made on indi
es i < jto avoid double 
ounting of the same term),_xi = �Eint=�yi ; _yi = ��Eint=�xi (3.2)with Eint =Xi<j 
i
jG (ri; rj) (3.3)The N point vorti
es therefore move like N intera
ting parti
les. The studyof point vorti
es was initiated by Helmholtz in 1858, and this general dy-nami
al equation �rst derived by Kir
hho�.The dynami
al equation is �rst order in time, unlike the usual se
ondorder Newton equation. However it has quite remarkably a Hamiltonianstru
ture, but the 
onjugate variables are the spa
e 
oordinates xi and yiinstead of the positions and momenta of the parti
les. The HamiltonianEint is 
onserved with 
ow evolution, and it 
orresponds to an intera
tionenergy of vorti
es. Note that the true physi
al energy is in�nite due tothe self-energy asso
iated with ea
h vortex (the velo
ity tends to in�nityin 1=r around ea
h vortex 
ore but this has no in
uen
e in the vortexintera
tion). The expression (2.10) of the intera
tion energy is like theele
trostati
 intera
tion energy for long 
harged rods (noti
e however that it
orresponds physi
ally to a kineti
 energy of the 
ow, and the analogy withele
trostati
s is not 
omplete, due to the di�erent dynami
al equation). Thepair intera
tion de
ays only slowly with distan
e, so that vortex intera
tionsare highly non-lo
al, and we expe
t 
olle
tive e�e
ts to be important, ratherthan binary 
ollisions.3.2 Vortex pairs� Case of point vorti
es:
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es of like sign and 
ir
ulation 
 are separated by adistan
e d far from boundaries. Then (3.2) just states that the two vorti
esrotate at velo
ity 
=(2�d), keeping a 
onstant distan
e d (Fig. 3a). Twovorti
es with unequal strength rotate around their \
enter of mass". If thetwo vorti
es have equal 
ir
ulation with opposite sign, the 
enter of massdoes not exist, and both vorti
es translate with 
onstant spa
ing d: (Fig.3b)Note that in super
uids, vorti
es of opposite sign tend to eventuallyattra
t and annihilate ea
h other. This is due to intera
tions with additionaldegrees of freedom, whi
h 
an extra
ts energy from the 
uid system. Anexternal for
e on a vortex, for instan
e due to pinning on a solid substrate,
an result in drift of the vortex 
ore with respe
t to the lo
al 
ow, andthe o

urren
e of a Magnus for
e perpendi
ular to this drift, resulting inredu
tion of the vortex distan
e. Su
h e�e
ts are absent in the ideal 
owproblems 
onsidered here, and the distan
e d does remain 
onstant.In the translating 
ase it is interesting to note that a region of the 
ow istransported and follows the translating motion. Therefore this 
ow 
ontainsmomentum, representing the translating motion of some 
uid area, see Fig.4 left (this is the 2D analog of a vortex ring).
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Fig. 3. Sket
h of the motion of a vortex pair. (a) rotation with like signs and (b)translation with opposite signs.
Fig. 4. Flow (left) in a point vortex pair and (right) in a Chaplygin's 
ontinuouspair. The streamlines are represented in a referen
e frame moving with the stru
-ture (so the 
ow is steady). Note that the 
uid area inside the 
losed streamlinesis entrained by the pair in its motion.
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ontinuous vorti
ity:The translating motion of vortex pairs with opposite sign is a remarkablyrobust feature, obtained when 
ow momentum is inje
ted, even when vor-ti
es are far from pointwise. Fig. 5 shows how an initial jet organizes intoa vortex pair in a strati�ed 
uid [46℄. Similar results had been previouslyobtained from a wake in a soap �lm [31℄ or in an ele
tromagneti
ally driven
ow [77℄. We see that, remarkably, the turbulen
e \self-organizes" into sim-ple 
oherent stru
tures, here vortex pairs, and this will be the subje
t ofse
tion 5.A vortex pair solution proposed by Chaplygin in 1902 [15℄ (see also thereview paper [72℄) provides a more realisti
 des
ription of su
h features,using 
ontinuous vorti
ity �elds. We have seen in subse
tion 2.4 that ageneral steadily translating solution is obtained with a vorti
ity of the form! = �� = F ( �U:r) in some region. A natural idea is to 
hoose a linearfun
tion F; then solving a Helmholtz equation for  in the vortex domain,mat
hing an irrotational 
ow outside with 
ontinuous velo
ity. It turns outthat a good mat
hing is then obtained only with a 
ir
ular domain, and oneobtains Chaplygin's solution = �2Uk J1(kr)J0(ka) sin � for r � a ;  = U(r � a2r ) sin � for r � a (3.4)in terms of the polar 
oordinates r and �; where J0 and J1 are Besselfun
tions and ka the �rst zero of J1:Note that this solution, represented in Fig. 4 right, emerges in manyexperiments and numeri
al simulations by spontaneous organization after
omplex 
ow evolution. Similar asymmetri
 dipoles, with a rotating motionare also obtained. For any initial momentum, angular momentum, and en-ergy, one 
an determine a 
orresponding dipole or axisymmetri
 monopolesolution [23℄, whi
h is expe
ted to be obtained after 
omplex vorti
ity stir-ring in some region of spa
e. However non-linear relationships betweenvorti
ity and streamfun
tion 
an be obtained as well [77℄.� Vortex merging:Two vorti
ity pat
hes with the same sign rotate around ea
h other like pointvorti
es when their distan
e is suÆ
iently large in 
omparison with theirsize. Ea
h pat
h is just slightly deformed by vortex intera
tions: this is liketidal e�e
ts between two gravitating bodies. This is however no longer truebelow some 
riti
al distan
e: the two vorti
es irreversibly deform leadingto a single vortex, as shown in Fig. 6. This �gure is obtained from anexperiment with an ele
tron plasma trapped in a magneti
 �eld, whi
hremarkably follows the 2D Euler equations. The 
ow eventually tends to
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Fig. 5. organization of a short jet inje
ted in a density strati�ed 
ow (fromref. [46℄). We see in the su

essive views of the same jet the initial 3D stage,followed by a 
ollapse to a quasi-2D state, whi
h organizes into a dipole.an axisymmetri
 
on�guration when small s
ale vorti
ity os
illations aresmoothed out. The threshold of distan
e leading to irreversible deformationhas been studied in detail using 
ontour dynami
s for vortex pat
hes [81℄.The resulting �nal merging 
an be understood on general grounds as apro
ess of entropy maximization (see se
tion 5): the most probable state ofthe system is axisymmetri
.The initial vortex deformation leading to merging is due to the e�e
t ofthe strain indu
ed by the other vortex. This is a motivation for studyingthe in
uen
e of a uniform pure strain on a single vortex. A weak vortex is
learly passively deformed by the strain, while it resists deformation when
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ity rea
hes a value of the same order as the strain rate.The same merging me
hanism is observed for vorti
es of unequal sizeand strength (but equal sign). This has been 
he
ked with ele
tron plasmaexperiments [75℄ as well as various numeri
al simulations.3� Intera
tion of more than two point vorti
es:Intera
tion of three point vorti
es yields a variety of motion. The problemhas some similarity [78℄ with a triad in Fourier spa
e, whi
h shall be dis-
ussed in se
tion 4. An interesting 
uriosity is the possibility, for parti
ularinitial 
onditions and vortex 
ir
ulations, that the three vorti
es spiral in-ward to a singular point [1℄. Singularities are however forbidden in the 
aseof more realisti
 �nite 
ore vorti
es. For four vorti
es and more, 
haoti
 mo-tion is possible, as well as stable 
on�gurations. Tripoles made of a 
entralvortex and two satellite vorti
es of opposite sign have been observed bothin laboratory [48℄ and o
eani
 
ows. With point vorti
es, stable patternsare obtained for more than three vorti
es, but none of them seem robust forextended vorti
es: two vorti
es of the same sign tend to merge.3.3 Instability of shear 
ows and vortex latti
es:� Parallel 
ows:The 
lassi
al stability 
riterion of Rayleigh applies to 2D invis
id 
ows.Thus 
lassi
al 
ows with vorti
ity extrema, shear layers, jets and wakesdevelop 2D turbulen
e. The turbulent region grows linearly with time orstream-wise 
oordinate, in a similar way whether or not 3D perturbationsare allowed to develop [65℄.By 
ontrast Poiseuille 
ows and boundary layers behave quite di�erently.These 
ows are linearly stable a

ording to the Rayleigh 
riterion (they haveno vorti
ity extrema), and they indeed remain stable in purely 2D 
ows,whatever the Reynolds number. The instabilities o

urring in these 
owsare genuinely three-dimensional and are suppressed by the 
onstraint oftwo-dimensionality.� Vortex latti
es:Vortex latti
es 
an initiate 2D turbulen
e when they are unstable. Thesquare latti
e of alternating sign vorti
es is highly unstable and initiates3Note however that 
ontour dynami
s simulations indi
ate a variety of other possibili-ties for unequal size vorti
es [34℄: in some 
ases merging is only partial, and small satellitevorti
es are produ
ed. Su
h pro
esses 
ould be relevant in 
ontrolling the population ofvorti
es of di�erent size in 2D turbulen
e as dis
ussed in se
tion 4, so this problem wouldrequire more 
areful examination, 
omparing di�erent numeri
al methods.
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Fig. 6. Vortex merger in an ele
tron plasma experiment (from [75℄). Maps of thevorti
ity �eld are represented at four su

essive times (0, 16, 41 and 76 �s). Theinitial distan
e of the vortex 
enters is 1.2 times the vortex diameter. The exper-imental devi
e is sket
hed at the top of the �gure. The ele
trons are extra
tedfrom a sour
e in the high va
uum 
ylindri
al 
ell. Then they are transversally
on�ned by the uniform axial magneti
 �eld Bz and they drift with the velo
ityu = 
(E � Bz)=Bz perpendi
ular to the ele
tri
 �eld E indu
ed by the ele
tronspa
e 
harge. This drift 
ow remarkably satis�es the Euler equations: the in
om-pressibility 
ondition r:u = 0 is a 
onsequen
e of r� E = 0 while the vorti
ityr � u / r:E = n=�0 is proportional to the 
harge density n, 
onserved by the
ow. This 
harge density �eld is visualized and measured by suddenly a

eleratingthe ele
trons on the 
olle
tor (destroying the system).the inverse energy 
as
ade of 2D turbulen
e. In 
ontrast, triangular latti
esof equal sign vorti
es and hexagonal latti
es with alternating sign vorti
esturn out to be stable [104℄. Su
h stability properties 
an be more easilydetermined if one restri
ts the analysis to perturbations at large s
ales withrespe
t to the latti
e mesh, so that asymptoti
 expansions 
an be used. It isthen shown that a minimal degree of anisotropy is needed to get instability[43℄.In 
on
lusion, while 3D 
ows at very high Reynolds systemati
ally de-velop turbulen
e, with quasi-universal behavior, this is not true in 2D. There
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h more in
uen
e of the generating me
hanism, and turbulen
e maynot be produ
ed at all in some 
ases.3.4 Statisti
al me
hani
s of point vorti
es:� The statisti
al me
hani
s approa
h:Statisti
al me
hani
s, as developed by Maxwell, Boltzmann, Gibbs and theirfollowers, has been remarkably su

essful in predi
ting the behavior of sys-tems with many degrees of freedom. Its main su

ess has been in predi
tingthe statisti
al (thermodynami
) equilibrium for a 
onservative (Hamilto-nian) systems, for instan
e a gas made of many mole
ules. 3D turbulen
e is,in 
ontrast, a strongly dissipative system. However, 2D turbulen
e 
onservesenergy, whi
h raises hope for equilibrium statisti
al me
hani
s approa
hes.This is not an obvious matter however, sin
e 2D turbulen
e undergoes ir-reversible transformations with dissipation of vorti
ity 
u
tuations (enstro-phy), instead of energy. The point vortex model is pre
isely a Hamiltoniansystem, as we have seen in subse
tion 3.1, so that the standard methodsof equilibrium statisti
al me
hani
s readily apply. The relevan
e to a
tual
ontinuous 
ows will be dis
ussed later.The statisti
al me
hani
s of point vorti
es was �rst dis
ussed by Onsagerin 1949 [79℄. First of all, it is an interesting exer
ise in statisti
al me
hani
s,sin
e \negative temperature" states are obtained. In su
h states vorti
es oflike sign tend to 
lump together, forming large 
oherent vorti
es. Onsagerstressed the importan
e of su
h 
oherent stru
tures with remarkable fore-sight, and he pointed out the fundamental di�eren
e with the energy 
as-
ade of 3D turbulen
e, whi
h had been re
ently formalized by Kolmogorovin 1941. Although short, his paper 
ontains far-rea
hing remarks on both2D and 3D turbulen
e, and its reading is highly re
ommended.The general prin
iples of equilibrium statisti
al me
hani
s are explainedin many textbooks of physi
s, but this is always a subtle subje
t. Sin
e ap-pli
ations to 2D turbulen
e are unusual, they require a good understanding(and re-dis
ussion) of the basi
 prin
iples, and it may be useful to re
allthem in the 
ontext of vortex dynami
s.The starting point of equilibrium statisti
al me
hani
s is to list the 
on-served quantities of the system, whi
h are 
lear 
onstraints to the dynami
s.For a set of many point vorti
es, the only known 
onserved quantity is en-ergy, as is the 
ase for usual thermodynami
 systems (but we shall seeadditional 
onserved quantities with alternative models of 2D turbulen
e).Then it is assumed that the system evenly explores all its possible states (the\mi
ros
opi
 states") allowed by the given value of its 
onserved quantities(here just energy). This assumption (the ergodi
 hypothesis) has been rig-orously demonstrated only for a system of hard spheres in elasti
 
ollisions,but is believed to be true in many 
ases.
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ros
opi
"states of interest, for instan
e the vortex density �eld. The entropy S of thema
ros
opi
 state is de�ned as the logarithm of the \number" of possiblemi
ros
opi
 states 
orresponding to this ma
ros
opi
 state. Then it followsfrom the ergodi
 hypothesis that the probability of this ma
ros
opi
 stateis just proportional to the exponential of the entropy. The most probablema
ros
opi
 state is therefore that whi
h maximizes the entropy. In thelimit of a very large number of parti
les, this maximum tends to be verysharp: an overwhelming majority of mi
ros
opi
 states tends to 
on
entratenear the ma
ros
opi
 state of maximum entropy. Therefore deterministi
predi
tions result from the statisti
s of many parti
les, for instan
e thedensity of vorti
es will 
u
tuate less and less as the vortex density in
reases.A mi
ros
opi
 state is de�ned by the 
oordinates of ea
h of the N vor-ti
es. To 
ount the possible states, we need �rst to dis
retize the 
oordinatesinto elementary 
ells. Let us take a mesh h in ea
h 
oordinate4(and 
onsidera 
uid domain with surfa
e unity for simpli
ity), so that the total numberof possible states for a single vortex is just the 
ell number 1=h2 . For Nvorti
es it is 1=h2N (we assume that several vorti
es 
an o

upy the same
ell without restri
tion, whi
h is true for ideal point vorti
es). Among thesestates we must sele
t and 
ount the ones whi
h have a given energy Eint,rel.( 3.3).This is a tremendous task in general, but let us �rst negle
t this inter-a
tion. Then we expe
t a uniform vortex density. To show this, 
onsiderthe density �eld n(r) as the ma
ros
opi
 state, and let us 
ount the 
orre-sponding number of 
on�gurations. We make a partition of the 
uid domainin p sub-domains, with area A = 1=p ea
h, and 
onsider the vortex num-bers n1; :::np in ea
h sub-domain as the ma
ros
opi
 state. We must �rstdistribute the vorti
es in pa
kets with n1; :::np vorti
es respe
tively. Thenumber of possibilities is N !n1!:::::np! (this is the total number of permutationsdivided by the number of permutations within ea
h pa
ket, whi
h does not
hange the distribution). Then for sub-domain 1 the number of possible4The uniform dis
retization used for the 
ounting seems here a natural 
hoi
e, but itmay be wrong with other 
oordinates. For instan
e a uniform dis
retization in the po-lar 
oordinates r; � would give very small 
ells drd� near the pole, resulting in ex
essivestatisti
al weight. The justi�
ation lies in the Hamiltonian form (3.2) of the dynam-i
al equations, from whi
h the Liouville theorem is readily demonstrated: 
onsideringthe evolution of many identi
al systems, this theorem states that the volume elementdx1::::dxNdy1::::dyN in phase spa
e is 
onserved with time. Indeed the divergen
e ofthe \velo
ity ve
tor" _x1; :::; _xN ; _y1; ::: _yN is 
learly 0, due to the Hamiltonian form (it isthe analog for the phase spa
e 
ow of a stream fun
tion for a usual 2D 
ow). Then theuniform sampling in the 
oordinates x1; :::; xN ; y1::::; yN will remain uniform with thetime evolution of the system. This is only true for the so-
alled 
anoni
al 
oordinatesfor whi
h this usual 
anoni
al form (3.3) of the Hamiltonian system 
an be written. It isnot the 
ase, for instan
e, with polar 
oordinates.
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on�gurations (positions) is (ph2)�n1 and we have to multiply bythe similar formula with the other sub-domains. The number of 
on�gu-rations with n1; :::np vorti
es is therefore N !n1!:::::np! (ph2)�N . The entropy isthe logarithm of this quantity. For large vortex numbers, we 
an use theSterling formula, n! ' n lnn, so that the entropy isS = �Xni lnni ! � Z n lnnd2r (3.5)in the 
ontinuous limit (up to an unimportant 
onstant, depending on thedis
retization mesh).Maximizing this entropy with the 
onstraint of a given total vortex num-ber N = R nd2r gives a uniform density. To 
he
k that, we introdu
e aLagrange parameter � asso
iated with the 
onstraint N , and write the 
on-dition for the �rst variations ÆS ��ÆN = 0 . Di�erentiating the expressionof the entropy gives ÆS = � R (lnn+1)Ænd2r, so that the 
ondition on �rstvariations be
omes Z (lnn+ 1 + �)Ænd2r (3.6)This has to be satis�ed for any variation Æn (fun
tion of position) around theoptimum state, whi
h is only possible if the term in parenthesis is uniform,so that the density n is uniform: non-intera
ting parti
les uniformly mixdue to entropy maximization.� The mean �eld approximation:Coming ba
k to the intera
ting parti
les, a great simpli�
ation is providedby the mean �eld approximation, as developed by Joy
e and Montgomery in1973 [52℄. The idea is that, due to the long range intera
tions, ea
h vortexfeels the in
uen
e of the mean �eld  due to many others, so that we 
anwrite the intera
tion energy with the 
ontinuous �eld expression asE = 12 Z  n
d2r (3.7)repla
ing the vorti
ity ! in (2.16) by the lo
al density n
: We suppose�rst that all the vorti
es have the same 
ir
ulation 
; but generalization toseveral vortex spe
ies is straightforward by just adding their 
ontributionsto !: The �eld  is itself given by the Poisson equation (2.7), whi
h be
omes�� = 
n:The 
ondition on energy brings the new 
onstraint (3.7) for entropy max-imization, and a 
orresponding Lagrange parameter � must be introdu
eda

ordingly. Then the 
ondition on �rst order variations be
omesÆS � �ÆN � �ÆE = 0 (3.8)



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 23We 
al
ulate ÆE = (
=2) R ( Æn+nÆ )d2r. In fa
t the se
ond term is equalto the �rst, as 
he
ked by using the Poisson equation and an integrationby parts. The 
ondition on �rst variations then be
omes R (lnn + 1 + � +�
 )Ænd2r, whi
h implies thatn = n0exp(��
 ) (3.9)(with n0 � e�� ). Combining (3.9) and the Poisson equation, we get theself-
onsistent mean �eld equation�� = 
n0exp(��
 ) ;  = 0 on boundaries (3.10)Sin
e the lo
ally averaged vorti
ity �� is a fun
tion of  , this remarkablyrepresents a steady solution of the Euler equation. A general justi�
ationof self-organization into large s
ale steady 
ows is thus provided: this is themost probable out
ome for the wandering of many small vorti
es.The two 
onstants n0 and � are indire
tly given by the 
onstraints onenergy and total vortex number. In fa
t what is given is the produ
t 
n0(related to the total 
ir
ulation of the system), while n0 tends to in�nity,and 
 tends to 0. The validity of the mean �eld approximation has beenrigorously demonstrated in this limit [36℄. Similarly the important param-eter is �
 instead of �; and we 
an rewrite (3.10) with the non-dimensionalvariable � = (
n0)�1 ,��� = exp(�B�) ; � = 0 on boundaries (3.11)depending on the single parameter B = �
2n0.Note that the expression (3.9) 
an be obtained in general for a parti
lein a �eld with potential energy  
 in 
onta
t with a \thermal" bath withtemperature 1=�: This is the so-
alled 
anoni
al approa
h, in 
ontrast withthe mi
ro-
anoni
al approa
h used her, dealing with an isolated system.These two approa
hes are generally equivalent, but it is not always so forsystems with long range intera
tions. Note also that some textbooks 
on-sider statisti
al me
hani
s as the limit of large systems, making the volumegoes to in�nity. What is important is the limit of a large number of parti-
les, whi
h is here 
onsidered in a given domain of �nite size. The systemis not extensive, on the 
ontrary its spatial 
on�nement is essential.� Dis
ussion of results:Supposing for instan
e 
 > 0, it is 
lear from (3.10) that  is a 
onvex fun
-tion of the 
oordinates, whi
h is everywhere positive. For positive \temper-ature" � > 0, the vorti
ity tends to be depleted where  is maximum, andmaximum near the domain boundary, where  is set to zero. By 
ontrastfor � < 0, the vorti
ity tends to be maximum at the vortex 
enter, leadingto sharper and sharper maximum of  as � is more negative.
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Fig. 7. Entropy (left) and inverse \temperature" � = dE=dS (right) versus energyE for the statisti
al equilibria of a set of N identi
al point vorti
es in a disk(from [95℄). For small energies (point A) vorti
es remain near the disk periphery,and the \temperature is positive", while for large energies they remain 
lumpedin a global vortex, more and more 
on
entrated as energy is larger. Then the\temperature" is negative. The entropy maximum (point B) 
orresponds to auniform vorti
ity in the disk, with � = 0. The solid 
urves represents axisymmetri
equilibria, while the point-dash 
urve represents a \bifur
ated state", in whi
hthe vortex spontaneously forms out of the disk axis. This bifur
ated state ismore likely than the axisymmetri
 one as it has a higher entropy. It has beenindeed observed in a laboratory experiment using a mer
ury 
ow in a magneti
�eld [33℄. Note however that, far from boundaries, the axisymmetri
 equilibriumstate is always predi
ted (the bifur
ation is due to the 
on�nement by the diskperiphery).It is interesting to represent the entropy of the statisti
al equilibriumversus its energy, whi
h has always a bell shape, as shown in Fig. 7. Dueto (3.8), the derivative dS=dE (for N �xed) is just � the inverse of the tem-perature. Therefore the positive temperature is obtained for small energyand negative temperature for large energy. The maximum 
orresponds tothe uniform vortex density: the energy has just the right value to allowfor uniform density, whi
h is the state of maximum entropy in the absen
eof energy 
onstraint, as shown above. Higher energy requires the vorti
esto remain 
losely pa
ked, while low energy requires them to remain near
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e of negative temperature states is forbiddenwith ordinary parti
les whose Hamiltonian has a quadrati
 term in the mo-mentum (the usual kineti
 energy): then the entropy always in
reases withenergy. However in the vortex system, su
h a quadrati
 term is absent: neg-ative temperature states do o

ur , and they 
orrespond to the interesting
ase of 
lumping of like sign vorti
es into large 
oherent vorti
es.For several vortex spe
ies, with 
ir
ulation 
i , the density of ea
h spe
iessatis�es a mean �eld relation (3.9). Then the relationship (3.10) betweenvorti
ity and stream fun
tion is repla
ed by a sum of exponentials (or anintegral for a 
ontinuous distribution of elementary vortex 
ir
ulation 
,�� =Xi 
iniexp(��
i ) ;  = 0 on boundaries (3.12)For a symmetri
 set of positive and negative vorti
es with 
ir
ulation�
; weget a sinh fun
tion. Note however that symmetry breaking is also possible,so that n+ 6= n� even for an equal number of positive and negative vorti
es.This has been �rst shown by Pointin and Lundgren, 1976 [84℄ in a squaredomain.In Fig. 8 we show striking examples of symmetry breaking. The statisti-
al equilibrium rea
hed by two initial vortex lines of opposite sign, forminga jet, is 
onsidered. The 
on�nement in a 
hannel with periodi
 boundary
onditions is ne
essary to get an equilibrium. However when the wall is farfrom the initial jet width d; and the allowed period L suÆ
iently long, weget an organization with the topology of the Karman vortex street (stateDD on the �gure). This may explain the observed trend of plane wakes toform su
h a stru
ture, even in the presen
e of a strong turbulen
e (althoughwakes freely expand with time so they never rea
h equilibrium). For otherparameters shown in Fig. 8, an additional symmetry breaking o

urs: vor-ti
es on one sign 
lump together while vorti
es of opposite sign are dispersed(whi
h favors entropy, while the 
oherent vortex is ne
essary to satisfy theenergy 
onstraint). The solitary vortex state (SV) qualitatively explainsthe organization of a turbulent jet observed in an annular 
hannel [100℄,modeling many dynami
al aspe
ts of the Great Red Spot of Jupiter.� Limitations:The point vortex statisti
al me
hani
s explains self-organization. Howeverit does not provide a 
onsistent and quantitative predi
tion for the Eulersystem with 
ontinuous velo
ity �elds. Of 
ourse it is always possible to ap-proximate the 
ontinuous velo
ity �elds by a set of many point vorti
es witha small 
ir
ulation 
 and spa
ing h , su
h as h2
 = !. The limit of smallspa
ing h provides a 
onsistent, stable and 
onvergent approximation [44℄.Vortex methods 
an be used indeed in pra
ti
e for numeri
al simulations of
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Fig. 8. (from [53℄) Statisti
al equilibria resulting from the mixing of two vortexlines of opposite sign, representing an initial jet in a x-periodi
 
hannel, as sket
hedat the top of the �gure. The equilibrium states are represented as a fun
tion ofthe domain length L and the half jet width d (while the 
hannel width is set tounity). The di�erent 
ow 
on�gurations are represented by vorti
ity isolines forthe parameters indi
ated by the arrows. The boundaries between these 
on�gu-rations are drawn on the diagram. In addition to the x-independent states (XI),we get states breaking the translation symmetry, like the \sinuous mode" (DD).This mode is preferred for small initial jet width d and suÆ
iently large L, forwhi
h the e�e
t of boundary 
on�nement is minimum. For the other states (VCor SV), the additional symmetry breaking between positive and negative vorti
esis obtained.the Euler equations [26℄ [27℄ [29℄. However any approximation to a dynam-i
al system is valid for a �nite time, and it may break down for suÆ
ientlylong time (whi
h in
reases with the spatial resolution). The system of Nvorti
es will eventually behave di�erently from the 
ontinuous system, and
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al me
hani
s, dealing with the limit of very longtimes, is di�erent (in more mathemati
al terms, taking the results of thetwo limits h! 0 and t!1 depends on the order in whi
h they are taken).There is �rst the possibility that the maximum vorti
ity of the statisti
alequilibrium ex
eeds the maximum value of the initial 
ondition, whi
h isin
onsistent with the Euler equations. Se
ondly there are several ways tomodel the same 
ontinuous initial 
ondition: we 
an for instan
e use either
onstant vorti
es with a variable spa
ing h , or a 
onstant spa
ing h anddi�erent vortex 
ir
ulations, proportional to the lo
al vorti
ity. The pointvortex statisti
al equilibrium will be di�erent in the two 
ases: in the �rst
ase we shall get the result (3.10), while in the se
ond 
ase we shall getthe result 3.12, with a sum of exponential terms. These diÆ
ulties will besolved in se
tion 5 using a di�erent approa
h.4 Spe
tral properties, energy and enstrophy 
as
adeSin
e Kolmogorov, the use of spe
tral representations is at the heart of thestudy of turbulen
e. This approa
h quanti�es the energy transfers amongthe di�erent s
ales of motion. Kolmogorov's ideas have been applied to 2Dturbulen
e by Krai
hnan in 1967 [56℄, see [58℄ and [64℄ for good reviews.The most interesting result is the predi
tion of an inverse energy 
as
adetoward large s
ales, whose existen
e is now �rmly established both fromnumeri
al simulations and laboratory experiments. The existen
e of a di-re
t enstrophy 
as
ade toward small s
ales has been also predi
ted, but itsrelevan
e remains 
ontroversial. The emergen
e of isolated vorti
es playsan important role, at least in some 
ases.4.1 Spe
trally trun
ated equilibrium states:Instead of using point vorti
es, a quite di�erent approa
h is to expand thevelo
ity (and vorti
ity) �eld in the eigenmodes �n of the Lapla
ian for the
uid domain. These are the Fourier modes for the usual periodi
 
onditions.We therefore expand the vorti
ity as!(t; r) =X an(t)�n(r) ; with ��n = �k2n�n (4.1)and the streamfun
tion is  = Pank�2n �n. Other basis, like wavelets,allow to make s
ale analysis depending on position, whi
h may be moresensible in the presen
e of 
oherent stru
tures, see [39℄ in this book. Howeverthe 
lassi
al Fourier have the advantage of ni
e dynami
al properties, inaddition to their simpli
ity. In parti
ular ea
h mode �n is a steady solutionof the Euler equations, sin
e its vorti
ity ���n is a fun
tion of �n (seese
tion 2.4). The energy E and enstrophy �2 are readily expressed, due to
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e the Euler equations 
ontain only quadrati
 terms in velo
ity, it
an be written in the general form_an =Xr;s Anrsaras (4.3)with �xed intera
tion 
oeÆ
ients Anrs for the triad intera
tions. These
oeÆ
ients satisfy the \detailed 
onservation of energy" among ea
h triadk�2n Anrs + k�2r Arsn + k�2s Asnr = 0 (4.4)as well as the detailed 
onservation of enstrophyAnrs +Arsn +Asnr = 0 (4.5)Starting with some initial 
ondition with energy limited to a few modes,higher and higher modes will be ex
ited: this is the 
as
ade pro
ess of tur-bulen
e. It 
an be understood as a tenden
y of the system to explore all theavailable modes, a general e�e
t of entropy in
rease. However a statisti
alequilibrium, maximizing entropy, is really rea
hed only if we arti�
ially seta bound to the a

essible modes, keeping a �nite number N of modes. Thisstops the fundamental irreversibility of turbulen
e but gives indi
ations onthe general trends of the system.The spe
trally trun
ated system (4.3) then be
omes a 
losed dynami
alsystem whi
h 
onserves energy, and the general methods of equilibrium sta-tisti
al me
hani
s 
an be used. Although 
onservative, it does not have anHamiltonian form, unlike the vortex system (3.2). Still a Liouville theoremexists � _an=�an = 0 (4.6)whi
h is the required 
ondition for applying statisti
al me
hani
s (the vol-ume in phase spa
e is then 
onserved as mentioned in the footnote of se
tion3.4). This 
ondition is easily derived: the terms in (4.3) with n; r; s all dif-ferent give no 
ontribution to � _an=�an. The 
oeÆ
ients Anss vanish by thestationary property of the eigenmode �s. Annn vanishes in parti
ular, andby (4.4), Ansn = Anns = 0: This exhausts the possibilities and we have(4.6).In the presen
e of a \thermal bath" with inverse temperature �; theprobability of a mi
ros
opi
 state with energy E is in exp(��E), like wehave seen for point vorti
es in se
tion 3.4. Sin
e there is a se
ond 
onserved
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Fig. 9. Normalized modal energies (dots), averaged over 100 time steps, fromthe numeri
al solutions of the evolution equations (4.3) for the trun
ated spe
-tral model, 
ompared to the statisti
al equilibrium predi
tion (4.8) in solid line.This run (from [93℄) 
orresponds to a negative � regime with 70 % of the energy
ondensed in the fundamental mode.quantity �2; with asso
iated Lagrange multiplyer �, the probability of astate a1; :::aN is proportional to exp(��E � ��2) . Due to the quadrati
expressions (4.2), we have just independent Gaussian probabilities for ea
hmode p(an) / exp[�(�k�2n + �)a2n=2℄ (4.7)so the mean energy of a mode isk�2n < a2n >= k�2n Z p(an)a2ndan= Z p(an)dan = 12(� + �k2n)�1 (4.8)For large wavenumbers, it is 
onvenient to the repla
e the mode numbern by the waveve
tor k, and the dis
rete mode amplitudes an by the Fouriertransform !̂(k) of the vorti
ity �eld. Furthermore the energy spe
trumE(k), or the enstrophy spe
trum k2E(k) is used. It is de�ned by integrating!̂2(k) over a 
ir
le with jkj = k; so that for an isotropi
 �eld, k2E(k) =2�k!̂2(k) . The total energy is the integral of the energy spe
trum, E =R10 E(k)dk , and similarly for the enstrophy, �2 = R10 k2E(k)dk. Theequilibrium spe
trum is therefore in k=(� + �k2).For 3D turbulen
e, we have only the 
onservation of energy, so that� = 0; and the energy is equally spread over the modes. This is not inagreement with a
tual turbulen
e, but it justi�es the tenden
y of energy tospread over all the a

essible modes, and therefore to undergo an energy
as
ade toward the small s
ales where a majority of modes is lo
ated. In
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ontrast for 2D turbulen
e we 
an have a variety of states, depending on �and �; whi
h 
an be indire
tly related to the mean energy and enstrophyof the system. A parti
ularly interesting 
ase 
orresponds to � ! ��k20 forwhi
h the energy 
an a

umulate in the lowest available mode k0, as rep-resented in Fig. 9. This �gure also indi
ates that the statisti
al me
hani
spredi
tion is well veri�ed by numeri
al 
omputations of the dynami
al sys-tem (4.3), arti�
ially trun
ated by keeping a �nite number of modes withoutdissipation.This helps to understand the self-organization into the lowest mode,with a model di�erent from that of point vorti
es. The arti�
ial trun
ationof high modes have then little in
uen
e. Note however that the trun
ationsuppresses 
onservation laws (2.11) other than enstrophy. Moreover the useof a 
anoni
al distribution is then questionable, as energy is 
on
entratedin the single lowest mode, with large 
u
tuations. For instan
e the mostprobable state 
orresponds to the 
enter of the Gaussian (4.7), with zeroenergy. The use of a mi
ro-
anoni
al approa
h, keeping the energy 
onstant,would lead to a di�erent and more realisti
 result, although the trend for
on
entration in the lowest mode should be the same.4.2 The enstrophy and inverse energy 
as
ades of for
ed turbulen
e:� The double 
as
ade of Krai
hnan(1967)In the absen
e of 
on�nement at small wavenumbers (e.g. boundaries) andarti�
ial 
uto� at high wavenumbers the 
as
ades 
an freely develop. Tostudy stationary regimes, it is 
onvenient to 
onsider a statisti
ally per-manent for
ing 
on
entrated at a given wavenumber kI . The dimensionalanalysis leading to the Kolmogorov 
as
ade 
an be 
arried out in 2D as wellas in 3D and it yields the same inertial range,E(k) = C�2=3k�5=3 (4.9)The dire
tion of the energy 
ux is not given by dimensional analysis. How-ever a dire
t 
as
ade toward high wave numbers is forbidden by the absen
eof energy dissipation (see 2.3). Therefore Krai
hnan suggested a 
as
adetoward large s
ales (small k). He further justi�es this 
as
ade dire
tion as atrend of the system to go toward the statisti
al equilibrium des
ribed above(although it never rea
hes it in the absen
e of spe
tral trun
ation). Thereis no need for energy dissipation at large s
ales, at least in the ideal 
ase ofan in�nite 
uid domain, sin
e the integral R k�5=3dk diverges at 0: energyprogressively a

umulates toward lower and lower k: More physi
ally, weshall see that a fri
tion for
e proportional to the velo
ity (Rayleigh fri
tion)
an progressively pump out the energy along the inverse 
as
ade.Now what happens toward the small s
ales? Enstrophy must be inje
tedby the for
ing, at a rate � = k2I �, where kI is the inje
tion wavenumber.
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Fig. 10. sket
h of the 
lassi
al double 
as
ade of 2D turbulen
e (from Lesieur [64℄).Then an enstrophy 
as
ade is expe
ted, whi
h 
an be predi
ted by dimen-sional analysis in the same way as the energy 
as
ade, just repla
ing energyby enstrophy, and � by �: This yields an energy spe
trumE(k) = C 0�2=3k�3 (4.10)We shall see that these two 
as
ades are mutually ex
lusive (for in�nitelyextended 
as
ades): the rate of enstrophy transfer vanishes in the energy
as
ade and the rate of energy transfer vanishes in the enstrophy 
as
ade.Therefore sin
e energy goes to the larger s
ales, the enstrophy 
as
ade mustbe toward small s
ales. Enstrophy 
an be dissipated at small s
ales byvis
osity unlike energy. Even without vis
osity the enstrophy 
as
ade 
antheoreti
ally extends with time to higher and higher wavenumbers. Fig. 10summarizes this theoreti
al double 
as
ading spe
trum.For a more pre
ise dis
ussion of these 
as
ade pro
esses, let us expressthe for
ing as a vorti
ity sour
e f(x; y; t) added on the right hand side of(2.6), and introdu
e some energy dissipation. Then the mode enstrophies< a2n > satisfy the equations12 d < a2n >dt =< an _an >=Xr;s Anrs < arasan > + < fnan > �diss (4.11)where fn is the amplitude of f in the mode n: Note that the enstrophyprodu
tion is the 
orrelation < fnan > between the vorti
ity and its sour
ef , and the 
orresponding energy produ
tion k�2n < fnan >. The sums ofthese quantities over the modes are the total enstrophy produ
tion � andenergy produ
tion � respe
tively.For the 
onsidered homogeneous isotropi
 turbulen
e, the dis
rete modeamplitudes an is repla
ed by the Fourier transform !̂(k), and the energy
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onservation equation for the energyspe
trumE(k), �E�t = ����k + for
ing � diss (4.12)� 
an be viewed as the energy 
ux due to nonlinear intera
tions and ��=�kits divergen
e. The same equation 
an be also written in a form displayingenstrophy 
onservationk2 �E�t = ��Z�k + for
ing � diss (4.13)with an enstrophy 
ux Z: These 
uxes are expli
itly obtained [56℄ [64℄ byFourier transform of the Euler equations and integration over waveve
tor di-re
tions. They are expressed as integral of the rates of triad energy transferT (k; p; q), depending on the triple 
orrelations < !̂(k)!̂(p)!̂(q) >, wherethe ve
tors (k;p;q) form a triangle (k+ p+ q = 0) with sides k; p; q;�(k) = 12 Z 1k dk0 Z k0 T (k0; p; q)dpdq � 12 Z k0 dk0 Z 1k T (k0; p; q)dpdq(4.14)Z(k) = 12 Z 1k k02dk0 Z k0 T (k0; p; q)dpdq � 12 Z k0 k02dk0 Z 1k T (k0; p; q)dpdq(4.15)At this stage a possible approa
h is to introdu
e a 
losure hypothesis toexpress the triple 
orrelations and obtain dynami
al equations for the energyspe
trum. This has been done by assuming that the 
u
tuations of the modeamplitudes have statisti
s 
lose to a Gaussian. After a failed attempt byMillionsht
hikov (the quasi-normal theory), this approa
h has been widelydeveloped by Krai
hnan. His models have the property of relaxing thesystem toward the spe
trally trun
ated statisti
al equilibrium in the absen
eof for
ing and dissipation. With for
ing at a given wavenumber kI , these
losure models lead to the double 
as
ade sket
hed in Fig. 10 [3℄ [49℄,see [64℄for a review.However Krai
hnan did not use 
losure hypothesis in his original paperof 1967. He assumes instead an in�nite 
as
ade, with for
ing and dissipationrepla
ed by 
onstant 
ux in wavenumber spa
e. He further assumes that thetransfer rate T (k; p; q) s
ales in power law: T (k; p; q) = k�mT (1; p=k; q=k),where T (1; p=k; q=k) depends only on the angles in the triad. Then the en-ergy 
ux (4.14) is expressed as k3�m (due to the triple integrals) multipliedby angular integrals over triad dire
tions p=k and q=k. The only possibilityfor a 
ux �(k) independent of k is therefore m = 3. By dimensional anal-ysis, T (k; p; q) � u3=k2, where u is the typi
al velo
ity at s
ale 1=k, andE(k) � u2=k. Therefore, T � k�3 implies u � k�1=3 , 
orresponding to an
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trum in k�5=3. This dimensional analysis is however valid onlyif the triple 
orrelations s
ale in u3 while the double 
orrelations s
ale inu2, i.e in the absen
e of intermitten
y. The 
as
ade is more fundamentallyde�ned by the s
aling of the transfer rate than the s
aling of the energyspe
trum (double 
orrelations).Su
h 
onstant energy 
ux 
as
ades 
an be as well obtained in 3D, butin 2D one 
an furthermore imagine 
as
ades with a 
onstant enstrophy 
uxZ(k), 
orresponding to the k�3 energy spe
trum. Then the energy 
ux �(k)should s
ale in k�2: However by using the detail 
onservation laws (4.4)and (4.5), whi
h translate into similar relations for T (k; p; q), Krai
hnanshows that the angular integration in (4.14) exa
tly 
an
els: the energy
ux is zero. Similarly the enstrophy 
ux 
an
els in the energy 
as
ade. Asstressed by Krai
hnan, a 
as
ade 
annot be viewed just as a 
arrying beltin wavenumber spa
e, transporting together the energy E(k) and its relatedenstrophy k2E(k). The transport is rather the result of overlapping triads,whi
h makes possible a 
ux of energy or enstrophy alone. Eyink [35℄ hasobtained mathemati
al results supporting this double 
as
ade theory. Hehas shown that the 
ux of higher vorti
ity moments, e.g. !4 is related tothe enstrophy 
as
ade and is also toward high wavenumbers.This work of Krai
hnan provides 
onstraints on the nature of putative
as
ades, but it does not guarantee that su
h states should be approa
hed.As mentioned above, 
losure models provide a �rst support of these ideas.The enstrophy 
as
ade has re
eived a more pre
ise theoreti
al justi�
ationby a di�erent approa
h [37℄, presented at the same s
hool [38℄. The ideais derived from the study of the passive s
alar stirring in a random larges
ale strain. Bat
helor in 1959 �rst predi
ted k�1 spe
tra for the s
alarvarian
e, and this has been 
on�rmed by rigorous approa
hes. Vorti
ityin 2D turbulen
e is transported like a s
alar, and we noti
e that the k�3energy spe
trum 
orresponds indeed to a k�1 enstrophy spe
trum [57℄. Of
ourse the strain is not limited to large s
ales: the strain produ
ed by 
owstru
tures at s
ale k�1 
an be estimated as uk � (k3E(k))1=2 . This strain isindependent of k for a k�3 energy spe
trum so the 
ontribution of all s
alesis the same, and the \nonlo
al intera
tions" with the large s
ale strain isdominant (unlike in the k�5=3 spe
trum), but only marginally. The pre
iseanalysis [37℄ gives a k�3 energy spe
trum 
orre
ted by a logarithmi
 fa
tor.Krai
hnan also proposed [57℄ su
h a logarithmi
 
orre
tion to avoid somedivergen
e in the 
al
ulations.� Observations of the 
as
ades:It is diÆ
ult to simultaneously observe the two 
as
ades due to the requiredspatial resolution and high Reynolds number: observing two de
ades forea
h 
as
ade in a numeri
al 
omputation would require at least 104 gridpoints in ea
h dire
tion. Simulations or laboratory experiments must be
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Fig. 11. Laboratory observation of the inverse energy 
as
ade, from [97℄. Theexperimental 
ell is sket
hed on the left as a top view and side view below. The
ow is maintained 2D in a horizontal mer
ury layer by a verti
al magneti
 �eldwhi
h prevents the built up of 3D perturbations. The ele
tri
 
urrent, steadilyinje
ted with alternating sign in an ele
trode latti
e, generates a square vortexlatti
e by intera
tion with the magneti
 �eld. The 
ow is visualized from aboveby the streaks of parti
les 
oating on the mer
ury free surfa
e (the �eld of viewis limited to a 
entral band due to the 
onstraint of the ele
tromagnet). Thedynami
s is 
ontrolled by a fri
tion parameter Rh representing the ratio of theinertial e�e
t to the fri
tion on the bottom surfa
e. For Rh <1.78, the 
ow issteady as shown on the left, over the apparatus sket
h. For higher Rh instabilitiesdevelop, ex
iting larger s
ales of motion, as shown on the two photos on the righttop. The 
orresponding energy spe
tra reveal the built up of an inverse energy
as
ade for Rh = 14:24, and the 
ondensation in the fundamental mode n = 1 forRh = 40:3. This mode 
orresponds to a global rotation of the 
ow, spontaneouslybreaking the symmetry between positive and negative vorti
ity. The spe
tra areobtained from the spatial Fourier transform of the ele
tri
 potential measuredalong a line of small ele
trodes (; 1): the indu
ed ele
tri
 potential is proportionalto the transverse velo
ity.optimized to study one of the 
as
ades.The existen
e of the inverse energy 
as
ade is now well establishedboth from dire
t numeri
al simulations [42℄ [96℄ and from laboratory ex-
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Fig. 12. For
ing 2D turbulen
e with the same te
hnique as in Fig. 11, but with anhexagonal latti
e (from [76℄). The energy spe
tra indi
ate a persistent peak at thefor
ing wavenumber, whi
h is removed if the mean velo
ity is subtra
ted from thedata, keeping only the turbulent part with a hint of a k�5=3 range. The spe
tralenergy transfer T (k) = �d�=dk have been also obtained from the triple velo
ity
orrelations, assuming isotropy. One 
he
ks that the energy transfer indeed feedsthe small wavenumbers while it removes energy from the for
ing range.periments [97℄ [76℄ [83℄. Note that the experiments of Sommeria [97℄ havebeen performed with a steady for
ing (in a square vortex latti
e), and theinverse 
as
ade is therefore spontaneously generated, see Fig. 11. Sponta-neous generation of an inverse energy 
as
ade has been also observed withan hexagonal latti
e, see Fig. 12, although a signi�
ant steady 
ow 
om-ponent 
oexists with the turbulen
e, unlike with the square latti
e, moreeÆ
ient at generating 2D turbulen
e (see also se
tion 3.3). In 
ontrast, boththe experiments of Paret and Tabeling [83℄ and the numeri
al simulationshave been performed with some random for
ing. The Kolmogorov 
onstantfound is about 7, whi
h means that this 
as
ade is less \eÆ
ient" than in3D (for whi
h C = 1:5): for a given value of the spe
trum E(k) the transferrate � is smaller than in 3D. Noti
e that this value of the 
oeÆ
ient �ts wellwith the predi
tion of Krai
hnan using the test �eld 
losure model [57℄.Remarkably, intermitten
y seems absent [83℄ [96℄, or at least very weak:the su

essive moments of the two-point velo
ity di�eren
e < (Æu)n > s
alewith point separation r in rn=3 . The ideas of Kolmogorov (1941) turns outto be more appropriate for 2D than for 3D turbulen
e! Furthermore theprobability distribution for Æu is 
lose to a Gaussian at all s
ales. It 
annot
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Fig. 13. Laboratory observation of the dire
t enstrophy 
as
ade in a thin waterlayer, strati�ed in density by salinity to restri
t 3D re
ir
ulation (from [82℄). The
ow is generated by a set of magnets (sket
h on the upper left) intera
ting with auniform horizontal ele
tri
 
urrent randomly swit
hed in time (
urve below). The
ow is thus generated at large s
ale allowing to fo
us the study on the enstrophy
as
ade. Spe
tra in k�3 are indeed obtained (upper right), while the spe
traliso
ontours below illustrate the isotropy of the 
as
ade, although the for
ing atsmall k is not isotropi
, as revealed by the two peaks near the 
enter.be exa
tly a Gaussian as the energy transfer is asso
iated with a non zerothird order moment, as seen above. However the 
as
ade is less eÆ
ientthan in 3D (the Kolmogorov 
onstant is larger) so we 
an understand thatthe system is 
loser to an equilibrium with Gaussian statisti
s.To get a steady 
as
ade in a �nite size domain, some energy dissipationa
ting at large s
ale is ne
essary. In laboratory experiments the fri
tion onthe support of the 
uid layer, proportional to velo
ity, plays this role. Innumeri
al simulations, a large s
ale dissipation 
onsistent with the inverseenergy 
as
ade must be 
hosen [101℄. When the inverse 
as
ade is limitedby the domain size instead, the 
as
ade breaks down and 
ondensation ofenergy in the lowest mode is obtained as predi
ted above from trun
ated
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tral equilibria. This 
ondensation has been well observed both in labo-ratory experiments [97℄ [83℄ (see Fig. 11) and numeri
al 
omputations [96℄.The existen
e of the enstrophy 
as
ade is also 
on�rmed by laboratoryexperiments [82℄, represented in Fig. 13. Note that measurements of thesteep k�3 energy spe
tra over large wavenumber ranges is diÆ
ult as itrequires a very high pre
ision to distinguish the small s
ale 
u
tuations fromthe mu
h stronger large s
ales (obtaining two de
ades requires a pre
isionon velo
ity better than 10�3). Numeri
al simulations with high resolution[5℄, up to 40962 provide more extended spe
tral ranges, with a 
onstantenstrophy 
ux over 2 de
ades. The k�3 energy spe
trum has logarithmi

orre
tions, while a nearly perfe
t k�3 spe
trum has been obtained witha slightly di�erent for
ing [67℄. Note that earlier simulations [63℄ pointout that the presen
e of 
oherent vorti
es modi�es the 
as
ade, leadingto steeper energy spe
tra. The permanent produ
tion of random vorti
itytends however to prevent the build up of the 
oherent vorti
es [5℄, unlike infreely de
aying 
ows dis
ussed next.4.3 The enstrophy 
as
ade of freely evolving turbulen
e:Unlike in 3D, the behavior of freely evolving 2D turbulen
e is quite di�erentthan that of for
ed turbulen
e. This di�eren
e 
an be understood by 
onsid-ering that the dynami
al time for eddies with s
ale k�1 is in (k3E(k))�1=2,so that in a k�5=3 energy spe
trum the small s
ales have a mu
h shorterdynami
al time than the large s
ales (it is in k�2=3). Therefore in a dire
tenergy 
as
ade the e�e
t of large s
ales is reasonably similar to a permanentfor
ing for the smaller s
ales. This is not true for the e�e
t of small s
aleson the large s
ales in the inverse energy 
as
ade.A 
lassi
al predi
tion for a freely evolving turbulen
e have been given byBat
helor in 1969, assuming a self-similar spe
tral evolution, with a (single)time s
ale and length s
ale evolving in time. An enstrophy 
as
ade is stillpredi
ted, with a spe
trum in t�2k�3. The inverse energy 
as
ade is thenrepla
ed by a growth of the integral s
ale, su
h that the total enstrophy ispredi
ted to de
ay in t�2:Energy spe
tra 
lose to k�3 are indeed obtained in laboratory experi-ments or numeri
al simulations of freely de
aying 2D turbulen
e. Experi-mentally, it has been �rst measured in grid turbulen
e in liquid metal du
t
ows submitted to a transverse magneti
 �eld [55℄. This was the �rst exper-imental observation of 2D turbulen
e ever reported. Re
ent measurementsin soap �lms yield similar results [71℄. Numeri
al simulations starting withsome random �eld at wavenumber kI �rst show the onset of a k�3 energyspe
tral range, when the enstrophy dissipation is maximum [9℄ [8℄. Howeverthe spe
tra tend to be
ome progressively steeper as isolated vorti
es form,see below.Numeri
al simulations [16℄, as well as laboratory experiments [102℄, all
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ate that enstrophy de
ays mu
h less rapidly than the Bat
helor's pre-di
tion in t�2 (the exponent found in various 
ases is in the range 0.3-1instead of 2). This global de
ay is related to the spe
tral behavior in thelimit of small wavenumbers. Re
ent numeri
al simulations [80℄ allowing agood resolution at small wavenumber 
on�rms a behavior in k3 predi
tedwith 
losure models [3℄. This probably depends however on assumptionson the initial 
ondition [32℄. In laboratory experiments su
h large s
alesare 
learly less universal, and more diÆ
ult to 
ontrol than the small s
alebehavior.4.4 The emergen
e and evolution of isolated vorti
es:The emergen
e of isolated vorti
es is a fas
inating aspe
t of 2D turbulen
e.This phenomenon has been �rst do
umented by M
 Williams [107℄, andthen obtained in many similar numeri
al 
omputations. Most vorti
es aremonopoles but some dipoles, and even tripoles, 
an be temporarily formed.Su
h vortex formation has been observed as well in laboratory experimentswith thin water layer [102℄ and more spe
ta
ularly in ele
tron plasma exper-iments [40℄, where the vorti
ity �eld is dire
tly visualized as ele
tron den-sity. This organization 
an be explained in terms of statisti
al me
hani
s,see se
tion 5, as a lo
al equilibrium around an initial vorti
ity maximum.On
e formed these vorti
es intera
t and merge, so they be
ome fewerand fewer, while their maximum vorti
ity only weakly de
ays. Thereforethey dominate more and more the ba
kground vorti
ity, whi
h de
ays byenstrophy 
as
ade. Note that some 
ontour dynami
s 
omputations [34℄indi
ate the possibility of formation of new se
ondary vorti
es of varioussizes by the reorganization of vorti
ity �laments resulting from vortex in-tera
tions. Persisten
e of non-axisymmetri
 vorti
es is also observed in su
h
omputations. These results are however not supported by ele
tron plasmaexperiments [75℄, as well as more 
lassi
al numeri
al 
omputations with in-
reasing resolution [8℄: signi�
ant vortex formation only o

urs during theinitial stage of organization from the random initial 
ondition. Statisti
alme
hani
s also indi
ates a general trend for merging and reorganization intoaxisymmetri
 vorti
es.The formation of organized vorti
es has a 
lear 
onsequen
e in terms ofglobal statisti
s. In parti
ular the Kurtosis Ku =< !4 > = < !2 >2 
on-siderably in
reases with time: it is just the inverse of the area proportiono

upied by the vorti
es. Starting from a value Ku =3 
hara
terizing theGaussian statisti
s of the initial 
ondition, a typi
al value of Ku =50 
anbe rea
hed, whi
h 
hara
terizes a highly intermittent �eld: the distributionof vorti
ity levels has big \tails" 
orresponding to a signi�
ant probabilityof �nding vorti
ity values mu
h larger than the vorti
ity root mean square.Steepening of the energy spe
trum beyond the k�3 predi
tion is also ob-served to be asso
iated with vortex predominan
e, while k�3 spe
tra are
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es [39℄.The 
ondition of formation of su
h organized vorti
es is still a debatedquestion. They are best observed for an initial 
ondition spe
trum with adominant peak, while a wideband range of s
ales (like a k�5=3 inertial range)tends to prevent their formation. The 
onditions at large s
ales seem to havea signi�
ant in
uen
e. The e�e
t of the dissipation operator at small s
aleis also important: the 
lassi
ally used hypervis
ous operators 
an spuri-ously enhan
e the vortex in
uen
e (the peak vorti
ity 
an in
rease), whilethe usual vis
osity makes then wider. \Contour surgery" methods lead todi�erent results as mentioned above. Well tested high resolution numeri
alstudies are still needed to make safe 
laims about the asymptoti
 inertiallimit, in parti
ular about the statisti
al distribution of vortex strength andsize.The evolution of the vortex population is an interesting theoreti
al issue.At moderate Reynolds numbers, the vorti
es have all a similar size andstrength. At higher Reynolds numbers, vorti
es with di�erent sizes 
oexist,but their probability distribution seems to rea
h a steady shape [8℄, so thatfurther evolution is 
ontrolled in all 
ases by an in
rease of the typi
al vortexradius ra and a de
rease of the vortex number N: Power law evolutionsN / t�� and ra / t�=4are observed for these quantities, while the typi
alpeak vorti
ity remains 
onstant. The relation between the exponent forvortex radius and vortex number is justi�ed by the 
onservation of energy.This indeed implies the 
onservation of the typi
al 
ow velo
ity, whi
h isindu
ed by the vorti
es with a s
aling in 
=l; where 
 / r2a is the vortex
ir
ulation and l / N�1=2 is the typi
al vortex separation. Therefore a
onstant typi
al velo
ity indeed implies that Nr4a / 
onst: The total vortexarea Nr2a / t��=2 , then de
reases with time, so that some vorti
ity ismixed away in the ba
kground during merging. Sin
e enstrophy be
omesdominated by the vorti
es, this total vortex area is just proportional to theenstrophy.An exponent � ' 0:7 is obtained in dire
t numeri
al simulations [8℄ andlaboratory experiments [102℄, and it is reprodu
ed by a model of \pun
-tuated dynami
s" [14℄: a set of N point vorti
es intera
t a

ording to theKir
hho� equations (3.2,3.3), and a merging rule is used when two vorti
esget 
loser than their radius. Su
h a model has been re
ently improved [94℄using a pro
edure of \numeri
al renormalization" to rea
h mu
h longer evo-lution times: after ea
h merging, the domain of 
omputation is in
reased,introdu
ing randomly a new vortex to keep the same vortex density. Thisallows to keep a 
onstant vortex number in the 
omputations, while previousmethods required a very large initial vortex number to get good statisti
s atlater times. These 
al
ulations agree with the previous ones at early times,but a progressive in
rease of the exponent � is observed, with a �nal value� = 1.
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an be understood by an elementary kineti
 model,
onsidering vorti
es like atoms in ballisti
 motion. The rate of binary 
ol-lisions is then proportional to the square N2 / t�2� of the vortex den-sity, to the vortex size ra / t�=4 (its 
ross-se
tion of intera
tion) and tothe 
onstant vortex velo
ity. This would imply dN=dt / t�(7=4)� so that� = 4=3, 
learly in
onsistent with the results. However Sire and Chava-nis [94℄ show that three-body 
ollisions are ne
essary to get merging. Typ-i
ally a vortex dipole (two opposite sign vorti
es) with separation / ra 
ol-lides with a monopole. In that 
ase the pair translates at velo
ity 
=ra / ra.Assuming un
orrelated random pair formation, the density of dipoles is/ N �Nr2a (the vortex density multiplied by the probability of �nding an-other vortex at a distan
e / ra). The 
ollision probability therefore be
omesdN=dt / N �N2r2a � ra � ra (the su

essive produ
t of the vortex density,the dipole density, the 
ollision 
ross se
tion ra, and the dipole velo
ity).This yields the exponent � = 1:This work therefore 
lari�es the problem of pun
tuated vortex dynami
s.Its pra
ti
al relevan
e for 2D turbulen
e is however remote, as it is limitedto very large time s
ales and domain sizes, with a

ordingly extremely highReynolds numbers. Furthermore the question of energy spe
tra is open. As-suming random un
orrelated point vorti
es 
ompletely determines in prin
i-ple the statisti
s of the velo
ity �eld [20℄. In parti
ular the energy spe
trumis [78℄ in k�1 for k > 1=l , where l is the typi
al distan
e between vor-ti
es (this 
an be understood by remarking that the Fourier transform of aDira
 fun
tion is 
onstant, leading to an enstrophy spe
trum in k). There-fore some 
orrelations between vortex positions must o

ur to explain thesteeper spe
tra numeri
ally observed. Statisti
al me
hani
s of point vor-ti
es, beyond the mean �eld approximation dis
ussed in se
tion 3.4, shouldbe relevant there.5 Equilibrium statisti
al me
hani
s and self-organization5.1 Statisti
al me
hani
s of non-singular vorti
ity �elds:We have seen in subse
tion 3.4 that the statisti
al me
hani
s of point vor-ti
es explains self-organization of 2D turbulen
e into large steady 
oherentstru
tures. However we have noted that the modeling of 
ontinuous 
owsby point vorti
es leads to some diÆ
ulties. A solution to this problem hasbeen proposed by Kuz'min(1982), redis
overed and justi�ed by Robert [85℄,Robert & Sommeria [88℄, and independently by Miller [74℄. This equilib-rium statisti
al theory is performed dire
tly on the Euler equations.5Then,5A similar statisti
al me
hani
s had been previously proposed [68℄ for the Vlasov equa-tion used to des
ribe the organization of galaxies with stellar dynami
s. The analogieswith the Euler equations have been put forward only re
ently [25℄ [18℄
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edure for Hamiltonian systems of parti
les is not available,but the method is still justi�ed (on a weaker basis) by a set of rigorous prop-erties [90℄. The result is again a steady solution of the Euler equations, onwhi
h �ne s
ale vorti
ity 
u
tuations are superimposed. The relationshipbetween vorti
ity and streamfun
tion is di�erent that of the point vortexmodel, and it is now quite 
onsistent with the properties of the Euler equa-tions with nonsingular vorti
ity.� The ma
ros
opi
 des
ription:The Euler equations are known to develop very 
omplex vorti
ity �laments,at �ner and �ner s
ales, and a deterministi
 (\mi
ros
opi
") des
riptionof the 
ow would require a rapidly in
reasing amount of information astime goes on. We are rather interested in some lo
al vorti
ity average !.However to keep tra
k of the 
onservation laws, we need to introdu
e a morepre
ise \ma
ros
opi
" des
ription, as the probability �(r; �) of �nding thevorti
ity level � in a small neighborhood of the position r (this is a Young'smeasure in mathemati
al terms). The lo
ally averaged vorti
ity �eld is thenexpressed in terms of this probability density as:!(r) = Z �(r; �)�d� (5.1)This probability 
an be viewed as the lo
al area proportion o

upied byea
h vorti
ity level �; and it must satisfy at ea
h point the normalization
ondition : Z �(r; �)d� = 1 (5.2)and the asso
iated (ma
ros
opi
) stream fun
tion satis�es in the 
uid do-main (D): ! = �� with  = 0 on (�D) (5.3)Note that sin
e the streamfun
tion is expressed by spa
e integrals of vor-ti
ity, it smoothes out the lo
al vorti
ity 
u
tuations, supposed at very �nes
ale, so  has negligible 
u
tuations.It is then possible to express the 
onserved quantities as integrals ofthe ma
ros
opi
 �elds. A �rst set of 
onserved quantities is the globalprobability distribution of vorti
ity 
(�) (i.e. the total area of ea
h vorti
itylevel): 
(�) = Z �(r; �)d2r (5.4)As a 
onsequen
e the integral of any fun
tion of the vorti
ity is 
onserved(the vorti
ity elements are just rearranged within the bounded 
uid domainas time goes on).
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onserved. As dis
ussed above the streamfun
-tion 
an be 
onsidered as smooth, so we 
an express the energy in terms ofthe lo
ally averaged vorti
ity:E = 12 Z  !d2r (5.5)In a domain with rotational or translational symmetries, additional quan-tities are 
onserved like the angular momentum in the disk, as dis
ussed inse
tion 2.3.� Entropy maximization:As in usual statisti
al me
hani
s, for instan
e in se
tion 3.4, we need todetermine the entropy (\
ounting" the asso
iated mi
ros
opi
 states) ofa given ma
ros
opi
 state. The ma
ros
opi
 state whi
h maximizes theentropy, with the 
onstraint of the 
onserved quantities, will be the mostlikely to result from 
omplex stirring. The expression of the entropy is theusual mixing entropy,S = � Z �(r; �) ln �(r; �)d2rd� (5.6)The di�eren
e with point vorti
es lies in the lo
al normalization 
ondition(5.2): we 
ount the possible rearrangements of small vorti
ity par
els whi
hex
lude ea
h other on a given area unlike point vorti
es.6We therefore maximize the entropy with the 
onstraints (5.4), (5.5) and(5.2) due to the 
onserved quantities and to the normalization. This varia-tional problem is treated by introdu
ing the 
orresponding Lagrange mul-tipliers �; �(�), �(�) so that the �rst variations satisfy:ÆS � �ÆE � Z �(�)Æ
(�)d� � Z �(r)Æ Z �(r; �)d�!d2r = 0 (5.7)By analogy with usual thermodynami
s, � 
an be viewed as the inversetemperature and �(�) the 
hemi
al potential of spe
ies �. Introdu
ing theexpressions (5.6) and (5.5) of entropy and energy, (5.7) be
omes R [ln �+1+�(�) + �(r) + �� ℄ Æ� d2rd� = 0. This has to be satis�ed for any variationÆ�, implying that the integrand vanishes. The resulting optimal probabilitydensity �(r; �) is therefore related to the equilibrium streamfun
tion  bythe relationship: �(r; �) = 1Z g(�)e��� (5.8)6This entropy 
an be further justi�ed by 
onsidering the system as the limit of a seriesof spe
trally trun
ated approximations of in
reasing resolution [90℄.
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ase of point vorti
es, the vorti
ity level � repla
ingthe elementary vortex 
ir
ulation 
. However the additional normalization
onstraint (5.2) has to be satis�ed at ea
h point, whi
h leads to :Z( ) = Z g(�)e��� d� (5.9)so that Z is a fun
tion of  ; whi
h we 
all the partition fun
tion by analogywith usual statisti
al me
hani
s. The lo
ally averaged vorti
ity (5.1) is thenexpressed as a fun
tion of the streamfun
tion:! = R g(�)�e��� d�R g(�)e��� d� = � 1�Z � lnZ� � f�;g( ) (5.10)and the resulting 
ow 
an be 
al
ulated by solving the 
orresponding partialdi�erential equation:�� = f�;g( ) with  = 0 on (�D) (5.11)Like in the point vortex 
ase, random mixing yields a steady solution of theEuler equations on
e the lo
al vorti
ity 
u
tuations have been averaged.The parameters � and g(�) are indire
tly determined by the 
onservationlaws, and we 
all the resulting solutions of (5.11) the Gibbs states. This isonly a ne
essary 
ondition for a true statisti
al equilibrium: in addition these
ond variation of the entropy must be negative. A good way to sele
t su
hmaxima is to use a relaxation algorithm whi
h in
reases the entropy whilepreserving the 
onserved quantities. The relaxation equations of se
tion 6ful�l this goal, provided an appropriate dis
retization is implemented. Arelaxation algorithm in dis
rete steps has been also implemented [106℄.5.2 The Gibbs states:� Case of vortex pat
hes:In the 
ase of an initial 
ondition made of pat
hes with vorti
ity 0 or a, we
an write � in terms of the Dira
 distribution Æ as �(�; r) = p(r)Æ(��a) +(1� p(r))Æ(�) involving the lo
al area proportion p(r) of the level a and the
omplementary 1� p for the level 0. Then the result (5.11) redu
es to�� = pa = a e��a g0 + e��a with  = 0 on (�D) (5.12)Making a formal analogy with quantum gas statisti
s, this 
an be 
alleda Fermi-Dira
 distribution by 
ontrast with the Boltzmann relation (3.10)for point vortex statisti
s. Similarly the lo
al ex
lusion of the vorti
ity
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hes results in a saturation of the vorti
ity at the unmixed value a, whenexp(��a ) � g0 . In the opposite limit, the relation (5.12) redu
es to thepoint vortex result (3.10). We 
all it the dilute limit [88℄ as it 
orrespondsto a small initial vorti
ity area whi
h has been diluted among the dominantirrotational 
uid.For pra
ti
al 
al
ulations in the more general 
ase, the initial vorti
ity�eld has to be dis
retized in vorti
ity levels, so that the fun
tion f�;g 
anbe expressed by sums of exponential terms at both numerator and denom-inator. The result generally 
onverges already well when just a few levelsare used.An example of statisti
al equilibria is represented in Fig. 14. The geom-etry is a 
hannel, with periodi
 boundary 
onditions along x (whi
h 
an beviewed as a simpli�ed representation of an annulus). The mixing of a singlelevel vorti
ity pat
h with a given initial area A is 
onsidered (here A =1/10of the total surfa
e). The a

essible energy is then restri
ted between alower and an upper bound. At the lower bound, the vorti
ity is pushed tothe walls, without any possibility of mixing, so the entropy remains equal tozero. At the upper bound, mixing is also forbidden, and the vorti
ity formsa 
entral pat
h. This state breaks the translational symmetry. The bran
hof x-independent states has lower entropy and is not a maximum beyondthe bifur
ation (it is numeri
ally obtained by suppressing all x-dependentperturbation). The entropy versus energy has a bell shape 
urve, whoseslope is the inverse temperature �, equal to +1 at the low energy boundand to �1 at the high energy bound. Between these two bounds, the en-tropy rea
hes a maximum with � = 0, 
orresponding to a 
omplete mixing,with a uniform 
oarse grained vorti
ity.The point vortex mean �eld equilibrium is obtained from the presentresult by taking the limit of a small area A (for a �xed energy). An expli
itfamily of solutions is then available in this 
hannel geometry: the Stuartvorti
es [98℄. This point vortex statisti
s leads to a similar bell shaped
urve (like in Fig. 7), but without energy bound: the vorti
es 
an 
on
en-trate without limit, in 
ontradi
tion with the 
onservation of the maximumvorti
ity.Note that for negative temperature states, the equilibrium stru
ture isself-
on�ned along the transverse dire
tion by energy 
onservation. Thelateral walls have no in
uen
e (unlike in the jet 
ase with zero global 
ir-
ulation represented in Fig. 8). In 
ontrast the x wise periodi
ity sets thes
ale of the bifur
ated vortex state. The Gibbs state equation (5.12) hasalso solutions with smaller x-wise periods, but they are not entropy max-ima: the largest s
ale is always preferred, whi
h justi�es the tenden
y forvortex merging and growth of the free shear layer.� General properties of the Gibbs states:
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Fig. 14. Statisti
al equilibrium for an initial single level vorti
ity pat
h in a 
han-nel with periodi
 
onditions along x (from [106℄). The entropy is plotted versusenergy, and representative vorti
ity �elds ! are given (isovorti
ity 
ontours). ForsuÆ
iently high energy, vorti
ity 
lumps in a large vortex, breaking the transla-tional symmetry.For any global distribution 
(�) of vorti
ity levels, the a

essible energy isrestri
ted between a lower and an upper bound [13℄. At the upper bound,any vorti
ity mixing is forbidden, and the entropy remains equal to zero,with an inverse temperature � = �1. The behavior at the lower bounddepends on the total 
ir
ulation �. For a non-zero 
ir
ulation, the entropyversus energy has a bell shape 
urve, as in Fig. 14. At its maximum, � = 0,the 
oarse grained vorti
ity is uniform. With � = 0, a state of zero energy
an be rea
hed, with 
omplete mixing, ! = 0, so the entropy is maximumfor E = 0. It de
reases with in
reasing energy, so the inverse temperature� is always negative. This is the 
ase for instan
e in a doubly periodi
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h � = 0 by 
onstru
tion.General properties of the fun
tion f�;g 
an be shown [88℄. First of all itis always bounded between the minimum and maximum values of the initialvorti
ity, whi
h is expe
ted sin
e the vorti
ity ! results from a mixing ofthe vorti
ity levels. Se
ondly f�;g is always a monotoni
 fun
tion of  : Thisis most easily shown by di�erentiating the expression (5.10) of f�;g , whi
hyields an expression for the lo
al enstrophy7!2 � !2 � !2 = R g(�)�2e��� d�R g(�)e��� d� � (R g(�)�e��� d�R g(�)e��� d� )2 = � 1� f 0� g( )(5.13)Sin
e !2 � 0; the derivative f 0�;g is of the sign opposite to � : f�;g is anin
reasing fun
tion for negative temperature and a de
reasing fun
tion forpositive temperature.It 
an be shown [88℄ that the Gibbs state equation (5.11) has a uniquesolution for � larger than a negative bound, so there is no bifur
ation, inparti
ular for � > 0. The Gibbs state is then nonlinearly stable in the senseof Arnold. In pra
ti
e stability is observed in all 
ases for the maximumentropy states, but there is no available demonstration in the presen
e ofbifur
ation. The statisti
al equilibria are also stable in all 
ases with respe
tto further mixing [88℄ : if we smooth out the 
u
tuations, taking ! as thenew initial state, the �nal state remains unmixed.*Linearized 
ases and minimum enstrophy:Near the maximum of the entropy versus energy, � ' 0; so one 
anlinearize the fun
tion f�;g, and (5.11) be
omes a linear (Helmholtz) equa-tion. This \limit of strong mixing" provides ni
e possibilities for analyti
alresults and 
lassi�
ation of the bifur
ations [21℄ [23℄. Furthermore, theGibbs state then depends only on the normalized energy E=�2 and 
ir
u-lation �=�1=22 . Expansion of f� g in powers of  
an be performed, andea
h su

essive term depends on su

essive higher moments of the vorti
ity.Therefore the statisti
al equilibrium for strong mixing does not depend onthe detail distribution of the vorti
ity levels (only on the normalized energyand 
ir
ulation), but it be
omes more and more dependent as the mixing isprevented by energy 
onservation.There is also a di�erent possibility for obtaining a linear relationshipf� g between vorti
ity and streamfun
tion. It 
orresponds to a Gaussianfun
tion g(�), as easily 
he
ked by substitution in (5.10). It 
orrespondsto a parti
ular distribution of vorti
ity levels 
(�), whi
h depends on theenergy.7This 
an be viewed as a relation between 
u
tuations and polarizability, like inmagnetism [24℄. Similarly the su

essive moments are related to the su

essive higherderivatives of f�;g [12℄.
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ity and streamfun
tion is also ob-tained by a prin
iple of \minimum enstrophy" [62℄ or \sele
tive de
ay" [45℄.The rational is that the enstrophy de
ays in the limit of small vis
osity,while energy, and possibly other robust integrals like the angular momen-tum, remain 
onstant. Then a natural idea is that the system evolves until itminimizes its enstrophy for a given energy (and possibly other 
onstraints).This yields a linear relationship between vorti
ity and stream fun
tion. Thispredi
tion is good in some 
ases, but not of general validity. For instan
ein the 
ase of ele
tron plasma, with vorti
ity always positive (proportionalto the ele
tron density), this 
an yield spurious negative vorti
ity, in theabsen
e of an additional 
onstraint [11℄. The point of view of the statisti-
al theory is that part of the initial enstrophy �2 is irreversibly transferredinto �ne grained (mi
ros
opi
) vorti
ity 
u
tuations, so that the �nal 
oarsegrained enstrophy �
:g2 = (1=2) R !2d2r is always smaller than �2,�
:g2 � 12 Z !2d2r = 12 Z !2d2r� 12 Z (!2 � !2)d2r < �2 (5.14)However �
:g2 is truly minimized only in the linearized 
ases. In 
on
lusion,a minimum enstrophy prin
iple appears as a parti
ular limit of entropymaximization, either in the limit of strong mixing either in the Gaussian
ase (see [21℄ for details).5.3 Tests and dis
ussion:A �rst test of the statisti
al me
hani
s predi
tions is shown in Fig. 15 by
omparison with numeri
al simulations of the Navier-Stokes equations atlow vis
osity. The shear 
ow in a 
hannel with periodi
 boundary 
ondi-tions develops vorti
es whi
h self-organize in a steady 
ow after 
omplexevolution. When plotted on a s
atter-plot of the vorti
ity versus stream-fun
tion, the points of the �eld 
ollapse on a 
urve, 
on�rming that the
ow approa
hes a steady solution of the Euler equations (although a slowde
ay persists due the small vis
osity). The global 
ow stru
ture indeed
orresponds to what is predi
ted by statisti
al me
hani
s, as shown in Fig.14. Moreover, a linear relationship is obtained in the vortex 
ore betweenln[!=(a � !)℄ and  , where a is the vorti
ity of the initial vorti
ity strip.This linearity is equivalent to (5.12). We observe however that the agree-ment is limited to the region of a
tive stirring and that little mixing o

ursoutside. As a 
onsequen
e, the maximum vorti
ity remains a little largerthan predi
ted.Similar results have been obtained for the usual vortex merging [33℄.For a jet in a 
hannel, the states (DD) and (VC) predi
ted in Fig. 8 havebeen remarkably 
he
ked by numeri
al simulations [53℄. In a laboratoryexperiment, the organization into a single vortex by merging of a few ini-tial vorti
es has been 
orre
tly predi
ted, while dis
repan
y progressively
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Fig. 15. Test of the statisti
al me
hani
s predi
tion (5.12) from dire
t numeri
alsimulations of the Navier-Stokes equations (from [98℄).arises after su

essive merging events [70℄. Similar 
on
lusions arise from
omparisons with simulations of turbulen
e in a periodi
 domain [10℄.An explanation of this dis
repan
y is that vis
osity modi�es the distribu-tion of vorti
ity levels in zones of strong strain. Under the e�e
t of a strains; we 
an estimate that the s
ale � of a vorti
ity stru
ture exponentially de-
reases � = �0 exp(�st), until smoothing o

urs by vis
ous di�usion. Thishappens when the di�usion time �2=� equals the straining time s�1; sothat �20 exp(�2st) = �=s. Estimating s � U=L and �0 � L from the larges
ale L and typi
al velo
ity U , we �nd that vis
osity is in
uent after a timet = (2s)�1 lnRe, whi
h in
reases only logarithmi
ally with the Reynoldsnumber Re. In 
ontrast the time for rea
hing the statisti
al equilibriumis 
ontrolled by vorti
ity, so that the predi
tion will be good only in zones
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ity dominates strain, in the vortex 
ore. The range of validityof the statisti
al theory is expe
ted to improve with in
reasing Re, but onlylogarithmi
ally.Capel and Pasmanter [12℄ have re
ently proposed a model to take intoa

ount the modi�
ation of vorti
ity levels by a weak vis
osity. In a di�er-ent attempt, Turkington [105℄ has proposed to keep only the vorti
ity ex-trema as 
onserved quantities in the statisti
al theory, instead of the wholedistribution of vorti
ity levels. Finally, Chavanis and Sommeria [23℄ haveintrodu
ed the 
on
ept of \restri
ted statisti
al equilibrium", maximizingentropy in a \bag" with free boundaries. It is assumed isolated from theoutside irrotational 
ow by kineti
 restri
tion to mixing, due to vanishing
u
tuations (see next se
tion). The organization into steady dipoles, likeobserved in Fig. 5, 
an be explained by this method. Entropy maximizationwould indeed make the dipole spread to in�nity in the absen
e of restri
tion(while the monopoles are self-
on�ned by energy 
onservation).In laboratory experiments, boundary layer deta
hment 
an bring vorti
-ity in the 
uid interior and 
onsequently modify the statisti
al equilibrium.This e�e
t is striking in spin-up experiments in a re
tangular 
ontainer [47℄.The formation of vortex latti
es in an ele
tron plasma disk [40℄ seemsalso in 
ontradi
tion with the statisti
al theory: 
al
ulations with a sin-gle non-zero vorti
ity level predi
t merging in a single vortex. However,if the vorti
es are taken as given obje
ts, their intera
tion with the ba
k-ground vorti
ity is remarkably des
ribed by statisti
al me
hani
s: both thelatti
e geometry and the density �eld in the ba
kground are quantitativelya

ounted [51℄. These vortex latti
e are probably meta-stable equilibriumstates (lo
al entropy maxima) with three vorti
ity levels: 0, an intermediatelevel in the ba
kground and the strong vortex 
ores. A slight 
hange in theinitial 
ondition makes them organize in the main equilibrium state with asingle vortex.In 
on
lusion, although various restri
tions 
an prevent rea
hing thetrue statisti
al equilibrium, 
omplex stirring 
learly tends to in
rease theentropy, whose expression (5.6) is supported by many arguments. This willbe used in next se
tion to model the evolution of 2D turbulen
e.6 Eddy di�usivity and sub-grid s
ale modeling6.1 Thermodynami
 approa
h:Di�usion pro
esses are 
lassi
ally 
onsidered as a relaxation toward statisti-
al equilibrium. The linear non-equilibrium thermodynami
s states that the
uxes driving the system toward equilibrium are proportional to the gradi-ent of the thermodynami
 \potentials", for instan
e spe
ies 
on
entration.We use a similar idea [89℄, expressed by means of a \Maximum Entropy Pro-du
tion"(MEP) prin
iple, to drive eddy 
uxes for 2D turbulen
e. The goal
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ompute the statisti
al equilibrium 
orresponding to a giveninitial 
ondition, and to propose a subgrid-s
ale modelling for 
omputationsof the a
tual 
ow evolution with 
oarse resolution (LES).Like for equilibrium states, the 
ow is des
ribed in terms of a lo
al prob-ability �(r; �) of vorti
ity levels � at position r. However this probabilityis now assumed to evolve with time. The 
onservation of vorti
ity levels iswritten in terms of a transport equation for �, by both the expli
it velo
ityu and an eddy 
ux J due to the subgrid-s
ales:�t�+ u:r� = �r:J ; with J :n = 0 ; on �D (6.1)At the wall the normal eddy 
ux J :n must vanish due to impermeability.The expli
it velo
ity u derives from the streamfun
tion  by (2.5), and its
url is equal to !, related to the �eld � by�� = ! = Z �� d� ; with  = 0 on �D (6.2)We 
an dedu
e from (6.1) an equation for the lo
ally averaged vorti
ity! by integration over the vorti
ity levels �,�t! + u:r! = �r:J! (6.3)where we have introdu
ed the vorti
ity 
uxJ! = Z �J d� (6.4)We are mostly interested in the �eld !, as the lo
al 
u
tuations are inpra
ti
e sensitive to vis
ous e�e
ts, but we 
annot dire
tly 
lose (6.3) and,like for equilibrium states, we need to work with the probabilities �, solvingthe equations (6.1) .Of 
ourse we �rst need to determine the 
ux J . We �rst express the rateof entropy in
rease, by time di�erentiating (5.6), expressing �t� by (6.1),and noting that � ln � is 
onserved by the adve
tive term,_S = � Z J :r(ln �) d2rd� (6.5)In order to relax toward statisti
al equilibrium, the entropy must 
learlyin
rease with time.In fa
t we determine J su
h that, for a given �eld � at ea
h time t,J maximizes the entropy produ
tion _S , with the appropriate dynami
al
onstrains, whi
h are:-the 
onservation of the lo
al normalization (5.2), implyingZ J d� = 0 (6.6)
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onservation expressed from (5.5) and (6.3) as_E = Z J :r d2r = 0 (6.7)- a limitation on the eddy 
ux J , 
hara
terized by a bound C(r); whi
hexists but is not spe
i�ed. Z J 22� d� � C(r) (6.8)A justi�
ation of this 
hoi
e is that the quantity J =� 
an be 
onsideredas the velo
ity produ
ing the 
ux J , so the integral R �(J =�)2d� is thetotal energy of this di�usion velo
ity, a natural quantity to bound. Anotherjusti�
ation is that it yields results 
onsistent with the 
lassi
al approa
hof linear non-equilibrium thermodynami
s [89℄.This variational problem is treated by introdu
ing (at ea
h time t)Lagrange multipliers, denoted �(r); �; 1=AE for the three respe
tive 
on-straints. It 
an be shown by a 
onvexity argument that rea
hing the bound(6.8) is always favorable for in
reasing _S, so that this 
onstraint 
an berepla
ed by an equality. Therefore the 
onditionÆ _S � Z �(r)ÆJ d2rd� � �Æ _E + Z 1AE(r) ÆJ 22� d2rd� = 0 (6.9)must be satis�ed for any variations ÆJ (� r), whi
h yieldsJ = �AE(r; t) [r�+ ��(� � !)r ℄: (6.10)The Lagrange multiplier �(r) has been eliminated, using the 
ondition (6.6)of lo
al normalization 
onservation.The �rst term in the eddy 
ux (6.10) represents a usual di�usion: the
ux of the quantity � is proportional to its gradient. The se
ond termstates that vorti
ity di�usion is 
onstrained by the energy 
onservation ofthe indu
ed 
ow: vorti
ity is not a passive quantity. Remembering theanalogy of  with an intera
tion potential, this se
ond term 
an be 
alleda drift term, with a 
ux proportional to the \for
e" r , like sedimentationin a gravitational �eld.At equilibrium, the 
ux must vanish, so the drift term balan
es di�usion.One 
an 
he
k that this yields again the Gibbs state (5.8), with � the 
orre-sponding inverse \temperature". During 
ow evolution this quantity variesand is determined by the 
ondition of energy 
onservation. Introdu
ing(6.10) in the 
ondition (6.7) of energy 
onservation, we indeed obtain,� = �R AE(r!):(r )d2rR AE(r )2!2d2r (6.11)
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Fig. 16. Instability and �nal organization of a vorti
ity strip in an annular 
han-nel (at three su

essive times from left to right). The relaxation model (top), withlow resolution (4000 grid points), is from T. Dumont, Laboratoire d'Analyse Num-rique, Univ. Lyon. It is 
ompared with a dire
t numeri
al simulation [69℄(bottom).where !2 � !2 � !2 � R �2�d� � (R ��d�)2 is the lo
al enstrophy.We have thus obtained a 
omplete set of dynami
al equations (6.1,6.2),(6.10,6.11), whi
h exa
tly 
onserves the distribution of vorti
ity levels andenergy. This system relaxes to statisti
al equilibrium at an optimum rate.We 
an express the entropy produ
tion (6.5) as _S = R J 2(AE�)�1d2rd�so the eddy di�usivity AE must be positive to satisfy the 
ondition of en-tropy in
rease. Ex
ept for its sign, the di�usivity is not determined by thisthermodynami
 approa
h: it is related to the unknown bound (6.8) on the
ux.These relaxations equations are suitable to 
al
ulate the statisti
al equi-librium resulting from any initial 
ondition. On
e numeri
ally implemented,it provides a 
onvenient way to solve the Gibbs state equation (5.8) withthe appropriate 
onstraints. Furthermore it sele
ts an entropy maximumamong these solutions, sin
e it is obtained by an entropy in
rease.88It 
an be proved that stable steady solutions of the relaxation equations are indeedentropy maxima (P.H. Chavanis, in preparation)
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ti
al implementation, the simplest 
ase is the evolution of vor-ti
ity pat
hes with only one non-zero vorti
ity level � = a: Then we haveonly one equation (6.1), and the vorti
ity is proportional to this density,! = �a. Fig. 16 shows an example of the evolution of a vortex ring inan annulus, 
ompared with a high resolution numeri
al simulation of thesame pro
ess. Although the relaxation equation smooths out the lo
al vor-ti
ity 
u
tuations, it 
orre
tly handles the large s
ale dynami
s. Moreoverthe �nal vortex remains in its statisti
al equilibrium, without any furtherdi�usion. Comparisons with dire
t numeri
al simulations (DNS) in vari-ous 
ases, with both positive and negative vorti
ity pat
hes (formation ofdipoles and tripoles) show good agreement [86℄.For general initial 
onditions, one has to dis
retize the vorti
ity levels �(in pra
ti
e good 
onvergen
e is already obtained with a few levels). Thevorti
ity 
ux 
an be dire
tly 
al
ulated by integration of (6.10) over thevorti
ity levels, J! = �AE(r; t) [r! + �!2r ℄, but the lo
al enstrophy!2 itself depends on the transport of the probability distribution �. Aneddy 
ux of momentum, in AE(r; t) [r2u� �!2u℄, is also asso
iated [24℄.These relaxation equations have the advantage of being fully 
onsistentwith the properties of the Euler equations, and the 
omparison with DNSis quite good. While their justi�
ation by the MEP prin
iple is somewhatphilosophi
al, a more pre
ise justi�
ation has been obtained by kineti
 ap-proa
hes, dis
ussed in next se
tion. These approa
hes provide estimates ofthe di�usion 
oeÆ
ient AE , and justify the presen
e of the drift term, butthey also stress some limitations.Other limitations 
an be seen from the stru
ture of the equations them-selves. A �rst diÆ
ulty is that the 
onstraint of energy 
onservation is onlyglobal. This is reasonable, due to the long range vortex intera
tions, butin a very large domain we expe
t that two sub-systems will evolve inde-pendently. The integral 
ondition (6.11) should be repla
ed by a more lo
al
ondition (the temperature should not remain uniform but di�use with timetoward an equilibrium). Furthermore the equations are not invariant by a
hange of referen
e frame, whi
h is again problemati
 in a large domain.The MEP has been extended [22℄ to solve all these diÆ
ulties, but themodel is more 
omplex and has not been numeri
ally implemented. Fur-thermore it involves additional unknown di�usivity 
oeÆ
ients for energyand momentum.6.2 Kineti
 modelsThe relaxation equations were justi�ed in previous se
tion by thermody-nami
al arguments, without dis
ussing the me
hanisms. Further insighthas been re
ently provided by kineti
 models inspired from the analogieswith stellar systems and plasma physi
s [18℄.A �rst approa
h is provided by the point vortex model, whi
h has the
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al me-
hani
s. The vorti
es are assumed randomly positioned with the density
lose to the mean �eld statisti
al equilibrium. Ea
h vortex di�uses by therandom 
lose en
ounters with the other vorti
es. Moreover ea
h vortexindu
es a velo
ity �eld (added to the dominant mean �eld) whi
h systemat-i
ally displa
es all the other vorti
es in its neighborhood. Chavanis [17℄ �ndsthat the indu
ed displa
ement (like a polarization e�e
t in ele
trostati
s)rea
ts ba
k on the 
onsidered vortex. It results in a drift, in �AE��r ,explaining the se
ond term in the 
ux 6.10 (in the diluted 
ase � � ! forwhi
h the point vortex approximation applies). At negative temperatures,the drift tends to attra
t together like-sign vorti
es, and its e�e
t exa
tlybalan
es di�usion at equilibrium. Both e�e
ts are proportional to the same
oeÆ
ient AE whi
h 
an be expli
itly 
al
ulated. Su
h a 
orresponden
ebetween the drift 
oeÆ
ient (fri
tion) and di�usion is quite general, it issimilar to the Einstein formula for the Brownian motion9.Coming ba
k to non-singular vorti
ity �elds, we 
an 
lassi
ally make ade
omposition of the Euler vorti
ity equation (2.6) into expli
it and impli
itparts, ! = !+e!. We assume that ! is an ensemble average, whi
h therefore
ommutes with the spatial derivatives. In parti
ular a 
u
tuating velo
ity~u(r) = R ~!(r0)K(r � r0)d2r0 is indu
ed by these 
u
tuations, where theKernelK(r�r0) expresses the velo
ity indu
ed at point r by a unit singularvortex at position r0, K(r�r0) = (1=2�)ez� (r�r0)=jr�r0j2 plus the e�e
tof the image vorti
es near the boundary). Assuming 
u
tuations with ashort (Lagrangian) 
orrelation time �
, the di�usion 
oeÆ
ient is 
lassi
allygiven as AE = (1=4)�
~u2 (Taylor, 1921). From the previous expression of~u, we get ~u2 = Z ~!(r0)~!(r00)K(r� r0):K(r� r0)d2r0 (6.12)Assuming a short 
orrelation length � for the vorti
ity, ~!(r0)~!(r00) =�2~!(r0)2Æ(r0 � r00), we 
an write a lo
al approximation of (6.12), assuming~!(r0)2 ' ~!(r)2, ~u(r)2 = �2~!(r)2 R L� (2�r0)�1dr0. We �nd that the vorti
ity
u
tuations at all s
ales 
ontribute equally to the lo
al velo
ity 
u
tuations,and we have arbitrarily 
ut the integral between � and the domain s
ale L.Nevertheless the result, in ln(L=�), depends only weakly on these bounds,so the lo
al approximation yields a reasonable estimation,AE = �
�28� ln(L� )~!2 (6.13)The di�usivity is proportional to the lo
al enstrophy !2 � ~!2 and in-
reases with the s
ale �, typi
ally the 
uto� s
ale. The 
orrelation time �
9In this diluted 
ase � � ! (or point vortex statisti
s), the relaxation equations areequivalent to Fokker-Plan
k equations des
ribing di�usion with drift in a potential  
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an be estimated as !�1=22 , the time s
ale of the lo
al 
u
tuations, or asthe inverse of the strain rate of the expli
it 
ow. Both times are of thesame order as the global time s
ales, so that the short 
orrelation is onlymarginally justi�ed, like the lo
al approximation made above. In any 
ase,the di�usivity vanishes for weak lo
al enstrophy 
u
tuations !2. This ex-plains to some extent the existen
e of the "restri
ted statisti
al equilibria"mentioned above: relaxation toward equilibrium is eÆ
ient inside the a
tiveregion but weak mixing o

urs at the periphery, due to the vanishing of thevorti
ity 
u
tuations.Chavanis [19℄ has proposed a more pre
ise analysis, whi
h furthermoreprovides the drift term in addition to di�usion. He starts from the equations�t! + L! = �r:eue! ; with L � u:r (6.14)�te! + Le! = �eur! (6.15)similar to the quasi-linear approximation made in plasma physi
s. The �rstone is the 
lassi
al Reynolds averaged Euler equation (2.6), with an eddy
ux J = eue!. The se
ond one is the equation for the 
u
tuations e! = !�!,negle
ting two terms,�eure! and eure!, assumed of weak in
uen
e on !. In
ontrast eur! builds up the eddy 
ux with a term �teue! = eu2r! produ
ingdi�usion in (6.14).Assuming again a delta-
orrelated vorti
ity �eld, Chavanis [19℄ �nds aneddy 
ux and a drift term as integrals over the Lagrangian traje
tories ofthe expli
it 
ow !. Quite remarkably, the resulting kineti
 equation satis�esa H-theorem: the entropy (5.6) always in
reases with time. This result pro-vides a new, independent, support of the statisti
al equilibrium approa
h.The expressions of the 
ux are in general non-lo
al in time and spa
e. Theyredu
e to the lo
al 
ux (6.10) only 
lose to equilibrium. Therefore, the relax-ation equations obtained by the thermodynami
 approa
h provide the righttends, but are probably of limited a

ura
y to des
ribe the 
ow evolution.The initial hypothesis of random 
u
tuations is not easily justi�ed, in
ontrast with 3D turbulen
e. Some simulations suggest that the impli
its
ales are mostly strained by the large s
ales, whi
h suggests to de�ned! as a �ltered �eld rather than an ensemble average. Then new termsappear [61℄ in (6.14) and (6.15). Nevertheless, on longer time s
ales, 
haosshould develop and the probabilist approa
h may be more appropriate to
apture the long time trends of the system.7 Con
lusions:Our knowledge of 2D turbulen
e has made great progress in the last tenyears, due in parti
ular to the availability of high resolution 
omputations.
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Fig. 17. Wake behind a knife blade in a soap �lm, the 
ow 
omes from the left,(from M. Rutgers, 1996 (http://www.physi
s.ohio-state.edu/~maarten).Simulations at resolution 40962 are now 
urrently available, and simulationsat resolution 5122; whi
h were at the forefront of resear
h ten years ago, area

essible on a good home 
omputer. In spite of this great progress, witha growing 
onsensus on some aspe
ts, many results are still under debate.There is a need for 
areful 
omputations at still higher resolution, 
ompar-ing various numeri
al methods, initial and for
ing 
onditions. One possiblereason for the observed dis
repan
y may be that truly asymptoti
 results,forgetting the details of the initial 
onditions, require a very long time andhigh Reynolds numbers. The results on pun
tuated vortex dynami
s dis-
ussed in se
tion 4.4 support this point of view.Nevertheless some robust results are obtained in laboratory experiments.Many results of 2D turbulen
e seem to be remarkably insensitive to weak 3Dperturbations, whi
h are always present to some extent. The availability ofvarious laboratory experiments has been a strong motivation for the re
entrise of interest and progress in 2D turbulen
e.The 
ourse has been fo
used on two fundamental aspe
ts, the spe
tral
as
ades and the self-organization into 
oherent stru
tures. The double-
as
ade theory of Krai
hnan has re
eived a remarkable 
on�rmation by ex-periments and simulations. A new approa
h [38℄, adapting �eld theoreti
almethods developed for the passive s
alar, brings a rigorous support to the



Joel Sommeria: TWO-DIMENSIONAL TURBULENCE 57enstrophy 
as
ade for
ed by random large s
ale motion. Con
erning theinverse 
as
ade, the quasi-Gaussian statisti
s raises also hope for a deepertheoreti
al insight. In 
ontrast with the for
ed 
ase, the freely de
aying tur-bulen
e progressively deviates from the 
lassi
al enstrophy 
as
ade law, as
oherent vorti
es emerge and be
ome more and more isolated, in
reasing theintermitten
y. The statisti
s and kineti
s of this vortex system represents
hallenging problems of 
urrent interest.The self-organization into 
oherent stru
tures is well explained by sta-tisti
al me
hani
s of vorti
ity. This theory provides good predi
tions in
ases of rapid stirring, 
he
ked in both numeri
al simulations and labora-tory experiments. Although various limitations 
an prevent the system forrea
hing true equilibrium, it still reveals the trends of the evolution. Thisprovides new ideas for developing LES adapted to the pe
uliar properties of2D turbulen
e. It supports the use of an ordinary (positive) eddy vis
osity,whose energy dissipation is 
ompensated by a drift term, a
ting at larges
ale. At statisti
al equilibrium these two terms balan
e ea
h other. Theseresults have been re
ently further justi�ed in terms of kineti
 models, butthe di�usion 
ux and drift appear in general as integrals over spa
e andprevious times, rather than lo
al e�e
ts.Many questions about 2D turbulen
e have been left aside. The prob-lem of predi
tability is for instan
e of great interest for appli
ations to theatmosphere, see e. g. [64℄ for a dis
ussion using 
losure models. Lorenz�rst addressed this question with severely trun
ated spe
tral models, theonly models a

essible to simulation at that time, and found his famous\butter
y" e�e
t: the exponential growth of errors asso
iated with 
haosin low dimensional systems. However when all the degrees of freedom arere
overed, a new regularity o

urs, of statisti
al nature, as illustrated bythe formation of organized stru
tures at statisti
al equilibrium. Then thebutter
y e�e
t disappears [87℄.The transport of a s
alar is another important subje
t not dis
ussedin this 
ourse, but with a
tive re
ent theoreti
al progress both in 3D and2D (see [38℄). In fa
t most results and questions in usual turbulen
e have a
ounterpart in 2D, for instan
e in the 
lassi
al shear 
ow problems. Channelor plane boundary layer 
ows are stable in the 2D 
ase. By 
ontrast theboundary layer deta
hment, with Kelvin-Helmholtz instability and vortexroll-up is basi
ally a 2D pro
ess. Its analogy with de
aying homogeneous2D turbulen
e has been stressed [65℄. Jets or wakes tend to organize indipoles [31℄, and Fig.17 shows the fas
inating stru
ture of the wake behinda knife in a soap �lm. Understanding the role of these 
oherent stru
turesin the global statisti
s of these 2D 
ows may be helpful for the 3D 
ases.Many results in 2D turbulen
e 
an be relevant to a rotating and densitystrati�ed medium, like o

urring in atmosphere, o
eans, and even proto-planetary disks [7℄. The statisti
al me
hani
s approa
hes of se
tion 5 and 6



58 The title will be set by the publisher.have been extended to the quasi-geostrophi
 model [50℄ [73℄ [99℄, with appli-
ation to the Great Red Spot of Jupiter [6℄. Extension to the more generalshallow water system [24℄ 
an be readily applied to multilayer (isopy
nal)models used in o
eanography.One should �nally note the fas
inating analogies with di�erent physi
alsystems. We have seen above that an ele
tron plasma in a magneti
 �eldsatisfy the 2D Euler equations. A neutral plasma 
an be des
ribed bymore 
omplex 2D models, in analogy with some geostrophi
 planetary 
owproblems. The Vlasov equation, for plasma or stellar systems, has alsoformal analogies [25℄ [18℄ with the Euler equation, but in the 6D phasespa
e rather than in 2D. These analogies are further motivations to betterunderstand 2D turbulen
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