MIXED WEIL COHOMOLOGIES

DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

ABSTRACT. We define, for a regular scheme S and a given field of characteristic
zero K, the notion of K-linear mixed Weil cohomology on smooth S-schemes
by a simple set of properties, mainly: Nisnevich descent, homotopy invariance,
stability (which means that the cohomology of G, behaves correctly), and
Kinneth formula. We prove that any mixed Weil cohomology defined on
smooth S-schemes induces a symmetric monoidal realization of some suitable
triangulated category of motives over S to the derived category of the field
K. This implies a finiteness theorem and a Poincaré duality theorem for such
a cohomology with respect to smooth and projective S-schemes (which can
be extended to smooth S-schemes when S is the spectrum of a perfect field).
This formalism also provides a convenient tool to understand the comparison
of such cohomology theories.
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INTRODUCTION

Weil cohomologies were introduced by Grothendieck in the 1960’s as the co-
homologies defined on smooth and projective varieties over a field with enough
good properties (mainly, the existence of cycle class maps, Kiinneth formula and
Poincaré duality) to prove the Weil conjectures (i.e. to understand the L-functions
attached to smooth and projective varieties over a finite field). According to the
philosophy of Grothendieck, they can be seen as the fiber functors of the (conjec-
turaly) tannakian category of pure motives. From this point of view, a mixed Weil
cohomology should define an exact tensor functor from the (conjectural) abelian
category of mixed motives to the category of (super) vector spaces over a field of
characteristic zero, such that, among other things, its restriction to pure motives
would be a Weil cohomology.

The purpose of these notes is to provide a simple set of axioms for a cohomology
theory to induce a symmetric monoidal realization functor of a suitable version of
the triangulated category of mixed motives to the derived category of vector spaces
over a field of characteristic zero. Such a compatibility with symmetric monoidal
structures involves obviously a Kiinneth formula for our given cohomology. And
the main result we get here says that this property is essentially sufficient to get a
realization functor. Moreover, apart from the Kiinneth formula, our set of axioms
is very close to that of Eilenberg and Steenrod in algebraic topology.

Let k be a perfect field and K a field of characteristic zero. Let U be the category
of smooth affine k-schemes. Consider a presheaf of commutative differential graded
K-algebras E on *¥. Given any smooth affine scheme X, any closed subset Z C X
such that U = X — Z is affine, and any integer n, we put:

HZ(X,E) = H" '(Cone(E(X) — E(U)))
Definition. A K-linear mized Weil theory is a presheaf of differential graded K-
algebras F on U satisfying the following properties:
Dimension.— dimg H*(Spec (k) , E) = {1 ifi= 0.7

0 otherwise;

Homotopy.— dimg H' (A}, E) = {1 ifi= 0.’
0 otherwise;

1 ifi=0o0ri=1,
0 otherwise;
Excision— Consider a commutative diagram of k-schemes

Stability— dimg H(G,,, E) =

sy
|l
Z—=X
such that ¢ and j are closed immersions, the schemes X, Y, X —Z )Y —T are

smooth and affine, f is étale and f~1(X —Z) = Y —T, g is an isomorphism.
Then the induced morphism

Hr (Y, E) — Hyz(X, E)

is an isomorphism;
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Kinneth formula.— For any smooth affine k-schemes X and Y, the exterior
cup product induces an isomorphism

P HY(X,E)ex HI(Y,E) =5 H"(X x Y, E) .

p+g=n

The easiest example of a mixed Weil theory the reader might enjoy to have in
mind is algebraic de Rham cohomology over a field of characteristic zero. The
homotopy axiom in this setting is rather called the Poincaré lemma.

We will prove that the excision axiom on a presheaf of differential graded K-
algebras F is equivalent to the following property :

Nisnevich Descent.— For any smooth affine scheme X, the cohomology groups of
the complex F(X) are isomorphic to the Nisnevich hypercohomology groups of X
with coefficients in FEnjs under the canonical map.

Given a mixed Weil theory E and any smooth scheme X, we denote by H" (X, F)
the Nisnevich hypercohomology groups of X with coefficients in Fyjs. According
to the previous assertion, this extends the definition given above to the case where
X is affine. We define for a K-vector space V and an integer n

v V @k Homg (HY(Gp,, E)®™", K) if n
) =1\ o H(G,, B)2) it n

Note that any choice of a generator of H'(G,,, E) defines an isomorphism
V(n) ~ V. The introduction of these Tate twists allows us to make canonical
constructions, avoiding the choice of a generator for H!(G,,, E). Our main results
can now be summarized as follows.

Theorem 1. The cohomology groups H1(X, E) have the following properties.
1. Finiteness.— For any smooth k-scheme X, the K-vector space ®, H" (X, E)
is finite dimensional.
2. Cycle class map.— For any smooth k-scheme X, there is a natural map
which is compatible with cup product

H(X,Q(p)) — H*(X, E)(p)

(where H1(X, Q(p)) is motivic cohomology, as defined by Voevodsky; in
particular, we have H**(X,Q(n)) = CH"(X)q)-

3. Compact support.— For any smooth k-scheme X, there are cohomology
groups HI(X, E), which satisfies all the usual functorialities of a cohomol-
ogy with compact support, and there are natural maps

HY(X,E) — HY(X,E)

which are isomorphisms whenever X is projective.
4. Poincaré duality.— For any smooth k-scheme X of pure dimension d, there
1 a natural perfect pairing of finite dimensional K-vector spaces

HY(X, E)(p) @k H*™ (X, E)(d - p) — K.

Theorem 2 (Comparison). Let E' be a presheaf of commutative differential graded
K-algebras satisfying the dimension, homotopy, stability and excision azioms and
such that for any smooth k-scheme X, the Kunneth map

P HY(X,E)ex HI(Y,E') — H"(X xx Y, E')

ptg=n
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is an isomorphism for Y = A} orY = Gy, (e.g. E' might be a mized Weil
theory). Then a morphism of presheaves of differential graded K-algebras E — E’
is a quasi-isomorphism (locally for the Nisnevich topology) if and only if the map
HY (G, E) — HY(G,,, E') is not trivial'.

Remark this comparison theorem is completely similar to the classical compari-
son theorem of Eilenberg-Steenrod.

Theorem 3 (Realization). There is a symmetric monoidal triangulated functor
R: DM 4, (k)q — D*(K)

(where DM g4, (k)q is Voevodsky’s triangulated category of mized motives over k,
and DP(K) denotes the bounded derived category of the category of finite dimen-
stonal K-vector spaces) such that for any smooth k-scheme X, one has the following
canonical identifications (where MY denotes the dual of M ):

R(Mym(X)Y) ~ R(Myn (X)) ~RI(X,E).
Moreover, for any object M of DM g4 (k)q, and any integer p, one has
R(M(p)) = R(M)(p)-

These statements are proved using the homotopy theory of schemes of Morel and
Voevodsky. We work in the stable homotopy category of motivic symmetric spectra
with rational coefficients, denoted by Da:(Spec (k), Q). We associate canonically
to a mixed Weil theory F a commutative ring spectrum €& such that for any smooth
k-scheme X and integers p and ¢, we get a natural identification

HY(X,E)(p) = H(X,&(p)) -

We also consider the triangulated category Da:1(Spec (k) , €), which might be thought
of as the category of ‘motives with coefficients in €’ (this is simply the localization
of the category of &-modules by stable Al-equivalences). We obviously have a
symmetric monoidal triangulated functor

Da1(Spec (k),Q) — Da1(Spec (k),€&) M+— & ®Ié M.

If D(K) is the unbounded derived category of the category of K-vector spaces, the
result hidden behind Theorems 1 and 2 is

Theorem 4 (Tilting). The homological realization functor
Da1(Spec(k),&) — D(K) , M — RHomg (€, M)
is an equivalence of symmetric monoidal triangulated categories.

To obtain Theorem 3, we interpret the cycle class map as a map of ring spectra
HQ — €&, and use a result of Réndigs and @stveer which identifies DM (k)q
with the homotopy category of modules over the motivic cohomology spectrum
HQ. Note that, by Theorem 4, the homological realization functor of Theorem 3
is essentially the derived base change functor M —— & ®B M. This means that the
theory of motivic realization functors is part of (a kind of) tilting theory.

Most of our paper is written over a general regular base S rather than just a
perfect field. The first reason for this is that a big part of this machinery works

IThe main point here is in fact that the map H!(Gp, E) — H1(Gy,, E') controls the com-
patibility with cycle class maps, which in turns ensures the compatibility with Poincaré duality.



MIXED WEIL COHOMOLOGIES 5

mutatis mutandis over a regular base? once we are ready to pay the price of slightly
weaker or modified results (we essentially can say interesting things only for smooth
and projective S-schemes). When the base is a perfect field, the results announced
above are obtained from the general ones using de Jong resolution of singularities
by alterations. The second reason is that mixed Weil theories defined on smooth
schemes over a complete discrete valuation ring V' are of interest: the analog of
Theorem 2 gives a general way to compare the cohomology of the generic fiber and
of the special fiber of a smooth and projective V-scheme (or, more generally, of a
smooth V-scheme with good properties near infinity).
Here is a more detailed account on the contents of this paper.

These notes are split into three parts. The first one sets the basic constructions
we need. That is we construct the ‘effective’ Al-derived category Dgﬁf (S;R) of a
scheme S with coefficients in a ring R and recall its main geometrical and formal
properties. We then introduce the Tate object R(1) and define the category of
Tate spectra as the category of symmetric R(1)-spectra. The ‘non effective’ Al-
derived category Da1(S, R) of a scheme S with coefficients in a ring R is then
the localization of the category of Tate spectra by stable Al-equivalences. We
finish the first part by introducing the A'-derived category Da1 (S, €) of a scheme
S with coefficients in a (commutative) ring spectrum € (that is a (commutative)
monoid object in the category of symmetric Tate spectra). The category Da1(S, €)
is just defined as the localization of the category of £-modules by the class of stable
A'l-equivalences.

The second part is properly about mixed Weil cohomologies. We also define a
slightly weaker notion which we call a stable cohomology theory over a given regular
scheme S. We associate canonically to any stable cohomology E a commutative
ring spectra € and a canonical isomorphism

E — RQ™(E).

In other words, E can be seen as a kind of ‘Tate infinite loop space’ in the category
D;ﬁ; (S,K). This means in particular that € represents in Da1 (.5, K) the cohomol-
ogy theory defined by E. We get essentially by definition a 1-periodicity property
for €, that is the existence of an isomorphism €(1) ~ £. We then study the main
properties of the triangulated category Da:(S,€&). In particular, we prove that
Thom spaces are trivial in D1 (S, €), which imply that there is a simple theory of
Chern classes and of Gysin maps in Da:1(S, €). Using results of J. Riou, this allows
to produce a canonical cycle class map

Kap_o(X)&) — HI(X, &(p)) = HU(X, E)(p)

(where K, (X )g) denotes the part of K,(X) where the k" Adams operation acts
by multiplication by kP). The good functoriality properties of Gysin maps implies
a Poincaré duality theorem in Da1 (S, ) for smooth and projective S-schemes. In
particular, for any smooth and projective S-scheme X, the object ¥*°(Q(X)) ®a
€ has a strong dual in Da1(S5,&) (ie. it is a rigid object). We then prove a

21n fact, one could drop the regularity assumption, but then, the formulation of some of our
results about the existence of a cycle class map are a little more involved: K-theory is homotopy
invariant only for regular schemes. This is not a serious problem, but we decided to avoid the
extra complications due to the fact algebraic K-theory is not representable in the Al-homotopy
theory of singular schemes.
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weak version of Theorem 4: if DY, (S,€) denotes the localizing subcategory of
Da1(S, €) generated by the objects which have a strong dual, and if E is a mixed
Weil theory, then the homological realization functor induces an equivalence of
symmetric monoidal triangulated categories

DX.(S,€) ~ D(K).

Given a stable theory E’, if &’ denotes the associated ring spectrum, we associate to
any morphism of presheaves of differential graded algebras F — E’ a base change
functor

DAl (S, 8) — DAl (S, 8/)

whose restriction to DY, (S, €) happens to be fully faithful whenever E is a mixed
Weil theory. In particular, the cohomologies defined by F and E’ have then to
agree on smooth and projective S-schemes.

In the case where S is the spectrum of a perfect field, we prove that the cycle class
map HQ — €&, from Voevodsky’s rational motivic cohomology spectrum to our
given mixed Weil cohomology €&, is a morphism of commutative ring spectra. This
is achieved by interpreting the cycle class map as an isomorphism & ®5 HQ ~ € in
the homotopy category of E-modules. We then observe that the theory of de Jong
alterations implies the equality:

DY.(S,€) = Da:(S,€).

Using the equivalence of categories Da1 (S, HQ) ~ DM (k,Q), we deduce the ex-
pected realization functor from the triangulated category of mixed motives to the
derived category of the category of K-vector spaces. In a sequel, we also pro-
vide a shorter argument which relies on an unpublished result of F.Morel stated in
[Mor06].

The last part is an elementary study of some classical mixed Weil theories We
prove that, over a field of characteristic zero, algebraic de Rham cohomology is a
mixed Weil theory, and we explain how Grothendieck’s (resp. Kiehl’s) comparison
theorem between algebraic and complex analytic (resp. rigid analytic) de Rham
cohomology fits in this picture.

We proceed after this to the study of Monsky-Washnnitzer cohomology as a
mixed Weil theory, and revisit the Berthelot-Ogus Comparison Theorem, which
relates de Rham cohomology and crystalline cohomology: given a complete discrete
valuation ring V', with field of fractions of characteristic zero, and perfect residue
field, for any smooth and proper V-scheme X the de Rham cohomology of the
generic fiber of X and the crystalline cohomology of the special fiber of X are
canonically isomorphic. Our proof of this fact also provides a simple argument to
see that the triangulated category of geometrical mixed motives over V' cannot be
rigid: we see that, otherwise, for any smooth V-scheme X, the de Rham cohomology
of the generic fiber of X and the Monsky-Washnitzer cohomology of the special fiber
of X would agree, and this is very obviously false in general (for instance, the special
fiber of X might be empty). We also explain how to define rigid cohomology from
the Monsky-Washnitzer complex using the natural functorialities of A'-homotopy
theory of schemes.

We finally explain an elementary construction of étale cohomology as a mixed
Weil cohomology.
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As a conclusion, let us mention that this paper deals only with the elementary
part of the story: in a sequel of this paper [CD09b], we shall improve this con-
structions. In particular, we shall prove that any mixed Weil cohomology extends
naturally to k-schemes of finite type, satisfies h-descent (in particular étale descent
and proper descent), and defines a system of triangulated categories on which the
six operations of Grothendieck act. By appyling this construction to rigid cohomol-
ogy, this will define a convenient fundation for a good notion of p-adic coefficients.

This paper takes its origins from a seminar on p-adic regulators organized by
J .Wildeshaus, D. Blottiere and the second named author at university Paris 13.
This is where the authors went to the problem of representing rigid cohomology
as a realization functor of the triangulated category of mixed motives, and the
present paper can be seen as a kind of answer (among others, see for example
[Lev98, Hub00]). We would like to thank deeply Y. Henrio for all the time he spent
to explain the arcanes of rigid analytic geometry and of p-adic cohomology to us.
We benefited of valuable discussions with J. Ayoub, L. Breen, W. Messing and
J. Riou. We feel very grateful to J. Wildeshaus for his constant warm support and
enthusiasm. We also thank J. Wildeshaus and J. I. Burgos, for their joint careful
reading and valuable comments.

1. MOTIVIC HOMOLOGICAL ALGEBRA

All schemes are assumed to be noetherian and of finite Krull dimension. We will
say ‘S-scheme’ for ‘separated scheme of finite type over S’.

If A is an abelian category, we let Comp(A), K(A) and D(A) be respectively the
category of unbounded cochain complexes of A, the same category modulo cochain
homotopy equivalence, and the unbounded derived category of A.

1.1. Al-invariant cohomology.

1.1.1. We suppose given a scheme S. We consider a full subcategory U of the
category Sm/S of smooth S-schemes satisfying the following properties®.

(a) A% belongs to U for n > 0.

(b) If X’ — X is an étale morphism and if X is in U, then there exists a
Zariski covering Y — X’ with Y in 9.

(¢) For any pullback square of S-schemes

X —X

Y —Y

in which u is smooth, if X,Y and Y’ are in U, so is X'.

(d) If X and Y are in ¥, then their disjoint union X IT'Y is in U.

(e) For any smooth S-scheme X, there exists a Nisnevich covering Y — X of
X with Y in 9.

3In practice, the category U will be Sm/S itself or the full subcategory of smooth affine S-
schemes.
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We recall that a Nisnevich covering is a surjective and completely decomposed étale
morphism. This defines the Nisnevich topology on U; see e.g. [Nis89, KS86, TT90,
MV99).

The last property (e) ensures that the category of sheaves on U is equivalent to
the category of sheaves on the category of smooth S-schemes as far as we consider
sheaves for the Nisnevich topology (or any stronger one).

1.1.2. A distinguished square is a pullback square of schemes
W——>V
(1.1.2.1) QJ/ J{f

U 4]> X

where j is an open immersion and f is an étale morphism such that the induced map
from f71((X — U)yea) to (X — U)yeq is an isomorphism. For such a distinguished
square, the map (j,f) : ULV — X is a Nisnevich covering. A very useful
property of the Nisnevich topology is that any Nisnevich covering can be refined by
a covering coming from a distinguished square (as far as we work with noetherian
schemes). This leads to the following characterization of the Nisnevich sheaves.

A presheaf F' on U is a sheaf for the Nisnevich topology if and only if for any
distinguished square of shape (1.1.2.1), we obtain a pullback square

(1.1.2.2) % &

PU) —> F(W)

This implies that Nisnevich sheaves are stable by filtering colimits in the category
of presheaves on U. In other words, if I is a small filtering category, and if F is a
functor from I to the category of presheaves on U such that F; is a Nisnevich sheaf
for all i € I, then the presheaf li_rn}iel F; is a Nisnevich sheaf.

1.1.3. We fix a commutative ring R. Let Sh(2, R) be the category of Nisnevich
sheaves of R-modules on U. For a presheaf (of R-modules) F, we denote by Fyis
the Nisnevich sheaf associated to F'. We can form its derived category

D(U,R) = D(Sh(T, R)) .

More precisely, the category D(, R) is obtained as the localization of the cate-
gory Comp(0, R) of (unbounded) complexes of the Grothendieck abelian category
Sh(0, R) by the class of quasi-isomorphisms. As we have an equivalence of cate-
gories

Sh(0, R) ~ Sh(Sm/S, R) ,
we also have a canonical equivalence of categories
(1.1.3.1) D(U,R) ~ D(Sm/S,R) .

‘We have a canonical functor

(1.1.3.2) R:0 — Sh(V,R) , X +— R(X)
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where R(X) denotes the Nisnevich sheaf associated to the presheaf
Y — free R-module generated by Homy (Y, X).

Note that according to 1.1.2, for any X in ¥, and any small filtering system
(F})ier of Sh(B, R), the canonical map

(1.1.3.3) lim Homgp, (3, r) (R(X), Fi) — Homgy,(w,r) (R(X), lim F;)
el i€l

is an isomorphism (we can even take X to be any smooth S-scheme according to
the previous equivalence).

For a complex K of presheaves of R-modules on U, we have a canonical isomor-
phism

(1.1.3.4) Hﬁls (X, KNIS) = HOHID(QLR) (R(X), KNIS [n])

where X is an object of U, n is an integer, and Hf; (X, Knis) is the Nisnevich
hypercohomology with coefficients in K.

1.1.4. For a sheaf of R-modules F', and an integer n, we denote by D™ F' the complex
concentrated in degrees n and n+1 whose only non trivial differential is the identity
of F'. We write S™F for the sheaf F' seen as a complex concentrated in degree n. We
have a canonical inclusion of St F in D™ F. We say that a morphism of complexes
of sheaves of R-modules is a U-cofibration if it is contained in the smallest class
of maps stable by pushout, transfinite composition and retract that contains the
maps of the form S"T'R(X) — D"R(X) for any integer n and any X in Y. For
example, for any X in U, the map 0 — R(X) is a Y-cofibration (where R(X)
is seen as a complex concentrated in degree 0). A complex of presheaves K is
U-cofibrant if 0 — K is a U-cofibration.

A complex of presheaves of R-modules K on 9 is Unis-local if for any X in U,
the canonical map

Hn(K(X)) - HlGis(Xv KNis)

is an isomorphism of R-modules.

A morphism p : K — L of complexes of presheaves of R-modules on U is
P-surjective if for any X in ¥, the map K(X) — L(X) is surjective.

Proposition 1.1.5. The category of complexes of Nisnevich sheaves of R-modules
on U is a proper Quillen closed model category structure whose weak equivalences
are the quasi-isomorphisms, whose cofibrations are the U-cofibrations and whose
fibrations are the B-surjective morphisms with Vnis-local kernel. In particular, for
any X in U0, R(X) is V-cofibrant.

Proof. If X is a simplicial object of U, we denote by R(X) the associated complex. If
X is a Nisnevich hypercovering of an object X of U, we have a canonical morphism
from R(X) to R(X) and we define

R(X) = Cone(R(X) — R(X)) .

Let G be the collection of the R(X)’s for X in %0, and H the class of the R(X)’s for
all the Nisnevich hypercoverings of any object X of U. Then (G,H) is a descent
structure on Sh(U, R) as defined in [CD09a, Definition 1.4], so that we can apply
[CD09a, Theorem 1.7 and Corollary 4.9]. O

1.1.6. The model structure above will be called the U-local model structure.
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Corollary 1.1.7. For any complex of Nisnevich sheaves of R-modules K, there
exists a quasi-isomorphism K — L where L is Unis-local.

Proof. We just have to choose a factorization of K — 0 into a quasi-isomorphism
K — L followed by a fibration L — 0 for the above model structure. O

Proposition 1.1.8. For any distinguished square

W—>v

U——X
J

the induced commutative square of sheaves of R-modules

R(W) —"=R(V)

is exact; this means that it is cartesian and cocartesian, or equivalently that it gives
rise to a short exact sequence in the category of sheaves of R-modules

()
B

0 — R(W) L= R(U) @ R(V) R(X)—0.

Proof. The characterization of Nisnevich sheaves given in 1.1.2 implies that the
sequence

0 — R(W) — R(U) & R(V) — R(X) — 0

is right exact. So the result comes from the injectivity of the map from R(W) to
R(V) induced by . O

1.1.9. Let K be a complex of presheaves of R-modules on ‘J.

A closed pair will be a couple (X, Z) such that X is a scheme in U, Z C X is a
closed subset and X — Z belongs to . Let j be the immersion of X — Z in X. We
put

Kz(X) = Cone(K(X) 15 K(X — 2))[~1].
A morphism of closed pairs f : (Y,T) — (X, Z) is a morphism of schemes f : ¥ — X

such that f=1(Z) C T. The morphism of closed pairs f will be called excisive when
the induced square

Y-T——Y
L)
X—-—7Z———X

is distinguished.

The complex Kz (X) is obviously functorial with respect to morphisms of closed
pairs. We will say that K has the excision property on U if for any excisive mor-
phism f: (Y,T) — (X, Z) the map Kr(Y) — Kz(X) is a quasi-isomorphism.
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We will say that K has the Brown-Gersten property on ‘U with respect to the
Nisnevich topology, or the B.-G.-property for short, if for any distinguished square

W—=V

o ;

T

in %Y, the square

is a homotopy pullback (or equivalently a homotopy pushout) in the category of
complexes of R-modules. The latter condition means that the commutative square
of complexes of R-modules obtained from the distinguished square above by apply-
ing K leads canonically to a long exact sequence “a la Mayer-Vietoris”

H(K(X)) Z55 B (K(U)) @ HY(K (V) £=5 HY(K(W)) — H'™ (K (X))

The complexes satisfying the B.-G.-property are in fact the fibrant objects of the
model structure of Proposition 1.1.5. This is shown by the following result which
is essentially due to Morel and Voevodsky.

Proposition 1.1.10. Let K be a complex of presheaves of R-modules on 0. Then
the following conditions are equivalent.

(i) The complex K has the B.-G.-property.
(i) The complex K has the excision property.
(ii) For any X in U, the canonical map

H"(K(X)) — Hys(X, Knis)
is an isomorphism of R-modules (i.e. K is Unis-local).

Proof. The equivalence of (i) and (i) follows from the definition of a homotopy
pullback.

As any short exact sequence of sheaves of R-modules defines canonically a dis-
tinguished triangle in D(%0, R), the fact that (ii) implies (i) follows easily from
proposition 1.1.8. To prove that (i) implies (ii), we need a little more machinery.
First, we can choose a monomorphism of complexes X — L which induces a quasi-
isomorphism between Kyjs and Lyis, and such that L is Yyis-local. For this, we first
choose a quasi-isomorphism Kyjs — M where M is Unjs-local (which is possible
by Corollary 1.1.7). We have a natural embbeding of K into the mapping cone of
its identity Cone(1x ). But Cone(1g) is obviously Unis-local as it is already acyclic
as a complex of presheaves. This implies that the direct sum L = Cone(lx) & M
is also Unis-local. Moreover, as K and L both satisfy the B.-G.-property, one can
check easily that the quotient presheaf L/K also has the B.-G.-property. Hence it
is sufficient to prove that H™(L(X)/K (X)) = 0 for any X in ¥ and any integer n.
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Let us fix an object X of ¥ and an integer n. One has to consider for any ¢ > 0
the presheaf T, on the small Nisnevich site Xyjs of X defined by

T,(Y) = H" *(L(Y)/K(Y)) .

These are B.-G.-functors as defined by Morel and Voevodsky [MV99, proof of Prop.
1.16, page 101], and for any integer ¢ > 0, the Nisnevich sheaf associated to T is
trivial (this is because Kyis — L is a quasi-isomorphism of complexes of Nisnevich
sheaves by construction of L). This implies by virtue of [MV99, Lemma 1.17, page
101] that T, = 0 for any ¢ > 0. In particular, we have H"(L(X)/K (X)) = 0.
Therefore L/K is an acyclic complex of presheaves over U, and K — L is a quasi-
isomorphism of complexes of presheaves. This proves that K is Uyjs-local if and
only if L is, hence that K is Unjs-local. [l

Corollary 1.1.11. Let I be a small filtering category, and K a functor from I to
the category of complexes of Nisnevich sheaves of R-modules. Then for any smooth
S-scheme X, the canonical maps

h_rn)Hgis(Xa Kz) — HIGls(lelr%K)

iel i€l

are isomorphisms for all n.

Proof. We can suppose that K; is Unis-local for all ¢ € T (we can take a termwise
fibrant replacement of K with respect to the model structrure of Proposition 1.1.5).
It then follows from Proposition 1.1.10 that li_rn)‘eI K; is still YUnis-local: it follows
(3

from the fact that the filtering colimits are exact that the presheaves with the
B.-G.-property are stable by filtering colimits. The map

lim A" (K;(X)) — H"(lim K;(X))

i€l iel
is obviously an isomorphism for any X in 0. As we are free to take U = Sm/S,
this proves the assertion. ([l

1.1.12. Remember that if T is a triangulated category with small sums, an object
X of T is compact if for any small family (K)xea of objects of T, the canonical
map

@ Homg (X, K) — Homg (X, @ K))

PN AEA
is bijective (as this map is always injective, this is equivalent to say it is surjective).
One denotes by T, the full subcategory of T that consists of compact objects. It is
easy to see that T, is a thick subcategory of T (which means that T, is a triangulated
subcategory of T stable by direct factors).

Corollary 1.1.13. For any smooth S-scheme X, R(X) is a compact object of the
derived category of Nisnevich sheaves of R-modules.

Proof. As any direct sum is a filtering colimit of finite direct sums, this follows from
(1.1.3.4) and Corollary 1.1.11. O

1.1.14. Let D be a triangulated category. Remember that a localizing subcategory
of D is a full subcategory T of D with the following properties.

(i) Aisin T if and only if A[1] is in T.
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(ii) For any distinguished triangle
Al—A— A — A1,

if A” and A” arein T, then A isin T.
(iii) For any (small) family (A;);cr of objects of T, P,c; A; is in T.
If T is a class of objects of D, the localizing subcategory of D generated by T is the
smallest localizing subcategory of D that contains T (i.e. the intersection of all the
localizing subcategories of D that contain T).
Let T be the class of complexes of shape

. —0— R(X xgAL) — R(X) — 0 — ...

with X in U (the non trivial differential is induced by the canonical projection).
Denote by T(U, A!, R) the localizing subcategory of D(U, R) generated by T. We
define the triangulated category D;P: (0, R) as the Verdier quotient of D(U, R) by
T(U, AL R).
DT (0, R) = D(, R)/T (T, A', R)

We know that D(U, R) ~ D(Sm/S, R), and an easy Mayer-Vietoris argument for
the Zariski topology shows that the essential image of T(U, A, R) in D(Sm/S, R)
is precisely T(Sm/S, A, R). Hence we get a canonical equivalence of categories

(1.1.14.1) D0, R) ~ DT (Sm/S, R) .

We simply put:

DTS, R) = D (Sm/S, R) .
According to F. Morel insights, the category ng (S, R) is called the triangulated
category of effective real motives* (with coefficients in R). In the sequel of this

paper, we will consider the equivalence (1.1.14.1) as an equality®. We thus have a
canonical localization functor

(1.1.14.2) ~v:D(B,R) — DI (S,R) .

We will say that a morphism of complexes of Sh(U, R) is an A'-equivalence if its
image in Dgﬁf (S, R) is an isomorphism.

A complex of presheaves of R-modules K over U is Al-homotopy invariant if
for any X in U, the projection of X xg A} on X induces a quasi-isomorphism

K(X) — K(X xg AY) .

Proposition 1.1.15. The category of complexes of Sh(U,R) is endowed with
a proper Quillen model category structure whose weak equivalences are the Al-
equivalences, whose cofibrations are the U-cofibrations, and whose fibrations are
the U-surjective morphisms with A'-homotopy invariant and Uyis-local kernel. In
particular, the fibrant objects of this model structure are exactly the A'-homotopy
invariant and Vis-local complexes. The corresponding homotopy category is the
triangulated category of effective real motives ng (S, R).

4This terminology comes from the fact D;ﬁ; (S, R) give quadratic informations on S, which
implies it is bigger than Voevodsky’s triangulated category of mixed motives; see [Mor04, Mor06].
The word ‘real’ is meant here as opposed to ‘complex’.

5The role of the category ‘U is only to define model category structures on the category of
complexes of Sh(Y, R) ~ Sh(Sm/S, R) which depend only on the local behaviour of the schemes
in U (e.g. the smooth affine shemes over S).



14 DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

Proof. This is a direct application of [CD09a, Proposition 3.5 and Corollary 4.10].
O

1.1.16. Say that a complex K of presheaves of R-modules on U is A'-local if for
any X in %0, the projection of X Xxg Ag on X induces isomorphisms in Nisnevich
hypercohomology

Hio (X, Knis) ~ Hyo(X xs Ag, Knis) -

It is easy to see that a Vyjs-local complex is A '-local if and only if it is A '-homotopy
invariant. In general, a complex of sheaves K is Al-local if and only if, for any
quasi-isomorphism K — L, if L is Yyjs-local, then L is A'-homotopy invariant.
We deduce from this the following result.

Corollary 1.1.17. The localization functor D(U, R) — D;J?(S, R) has a right
adjoint that is fully faithful and whose essential image consists of the A'-local com-
plexes. In other words, DZ]‘?(S, R) is canonically equivalent to the full subcategory
of At-local complezes in D(U, R).

Proof. For any complex of sheaves K, one can produce functorially a map K —
L, K which is an A'-equivalence with L ,, K a Unjs-local and A'-homotopy in-
variant complex (just consider a functorial fibrant resolution of the model category
of 1.1.15). Then the functor L,, takes Al-equivalences to quasi-isomorphisms of
complexes of (pre)sheaves, and induces a functor

Las : DS (S, R) — D(T,R)
which is the expected right adjoint of the localization functor. (|

Ezample 1.1.18. The constant sheaf R is Al-local (if it is considered as a complex
concentrated in degree 0).

1.1.19. Let R’ be another commutative ring, and R — R’ a morphism of rings.
The functor K +— K ®5 R’ is a symmetric monoidal left Quillen functor from
Comp(0, R) to Comp(L, R’) for the model structures of Proposition 1.1.15. Hence
it has a total left derived functor

D (S,R) — D (S,R) , K+ Ke%R

whose right adjoint is the obvious forgetful functor. I.e. for a complex of sheaves
of R-modules K and a complex of sheaves of R'-modules L, we have a canonical
isomorphism

HomD;ﬁl(S,R)(Ka L) ~ HomD;ﬁ;(S’R/)(K ®% R/7L) .
Ezample 1.1.20. Let G,, = AL — {0} be the multiplicative group. It can be

considered as a presheaf of groups on Sm/S, and one can check that it is a Nisnevich
sheaf. Moreover, for any smooth S-scheme X, one has

0*(X) ifi=0,
(1.1.20.1) Hio(X, Gy) = Pic(X) ifi=1,
0 otherwise.

As S is assumed to be regular, G,, is A'-local as a complex concentrated in degree
0. We deduce that we have the formula

(1.1.20.2) HY;o(X, Gi) = Hompet, (5,2 (Z(X), G [i]) -
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In particular, it follows from 1.1.19 that for any smooth S-scheme X, one has a
canonical morphism of abelian groups

(1.1.20.3) Pic(X) — HomD;ffl(SyR) (R(X), G, @% R[1]) .
If moreover R is flat over Z, we get the formula
(1.1.20.4) Pic(X) ®z R ~ Hompet (s gy (R(X), Gy @7 R[1]) -

Proposition 1.1.21. Let I be a small filtering category, and K a functor from I to
the category of complexes of Nisnevich sheaves of R-modules. Then for any smooth
S-scheme X, the canonical map

h_Hl)HOmDZﬁl (S,R) (R(X), Kl> — HomD;ﬁ‘l (k,R) (R(X),h_m)K)

i€l il
is an tsomorphism.

Proof. This follows from Corollary 1.1.11 once we see that A'-homotopy invariant
complexes are stable by filtering colimits. O

Corollary 1.1.22. For any smooth S-scheme X, R(X) is a compact object of
DF (S, R).

1.2. Derived tensor product and derived Hom.

1.2.1. We consider a full subcategory U of Sm/S as in 1.1.1 and a commutative
ring R. The category of sheaves of R-modules on U has a tensor product ®p
defined in the usual way: if F' and G are two sheaves of R-modules, F' ®p G is the
Nisnevich sheaf associated to the presheaf

X — F(X)®5 G(X) .

the unit of this tensor product is R = R(S). This makes the category Sh(U, R)
a closed symmetric monoidal category. For two objects X and Y of U, we have a
canonical isomorphism

R(X xsY)~R(X)®gz R(Y) .
Finally, an important property of this tensor product is that for any X in 2, the
sheaf R(X) is flat, by which we mean that the functor

is exact. This implies that the family of the sheaves R(X) for X in U is flat in the
sense of [CD09a, 2.1]. Hence we can apply Corollary 2.6 of loc. cit. to get that the
Unis-local model structure of 1.1.5 is compatible with the tensor product in a very
(rather technical but also) gentle way: define the tensor product of two complexes
of sheaves of R-modules K and L on U by the formula

(K®R L)n == @ Kp ®RLQ
ptq=n
with differential d(z ® y) = do ® y + (—1)98@)2 @ dy. This defines a structure
of symmetric monoidal category on Comp(Sh(U, R)) (the unit is just R seen as
complex concentrated in degree 0, and the symmetry rule is given by the usual
formula z @ y — (—1)de&@)dee®)y @ x). A consequence of loc. cit. Corollary 2.6

is that the functor (K, L) — K ®p L is a left Quillen bifunctor, which implies in
particular that it has a well behaved total left derived functor

D(B,R) x D(V,R) — D(V,R) , (K,L)— K@% L.
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Moreover, for a given complex L, the functor
D(U,R) — D(V,R) , Kr—KkL

is the total left derived functor of the functor K — K ®j L (see Remark 2.9 of
loc. cit.). This means that for any U-cofibrant complex K (that is, a complex such
that the map 0 — K is a -cofibration), the canonical map

Kokl — KoiL

is an isomorphism in D(U, R) for any complex L. In particular, if ' is a direct
factor of some R(X) (with X in ), then for any complex of sheaves L, the map

FeLY L —FoiL

is an isomorphism in D (U, R). This derived tensor product makes D (0, R) a closed
symmetric monoidal triangulated category. This means that for two objects L and
M of D(0, R), there is an object RHom(L, M) of D(U, R) that is defined by the
universal property

VK € D(U,R), Homp ry(K &% L, M) ~ Hompy, gy (K, RHom(L, M)).

The functor RHom can also be characterized as the total right derived functor of
the internal Hom of the category of complexes of Nisnevich sheaves of R-moddules
on Y. If L is Y-cofibrant and if M if Vyis-local, then RHom (L, M) can be repre-
sented by the complex of sheaves

X —— Tot [Homgh(%R)(R(X) ®r L, M)]

The derived tensor product on D(%, R) induces a derived tensor product on
Dzﬁf (S, R) as follows.

Proposition 1.2.2. The tensor product of complexes @p has a total left derived
functor

Dl (S.R) x DI(S.R) — D (S.R) . (K,L)r— K&%L

that makes D;ﬁf(S, R) a closed symmetric tensor triangulated category. More-
over, the localization functor D(U, R) — D;@(S, R) is a triangulated symmetric
monoidal functor.

Proof. This follows easily from [CD09a, Corollary 3.14] applied to the classes § and
H defined in the proof of 1.1.5 and to the class T of complexes of shape

+—0— R(X xg A§) — R(X) — 0 — ---
with X in . O

1.2.3. It follows from Proposition 1.2.2 that the category D;ﬁ; (S, R) has an internal
Hom that we still denote by RHom. Hence for three objects K, L and M in
D;ﬁ (S, R), we have a canonical isomorphism

(1.2.3.1) Hom pes, s,y (K @K L, M) ~ Homp:f, (s, z) (K, RHom(L, M)).
If L is U-cofibrant and M is Vyis-local and Al-local, then
(1.2.3.2) RHom(L, M) = Tot [HomSh(%R)(R(—) ®p L, M)]
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Proposition 1.2.4. If L is a compact object of ng(S, R), then for any small
family (Kx)xea of objects of D;}?(S, R), the canonical map

@ RHom(L, K,\) — RHom(L, @ Kk)

A€A AEA
is an isomorphism in szf (S, R).
Proof. Once the family (K)aea is fixed, this map defines a morphism of triangu-
lated functors from the triangulated category of compact objects of Dzﬁf (S, R) to

DZ@(S, R). Therefore, it is sufficient to check this property when L = R(Y') with
Y in 0. This is equivalent to say that for any X in 2, the map

Hom (R(X), ) RHom (R(Y), K»)) — Hom(R(X), RHom(R(Y), P K»))
AEA AEA
is bijective. As R(X) is compact (1.1.22), we have
Hom (R(X), D RHom (R(Y), K)) ~ @) Hom(R(X), RHom(R(Y), K,)),
AEA AEA

and as R(X xgY) ~ R(X)®% R(Y) is compact as well, we have
Hom (R(X), RHom (R(Y), @ K.)) ~ Hom(R(X) @} R(Y), P K)

AEA AEA
~ P Hom(R(X) @ R(Y), K))
AEA
~ P Hom (R(X), RHom(R(Y), K)).
AEA
This implies our claim immediately. ([l

1.2.5. Let R-Mod be the category of R-modules. If M is an R-module, we still
denote by M the constant Nisnevich sheaf of R-modules on U generated by M. This
defines a symmetric monoidal functor from the category of (unbounded) complexes
of R-modules Comp(R) to the category Comp (U, R)

(1.2.5.1) Comp(R) — Comp(V, R) M +— M.
This functor is a left adjoint to the global sections functor
(1.2.5.2) T: Comp(W,R) — Comp(R) M+—T(M)=T(S,M).

The category Comp(R) is a Quillen model category with the quasi-isomorphims
as weak equivalences and the degreewise surjective maps as fibrations (see e.g.
[Hov99, Theorem 2.3.11]). We call this model structure the projective model struc-
ture. This implies that the constant sheaf functor (1.2.5.1) is a left Quillen functor
for the model structures of Propositions 1.1.5 and 1.1.15 on Comp(U, R). There-
fore, the global sections functor (1.2.5.2) is a right Quillen functor and has total
right derived functor

(1.2.5.3) RI: DY (S,R) — D(R)

where D(R) denotes the derived category of R. For two objects M and N of
DT (S, R), we define

(1.2.5.4) RHom(M,N) = RI'(RHom(M, N)).
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We invite the reader to check that RHom is the derived Hom of D;f? (S,R). In
particular, for any integer n, we have a canonical isomorphism

(1.2.5.5) H"(RHom(M, N)) ~ Hompes (s,r) (M, Nn]).
1.3. Tate object and purity.

1.3.1. Let G,,, = AL — {0} be the multiplicative group scheme over S. The unit
of G, defines a morphism R = R(S) — R(G,,), and we define the Tate object
R(1) as the cokernel

R(1) = coker (R — R(G,))[—1]

(this definition makes sense in the category of complexes of Sh(, R) as well as in
D(*B, R) or in D;ﬁf (S, R) as we take the cokernel of a split monomorphism). By
definition, R(1)[1] is a direct factor of R(G,), so that R(1) is U-cofibrant. Hence
for any integer n > 0, R(n) = R(1)®" is also Y-cofibrant. For a complex K of
Sh(U, R), we define K(n) = K @y R(n). As R(n) is U-cofibrant, the map

K ©% R(n) — K ©g R(n) = K(n)
is an isomorphism in Dfﬁ[(k7 R). Another description of R(1) is the following.

Proposition 1.3.2. The inclusion of G, in A' induces a canonical split distin-
guished triangle in DZ? (S, R)

0
R(Gy) — R(Ag) — R(1)[2] — R(Gn)[1]
that gives the canonical decomposition R(G,,) = R® R(1)[1].

Proof. This follows formally from the definition of R(1) and from the fact that
R(A'Y) = Rin DI (S, R). 0

1.3.3. Let A°?Sh(Sm/S) be the category of Nisnevich sheaves of simplicial sets
on Sm/S. Morel and Voevodsky defined in [MV99] the Al-homotopy theory in
A°PSh(Sm/S). In particular, we have a notion of Al-weak equivalences of sim-
plicial sheaves that defines a proper model category structure (with the monomor-
phisms as cofibrations). Furthermore, we have a canonical functor

AP Sh(Sm/S) — Comp(Sm/S,R) X — R(X)
which has the following properties; see e.g. [Mor03, Mor05].

(1) The functor R above preserves colimits.
(2) The functor R preserves monomorphisms.
(3) The functor R sends A'-weak equivalences to Al-equivalences.

We deduce from these properties that the functor R sends homotopy pushout
squares of A°PSh(Sm/S) to homotopy pushout squares of Comp(Sm/S,R) and
induces a functor
R:H(S) — DI (S, R)

where H(S) denotes the localization of A°? Sh(Sm/S) by the Al-weak equivalences.

This implies that all the results of [MV99] that are formulated in terms of Al-
weak equivalences (or isomorphisms in H(S)) and in terms of homotopy pushout
have their counterpart in ng (S, R). We give below the results we will need that
come from this principle.
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1.3.4. Let X be a smooth S-scheme and V a vector bundle over X. Consider the
open immersion j : V* — 'V of the complement of the zero section of V/X. We
define the Thom space of V as the quotient

(1.3.4.1) R(ThV) = coker(R(V*) 25 R(V)) .
We thus have a short exact sequence of sheaves of R-modules
(1.3.4.2) 0 — R(V*) — R(V) — R(ThV) — 0.

Proposition 1.3.5. Let O™ be the trivial vector bundle of dimension n on a smooth
S-scheme X. Then we have a canonical isomorphism in D;q(S, R):

R(ThO") =~ R(X)(n)[2n] .

Proof. This follows from Proposition 1.3.2 and from the second statement of [MV99,
Proposition 2.17, page 112]. O

For a given vector bundle V, over a S-scheme X, we will denote by P(V) — X
the corresponding projective bundle.

Proposition 1.3.6. Let V be a vector bundle on a smooth S-scheme X. Then we
have a canonical distinguished triangle in Dgﬁf (S, R)

R(P(V)) — R(P(V®O)) — R(ThV) — R(P(V))[1] .

Proof. This follows from Proposition 1.3.2 and from the third statement of [MV99,
Proposition 2.17, page 112]. O

Corollary 1.3.7. We have a canonical distinguished triangle in D;J?(S, R)
R(PY) — R(PY™) — R(n+1)[2n +2] — R(P2)[1] .
Moreover, this triangle splits canonically for n = 0 and gives the decomposition
R(PL)=Ra R(1)[2] .

Proof. This is a direct consequence of Propositions 1.3.5 and 1.3.6. The splitting
of the case n = 0 comes obviously from the canonical map from P} to S. O

1.3.8. The inclusions P%§ C Pg“ allow us to define the Nisnevich sheaf of sets
(1.3.8.1) P =lim P
We get a Nisnevich sheaf of R-modules
(1.3.8.2) R(PY) = hinm;o R(PY) .
For a complex K of sheaves of R-modules, we define the hypercohomology of P
with coefficients in K to be
(1.3.8.3) H(PY, K) = Homp(gm,s,r) (R(PT), K[i]) .
Proposition 1.3.9. There is a short exact sequence

0— <h_m1n>0 Hll\ljsl( g7K) - Hli\fis( 2'07 K) - (h_mn>o Hli\fis( g” K) —0.
Proof. As the filtering colimits are exact in Sh(Sm/S, R) we have an isomorphism
holim R(P%) ~ R(P%) in D(Sm/S, R). This result is thus a direct application of

the Milnor short exact sequence applied to this homotopy colimit (see e.g. [Hov99,
Proposition 7.3.2]). O
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Proposition 1.3.10 (Purity Theorem). Let i : Z — X a closed immersion of
smooth S-schemes, and U = X — i(Z). Denote by Nx z the normal vector bundle
of i. Then there is a canonical distinguished triangle in D;@(S, R)

R(U) — R(X) — R(ThNx.z) — R(U)[1] .
Proof. This follows from [MV99, Theorem 2.23, page 115]. O

Corollary 1.3.11. There is a canonical decomposition R(A%—{0}) = R&R(n)[2n—
. eff
1] in D (S, R).

Proof. The Purity Theorem and Proposition 1.3.5 give a distinguished triangle
R(AG —{0}) — R(A%) — R(n)[2n] — R(AS - {0})[1] .
But this triangle is isomorphic to the distinguished triangle
R(AS —{0}) — R — Q[1] — R(AS —{0})[1]

where @ is the kernel of the obvious map R(A% — {0}) — R, which shows that
these triangle split. (Il

1.4. Tate spectra.

1.4.1. We want the derived tensor product by R(1) to be an equivalence of cate-
gories. As this is not the case in ng (S, R), we will modify the category Dzﬁf (S, R)
and construct the triangulated category of real motives D1 (S, R) in which this
will occur by definition. For this purpose, we will define the model category of
symmetric Tate spectra. We will give only the minimal definitions we will need to
work with. We invite the interested reader to have look at [CD09a, Section 6] for
a more complete account. The main properties of Da1(S, R) are listed in 1.4.4.
We consider given a category of smooth S-schemes U as in 1.1.1.

1.4.2. A symmetric Tate spectrum (in Sh(, R)) is a collection E = (E,, 0p)n>0,
where for each integer n > 0, E), is a complex of Nisnevich sheaves on U endowed
with an action of the symmetric group &,, and o, : R(1) ® 3 E, — Ep41 is a
morphism of complexes, such that the induced maps obtained by composition

R(1)®™ ®@p By — R(1)®m1 ®p Enyr — - — R(1) O Emyn—1 — Emyn

are 6,, X 6,-equivariant. We have to define the actions to be precise: &,, acts
on R(m) = R(1)®™ by permutation, and the action on FE,,, is induced by the
diagonal inclusion &,, X &, C &,,1,. A morphism of symmetric Tate spectra
u: (Ep,0,) — (Fn,Tn) is a collection of &,-equivariant maps u,, : E, — F,
such that the squares

R(1)®p By & Fpi

R(1)®unl iunJrl

R(l) ®R Fn Tn Fn+1

commute. We denote by Sp 1,:. (U, R) the category of symmetric Tate spectra. If A
is a complex of sheaves of R-modules on U, we define its infinite suspension L°°(A)
as the symmetric Tate spectrum that consists of the collection (A(n), 14(n+1))n>0



MIXED WEIL COHOMOLOGIES 21

where &,, acts on A(n) = R(1)®" ® A by permutation on R(n) = R(1)®™. This
defines the infinite suspension functor

(1.4.2.1) X% Comp(B, R) — Sp e (T, R)
This functor has a right adjoint
(1.4.2.2) 0% : Sprute (B, R) — Comp(V, R)

defined by Q°°(E,,, 0y )n>0 = Ep. According to [CD09a, 6.14 and 6.20] we can define
a (R-linear) tensor product of symmetric spectra E @5 F satisfying the following
properties (and these properties determine this tensor product up to a canonical
isomorphism).

(1) This tensor product makes the category of symmetric Tate spectra a closed
symmetric monoidal category with X°°(R(S)) as unit.
(2) The infinite suspension functor (1.4.2.1) is a symmetric monoidal functor.

Say that a map of symmetric Tate spectra u : (E,,0,) — (Fn, ™) is a quasi-
isomorphism if the map u,, : E,, — F, is a quasi-isomorphism of complexes of Nis-
nevich sheaves of R-modules for any n > 0. We define the Tate derived category of
Sh(0, R) as the localization of Sp 1. (0, R) by the class of quasi-isomorphisms. We
will write Dy (U, R) for this “derived category”. One can check that Dy (U, R)
is a triangulated category (according to [CD09a, Remark 6.19], this is the homo-
topy category of a stable model category) and that the functor induced by X is
a triangulated functor (because this is a left Quillen functor between stable model
categories).

A symmetric Tate spectrum E = (E,, 0p)n>0 is a weak Q> -spectrum if for any
integer n > 0, the map o, induces an isomorphism F, ~ RHom(R(1), E,4+1) in
Dfﬁ(& R). A symmetric Tate spectrum E = (E,,, 0y )n>0 is a Q°°-spectrum if it is
a weak Q°°-spectrum and if, for any integer n > 0, the complex FE,, is Unjs-local
and A'-homotopy invariant.

A morphism of symmetric Tate spectra u : A — B is a stable A'-equivalence
if for any weak Q°°-spectrum F, the map

u* : HomDTate(va) (B7 E) - HomDTate (%7R) (A7 E)

is an isomorphism of R-modules.

A morphism of Tate spectra is a stable Al-fibration if it is termwise Unis-
surjective and if its kernel is a 2°°-spectrum.

A morphism of Tate spectra is a stable U-cofibration if it has the left lifting prop-
erty with respect to the stable A!l-fibrations which are also stable A!-equivalences.
A symmetric Tate spectrum FE is stably B-cofibrant if the map 0 — FE is a stable
$0-cofibration.

Proposition 1.4.3. The category of symmetric Tate spectra is a stable proper
symmetric monoidal model category with the stable A'-equivalences as the weak
equivalences, the stable Al-fibrations as fibrations and the stable SG-cofibrations as
cofibrations. The infinite suspension functor is a symmetric left Quillen functor
that sends the A'-equivalences to the stable Al-equivalences. Moreover, the tensor
product by any stably V-cofibrant symmetric Tate spectrum preserves the stable
Al-equivalences.
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Proof. The first assertion is an application of [CD09a, Proposition 6.15]. The fact
that the functor 3°° preserves weak equivalences comes from loc. cit., Proposition
6.18. The last assertion follows from loc. cit., Proposition 6.35. (]

1.4.4. The proposition above means the following.

Define the triangulated category of real mized motives Da1(S, R) as the local-
ization of the category Sp,..(U, R) by the class of stable Al-equivalences. Then
Da1(S, R) is a triangulated category with infinite direct sums and products. To
be more precise, any short exact sequence in Spp,,. (U, R) gives rise canonically
to an exact triangle in D1 (S, R), and any distinguished triangle is isomorphic to
an exact triangle that comes from a short exact sequence. Furthermore, this tri-
angulated category does not depend on the category 2U: the category U is only a
technical tool to define a model category structure that is well behaved with the
tensor product and Nisnevich descent in .

The infinite suspension functor sends A'-equivalences to stable Al-equivalences
and thus induces a functor

(1.4.4.1) %% DT (S,R) — Da1(S,R) .

The right adjoint of the infinite suspension functor has a total right derived functor
(1.4.4.2) RO : Da:(S,R) — DI (S, R) .

For a (weak) Q°°-spectrum E, one has

(1.4.4.3) RO™(E) =Ey .

The tensor product on Sp,. (T, R) has a total left derived functor

(1.4.4.4)  Da1(S,R) x Da1(S,R) — Da1(S,R) , (E,F)+— EQLF.

If E is stably U-cofibrant, then the canonical map F ®% F — E ®, F is an
isomorphism in Da1(S, R). Moreover, the functor (1.4.4.1) is symmetric monoidal.
In particular, for two complexes of Nisnevich sheaves of R-modules A and B we
have a canonical isomorphism

(1.4.4.5) Y®(A®Y% B) ~ £°(4) ok £°(B) .

The category Da1 (.S, R) has also an internal Hom that we denote by RHom(E, F).

We will write R = £*°(R(S5)), and for a smooth S-scheme X, we define R(X)
to be X*°(R(X)). We also define R(n) = £°°(R(n)) for n > 0. Note that R is
the unit of the (derived) tensor product. We define the symmetric Tate spectrum
R(—1) by the formula R(—1),, = R(n + 1) with the action of &,, defined as the
action by permutations on the first n factors of R(n +1) = R(1)®" @, R(1). The
maps R(—1), ® R(1) — R(—1),41 are just the identities. One can check that
R(—1) is 2Y-cofibrant.

Proposition 1.4.5. The object R(1) is invertible in Da1(S, R) and we have an
isomorphism R(—1) ~ R(1)~1. In other words, there are isomorphisms

R(1)®FR(-1)~R and R(-1)@% R(1)~R.
Proof. This follows from [CD09a, Proposition 6.24]. O

1.4.6. For an integer n > 0, we define R(—n) = R(—1)®". For an integer n, and a
symmetric Tate spectrum E, we define

E(n)=E® R(n) .
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As R(n) is Y-cofibrant, the canonical maps E ®@% R(n) — E®z R(n) = E(n) are
isomorphisms in Da:(S, R).

We will say that a symmetric Tate spectrum E = (E,,0p)n>0 I8 a weak Q-
spectrum if for any integer n > 0, the map o,, induces by adjunction an isomorphism
E, ~RHom(R(1),E, 1)

in D (S, R).
Proposition 1.4.7. Let E be a weak Q°°-spectrum. Then for any integer n > 0 and
any complex of Nisnevich sheaves of R-modules A, there is a canonical isomorphism

of R-modules
Homp , (s,r)(3%(4), E(n)) ~ HomD;'l' (s,r) (A, Ep) .
In particular, for any smooth S-scheme X, one has isomorphisms
Hyio(X, Bp) =~ Homp,, (s.r)(R(X), E(n)[]) .
Proof. This is an application of [CD09a, Proposition 6.28]. O

Corollary 1.4.8. A morphism of weak Q>®-spectra E — F is a stable A'-
equivalence if and only if the map E,, — F,, is a Al-equivalence for all n > 0.

Proposition 1.4.9. For any smooth S-scheme X and any integer n, R(X)(n) is
a compact object of Da1(S, R).

Proof. Let (E))xea be a small family of Tate spectra. We want to show that the
map

@ Homp, , (s,r) (R(X)(n), Ex) — Homp, , s,r) (R(X)(n), D E»)
AEA AEA

is bijective. Replacing the spectra E) by the spectra F\(—n), we can suppose that
n = 0. Furthermore, we can assume that the spectra E) are weak 2>°-spectra. As
R(1) is a compact object of Dzﬁf (S, R) (this is by definition a direct factor of the
object R(G,;,) which is compact by 1.1.22), it follows from Proposition 1.2.4 that
Drca P is a weak Q>°-spectrum as well. Therefore, by Proposition 1.4.7, we have

P Homp, , (s,r) (R(X), Ex) ~ P Homp <, (s,r) (R(X), Eo.»)
A€A AEA

~ Hompes (s,r) (R(X), EB Eo.))
AEA

~ HomD;«\ﬂ1 (5,R) (R(X)’ ( @ E’\)O)
AEA

~ Homp , (s r) (E(X)a @ E/\)'
A€EA

This proves the result. O
1.4.10. The functor
(1.4.10.1) Comp(R) — Sprae (B, R) M +— ¥°°(M).

is a left Quillen functor from the projective model structure on Comp(R) (see 1.2.5)
to the model structure of Proposition 1.4.3. The right adjoint of (1.4.10.1)

(1.4.10.2) SP1ate (B, R) — Comp(R) M — T(Q*(M))
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is a right Quillen functor. The corresponding total right derived functor is canoni-
cally isomorphic to the composed functor RI' o RQ2*°.
For two objects E' and F of Da1(S, R), we define

(1.4.10.3) RHom(E, F) = RT (RQ°° (RHom(E, F))).
For any integer n, we have a canonical isomorphism

(1.4.10.4) H"(RHom(E, F)) ~ Homp _, (s,r)(E, F[n]).
1.5. Ring spectra.

1.5.1. A ring spectrum is a monoid object in the category of symmetric Tate
spectra. A ring spectrum is commutative if it is commutative as a monoid object
of Sp . (T, R).

Given a ring spectrum €&, one can form the category of left E-modules. These
are the symmetric Tate spectra M endowed with a left action of &

E@p M — M

satisfying the usual associativity and unit properties.
We denote by Sp 1. (U, €) the category of left E-modules. There is a base change
functor

(1511) SpTate(m7 R) - SpTate(m7 8) ’ Fr—& ®R F
which is a left adjoint of the forgetful functor
(1.5.1.2) SP1te (T, €) — SP e (B, R) Mv— M .

If € is commutative, the category Sp .. (U, €) is canonically endowed with a closed
symmetric monoidal category structure such that the functor (1.5.1.1) is a symmet-
ric monoidal functor. We denote by ®, the corresponding tensor product. The unit
of this monoidal structure is € seen as an €-module.

A morphism of &-modules is a stable A'-equivalence (resp. a stable A'-fibration)
if it is so as a morphism of symmetric Tate spectra. A morphism of E-modules is a
stable U-cofibration if it is has the left lifting property with respect to the stable
Al-fibrations which are also stable Al-equivalences.

Proposition 1.5.2. For a given ring spectrum &, the category Sp g (U, €) is en-
dowed with a stable proper model category structure with the stable A'-equivalences
as weak equivalences, the stable A'-fibrations as fibrations, and the stable U-cofibra-
tions as cofibrations. The base change functor (1.5.1.1) is a left Quillen functor.
Moreover, if € is commutative, then this model structure is symmetric monoidal.

Proof. See [CD09a, Corollary 6.39]. O

1.5.3. Let & be a commutative ring spectrum. We define Da1(S, &) to be the
localization of the category Sp . (U, &) by the class of stable Al-equivalences. It
follows from the proposition above that this category is canonically endowed with
a triangulated category structure. The base change functor has a total left derived
functor

(1.5.3.1) Da1(S, R) — Da1(S,€) Fr—ERLEF
which is a left adjoint of the forgetful functor
(1.5.3.2) Da1(S,8) — Da1(S,R) Mv— M .
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The forgetful functor (1.5.3.2) is conservative (which means that an object of
Da1(S, &) is null if and only if it is null in Da1(S, R). There is a derived ten-
sor product

(1.5.3.3)  Da1(S,&) x Da1(S, &) — Da1(S, &) , (M,N)— M ®% N

that turns Da1(S, €) into a symmetric monoidal triangulated category (by applying
[Hov99, Theorem 4.3.2] to the model structure of Proposition 1.5.2). The derived
base change functor (1.5.3.1) is of course a symmetric monoidal functor. The cat-
egory Da1(S, &) also has an internal Hom that we denote by RHomeg (M, N). We
thus have the formula

(1.5.3.4) Homp , (s,¢)(L ®¢ M,N) ~ Homp_, (s,e)(L, RHomg (M, N)).
It follows from 1.4.10 that the functor
(1.5.3.5) Comp(R) — Sprge (T, E) M+— E@p X (M).

is a left Quillen functor. The right derived functor of its right adjoint is the compo-
sition of the forgetful functor (1.5.3.2) with the functor RI'o RQ*°. For two objects
M and N of Da:1(S, ), we define

(1.5.3.6) RHome (M, N) = RT (RQOO (RHome (M, N))).
For any integer n, we have a canonical isomorphism
(1.5.3.7) H"(RHomg (M, N)) ~ Homp , (s,e)(M, N[n]).
For a smooth S-scheme X, we define the free €-module generated by X as
E(X) = €@ B(X) = € @p XF(R(X)) .
As R(X) is stably U-cofibrant, the canonical map
€ @p R(X) — E®p R(X) = E(X)

is an isomorphism in D1 (S, R) (hence in Da1(S, €) as well). This implies that for
any &-module M, we have canonical isomorphisms

(1.5.3.8) HOIHDZJ?;(S,R)(R(X), RO (M)) ~ HOHIDAl (S’g)(S(X), M) .

Note that as the forgetful functor (1.5.3.2) preserves direct sums, Proposition 1.4.9
implies that £(X)(n) is a compact object of Da1(S, €) for all smooth S-scheme X
and integer n.

2. MODULES OVER A WEIL SPECTRUM

From now on, we assume the given scheme S is reqular.
Let U be a full subcategory of smooth S-schemes satisfying the hypothesis of
1.1.1. We also fix a field of characteristic zero K called the field of coefficients.
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2.1. Mixed Weil theory.

2.1.1. Let F be a complex of presheaves of K-module on ¥ which has the Brown-
Gersten property and is A'-homotopy invariant. From Proposition 1.1.10, the
first property means that H'(F(X)) = Hi (X, Enis) for any scheme X in U,
and any integer i. The second property implies the complex of sheaves FEyjis is
quasi-isomorphic to a Al'-local complex. In the sequel we will write E for the
corresponding object of ng, (S,K). Whence we obtain, for any smooth S-scheme
X in %Y, a canonical isomorphism

H'(E(X)) = Homp, (s, (K(X), B[i]).

Suppose moreover that E has a structure of a presheaf of commutative differential
graded K-algebras. This structure corresponds to morphisms of presheaves

Eeox EL E, KLFE

satisfying the usual identities (corresponding to the associativity and commutativity
properties of the multiplication g and to the the fact 1 is a unit). Applying the
associated Nisnevich sheaf functor, we obtain in Comp(Sh(S,K)) the following
morphisms

n n
Enis @ Enis — Enis, K — Exis.

As the sheafifying functor and the tensor product over K are exact, these morphisms
indeed induce a commutative monoid structure on F, as an object of ng (S, K).

2.1.2. Consider now a merely commutative monoid object E of D;"C{ (S,K).

Let us denote by p: E®% F — E and n : K — E respectively the multipli-
cation and the unit maps.

If M is an object of Dt (S,K), we set H (M, E) = Homp<, (s.x) (M, E[i]). For
two objects M and N of ng (S,K), we define the external cup product

HP(M,E) QK Hq(N7E) I Hp+q(M ®IIJ( NvE)

as follows. Considering two morphisms « : M — E[p] and 8 : N — F]g| in
Dzﬁ;(S, K), we define a map o ®,, 3 as the composite

a®k B
—_—

M @y N Elp) ©% Elq “2*% Blp + g

that is the expected product of o and .

For a smooth S-scheme X, we simply write H'(X, E) = H(K(X), E). We can
consider the diagonal embedding X — X x g X which induces a comultiplication
5. : K(X) — K(X) ®% K(X). This allows to define as usual a ‘cup product’ on
H*(X, E) by the formula

a.f=(a®,p)od .
We will always consider H*(X, E) as a graded K-algebra with this cup product.

We introduce the following axioms :

K ifi=0,
0 otherwise.
1 ifi=0o0ri=1,

0 otherwise.

W1 Dimension.— H(S, E) ~ {

W2 Stability— dimg H (G, E) = {
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W3 Kiinneth formula.— For any smooth S-schemes X and Y, the exterior cup
product induces an isomorphism

@ H"(X E)ex H(Y,E) = H"(X x5 Y,E) .
ptg=n
W3’ Weak Kinneth formula— For any smooth S-scheme X, the exterior cup
product induces an isomorphism

P H?(X,E)@x H(Gm, E) = H"(X x5 G, E) .
p+g=n
2.1.3. Under assumptions W1 and W2, we will call any non zero element ¢ €
HY(G,, E) a stability class. Note that such a class corresponds to a non trivial
map
c:K(1) — FE

in Dzﬁf (S,K). In particular, if E is a presheaf of commutative diffential graded
K-algebras which has the B.-G.-property and is A'-homotopy invariant, then such
a stability class can be lifted to an actual map of complexes of presheaves. Such a
lift will be called a stability structure on E.

Remark that, in the formulation of axiom W3 (resp. W3’) we might require the
Kiinneth formula to hold only for X and Y (resp. X) in U: as any smooth S-
scheme is locally in U for the Nisnevich topology, this apparently weaker condition
implies the general one by a Mayer-Vietoris argument.

Definition 2.1.4. A mized Weil theory® is a presheaf E of commutative differential
graded K-algebras on U which has the Brown-Gersten property (or equivalently the
excision property, see 1.1.10), is Al-homotopy invariant, and satisfies the properties
W1, W2 and W3 stated above.

A stable theory is a presheaf E of commutative differential graded K-algebras on
0 which has the Brown-Gersten property, is A'-homotopy invariant, and satisfies
the properties W1, W2 and W3'.

2.1.5. Any stable theory E gives rise canonically to a commutative ring spectrum
&, as explained below. The idea to define the spectrum & consists essentially to
consider a weighted version of E (this should be clearer considering the comments
given in 2.1.7).

Let Hom™(K(1), E) be the complex of maps of complexes of sheaves from K(1)
to E (the category Comp(2U,K) is naturally enriched in complexes of K-vector
spaces). As K(1) is U-cofibrant and as E is fibrant with respect to the model
category structure of Proposition 1.1.15, we have for any integer i

» HY (G, E) ifi=0,
(2.1.5.1) Hi(Hom*(K(1), B)) = 4 1 { ) =0,
0 otherwise.
Consider the constant sheaf of complexes on U
(2.1.5.2) L =Hom™(K(1), E)s

associated to the complex Hom™(K(1), E). We can now define a symmetric Tate
spectrum & = (&,,0,)n>0 as follows. Put first &, = Hom(L®", F) (here Hom

61n what follows, we will prove this terminology is not usurpated: a consequence of the main
results of this paper is that, when S is the spectrum of a field k, the restriction of the functor
H*(., E) to smooth and projective k-schemes is a Weil cohomology in the sense defined in [And04].
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stands for the internal Hom in the category Comp(0,K)). We have a canonical
map
L =Hom™(K(1), E)s — Hom(K(1), F)

which gives a map

(2.1.5.3) K(l)ox L — E,

and tensoring with Hom(L®", F) gives a map

(2.1.5.4) K(1) 9k L ®x Hom(L®", E) — FE ®x Hom(L®", E).
The product on E induces a canonical action of E on Hom(L®", E) :
(2.1.5.5) E @k Hom(L®", E) — Hom(L®", E).

The composition of (2.1.5.4) and (2.1.5.5) finally leads to a morphism
(2.1.5.6) K(1) ®x L ®x Hom(L®", E) — Hom(L®" F).

The map oy, : E,(1) — E,41 is defined at last from (2.1.5.6) by transposition,
using the isomorphism Hom (L, Hom(L®", F) ~ Hom(L®"*+Y E). The action of
S, on &, is by permutation of factors in L®". Note that the fact € is well defined
relies heavily on the fact E is commutative as a differential graded algebra. We
define in the same spirit a commutative ring spectrum structure on €. The unit
map K — € is determined by a sequence of maps 7, : K(n) — €&,,. The map 7o
is of course the unit of E, and the rest of the sequence is then obtained easily by
induction: if n,,_; is defined, then 7, is obtained as the composition

Kn) 2 We ) boe,.

The multiplication of € is determined by maps fimn : Em Ok En — Emgrn which
are defined by composition of the obvious maps below.

Hom(L®™, E)oxHom(L®" E) — Hom(L®("™+") Eg@gE) — Hom(L®(™+") E)

Proposition 2.1.6. Let FE be a stable theory. The associated commutative ring
spectrum € is a weak 2°°-spectrum, and there is a canonical isomorphism E ~
RO>®(€) in qu(S’,K). In other words, for any sheaf of complexres M, we have
canonical isomorphisms

HOII’ID;ﬁr1 (S,K) (M, E) ~ HomD;ﬁ‘l (S,K) (M, RQOO(E)) ~ HOII’IDA1 (S,K) (LEOO(M)7 8)

Furthermore, any stability structure on E defines an isomorphism E(1) ~ & in
Da:1(S,K).

Proof. Tt follows from (2.1.5.1) that the complex Hom™ (K (1), E) is quasi-isomorphic
to the constant sheaf associated to the vector space H(G,,, E). As a consequence,
the constant sheaf L is a U-cofibrant” complex which is (non canonically) isomor-
phic to K in D;ﬁc(S, K). Taking into account that E is quasi-isomorphic, as a
presheaf, to its fibrant replacement in the model structure of Proposition 1.1.15,
we also have a canonical isomorphism in Dzﬁf (S,K)

&, = Hom(L®", E) ~ RHom(L®" E).

7As we work with a field of coefficients K, any constant sheaf of complexes of vector spaces is
W-cofibrant.
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Hence we can get a non canonical isomorphism &, ~ E which corresponds to the
choice of a generator ¢ of H!(G,,, E). Under such an identification, the structural
maps

&, — RHom(K(1),&,41)
all correspond in ngf (S,K) to the map

7. : E— RHom(K(1), E)

induced by transposition of the map F(1) — E, obtained as the cup product of
the identity of F and of the map K(1) — FE coming from the chosen generator
c. The weak Kiinneth formula and the stability axiom thus imply that the map
T, above is an isomorphism in D;qf (S,K). This proves that € is indeed a weak
Q>°-spectrum. The reformulation of this assertion comes directly from Proposition
1.4.7.

Consider now a stability structure ¢ : K(1) — E on E. We have to define a
morphism of symmetric Tate spectra v : £(1) — &, which corresponds to &,,-
equivariant maps commuting with the o,’s

Uy, : Hom(L®" E)(1) — Hom(L®™, E).
Such a map wu,, is determined by a map
vn 1 L% @k Hom(L®™, E)(1) — E.
We already have an evaluation map twisted by K(1)
L®" @x Hom(L®", E)(1) — E(1),
so that to define v,,, we are reduced to define a map
E(1) — E;

this is obtained as the cup product of the identity of E with the given map ¢. The
fact that u is an isomorphism in D;ﬁ: (S,K) comes again from the stability axiom
and from the weak Kiinneth formula. O

2.1.7. Given a stable theory and its associated commutative ring spectrum €&, for a
smooth S-scheme X and two integers p and ¢, we define the ¢** group of cohomology
of X of twist p with coefficients in € to be

(2.1.7.1) HY(X, &(p)) = Homp, , (s,x)(K(X), E(p)[a]) -
We obviously have
(2.1.7.2) HY(X,E)=HYX,¢&),

and more generally, if p > 0, H*(X, £(p)) is just the Nisnevich hypercohomology of
X with coefficients in the sheaf of complexes Hom(L®?, E). Hence for any integer
p, any choice of a generator of H!(G,,, F) determines a non canonical (but still
functorial) isomorphism HY(X, E) ~ H1(X, E(p)).

We also define complexes

(2.1.7.3) RI(X,&(p)) = RHomk (K(X), E(p)) ~ RHome (£(X), E(p))
and we get by definition
(2.1.7.4) HYRI(X,E(p)) = HI(X,E(p)) .
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2.1.8. Let X be a smooth S-scheme and a : E(X) — &(p)[i] and § : E(X) —
&(q)[j] be morphisms of E-modules, corresponding to cohomological classes. The
cup product of o and 8 over X then corresponds to a map of -modules

a.B8:E8(X)— E(p+ )i +j]
defined as the composition

E(X) 5 E(X x5 X) = £(X) @ £(X) 222, £(p)[i] @F €(q) 5] = € + Q)i + .

2.2. First Chern classes. We assume a stable theory F is given. We will con-
sider its associated commutative ring spectrum & (2.1.5), and the corresponding
cohomology groups (2.1.7).

2.2.1. Recall we have a canonical decomposition K(G,,) = K @ K(1)[1] in the
category D;f{ (S,K). The unit map K — & determines by twisting and shifting a
map

(2.2.1.1) c: K(1)[1] — EM)[1].

The morphism (2.2.1.1), seen in D"ﬁf (S, K) corresponds to a non trivial cohomology
class in Homp,, (s.x)(K(1)[1], €(1 )[1}) HY (G, £(1)).

We also have a decomposition K(P}) = K & K(1)[2], so that (2.2.1.1) also cor-
responds to a cohomology class ¢ in H*(P}, €(1)) that will be called the canonical
orientation of E.

Note also that the decomposition K(P%) = K @ K(1)[2] and the weak Kiinneth
formula implies the Kiinneth formula holds with respect to products of type P& x ¢ X
for Nisnevich cohomology with coefficients in E. We will still refer to this as the
‘weak Kiinneth formula’.

Lemma 2.2.2. For any integer n > 0, the graded vector space H*(K(n), E) is
(non canonically) isomorphic to K concentrated in degree zero.

Proof. The case n = 0 is precisely W1. Assume n > 1. We can begin by a choice of
a stability structure on F, which defines, using W2 and the weak Kiinneth formula,
an isomorphism in D;q (S,K):

E ~RHom(K(1),E).
This gives
RHomps (s k) (K(n),E) ~ RHomp (s k) (K(n —1),RHom(K(1), E))
~ RHomDZﬁl(SyK)(K(n — 1), E) .
We conclude by induction on n. [
For any integer 1 < n < m, we let ¢, : P — P'§ be the embedding given by
(xo:oooixp)— (g itz :0:...:0).

Lemma 2.2.3. For any integer n > 0, the cohomology group H*(P%, E) is con-
centrated in degrees i such that i is even and i € [0,2n].

For any integer 0 <n < m, ¢}, ,, : H*(P§, E) — H*(PY%, E) is an isomorphism
in degrees i € [0, 2n)].

Proof. The case where m = 1 is already known (2.2.1). The remaining assertions
follow then by induction from the canonical distinguished triangle

K(Pg') “—5 K(PE) — K(n)[2n] — K(PE (1]
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in DY (S,K) (see Corollary 1.3.7), and using Lemma 2.2.2. O

Lemma 2.2.4. Letn > 2 and o be a permutation of the set {0,...,n}.
Consider the morphism o : Py — P&, (zo: ... : 2p) = (To0) * -+ * To(n))-
Then o* : H*(P%, E) — H?*(P%, E) is the identity.

Proof. We consider first the case n > 3. We can assume ¢ is the transposition
(n—1,n). Then oty , = t1, and the claim follows from the preceeding lemma.

It remains to prove the case n = 2. Let o a transposition of {0,1,2}. There is
then a transposition 7 of {0,1,2,3} such that 130 = Ti23. As we already know
that 7 induces the identity in degree 2 cohomology. By applying Lemma 2.2.3, we
see that the map ¢o 3 induces an isomorphism in degree 2 cohomology as well. We
thus get, by functoriality, 0%15 5 = 15 37* = (5 3, with .5 5 invertible, which ends the
proof. ([l

2.2.5. For any integer n,m > 0, we will consider the Segre embedding
(2.2.5.1) Onm : P& x Py — PLmTm

and the n-fold Segre embedding

(2.2.5.2) o™ (PH” — PY L.

Proposition 2.2.6. There exists a unique sequence (¢1,n)n>0 of cohomology classes,
with ¢1., € H2(P%, E(1)), such that :

(i) e1,1 = ¢ is the canonical orientation of €;
(ii) for any integers 1 <n <m, ¢, ,,(c1,m) = c1,n-
Moreover, the following formulas hold :

(iii) for any integer n >0, ct,, # 0 and ci‘;l

0;
(iv) for any integers mym > 0, % o (CLam snim) = T5(e1n) + T (c1m), where
T, and Ty, denote the projections from P xg P& to P and P respec-
tively.

Proof. The unicity statement is clear from 2.2.3.
Let n > 2 be an integer and consider the embedding

piPk— (PY", (:y)— ((@:),(0:1),...,00:1)).
The morphism 11,91 factors® as

(n) n
1 P 1\n O 2" -1
PL 2 (PL)" 2= PY

which induces in cohomology
n_ JRCOR n *
H*(PY 1, &(1)) T H2((PY)", E(1)) *— H*(Py, E(1)).

Let t be the unique class in H2(P% ~*, &(1)) which is sent to ¢ by the isomorphism
13 9n_q (in degree 2 cohomology). Using the weak Kiinneth formula and Lemma
2.2.2, we obtain a decomposition

H*((PH™ 1) =Ku & - &K,
8This factorization might hold eventually only up to a permutation of coordinates in P2Sn71

(depending on the choices made to define the Segre embeddings), but this will be harmless by
Lemma 2.2.4.
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(where w; stands for the the generator corresponding to ¢ in the ith copy of
H?(PL,&(1)) in H?((PL)™,&(1))). The map p* is then the K-linear map send-
ing u; to ¢ and u; to 0 for 4 > 1. This implies o(™*(t) = uy + Ag.ug + -+ + Ap.tip
for \; € K.

But from Lemma 2.2.4, the class t is invariant under permutations of the coordi-
nates of P?.;*l. This implies o(™*(¢) is invariant under permutations of the factors
of (P})™ which gives Ao = -+ =\, = 1.

Then ¢(™*(t") = nlu; - - -u, which is non zero by the weak Kiinneth formula
and Lemma 2.2.2 (remember K(PL) = K & K(1)[2]). This implies ¢" # 0.

We put ¢1, =, on_1(t) so that we have (] ,,(c1,n) = c1,1-

AS tp2n -1 induces an isomorphism in degree less than 2n, we see that cf,, # 0
and ¢/7" =0 (indeed, u? = 0 for any i = 1,...,n).

The existence of the sequence and property (iii) are then proved. Moreover, by
the unicity statement, we see that the class ¢ introduced in the preceeding reasoning
ist= C1,2n—1-

Property (iv) follows from the relation O'(n)*(CLQn,l) =uy + ...+ u, and from
property (ii). O
2.2.7. Remember from 1.3.8 the ind-scheme P& defined by the tower of inclusions

P§—>~--—>P§L>Pg+1—>~-~

We set H1(PF, &(p)) = Homp,, (s, x)(LE*(K(PF?)), &(p)]g])-

Corollary 2.2.8. The sequence (c1,,)n>0 of the previous proposition gives an ele-
ment ¢ of H*(PY, &(1)) which induces an isomorphism of graded K-algebras

K[ = [[ #*"(PT, e(n)).

Proof. Using Proposition 1.4.7, we have the Milnor short exact sequences (1.3.9)

0 — lim'  H"'(PEE(p)) — H'(PF,E(p)) — lim _ H'(PE.E(p) — 0.

=

The hﬁl of a constant functor is null, and thus Lemma 2.2.3 implies () is an
isomorphism. The corollary then follows directly from the previous proposition. [

2.2.9. The sequence (¢1,,)n>0 induces a morphism in Da1 (S, K)
(2.2.9.1) ¢ SRK(PY) — E(1)[2].

As a consequence, using the functor K : H(S) — ng(S, K) introduced in 1.3.3,
for any smooth S-scheme X, we obtain a canonical map

[X7 Pgo] — HomDA1 (S,K) (EOOK(X)7 EOOK(P?)) .
The map (2.2.9.1) induces a map
I’IOHIDA1 (S’K)(EOOK(X), EOOK(P?)) — }IOHIDA1 (S,K) (ZOOK(X)7 8(1)[2]) .

As the base scheme S is regular, it follows from [MV99, Proposition 3.8, p. 138]
that we have a natural bijection

(2.2.9.2) [X,P¥] ~ Pic(X).
We have thus associated to (2.2.9.1) a canonical map

(2.2.9.3) c1 : Pie(X) — H?(X,&(1))
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called the first Chern class. Note that this map is just defined as a map of pointed
sets (it obviously preserves zero), but we have more structures, as stated below.

Proposition 2.2.10. The map (2.2.9.3) introduced above is a morphism of abelian
groups which is functorial in X with respect to pullbacks.

Proof. Functoriality is obvious.

The family of Segre embeddings oy, ,,, : P% x P — P2™ "™ defines a mor-
phism of ind-schemes

PY x5 PY % PY.

which in turn defines an H-group structure on PZ as an object of H(S), and put
a group structure on [X, P&

Let X (resp. X, \’) be the canonical dual line bundle on P (resp. the two
canonical dual line bundles on P xg P2). An easy computation gives

0% : Pic(PY) — Pic(PF xs PY), A— N @)

which implies the preceding group structure coincides with the usual group struc-
ture on the Picard group via (2.2.9.2).
But similarly, from property (iv) in 2.2.6, we obtain the map

o" : H' (P E) = K[[(]] — H*(PF xs PF, E) =KJ[[',"]], cr— ¢/ + "
which gives precisely the result we need. (I
2.3. Projective bundle theorem and cycle class maps.

2.3.1. We consider given a stable theory E and its associated commutative ring
spectrum & (2.1.5).

Recall from 1.5.1 the symmetric monoidal category of €-modules is endowed
with a notion of stable A'-weak equivalence. The associated localized category is
denoted by Da1(S, €); see 1.5.3. We have an adjoint pair of functors

E@% (—):Dar1(S,K) = Dai(S,8): U

where & ®k (—) is the total left derived fuinctor of the free &-module functor and
U forgets the E-module structure. The functor U is conservative.

The study of the cohomology theory associated to € follows obviously from the
study of the triangulated category Da1 (5, E). It follows from the existence of the
first Chern class (2.2.9.3) that the results and constructions of [Dég08] apply to
Da1(S,€). This leads to the following classical results.

2.3.2. Consider now a vector bundle V of rank n over a smooth S-scheme X,
p : P(V) — X be the canonical projection. Consider the first Chern class (2.2.9.3)

Pic(P(V)) <& H2(P(V),&(1)) = Homp,, (s,e)(E(P(V)), E(1)[2]).

Thus the canonical dual invertible sheaf A = O(—1) on P(V) induces a morphism
of &-modules

(2.3.2.1) caa(A) : EP(V)) — E(1)[2].
This defines a map

n—1

(2.3.2.2) ap(y) : EP(V)) — @ E(X)(i)[24]
=0
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by the formula
n—1

(2.3.2.3) apevy = Y _ c1(\)’ p..
1=0

Proposition 2.3.3 (Projective Bundle Formula). The map (2.3.2.2) is an isomor-
phism in D1 (S, E).
Proof. See [Dég08, Theorem 3.2]. O

2.3.4. We can now come to the classical definition of Chern classes. Let X be a
smooth scheme and V/X a vector bundle of rank n. Let A be the canonical dual
line bundle on P(V).
By virtue of Proposition 2.3.3, the canonical map
n—1
P H (X G =) s (V) — HY (P(V),€()))
i=0
is an isomorphism for all j.
Define the Chern classes ¢;(V) of V in H*(X, &(i)) by the relations

(a) Yigp (V). cr(N)"F =05

(b) co(V) = 1

(¢) ¢(V) =0 for i > n.
These Chern classes are functorial with respect to pullback and extends the first
Chern classes given by (2.2.9.3). Following a classical argument, we obtain the
additivity for these Chern classes (see [Dég08, Lemma 3.13]):
Lemma 2.3.5. Let X be a smooth S-scheme, and consider an exact sequence

00—V —V—V' -0
of vector bundles over X. Then c.(V) =3 (V') .¢;(V").
2.3.6. Let V be a vector bundle of rank n + 1 over a smooth S-scheme X.
For any integer r € [0,n], we define the Lefschetz embedding

(2.3.6.1) L(P(V) : E(X)(r)[2r] — E(P(V))

as the composition

i+j=r

-1
p(v)

) O g (P(V))

(2.3.6.2) E(X)(m)2r] — @i E(X)(1)[27]

where (x) is the obvious embedding.
Recall the morphism

(2.3.6.3) m: EPV@0)) — E(TRV)
appearing from the distinguished triangle of Proposition 1.3.6.

Lemma 2.3.7. Let'V be a vector bundle of rank n over a smooth S-scheme X, and
P=P(V®O0) be its projective completion. The composite morphism

£(X)(m)[2n] =75

is an isomorphism.

EP(VEO) 5 E(ThY)

Proof. Simply use the distinguished triangle of Proposition 1.3.6, the definition of
ap and the compatibility of the first Chern class with pullback. (]
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2.3.8. In the situation of the preceding lemma, we will denote by
pv : E(ThV) — E(X)(n)[2n]
the inverse isomorphism of 7 [, (P).
Proposition 2.3.9 (Purity Theorem). Let i : Z — X be a closed immersion of

smooth S-schemes of pure codimension n. We denote by j: U =X —Z — X the
complementary open immersion. There is a canonical distinguished triangle

EU) L5 e(X) 5 e(2)(m)[2n] 25 e(U)1]
mDAl(S,E)

Proof. By applying the triangulated functor & ®L% LX°°(—) to the distinguished
triangle of Proposition 1.3.10, we obtain a distinguished triangle

E(U) — &(X) — &E(ThNx z) — E(U)[1]

with Nx 7 the normal vector bundle of the immersion i. We conclude using the
isomorphism py, , introduced above. (]

2.3.10. The distinguished triangle of the proposition is called the Gysin triangle
associated to the pair (X, Z), and the map i* is called the Gysin morphism associ-
ated to i. The precise definition of the Gysin triangle and its main functorialities
are described and proved in [Dég08] in a more general context. We recall the main
properties we will need below.

Proposition 2.3.11. Given a cartesian square of smooth S-schemes
7>y
|l
Z =X

where i and j are closed immersions of pure codimension n, we have the following
commutative diagram.

%
J

E(Y) —L> e(T)(n)2n] 22> (v — T)[1]

lf* ig*(m)[%ﬂ lh*

e(X) — > &(2)(n)[2n) X e(X — Z)[1]
Proof. See [Dég08, Proposition 4.10]. O

Remark 2.3.12. In cohomology, the Gysin morphism introduced above induces a
morphism i, : H*(Z, &) — H*T2"(X, &(n)).

The commutativity of the left hand square above gives the usual projection
formula in the transversal case :
(2.3.12.1) Fie = 7.9".

Note that, as explained in [Dég08, Corollary 4.11], the above projection formula
implies easily the following projection formula for €-modules

(17.i.) 0i* =i . 1x(n)[2n],
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which implies the usual projection formula in cohomology:
(2.3.12.2) ‘ ‘
Yac H(Z,&),Ybe H(X,E), i.(a.i*b) =i.(a).bec HT>"(X,&(n)) .

Definition 2.3.13. Let i : Z — X be a codimension n closed immersion between
smooth S-schemes. We put 7x(Z) = i.(1) as an element in H*"(X, &(n)) and call
nx(Z) the fundamental class of Z in X.

Note that this fundamental class corresponds uniquely to a morphism of &-

modules
Nx(Z): E&(X) — &(n)[2n]
which we refer also as the fundamental class.
Remark 2.3.14. Suppose that ¢ admits a retraction p: X — Z. Let pz : Z — S
be the structural morphism. Then the projection formula gives
i = (pzx-pxis) 01" = (pz:+1") . px = Nx(Z) . ps.

The Gysin morphism in this case is completely determined by the fundamental

class nz(X).

Ezample 2.3.15. Let V be a vector bundle of rank n over X, and P = P(V® 0)
be its projective completion. Let p : P — X be the canonical projection and
i : X — P the zero section. If A denotes the canonical dual line bundle on P, the
Thom class of V is the cohomological class in H>"(P, &(n))

(V) = ZP*(%(V)) e ()"

By a purity argument (see [Dég08, 4.14]), one gets np(X) = (V).
Suppose now given a section s of V/X transversal to the zero section sy of V/X.
Put Y = s7!(s0(X)) and consider the pullback square

y —tsXx
|
X —>p

From the projection formula and the identities s*p*c;(V) = ¢;(V) and s*c1(A) = 0,
we obtain
nx(Y) = ij" (1) = 5750+ (1) = s*(¢(V)) = cn(V).

Following [Dég08, Proposition 4.16], we also obtain the excess intersection for-
mula :

Proposition 2.3.16. Consider a cartesian square of smooth schemes

T4j>Y

i
7 —X
where i and j are closed immersions of respective codimension n and m. Let e =

n—m and put £ = g*Nx, z/Nyr as a T-vector bundle. Let c.(£) be the eth Chern
class of €.
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Then, the following square is commutative.

eY) —L> e(T)(n)2n) 22> (v — T)[1]

f*l lce(é)- g«(n)[2n] lh*

E(X) —> &(2)(n)[2n] 22> &(X - 2)[1]

Remark 2.3.17. In particular, we obtain the excess intersection formula in coho-
mology.

Vae H(Z,8), fYiu(a)=j.(cc(§).g%(a))
This also implies the self intersection formula for a closed immersion i : Z — X of
codimension n between smooth schemes.

Vae H*(Z,€), i"i(a)=cn(Nx,z).a

2.3.18. Let V be a vector bundle of rank n over X, p : V — X the canonical
projection, and 7 : X — V the zero section. Note that p, : E(V) — &(X) is an
isomorphism (by a Mayer-Vietoris argument, one can suppose that V is trivial, so
that this follows from Al-homotopy invariance). Hence i, : &(X) — &(V) is the
reciprocal isomorphism. The self intersection formula implies ny(X) = p*c, (V) in
H?"(V,&(n)). Thus, we obtain the computation of the Gysin morphism associated
with the zero section : p,i* = ¢, (V).1x : E(X) — E(X)(n)[2n].
We deduce from that the Fuler long exact sequence in cohomology

o HT(X, e (—n)) =Y gr(x,e) L BTV - X, &) — HTP (X, E(—n)) —
Theorem 2.3.19. Consider a cartesian square of smooth S-schemes

Z Ly

ll |

Y —=X
such that i,5,k,l are closed immersions of respective pure codimension n, m, s, t.

We consider the open immersionsi :Y —Z - X =Y, 7:Y' - Z - X -Y and
we put put d =n—+s=m+t. Then the following diagram is commutative.

J 9;

(X) ——— £(v")(m)f2m] ——— E(X ~ Y)[1
i e 2] li/*m
&(Y)() 2] —— E(Z)(@)[2d) 2 £(Y — 2)(m) 20][1]
i@k(m )[2m)] J/ai/[l]
(Y = Z)(m)2m][1) o £(X — Y UY)[2
Proof. This is an application of [Dég08, Theorem 4.32]. O

Remark 2.3.20. Indeed, the commutativity of the first two squares asserts the func-
toriality of the Gysin triangle with respect to the Gysin morphism of a closed im-
mersion. The next square is an associativity result for residues. This theorem also
ensures the compatibility of Gysin morphisms with tensor product of E-modules
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(this will ensure the compatibility of Gysin morphisms with cup product in coho-
mology).

2.3.21. As a conclusion, we have proved in particular the axioms of Grothendieck
for the existence of a cycle class map (cf. paragraph 2 of [Gro58al): Al is proved
in 2.3.3, A2 in example 2.3.15, A3 in 2.3.19, and A4 in 2.3.12.2. Moreover, the
projection fomula 2.3.12.1 implies the axiom A5 of 5 in loc. cit.. Hence, following
the method of [Gro58a] and the theory of A-operations, we obtain for any smooth
S-scheme X, a unique homomorphism of rings

(2.3.21.1) ch: Ko(X)q — H* (X, &(x))

which is natural in X and such that for any line bundle A on X, the identity below
holds.

1 .
(2.3.21.2) ch([N]) = Z GV’

2.3.22. Let SH(S) be the P!-stable homotopy category of schemes over S; we
refer to [Jar00, DRO03, Mor04] for different (but equivalent) definitions of SH(S).
According to [Mor04, 5.2]%, there is a canonical symmetric monoidal triangulated
functor

(2.3.22.1) R:SH(S) — D1 (S, R)
that preserves direct sums. It is essentially defined by sending X3 (X 1) to the Tate

spectrum YL*°(R(X)) = R(X) for any smooth S-scheme X.
For R = Q, the functor (2.3.22.1) induces an equivalence of categories’

(2.3.22.2) SH(S)q ~ Da:(S,Q),

where SH(S)q denotes the localization of SH(S) by the rational equivalences (that
are the maps inducing an isomorphism of stable motivic homotopy groups up to
torsion); see e.g. [Mor04, Remark 4.3.3 and 5.2]. Hence there is no essential
difference to work with SH(S)q or with Da:(S,Q), which allows to apply here
results proved in SH(S)q. In particular, by virtue of [Rio06, Definition 1v.54],
there exists an object KGLq in Da1(S, Q) which represents algebraic K -theory!!.
Hence, for any smooth S-scheme X and any integer n, we have

(2.3.22.3) Homp,, (5,q)(Q(X)[n], KGLg) = Kn(X)q -

0

Moreover, Riou defines for any integer k a morphism
(2.3.22.4) U KGLq — KGLqg

which induces the usual Adams operation on K-theory (see Definition 1v.59 of loc.
cit.). For an S-scheme X, define

(2.3.22.5) Ky (X)E = {2 € Ky(X)q| ¥ (z) = Kz for all k € Z}

9n [Mor04], Da1(S, R) is defined using non symmetric spectra instead of symmetric spectra.
But it follows from Voevodsky’s Lemma [Jar00, Lemma 3.13] and from [Hov01, Theorem 10.1]
that the two definitions lead to equivalent categories.

10T he functor (2.3.22.1) and the equivalence of triangulated categories (2.3.22.2) hold without
the regularity assumption on S.

HThis is reasonable because we assumed S to be regular: K-theory is homotopy invariant only
for regular schemes.
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Recall that Beilinson motivic cohomology is defined by the following formula (see
[Bei87]).

(2.3.22.6) H(X, Q) = Kapo(X)§)
Remember from [SGA 6, Exposé X, Theorem 5.3.2] that we have
(2.3.22.7) HE(X,Q(1)) = Pic(X)q -

By virtue of [Rio06, Theorem 1v.72], there exists for each integer p, a projector

mp : KGLg — KGLq such that if we denote by H(Bp ) the image of 7, the canonical
map

(2.3.22.8) PuY — KGLq
PEZ

is an isomorphism'2. Furthermore, we have

(2.3.22.9) Homp ,, (s.q)(Q(X), HY [¢]) = HZ (X, Q(p))

for any smooth S-scheme X. The periodicity theorem for algebraic K-theory
[Rio06, Proposition 1v.2] now translates into the existence of canonical isomor-
phisms

(2.3.22.10) HY (p)[2p] ~ H .

In the sequel of this paper, we will write simply Hp for H](30 ). The object Hy is
called the Beilinson motivic cohomology spectrum.

Theorem 2.3.23. There exists a canonical isomorphism in D(K):
RHom(Hg, &) ~ RI'(S,€).

In particular, we have

K ifi=0,

HomDAl(S’Q) (Hg, &i]) ~ Hi(S’ €)= {0 otherwise

Moreover, there is a unique morphism clg : Hg — & inducing the Chern character
(2.3.21.1). This is the unique morphism from Hp to € which preserves the unit.

Proof. This is a rather straightforward application of the nice results and methods
of Riou in [Rio06]. The main remark is that the theory of Chern classes allows to
compute the cohomology of Grassmanians (e.g. following the method of [Gro58b]),
which in turn shows that we can apply [Rio06, Theorem 1v.48]. Hence using corol-
lary 2.2.8, we see that the arguments to prove [Rio06, Theorem v.31] can be followed
mutatis mutandis to give the expected computation'®.

Note that, given a map Hy — &, we get in particular morphisms
Ko(X)&) = Homp, (s,q)(Q(X), H (n)[2n]) — H>"(X, &(n)).

Hence there is at most one map Hp — & inducing the Chern character (2.3.21.1).
The fact that (2.3.21.1) determines a map Hy — &€ comes from [Rio06, Lemma
111.26 and Theorem 1v.11] applied to €. O

121¢ follows from [Rio06, Theorem V.31] that this is the unique decomposition of KGLg which
lifts the Adams decomposition of K-groups (2.3.22.5).

3 The proof of [Rio06, Theorem v.31] works over any regular base scheme, and holds if we
replace motivic cohomology by any oriented Q-linear cohomology theory



40 DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

2.3.24. The preceding theorem allows to produce cycle class maps in the case where
the base S is the spectrum of a field k.

Let HQ be Voevodsky’s motivic cohomology spectrum (see e.g. [RO08, Lev08]).
According to [Rio06, Proposition v.36], the Chern character (which, according to
[Rio06, Section 2.6], is the unique map which preserves the unit) ch : KGLg —
HQ factorizes through Hp. Furthermore, it can be shown that the map Hy —
HQ is an isomorphism in Da:(S, Q): this follows from the coniveau spectral se-
quence of the K-theory spectrum, which degenerates rationaly; see [FS02, Lev08]).
In particular, we get isomorphisms

(2.3.24.1) HE(X,Q(p)) ~ H(X,Q(p))-
We obtain a solid commutative diagram
HQ-—— -~ —~¢
\ clp
(2.3.24.2) o HTB oh
KGLq

which defines the cycle class map
(2.3.24.3) cl:HQ — €&.

It follows from Theorem 2.3.23 and from [Rio06, Theorem v.31] that ¢l is the unique
map which preserves the unit. It induces functorial maps (the genuine cycle class
maps)

(2.3.24.4) HY(X,Q(p)) — H'(X,E(p))-

These cycle class maps are completely determined by the fact they are functorial
and compatible with cup products and with first Chern classes (this is proved by
applying [Rio06, Lemma 111.26 and Theorem 1v.11]).

2.4. Gysin morphisms.

2.4.1. We still consider given a stable theory E and its associated commutative
ring spectrum € (2.1.5).

We will now introduce the Gysin morphism of a projective morphism between
smooth S-schemes in the setting of €-modules (which corresponds to push forward
in cohomology), and recall some of its main properties.

Let f : Y — X be a projective morphism of codimension d € Z between smooth
S-schemes. '

Let us choose a factorisation of f into ¥ — P 2, X, where i is a closed
immersion of pure codimension n + d, the map p being the canonical projection.

We define the Gysin morphism associated to f in Da1(S, E)

(2.4.1.1) freX) — E(Y)(d)]2d]
as the following compositum
(2.4.1.2)

n(P%)
—_—

fr= [5(X)(N)[2n] E(P%) = E(Y)(n + d)[2(n + d)] | (—n)[~2n].
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One can show f* is independent of the chosen factorization; see [Dég08, Lemma
5.11].

Proposition 2.4.2. Consider Z %Y 1o X be projective morphisms, of codimen-
ston n and m respectively, between smooth S-schemes. Then the following triangle
commutes.

&(X) o) &(Z)(n + m)[2(n + m)]
f\x 5 (n)[2n]
E(Y)(m)[2m]

Proof. See [Dég08, Proposition 5.14]. O
Proposition 2.4.3. Consider a cartesian square of smooth S-schemes

T2z

ql lp

f
Y —X

such that f (resp. g) is a projective morphism of codimension n (resp. m). Let
& be the excess bundle over T associated to that square, and let e = n — m be its
rank (cf. [Ful98, proof of Proposition 6.6]). Then, f*p. = (CC(E) . Qx (m)[Qm])g* as
maps from E(Z) to E(Y)(n)[2n].

Proof. See [Dég08, Proposition 5.17]. O

Proposition 2.4.4. Consider a cartesian square of smooth S-schemes

rT—2oy

)

Z—=X
such that f and g are projective morphism of respective relative codimension p and
q, and such that i and j are closed immersion of respective codimension n and m.
Denote by h : Y — T — X — Z the morphism induced by f. Then the following
square is commutative (in which the two arrows Ox z and Oy, are the one appearing
in the obvious Gysin triangles).

Oy, 7 (p)[2p]
—_—

E(T)(m + q)[2m + 2q] EY —=T)(p)[2p +1]

Tg*(n)[%] Th*[l]
0x,z
&(Z)(n)[2n] X - 2)[1]
Proof. See [Dég08, Proposition 5.15]. O

2.5. Poincaré duality.

2.5.1. We first recall the abstract definition of duality in monoidal categories. Let
C be a symmetric monoidal category. We let 1 and ® denote respectively the unit
object and the tensor product of €. An object X of C is said to have a strong dual
if there exists an object XV of € and two maps

n:1—X"®X and e: X®X¥—1
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such that the following diagrams commute.

XL xexVex xv B XV e X @ XV
(2.5.1.1) lsm lXVQ@E
1x lyv
X XV
For any objects Y and Z of C, we then have a canonical bijection
(2.5.1.2) Home(Z ® X,Y) ~ Home(Z, XV ®@Y).

In other words, XV ® Y is in this case the internal Hom of the pair (X,Y") for any
Y. In particular, such a strong dual, together with the maps ¢ and 7, is unique up
to a unique isomorphism. It is clear that for any symmetric monoidal category D
and any monoidal functor F': € — D, if X has a strong dual XV, then F(X) has
a strong dual canonically isomorphic to F(XV). If XV is a strong dual of X, then
X is a strong dual of XV.

Let T be a closed symmetric monoidal triangulated category'*. Denote by Hom
its internal Hom. For any objects X and Y in T the evaluation map

X ® Hom(X,1) — 1
tensored with the identity of Y defines by adjunction a map
(2.5.1.3) Hom(X,1)® Y — Hom(X,Y).

The object X has a strong dual if and only if this map is an isomorphism for all
objects Y in T, and in this case, we have XV = Hom(X,1): this follows from
the fact that, essentially by definition, X has a strong dual if and only if there
exists an object XV in T, such that the functor XV @ (—) is right adjoint to the
functor (—) ® X, so that XV ® (—) has to be canonically isomorphic to the functor
Hom(X, —) (the canonical isomorphism being precisely (2.5.1.3)). For Y fixed, the
map (2.5.1.3) is a morphism of triangulated functors. Hence the objects X such
that (2.5.1.3) is an isomorphism form a full triangulated subcategory of T. In other
words, the full subcategory Tg,q of T that consists of the objects which have a
strong dual is a thick triangulated subcategory of T.

If moreover T has small sums, then to say that any object of Ty, is compact
is equivalent to say that the unit 1 is compact. This is proved as follows. Suppose
that 1 is compact, and let X be an object of T which has a strong dual XV. Then
for any small family (Y))rea of objects of T, we get the following identifications.

@ Homg (X,Y)) ~ @ Homy(1, XV ®Y))
AEA AEA

>~ HOIII{J'(l7 @(XV & Y)\))
AEA
~ Homg (1, X" ® @ Ya)
AEA

~ Homy (X, (P ).
AEA

Lyye just mean that the category T is endowed with a symmetric monoidal structure and with
a triangulated category structure, such that for any object X of T, the functor ¥ — X ® Y is
triangulated.
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The converse is obvious. Note that it can happen that a compact object of T doesn’t
have any strong dual; a counter-example can be found in [Rio05]. We will produce
another counter-example below, as a consequence of a comparison theorem: for any
complete discrete valuation ring V' (of characteristic zero with perfect residue field),
there are compact objects of Da1(Spec (V), Q) which don’t have any strong dual;
see 3.2.7.

Ezample 2.5.2. Recall that D(K) denotes the derived category of K-vector spaces.
This is a closed symmetric monoidal triangulated category with tensor product ®g
and derived (internal) Hom RHomg. Note that for a complex of K-vector spaces
C, the following conditions are equivalent:

(a) C is compact in D(K);

(b) C has a strong dual in D(K);

(c) the K-vector space @@,, H"(C) is finite dimensional;

(d) C is isomorphic in D(K) to a bounded complex of K-vector spaces which

is degreewise finite dimensional.

2.5.3. We consider again a stable theory E and its associated commutative ring
spectrum € (2.1.5).
Let X be a smooth and projective S-scheme of pure dimension d, and denote by
p: X — S the canonical projection, 6 : X — X x g X the diagonal embedding.
Then we can define pairings

0 &2 e(X)(~d)[~2d] 2 E(X x5 X)(~d)[~2d] = £(X)(~d)[-2d] &} £(X)

e: 8(X) @ &(X)(—d)[-2d] = (X x5 X)(—d)[~2d] Z D2, e x) P, e

Theorem 2.5.4 (Poincaré duality). The pair (e,7) defined above turns the object
E(X)(—d)[—2d] into the strong dual of E(X).

Proof. This follows from the functoriality properties of the Gysin morphism; see
[Dég08, Theorem 5.23]. O

2.5.5. It can happen that £(X) has a strong dual for a non projective smooth
S-scheme. A classical example is the case where X = X — D, for a smooth and
projective S-scheme X and a relative strict normal crossings divisor D in X (which
means here that D is a divisor in S with irreducible components D;, i € I, such
that D is a reduced closed subscheme of X, and such that for any subset J C I,
D; =NjecsD; is smooth over S, and of codimension #J in X). The case where D
is irreducible comes from Proposition 2.3.9 and Theorem 2.5.4, applied to X and
D, and the general case follows by an easy induction on the number of irreducible
components of D. As we already noticed, we cannot expect the object &(X) to
have a strong dual for an arbitrary S-scheme X (3.2.7). However, when S is the
spectrum of a perfect field, £(X) has a strong dual for any smooth S-scheme X;
see 2.7.11.

2.6. Homological realization.

2.6.1. Let E be a stable theory, and € its associated commutative ring spectrum.
Recall D(K) denotes the (unbounded) derived category of the category of K-vector
spaces.

We define the homological realization functor associated to € to be

(2.6.1.1) Dai(S,8) — D(K) , M+ RHome (&, M)
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where RHomg denotes the total right derived functor of the Hom functor; see
1.5.3.6)). This functor is right adjoint to the functor

2.6.1.2) D(K) — Da1(S,8) ,  Cr— EQLLE®(Cy)

where Cg denotes the constant sheaf associated to C'). As the functor (2.6.1.2)
is obviously a symmetric monoidal functor, the homological realization functor
(2.6.1.1) is a lax symmetric monoidal functor. This means that for any &-modules
M and N, there are coherent and natural maps

(
(
(
(

(2.6.1.3) RHomg (€, M) @, RHomg (€, N) — RHome (&, M @F N)
and
(2.6.1.4) K — RHomg (&, €).

We define the category D), (S, €) to be the localizing subcategory (cf. 1.1.14) of
the triangulated category D1 (5, &) generated by the objects which have a strong
dual.

Note that any isomorphism £(1) ~ & (cf. 2.1.6) induces an isomorphism M (1) ~
M in Da1(S, &) for any E-module M. We deduce that the category Dy, (S,¢&) is
stable by Tate twists. Moreover, if M and N have strong duals, their tensor prod-
uct M ®f§ N share the same property. In other words, D), (S,€) is generated
by a family of objects which is stable by tensor product. This implies that the
category DY, (S, &) itself is stable by tensor product in Da:(S,€). As a conse-
quence, D),(S,€) is a symmetric monoidal category, and the inclusion functor
from DY, (S, €) into Da1(S, €) is symmetric monoidal. It is also obvious that any
object M of D), (S, ) which has a strong dual M" in Da1(S, €) has a strong dual
in DY, (S,€) which happens to be MV itself. There is a rather nice feature of
the category Dx.(S,€): an object of DX, (S,¢&) is compact if and only if it has a
strong dual. The reason why this category DX, (S, &) remains interesting is that,
by virtue of Poincaré duality (2.5.4), for any smooth and projective S-scheme X,
the &-module £(X) is in DY, (S, €).

We finaly get a homological realization functor

(2.6.1.5) DX:(S,&) — D(K) M +— RHomeg (€, M)
by restriction of 2.6.1.1.

Theorem 2.6.2. If E is a mized Weil theory, then the homological realization
functor

DX.(S,€&) — D(K) M —— RHomg (€, M)
is an equivalence of symmetric monoidal triangulated categories. As a consequence,
an object M of DY,(S,€) is compact if and only if RHome(E, M) is compact.
Moreover, for any E-module M in DX, (S, &), there is a canonical isomorphism

RHom, (M, £) ~ RHomg (RHomg (€, M), K).

In particular, if M is compact, then we have canonical isomorphisms

RHomg (M, &) ~ RHomg (&, M) ~ RHom, (&, M)".

Proof. The first step in the proof consists to see that the Kiinneth formula implies
that for any compact objects M and N of Da1(S, &), the pairing

RHomg (M, &) @k RHomg (N, &) — RHome (M ®F N, &)
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is an isomorphism (it is sufficient to check this on a family of compact generators,
which is true by assumption for the family that consists of the objects of type £(X)
for any smooth S-scheme X).

We will now prove that the homological realization functor (2.6.1.5) is a sym-
metric monoidal functor. The only thing to prove is in fact that the map (2.6.1.3)
is an isomorphism whenever M and N are in D}, (S,€). As DY, (S, €) is generated
by its compact objects, it is sufficient to check this property when M and N are
compact. But in this case, M and N have strong duals, so that we get the following
isomorphisms.

RHome (€, M) ®x RHome (€, N) ~ RHomg MV, 8) @k RHomg (NY, €)

(
(
(M ®F N) ’g)
NRHomg(E M ®F N)

We are now able to prove that the homological realization functor (2.6.1.5) is
fully faithful. Using the fact £ is compact in Da1(S, &) (see the end of 1.5.3),
we reduce to problem to showing fully faithfulness on compact objects. Let M
and N be compact objects of D), (S, E). We already noticed that they both have
strong duals MY and NV respectively. Note also that symmetric monoidal functors
preserve strong duals, so that we get the following computations.

RHomg (M, N) ~ RHomg (&, MY ®% N)
~ RHomg (&, M)Y @k RHomg (€, N)
~ RHomk (RHom¢ (€, M), RHomg (€, N))
To prove the essential surjectivity, it is sufficient to check that a generating family

of D(K) is in the essential image of the homological realization functor. But this
is obvious, as the object K (seen as a complex concentrated in degree 0) generates

D(K).
The other assertions of the theorem are obvious consequences of this equivalence
of symmetric monoidal triangulated categories. ([

2.6.3. Assume that E is a mixed Weil theory. Denote as usual by € the commu-
tative ring spectrum associated to F.

By virtue of Example 2.5.2, we know that RI'(X, &) is compact in D(K) if
and only if H*(X,€) is a finite dimensional vector space. This is how Theorem
2.6.2 implies a finiteness result for H*(X, ) whenever £(X) has a strong dual in
Dai(S,€E).

For any object M of Da1(S, ) and any integers p and ¢, we get a pairing

(2.6.3.1)  Homp,,(s,)(€, M(=p)[—q]) @k Homp,, (s,¢)(M, E(p)[q]) — K
inducing an isomorphism
(2.6.3.2) HomDAl(S,g)(M7 E(p)lal) ~ HomK(HomDAl(S,S)(‘g? M(—p)[—q]), K).

whenever M is in Dy, (S, €).
If M has strong dual, the pairing (2.6.3.1) thus happens to be a perfect pairing
between finite dimensional K-vector spaces.
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For a smooth S-scheme X, define the homology of X with coefficients in € by
the formula

(2.6.3.3) Hy(X,E(p)) = Homp,, (s,¢)(E(p)[q], E(X))
We get a canonical pairing
(2.6.3.4) H,(X,E(p) ®x HI(X,E(p)) — K

which happens to be perfect whenever £(X) has a strong dual (e.g. when X is
projective). For a smooth and projective S-scheme X of pure dimension d, Poincaré
duality gives an isomorphism

(2.6.3.5) H*9(X, €(d — p)) = Hy(X, €(p)

so that we get a perfect pairing

(2.6.3.6)  HX9(X,&(d—p)) ok HI(X,E(p) — K, a®fr (@0).

Note that according to the definition of the duality pairing 2.5.3 and the Kiinneth
formula, this pairing has the familiar form :

(a, B) = p«(a.B)
where p, : H?4(X,&(d)) — H°(S,€(0)) = K is the Gysin morphism associated to
the canonical projection of X/S — the so called trace morphism.
For a smooth S-scheme X of pure dimension d, we can also define the cohomology
with compact support with coefficients in € by the formula

(2.6.3.7) RI. (X, &(p)) = RHome (&, &(X)(p — d)[—2d]) .
Setting HI(X,E(p)) = HI(RT (X, E(p))), we obtain
(2.6.3.8)

HI(X,&(p)) = Homp,, (s.)(&, E(X)(p — d)[q — 2d]) = H2q—¢(X, E(d = p)).

It follows from Proposition 2.4.2 that the cohomology with compact support is func-
torial (in a contravariant way) with respect to projective morphisms, and functorial
(in a covariant way) with respect to equidimensional morphisms. We also have a
map

(2.6.3.9) e 8(X) @ &(X)(—d)[—2d] ZCD2U e x) 2o g
which defines by transposition a map
(2.6.3.10) &(X)(p — d)[-2d] — RHomg (&(X),&(p)).

Note that RHomg (€, RHom¢ (E(X), E(p))) = RI'(X,E(p)). Hence we obtain a
morphism

(2.6.3.11) RI (X, &(p)) — RI(X, E(p))

which is functorial with respect to projective morphisms of S-schemes (thanks to the
good functorial properties of the Gysin morphisms), and an isomorphism whenever
X is projective. We also get a canonical pairing of complexes

(2.6.3.12) RI.(X,&(p)) @k RT(X, &(d — p)[2d]) — K

defined by the canonical map

RHome (€, E(X)(p — d)[—2d]) ®x RHome (£(X), E(d — p)[2d]) — RHome (€, E).
This gives rise to a pairing

(2.6.3.13) HI(X,E(p)) @k H*9(X,E(d—p)) — K
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which happens to be perfect if €(X) has a strong dual in D1 (S, E).
Note that Poincaré duality gives rise to the following classical computation; see
e.g. [And04, 3.3.3].

Corollary 2.6.4 (Lefschetz trace formula). Let X and Y be smooth and projective
S-schemes of pure dimension dx and dy respectively, Then, given two integers p
and q, for

a € H*TUX xgY,E(dy +p)) and B € H*>*"UY x5 X,E(dx —p)),

we have the equality

(. 8) = _(~1)'tx(BoalH(X,8)),
where '3 € H?xX~9(X xgY,&(dx — p)) is the class corresponding to 3 through
the pullback by the isomorphism X xgY ~Y xg X, (., .) is the Poincaré duality
pairing, and B o « denotes the composition of o and 3 as cohomological correspon-
dences.

Theorem 2.6.5. Let E and E' be a mized Weil theory and a stable theory re-
spectively. Denote by & and &' the commutative ring spectra associated to E and
E’ respectively. Let u : E — E’ be a morphism of sheaves of differential graded
K-algebras. We assume that the induced map

HY(G,,,E) — HY(G,,,E)

1s not trivial. Then there exists a commutative ring spectrum &' and two morphisms
of ring spectra (which means morphisms of monoids in the category of symmetric
Tate spectra)

b

et g

with the following properties:

(a) The map & - & is an isomorphism in Da1(S,K).
(b) For any smooth S-scheme X, and any integer n, the following diagram
commutes (in which the vertical arrows are the canonical isomorphisms).

H"(X,E) v H™(X,E")

| |

H™(X,&) —%> H"(X,&") <2— H"(X, &)
(c) The maps a and b= define for any smooth S-scheme X maps
HY(X,E(p)) — HU(X,&(p)) and HIX, E(p)) — HIX,E(p))

which are compatible with cup products and cycle class maps. If moreover
&(X) has a strong dual (e.g., from 2.5.5, if X is the complement of a relative
strict normal crossings divisor in a smooth and projective S-scheme), then
these maps are bijective.

In particular, if moreover for any smooth S-scheme X, the &-module E(X) has a
strong dual in Da1(S, &), E' is a mized Weil theory and the map u is a quasi-
isomorphism of complexes of Nisnevich sheaves.
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Proof. We have to come back to the very construction of the ring spectrum associ-
ated to a stable theory given in 2.1.5. Define

L =Hom*(K(1),E)s and L' =Hom*(K(1),E)s.
We know that the symmetric Tate spectra € and &' are defined respectively by the
sheaves of complexes
€, =Hom(L®" E) and €&/, =Hom(L'®" E’).
Define a third ring spectrum &” = (€//,7,) as follows. Put &/ = Hom(L®", E’).
We have maps
L — L' — Hom(K(1), E')
from which we construct maps of type
7 K(1) ®k L' ®k Hom(L'®*", E) — Hom(L'®", E)

following the same steps as for the construction of the map (2.1.5.6). The structural
maps

T En(1) — &n
are defined by transposition of the maps 7/,. One can then check that £” is a
commutative ring spectrum. The map a is induced by the maps

a, : Hom(L®", E) — Hom(L®", E")
which correspond to the composition with u, and the map b is induced by the maps
b, : Hom(L'®" E') — Hom(L®", E")

which corresponds to the composition with the map L — L’ obtained from u by
functoriality. These define the expected morphisms of ring spectra.

Property (a) comes obviously from the fact the map L — L’ has to be a quasi-
isomorphism according to the assumption on u. Indeed, this implies the maps b,
are all quasi-isomorphisms as well. In particular, the total left derived functor of
the base change functor induced by b is an equivalence of triangulated categories

DAI (S, 8/) ~ DAl (S, 8”) .
As a consequence, the total left derived functor of the base change functor in-
duced by a
Da1(S,8) — Dai(S, &) M— &"@F M
is a triangulated functor which preserves small direct sums, and it is also symmetric

monoidal. We claim that this induces by restriction a fully faithful symmetric
monoidal triangulated functor

DY, (S, &) — Dai(8,¢€).

To see this, we first remark that € is a compact generator of D), (S, €): applying
Theorem 2.6.2 to E implies that DY, (S, &) is equivalent to D(K). As the base
change functor sends & to &” ~ &', it is sufficient to prove that the induced maps

Homp , (s,¢)(€, E[n]) — Homp , (5,e1)(E',E'[n])

are bijective. For n # 0, the two terms are null, and for n = 0, this map is a

morphism of K-algebras from K to itself, so that it has to be an identity.
Properties (b) and (c) follow immediately from this fully faithfulness (the com-

patibility with cycle class maps follows from Theorem 2.3.23). ([
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2.7. Cohomology of motives.

2.7.1. In this section, the base scheme S is the spectrum of a perfect field k.

We consider given a stable cohomology theory E, as well as its associated ring
spectrum &. Let TD a1 (k, €) the localizing subcategory of Da1(k, ) generated by
objects of type E(p)[q], p,q € Z.

Proposition 2.7.2. The functor
TDar(k, &) — D(K), M +— RHomg(E, M)
is an equivalence of symmetric monoidal triangulated categories.

Proof. This functor is a right adjoint to the symmetric monoidal functor
D(K) — TDa:1(k, &)

which sends a complex C to & ®% X°C. It is sufficient to prove that the latter
is an equivalence of categories. This follows essentially from the Homotopy axiom
W1: this implies that this functor is fully faithful on the set of compact generators
given by the unit object of D(K), which is sent to €. As E(p) ~ € for any integer
p, and as € is compact in TD 51 (k, £), we get the essential surjectivity by definition
of TDa1(k, €). |

Corollary 2.7.3. For any object M of TD:1(k, &), we have a canonical isomor-
phism
RHom, (M, £) ~ RHomg (RHomg (€, M), K).

Proof. This follows from a straightforward translation from the equivalence of cat-
egories given by Proposition 2.7.2. O

Proposition 2.7.4. The E-module € ®5 HQ is in TDa:(k, E).

Proof. We know that HQ ~ Hp; is a direct factor of the K-theory spectrum KGLq.
Hence it is sufficient to prove that & ®I(Q KGLq is in TDa1(k, &), which follows
immediately from [DI05, Theorem 6.2]. O

2.7.5. Remember from 2.3.24 we have an isomorphism Hp ~ HQ in the category
Da1(k,Q). Let ¢l : HQ — & be the cycle class map (2.3.24.3). It induces by
adjunction a &-linear map

o HQ — €.
Proposition 2.7.6. The map & ®a HQ — & is an isomorphism in the category
Dai(k, E).

Proof. We know from Theorem 2.3.23 that there is a canonical isomorphism in
D(K):
RHome (€ ®¢ HQ, &) = RHomq(HQ, &) ~ K

(where K is seen as a complex concentrated in degree 0). By virtue of Proposition
2.7.4, we can apply Corollary 2.7.3 to € ®I<i HQ to obtain an isomorphism

RHomg (€ ®4 HQ, &) ~ RHomk (RHom(€, € ®G HQ), K),
This implies that we have an isomorphism in D(K):

K ~ RHom(¢, & ®g HQ).
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As RHomg (€, &) ~ K, and as, by Proposition 2.7.2, the homological realization
functor RHomg (€, —) is an equivalence of categories from TD a1 (k, ) to D(K), to
prove that the map & ®a HQ — € is an isomorphism, we are reduced to check
that it is not trivial, which is obvious, by definition of the cycle class map cl. O

2.7.7. The canonical map from & to & ®5 HQ is an inverse of the isomorphism of
Proposition 2.7.6, whence it is an isomorphism as well. We deduce from this the
following result.

Proposition 2.7.8. The functor
DAl(k7HQ) - DAl(k?S) ) M—& ®5 M
is a symmetric monoidal triangulated functor.

Proof. As we are working with rational coeflicients, using [Lur07, proposition 4.3.21]
(see also [BMO03, Hin97]), we can see that there is a commutative monoid structure!®
on the derived tensor product 8®5HQ. Proposition 2.7.6 tells us that the canonical
map & — 8®a HQ is an isomorphism in the homotopy category of of commutative
ring spectra (defined by stable A!-equivalences). Notice that, by virtue of [CD09a,
Proposition 6.35], we can apply [SS00, Theorem 4.3] to see that &€ — & ®5 HQ
induces an equivalence of symmetric monoidal triangulated categories

Dai(k, &) ~ Dax(k, € G HQ) .

The base change functor along HQ — & ®5 HQ thus gives a symmetric monoidal
triangulated functor

Dai(k, HQ) — Da1(k, € G HQ) ~ Da1(k,€).
The formula
@4 M~ & ogHQ®Hq M
shows that the functor we constructed above is (isomorphic to) the functor consid-
ered in the proposition. (I

2.7.9. Let DM(k) be the triangulated category of mixed motives over k; see
[CD09a, Example 7.15] for its construction. This is a symmetric monoidal trian-
gulated category (as the homotopy category of a stable symmetric monoidal model
category), and it is generated, as a triangulated category, by its compact objects.
Moreover, the full subcategory of compact objects in DM (k) is canonically equiva-
lent to Voevodsky’s triangulated category of mixed motives DM ,,,, (k), constructed
in [Voe00]. Different (but equivalent) constructions of DM (k) are given by [ROO0S,
Theorem 35|, and the relation with DM 4, (k) is described in [RA08, Section 2.3];
a systematic study of the triangulated categories DM (S) will appear in [CD09b)].
We will denote by DM (k, Q) the rational version of DM (k), and by DM 4, (k, Q)

5our purpose is to deal with symmetric monoidal structures on homotopy categories of mod-
ules over a commutative monoid. A natural setting for this is the notion of E«-algebra. But, as
we are working with rational coefficients, it is possible to strictify any Eso-algebra into a com-
mutative monoid, so that we have chosen to remain coherent with the rest of these notes, by
considering genuine commutative monoids. One could also avoid any complication by working
directly with symmetric monoidal co-categories [Lur07].
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the rational version of DMy, (k). By virtue of [RO08, Theorem 68], there is a
canonical equivalence of symmetric monoidal triangulated categories'®
(2.7.9.1) U: DM (k,Q) — Da:(k, HQ)

which sends the motive of X twisted by p to the object HQ ®5 2°(Q(X))(p) (for
X/k smooth, and p € Z); it is induced by the forgetful functor from the category
of Nisnevich sheaves with transfers to the category of Nisnevich sheaves on Sm/k.

Theorem 2.7.10. The motives of shape My, (X)(p), for X smooth and projective,
and p € Z, form a set of compact generators in DM (k, Q). In particular, an object
of DM (k, Q) is compact if and only if it has a strong dual.

Proof. This is proven using de Jong’s resolution of singularities by alterations
[dJ96]; see the proof of [RA08, Theorem 68]. O

Corollary 2.7.11. The following equality holds.
DXi(k, &) = Dar(k, €).
If moreover E is a mized Weil theory, then the homological realization functor
(2.6.1.1) defines an equivalence of symmetric monoidal triangulated categories
Dp1(k, &) ~ D(K).

In particular, for any smooth k-scheme X, E(X) has a strong dual, so that (2.6.3.13)
is a perfect pairing between finite dimensional vector spaces.

Proof. The first assertion follows immediately from Theorem 2.7.10. Theorem 2.6.2
then ends the proof. O

Corollary 2.7.12. Assume that E is a mized Weil theory. For any K-linear
stable theory E' defined on smooth k-schemes, a morphism of sheaves of differential
graded K-algebras E — E’' is a quasi-isomorphism (in the category of complezes
of Nisnevich sheaves) if and only if the induced map H'(G,,, E) — H*(G,,, E’)
is not trivial.

Proof. Apply Theorem 2.6.5 and Corollary 2.7.11. O

Corollary 2.7.13. Assume that, for any smooth and projective k-schemes X and
Y, the Kinneth map

P H"(X,E) ek HI(Y,E) = H"(X % Y, E) .
ptg=n
is an tsomorphism.
Then E is a mized Weil theory.
Proof. We claim that for any compact objects M and N of Da1(k, €), the map
RHomg (M, &) ®x RHomg (N, &) — RHome (M ®F N, &)

is an isomorphism: it is sufficient to check this on a set of compact generators,
which is true by assumption, by virtue of Theorem 2.7.10. (]

16The equivalence of categories (2.7.9.1) is proved in [R08] using resolution of singularities
by de Jong alterations [dJ96]; however, it will be shown in [CD09b] that such an equivalence
of triangulated categories holds over a geometrically unibranch base scheme, by very different
methods (without any kind of resolution of singularities).
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Theorem 2.7.14. Let E be a mized Weil theory on smooth k-schemes, and € its
associated commutative ring spectrum. Then the motivic homological realization
functor

DM (k,Q) — D(K) M +— RHomq(Q, & ®¢ U(M))

is a symmetric monoidal triangulated functor which preserves compact objects. In
particular, if D*(K) denotes the bounded derived category of the category of finite
dimensional K-vector spaces, it induces by restriction a symmetric monoidal trian-
gulated functor

Re : DM g (K, Q) — D"(K)
such that, for any smooth k-scheme X, one has canonical isomorphisms

Re(Mym(X)Y) >~ Re (Mg (X))Y ~RI(X,€).

Proof. Under the equivalence of categories (2.7.9.1) this functor corresponds to the
composition of the functor of Proposition 2.7.8 with the homological realization
functor (2.6.1.1). Hence the first assertion follows from Corollary 2.7.11. In par-
ticular, this functor preserves strong duals. Theorem 2.7.10 now implies it sends
DM g (k, Q) to DY(K). If X is a smooth k-scheme, we have a natural isomorphism

HQ 0} S Q(X) = UMy (X))
We deduce from Proposition 2.7.6 that
E(X) ~ € 9 HQ ®g B*Q(X) =~ € ®g U(Mym (X)),
which implies that

RHomgq(Q, € ©¢ U(Myn(X))) ~ RHomq(Q, £(X))
~ RHome (&, £(X)) .

By Theorem 2.6.2, we get isomorphisms
Re(Myn (X)) ~ Re (M (X)) ~ RI(X, €),
which ends the proof. O

Remark 2.7.15. The functor Rg¢ induces cycle class maps
H*(X,Q(p)) — HI(X,E&(p)) = HI (X, E)(p)

which coincide with the cycle class maps introduced in 2.3.24. These cycle class
maps are compatible with first Chern classes, hence with Gysin maps (by the cat-
egorical construction of these; see [Dég08]).

The reader might have noticed that, in the definition of a mixed Weil cohomology,
we didn’t ask the differential graded algebra E to be concentrated in non negative
degrees. It would be natural to ask the cohomology groups H"(X, E) to vanish
for any (affine) smooth scheme X and any negative integer n (which is true in
practice). We conjecture this vanishing property to hold in general.

The existence of cycle class maps compatible with cup products and with Gysin
morphisms finally proves that the cohomology groups H"(X, E), for X smooth
and projective over k, define a Weil cohomology in the sense of [And04, Definition
3.3.1.1], modulo the vanishing property discussed above.
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2.7.16. The proof of Theorem 2.7.14 relies on Proposition 2.7.8 and on the de-
scription of DM (k, Q) as the homotopy category of modules on the rational mo-
tivic cohomology spectrum. Another strategy to prove Theorem 2.7.14 is to iden-
tify DM (k, Q) with the “orientable part” of Da1(S,Q). This is achieved using
an unpublished result of F. Morel [Mor06], which computes the rational motivic
sphere spectrum in terms of motivic cohomology spectrum; see Theorem 2.7.18.
More precisely, another proof of Theorem 2.7.14 is given by Corollary 2.7.24, equal-
ity (2.7.25.1), and Theorem 2.7.26 below. Moreover, Morel’s result gives a very
straightforward proof of the existence and unicity of the cycle class map for a sta-
ble theory; see Remark 2.7.22. We will now outline this alternative point of view.

2.7.17. Let S be a scheme. The permutation isomorphism
(2.7.17.1) 7: Q1] ®§ QM)[1] — Q(1)[1] ®g Q(1)[1]

satisfies the equation 72 = 1 in Da1(S,Q). Hence it defines an element ¢ in
Endp,, (s,q)(Q) which also satisfies the relation €2 = 1. We define two projec-
tors

1 1
(2.7.17.2) ey =—< and e_ = _2”.

As the triangulated category Da1 (S, Q) is pseudo abelian, we can define two objects
by the formulae:

(2.7.17.3) Qi =Imey and Q_ =Ime_.

Then for an object M of Da1(S,Q), we set

(2.7.17.4) M;=Q,®M and M_=Q_®gM.

It is obvious that for any objects M and N of Da1(S,Q), one has
(27175) HOII’IDAl (5,Q) (sz Nj) =0 for Z,] € {+7 —} with 4 75 j

Denote by Da1 (S, Q+) (resp. Da1(S,Q-)) the full subcategory of Da1(S, Q) made
of objects which are isomorphic to some M, (resp. some M_) for an object M
in Da1(5,Q). Then (2.7.17.5) implies that the direct sum functor induces an
equivalence of triangulated categories

(27176) DAl (S, Q+) X DAl (S, Q,) ~ DAl (S, Q) .

Assume now that S is a regular scheme. Recall from 2.3.22 the Beilinson motivic
cohomology spectrum Hp. A deep result announced by F. Morel in [Mor06] takes
the following form (taking into account the equivalence of categories (2.3.22.3)).

Theorem 2.7.18. We have a canonical identification Q4 = Hp. Moreover, if —1
is a sum of squares in O(S), then Q = Hg.

A proof will be given in [CD09b].
2.7.19. For a general scheme S, we define the triangulated category of Morel-
Beilinson motives to be
(2.7.19.1) DMy (S) = Dar(S,Q4).
Note that according to [Ayo07], the Grothendieck six operations are defined on
the categories Da1(S, Q). As all these operations commute with Tate twists, it is

obvious that they preserve Morel-Beilinson motives. Hence the categories DM (S)
for various schemes S are stable by the six operations as subcategories of Da1 (S, Q).
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In particular, DM (S) is a symmetric monoidal triangulated category, and the
canonical functor from D1 (S, Q) to DM (S) is a symmetric monoidal triangulated
functor.

2.7.20. Suppose now that S is a regular scheme. Consider a stable theory E defined
on smooth S-schemes, and let € be its associated commutative ring spectrum.

Proposition 2.7.21. We have € = 5.
Proof. This is a translation from Lemma 2.2.4. |

Remark 2.7.22. Theorem 2.7.18 and Proposition 2.7.21 give another proof of Theo-
rem 2.3.23: the unit map Q = Q1 ® Q- — & factors uniquely through ng = Hp,
which gives the cycle class map Hy — & (it clearly preserves the unit, so that it
has to be the map obtained from the Chern character by Theorem 2.7.18). This
construction has the advantage of giving directly the compatibilities of the cycle
class map with the algebra structures.

2.7.23. Define DM;(S) as the localizing subcategory (1.1.14) of DM (S) gener-
ated by the objects which have a strong dual (e.g. Q(X)(p) for a smooth and
projective S-scheme X and an integer p; see [Ayo07, Ron05]).

Corollary 2.7.24. If E is a mized Weil theory, then the motivic homological
realization functor

DMY(S) — D(K) , M +— RHomq(Hg, & ®g M)
is a symmetric monoidal triangulated functor.

Proof. By virtue of Theorem 2.7.18 and of the preceding proposition, this functor
is isomorphic to the composition of the symmetric monoidal triangulated functor

DMY(S) — Dx.(S,€) Mr— E@g M
with the homological realization functor (2.6.1.5). Theorem 2.6.2 concludes. ]

2.7.25. Assume now S is the spectrum of a perfect field k.
It follows then from [Rio05] that we have

(2.7.25.1) DM, (Spec (k)) = DMy (Spec (k)) .
Theorem 2.7.26 (F. Morel). There exists a canonical equivalence of symmetric
monoidal triangulated categories

DM g (Spec (k) ~ DM (k, Q).
Proof. We know (e.g. from [RA08]) that we have a canonical symmetric monoidal
triangulated functor
(2.7.26.1) Da1(Spec(k),Q) — DM (k,Q) M — M,

which preserves Tate twists, direct sums, and compact objects. By virtue of [Voe00,
Corollary 2.1.5], the functor (2.7.26.1) vanishes on Da1(Spec (k),Q-), so that it
induces a symmetric monoidal triangulated functor

(2.7.26.2) DMy (Spec (k)) — DM (k,Q) M — My, .

It then follows from Theorem 2.7.18 and [Rio06, Theorem v.31] that for a given
smooth k-scheme X and two integers p and ¢, the induced map

Hom pasy, (spec(r)) (Q(X)+, Hi (p)[q]) — Hompar(x,q) (Q(X)wr, Q,, (p)a])
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is in fact the isomorphism (2.3.24.1). By 2.7.25.1, this implies that the functor
(2.7.26.2) is fully faithful on compact objects which proves the full faithfulness.
The essential surjectivity follows from the fact that, by the very construction of
DM (k,Q), the objects of shape Q(X)-(p)[q] generate DM (k, Q). O

Remark 2.7.27. It will be proved in [CD09b] that Morel’s Theorem 2.7.18 implies
that Theorem 2.7.26 is true over any geometrically unibranch base scheme.

3. SOME CLASSICAL MIXED WEIL COHOMOLOGIES
3.1. Algebraic and analytic de Rham cohomologies.

3.1.1. Suppose k is a field of characteristic 0. Let X be a smooth k-scheme. We
denote by Qﬁ( Ik the locally free sheaf of algebraic differential forms on X over
k. Then the de Rham complex is the complex of Ox-modules obtained from the
exterior O x-algebra generated by Qﬁ( e

;(/k = /\ Q%{//«
Remember from [Gro66, Gro68] that the algebraic de Rham cohomology of X is
defined to be
H;R(X) = H;ar(Xv Q;(/k)
We will show here that de Rham cohomology is canonically represented by a mixed
Weil theory.

3.1.2. Let X/k be an affine smooth scheme. We simply put Qqp(X) = I['(X, Q% ;).
Then Q4r(X) is a commutative graded differential algebra and it defines a presheaf
of commutative differential graded k-algebras
QdR X — QdR(X)
In this context, the Kiinneth formula is obvious: the canonical map
QdR(X) Rk QdR(Y) — QdR(X Xk Y)
is an isomorphism.

As Q% Jk is a complex of coherent sheaves on X and X is affine, the vanishing
theorem of Serre [EGA III, 1.3.1] and the spectral sequence

E;aq = Hgar(X7 Qg(/k) = HS]—;%X)
implies
Hjp(X) = H*(Qar(X)).
3.1.3. The complex Q4r satisfies étale descent on smooth k-schemes, thus Nis-
nevich descent. This means the following.
Let X = Spec (A) and Y = Spec (B) be smooth affine schemes and f:Y — X
an étale morphism. Then, Q4r(Y) = Qqr(X) ®4 B. Suppose [ is an étale cover.

The augmented Cech complex CJ(Y/X) is associated to the differential graded
A-algebra

Ti(B)=(A—B—B®sB—B®4sB®sB—...)
Thus, Q4r(CH(Y/X)) = Qar(Y) ©4 T4 (B).
As f is faithfully flat, it is a morphism of effective descent with respect to the
fibred category of quasi-coherent modules (see [SGA 1, Exposé VIII, Theorem 1.1]),
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so that the complex T} (B) is acyclic. For any integer r > 0, Q7,(Y) is flat over
A, thus Q7,(Y) ®4 T4 (B) is acyclic. Hence the spectral sequence of a bounded
bicomplex shows the complex Tot[Qqz(CF(Y/X))] is acyclic. This implies the étale
descent for algebraic de Rham cohomology; see [Art71]. We deduce easily from the
computations above that for any distinguished square as (1.1.2.1) which consists of
smooth affine k-schemes, we get a short exact sequence

00— QdR(X) — QdR(U) D QdR(V) — QdR(U X x V) — 0.

Hence Qi has the B.-G.-property with respect to the Nisnevich topology on the
category of affine smooth k-schemes.

3.1.4. Finally, the following computations are easy:

k ifn=0
Ho(A}) =
ar(A%) {O otherwise
k ifn=0
Hin(Gp) =< kdlog ifn=1
0 otherwise

where dlog is the differential form defined by dlog(t) = dt/t. In conclusion, we
have proved:

Proposition 3.1.5. The presheaf Qi is a mized Weil theory.

3.1.6. We denote by €4 the corresponding commutative ring spectrum. Recall
the canonical map

Hjp(X) — H{y(X,Qar) ~ H* (X, Ear)
is an isomorphism for any smooth k-scheme X.

3.1.7. Suppose that k is an algebraically closed field of characteristic zero, complete
with respect to an archimedian (resp. non archimedian) absolute value | — |. Then
we can associate to any smooth k-scheme X an analytic space (resp. a rigid analytic
space) X . Let Q%.. be the analytic de Rham complex of X" (seen as a sheaf of
complexes). This defines a presheaf Q4% of differential graded k-algebras on Sm/k
by the formula
T (X) = Qe (X).

The analytic de Rham cohomology of a smooth scheme X is defined as the hyper-
cohomology of X *" with coefficients in the sheaf Q%...

Hip(X9) = H (X, Q% an)
As X is Stein (resp. quasi-Stein) whenever X is affine, Cartan’s Theorem B
(resp. Kiehl’s analog of this theorem) implies that for an affine smooth k-scheme
X, one has

Hi(X") = H* (@ (X))
As analytic de Rham cohomology satisfies étale descent and is A'-homotopy invari-
ant, this implies that Q4% has the B.-G.-property on affine smooth k-schemes, and
is Al-local. In fact, the complex Q4% is even a stable theory'” so that, by virtue

17\We leave this as an exercise for the reader; the arguments used below to prove that rigid
cohomology is a stable theory (essentially the proof of Theorem 3.2.3) might give a hint.



MIXED WEIL COHOMOLOGIES 57

of Corollary 2.7.12, the canonical map
Qup — Qg

is a quasi-isomorphism locally for the Nisnevich topology. In other words, we get
Grothendieck’s theorem [Gro66] (resp. Kiehl’s theorem [Kie67a]): for any smooth
k-scheme X, the canonical map

Hip(X) — Hap(X™")
is an isomorphism.
3.2. Variations on Monsky-Washnitzer cohomology.

3.2.1. We consider here a complete discrete valuation ring V' with fraction field
of characteristic zero K and perfect residue field k. We set S = Spec(V), n =
Spec (K), and s = Spec (k). We have an open immersion j : 7 — S and a closed
immersion i : s — S. For a (smooth) S-scheme X, we write X,, and X, for the
generic fiber and the special fiber of X respectively.

3.2.2. Consider a smooth affine S-scheme X = Spec (A).

We denote by AT the weak completion of A with respect to the m-adic topology,
where m stands for the maximal ideal of V; see [MW68, Definition 1.1]. Recall Af
is a formally smooth V-algebra [MW68, Theorem 2.6]. Denote by Q*(Af/V) the
complex of differential forms of At relative to V. It can be defined as the universal
m-separated differential graded V-algebra associated to A; see [MW68, Theorem
4.2]. More precisely, it is obtained from the algebraic de Rham complex of AT over
V by the formula

O (AT)V) = Qi v/ NZo miQ*AT/v :
The Monsky- Washnitzer complex of X is defined as
Eyw (X) = (AT/V) oy K~ AT 0, Q) 0v K,
and the Monsky-Washnitzer cohomology of X is
Hiyw (X) = H*(Epw (X)) -
(see [MWG68, vdP86)).

Theorem 3.2.3. The Monsky-Washnitzer complex is a stable theory on smooth
affine S-schemes.

Proof. The complex Epyw (X) can be compared with Berthelot’s rigid cohomology;
see [Ber97b, Proposition 1.10]. More precisely, once a closed embedding X — A%
is chosen, let W denotes the schematic closure of X in P%, and W denotes the
formal m-adic completion of W. The proof of [Ber97b, Proposition 1.10] consists
then to check that we have a canonical isomorphisms of complexes of K-vector
spaces
Enw (X) ~ImD(V, Q) ~ T(IW [y, 5705,)
v

where V' ranges over the strict neighbourhoods of the tube of X in W, and that
the canonical map

H"(D(W [y, 57,) — H"(RE(W [, 5'Q5.)) = H,

w rig(XS/K)
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is an isomorphism. In other words, Epw (X) is (up to a canonical quasi-isomorphism)
the rigid complex associated to the embbedings

X, — W —W.

Using [Ber97b, Proposition 2.2], one can extend this comparison results to co-
homology with support: for any closed subscheme Z of X, one has a canonical
isomorphism
le\l/IW,Z(X) = ;Lig,Zs (Xs/K)
(where H;\;[i_l}V (X)) denotes the ith cohomology group of the cone of the map
Eyw (X) — Eyw (X —Z)). Hence to prove étale excision for Monsky-Washnitzer
cohomology, we are reduce to prove étale excision for rigid cohomology. This fol-
lows immediately from the étale descent theorem for rigid cohomology, proved by
Chiarellotto and Tsuzuki [CT03].
We also have the following computations:

K i 0 K ifn=0
if n=
Hiw (A§) = ) Hyw (Gp) = (¢ K.dlog ifn=1
0 otherwise 0 therwi
otherwise

(where dlog is the differential form on V[t,t!]T defined by dlog(t) = dt/t).
It remains to prove that the Kiinneth map
Euw (X) ®@x Eyw(Y) — Euw (X x5Y)

is a quasi-isomorphism for any affine smooth S-scheme X and for Y = AL or Y =
G,,. If Y = A}, this follows from Monsky and Washnitzer Homotopy Invariance
Theorem [MW68, Theorem 5.4]. The case of Y = G,,, is solved by considering the
Gysin long exact sequence associated to the closed immersion

it X =X x{0} — X xA!
which is constructed explicitely from [Mon68, Theorem 3.5]:
= Hypp (X) — Hijpw (X x AY) — Hipy (X X G) — Hjyp (X) — -

The homotopy invariance of Monsky-Washnitzer cohomology allows then to split
canonically the long exact sequence above (using the projection of X x G, onto
X), and we finally get an isomorphism of graded H; (X/K)-modules

Hipw (X x Gy) ~ Hipp (X) . dlog @H (X))
This implies immediately the Kiinneth formula above for Y = Gy,. t

3.2.4. We define a presheaf of commutative differential graded K-algebras j.F.r
on Sm/S by the formula below.

J«Ear(X) = Qar(Xy,)

It follows immediately from Proposition 3.1.5 that j.E4r is a mixed Weil cohomol-
ogy on affine smooth S-schemes.

3.2.5. Consider a smooth affine S-scheme X = Spec(A). By definition of the
Monsky-Washnitzer complex, we have a natural morphism of differential graded
algebras

(3251) SPx ¢ j*EdR(X) = QTA/V Rv K — AT ®a QZ/V Qv K= EMV[/(X)
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called the specialisation map. This defines a morphism of presheaves of differential
graded algebras

Denote by j.€4r (resp. by € pyrw) the commutative ring spectra associated to j. Eqr
and Fypw respectively. It is clear that we have, for any affine smooth S-scheme
X, the following identifications in the derived category of the category of K-vector
spaces.

(3253) RF(X,j*SdR) ~ QZR(XT]) and RF(X, (ng) ~ EMw(X) .
Theorem 3.2.6. There is a specialisation map
sp : jx€ar — Euw

in Da1(S, K) which is compatible with cup product, and induces isomorphisms

SPX,c

RI(X,), Ear) 25 RI(X, Eyw)  and REo(X,, Ear) —= RT.(X, Eprw)

in D(K) for any smooth S-scheme X such that j.E4r(X) has a strong dual in
Da1(S,j<€ar) (e.g. X might be projective or the complement of a relative strict
normal crossings divisor in a smooth and projective S-scheme).

Proof. Apply Theorem 2.6.5 to (3.2.5.2) to get directly the map sp from j.€4p to
Enw and the isomorphism sp x .
We also obtain isomorphisms

RI(X,j:€ar) @ RT (X, Epmw) -

Using the fact j.€4r(X) has a strong dual in Da1(S, j«€4r), we have the fol-
lowing computations (we assume X /S is of dimension d).

RI.(X,j.€ar) ~ RI(X, j.Eqr(—d)[—-2d])
~ RI(X,, Ear(—d)[—2d])"
~ RI. (X, Ear)
These identifications give the expected isomorphism spy . (I

Corollary 3.2.7. For any non empty smooth S-scheme X with empty special fiber,
Q(X) does not have any strong dual in DM(S).

Proof. Given such an S-scheme X it is clear that the specialisation map

SPx

RF(XU, ng) — RF(X, EMW) =0

is not an isomorphism. But if Q(X) had a strong dual in DM (S), then j.€q4r(X)
would have a strong dual in D1 (S, j«Eqr) as well, so that, by virtue of Theorem

3.2.6, spx would be an isomorphism in D(K). O
3.2.8. Recall from [Ayo07, Ron05, CD09b] that we have two pairs of adjoint func-
tors
(3.2.8.1) i DT (n,Q) = D (5,Q) : j*

Vi Al (7, a1 (9, J

(3.2.8.2) Li*: D1 (5,Q) = DI (5,Q) : i
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such that j; and i, are fully faithful, and such that for any object M of Djiﬁf (S, K),
there is a canonical distinguished triangle:

(3.2.8.3) i7" (M) — M — i, Li* (M) — ji5*(M)[1].

As we obviously have j*(Epw) = 0 (this just means the Monsky-Washnitzer coho-
mology of an affine smooth V-scheme with empty special fiber is trivial), we deduce
that

Let X be a smooth affine k-scheme. Using [Ara01, Theorem 1.3.1], there exists a
smooth and affine V-scheme Y = Spec (A) such that X = Y,. In other words, we
get Q(X) = Li*Q(Y). This leads to the following computations.

RI(X,Li*Eyw) ~ RHomg(Q(X), Li* Eyw)
~ RHomq(Li*Q(Y),Li* Epw )
~ RHomq(Q(Y), i+ Li* Epw)
~ RHomq(Q(Y), Epw)
~RI'(Y,Eyw)
~ Eyw (Y)

(3.2.8.5)

Note this isomorphism is functorial with respect to Y, X being identified with Y.

The cohomology theory represented by Li* Epwy in D;ﬁ (s,Q) can be described
as a stable cohomology theory as follows. The main difficulty for this is to represent
it by a sheaf of commutative differential graded K-algebras. This is achieved by
having a closer look at the definition of the functor Li* of (3.2.8.2): this is the total
left derived functor of the functor

(3.2.8.6) i* : Comp(Sh(Sm/S,Q)) — Comp(Sh(Sm/s,Q))

which preserves colimits and sends Q(X) to Q(X;). The functor (3.2.8.6) is a left
Quillen functor with respect to the model structures defined by Proposition 1.1.15.
Hence Li* Eyw is defined by applying (3.2.8.6) to a U-cofibrant resolution of Eyyy,
where U is the category of smooth and affine V-schemes. We can consider a quasi-
isomorphism p : Ef;,, — Enw, with Ef,y, a commutative monoid which is -
cofibrant as a complex of sheaves (using the model structure of [Lur07, proposition
4.3.21], whose assumptions are trivially checked in the Q-linear setting). We then
put E,;,, = i*E},. By definition, we have a canonical isomorphism

Em'g >~ Li*EMW .

We will call Ey;g4 the rigid cohomology complex. By construction, for any smooth
affine k-scheme X, we have an isomorphism

(3.2.8.7) RHom(Q(X),Li*Eyw) ~ Erig(X) .
Proposition 3.2.9. For any smooth affine k-scheme X, there is a functorial iso-
morphism

H™(Eyig (X)) = HE (X/K),

where Hy, (X/K) denotes Berthelot’s rigid cohomology of X . This comparison map

is compatible with cup product.
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Proof. We know that, given a smooth affine S-scheme Y, there is a functorial
isomorphism

Hypw (Y) ~ Hpy (Y /K),
which is compatible with cup product; see [Ber97b, Proposition 1.10]. As, by
definition, F,;, = Li*Eyw, given a smooth affine k-scheme X, once a smooth
affine S-scheme Y with special fiber isomorphic to X is chosen, we obtain from the
isomorphims (3.2.8.5) that

H" (Erig(X)) = Hy(X/K).

It remains to prove this isomorphism is independent of the lift Y, and is functorial
in X. Let f: X — X’ be a morphism of smooth affine k-schemes. Choose two
smooth affine S-schemes Y and Y’ endowed with two isomorphisms Y, ~ X and
Y] ~ X’ (which exist, thanks to [Ara0l, Theorem 1.3.1]). By virtue of [Ara0l,
Theorem 2.1.3], there exists a commutative diagram of S-schemes

X4f>X’

.

Y<TYET>Y'

with ¢ (resp. i, resp. ') being a closed immersion which identifies X (resp. X,
resp. X') with the special fiber of Y (resp. of Y¢, resp. of Y’), and withe: Y, — Y
étale and inducing the identity on the special fibers. Then the naturality of the
isomorphisms (3.2.8.5) gives the following commutative diagram

Erig(X) <L By (X7)

A

EMW(Y) T) EMW(YE) T EMw(YI)

in which the non-horizontal maps are the canonical isomorphisms. O

Theorem 3.2.10. The sheaf of commutative differential graded algebras E,i4 is a
mixed Weil cohomology on smooth k-schemes.

Proof. As E,;, is fibrant by definition, it is A'-homotopy invariant and has the
B.-G. property. Using Theorem 3.2.3 and the comparison isomorphisms (3.2.8.5),
we see that F., is a stable cohomology theory. It thus remains to prove the
Kiinneth Formula. This comes immediately from the comparison with Berthelot’s
rigid cohomology (Proposition 3.2.9), the latter being known to satisfy the Kiinneth
formula; see [Ber97al. O

Scholium 3.2.11. Let us denote by &,;, the commutative ring spectrum associated
to the mixed Weil cohomology E.;,.

Theorem 3.2.6 can be made a little more precise in the following way. Recall
from [R6n05, Ayo07, CD09b] that we have a pair of adjoint triangulated functors
(3.2.11.1) Li* : Dp1(S,Q) S Dai(s,Q) : is
satisfying the following properties.

(i) The functor Li* is symmetric monoidal and preserves Tate twists.



62 DENIS-CHARLES CISINSKI AND FREDERIC DEGLISE

(i) For any smooth S-scheme X, we have Li*Q(X) = Q(X).
(iii) The functor i, is fully faithful.
(iv) For any objects M of Da1(S,Q) and any object N of Da1(s,Q), we have

a canonical isomorphism
(3.2.11.2) M @8 i.(N) ~ i, (Li* (M) ®g N) .
It follows from property (i) and the definition of &,,, that we have an isomorphism
(3.2.11.3) Epw ~ ixEpig »
so that we have a specialization map
(3.2.11.4) sp : jx€ar — 1 pig
in Da1(S, K). Moreover, we obtain from properties (i) and (iv) the following iden-
tifications for a smooth S-scheme X of pure dimension d.
RI.(X, &yw) ~ RHomq(Q, Enw ®G Q(X)(—d)[—2d))
~ RHomq(Q, i+ (€rig) ©6 Q(X)(—d)[~2d])
~ RHomq(Q, ix(€ig ®G " (Q(X)))(—d)[~2d))
~ RHomq(i"(Q), €rig ©§ Q(Xs)(—d)[~2d))
~ RHomq(Q, &4y ®g Q(X)(~d)[-2d])
~ RI' (X5, Erig)

By virtue of Theorem 3.2.6, the specialisation map (3.2.11.4) induces isomorphisms

RI'(X,, Ear) 2, RI'(X,,Erig) and RI(X,,E4r) PXee, R (X5, Erig)
in D(K) for any smooth S-scheme X such that j,€4r(X) has a strong dual in
Das (S, jx€ar).

It can be proven that E,;, is quasi-isomorphic to the restriction of Besser’s rigid
complex (see [Bes00, Definition 4.13]) to the category of smooth k-schemes. In
other words, the object €,;4 represents Berthelot’s rigid cohomology in Da1 (s, Q).
In the case where X is smooth and projective over S, using the comparison isomor-
phism relating rigid cohomology and crystalline cohomology (see [Ber97b, Proposi-
tion 1.9]), Theorem 3.2.6 gives back the comparison isomorphism of Berthelot and
Ogus [BO83].

3.3. Etale cohomology.

3.3.1. For sake of completeness, we will finish by explaining how ¢-adic cohomology
fits in the picture of mixed Weil cohomologies as they are defined here.

Consider a countable perfect field k, and choose a separable closure k of k. For
a smooth k-scheme X, write X = X ®; k. Let ¢ be a prime which is distinct from
the characteristic of k.

Deligne [Del80] defines for any smooth k-scheme X a commutative differential
graded Qg-algebra which computes the ¢-adic cohomology of X. We will modify
slightly some steps of his construction to ensure its functoriality.

3.3.2. Consider a pro-simplicial set X = “lim” X,. We can then define its singular
cohomology with coefficients in Z/¢™ by the formula

(3.3.2.1) H'(X,Z/0") =lim H" (Xo,Z/0").
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We will say that X is essentially {-finite if the groups H'(X,Z/{™) are finite.
For an essentially ¢-finite pro-simplicial set X, formula (5.2.1.7) of [Del80] defines
a commutative differential graded Qg-algebra A(X) such that

(3.3.2.2) H'(A(X)) = Q¢ ®z, lim H (X, Z/(").
This construction is (contravariantly) functorial in X.
3.3.3. For an étale surjective morphism X’ — X, define C'(X’/X) to be the Cech
simplicial scheme defined by the formula
CX'/X)p=X"xx-xx X .

n + 1 times

Note that the map Q(X’/X) — X is an étale hypercovering.
Given a smooth k-scheme X, define an étale fundamental system X of X to be
a tower of morphisms of smooth k-schemes indexed by integers o > 0

DC:[-~-—>Xa+1—>Xa—>~-~—>X1—>X0:X

such that X, — X is étale surjective for all @ > 0, and such that any étale
surjective map U — X factors through X, for « big enough. Such an étale
fundamental system of X defines a pro-simplicial scheme “lim” C(X4/X), whence
a pro-simplicial set

(3.3.3.1) m(X) = “lim” mo(C(Xa/X))

which is essentially ¢-finite, and such that there is a canonical isomorphism
(3.3.3.2) H'(A(m(X))) = Hi (X, Qo)

(see [Del80, 5.2.2]). Given a non-empty finite family of étale fundamental systems
X = {X!,...,X"}, we define an étale fundamental system X;,; whose o' stage is

defined as the fiber product of the o' stages of the X*’s over X. Given a non-empty
subset X’ of X, it can be described as X' = {X% ... X}, with iy # i; whenever
k # 1, with m < n. We then have a canonical morphism of pro-schemes X;,; —
X}, induced by the projections X;,; — X% . Taking the filtering projective limit
of all the pro-simplicial sets 7(X;0¢), where X ranges over the non-empty finite
families of étale fundamental systems of X, defines a pro-simplicial set. We define
(3.3.3.3) A(X) = lim A(m(Xsor)) -
X

As filtering colimits are exacts, we deduce from (3.3.3.2) that we have a canonical
isomorphism
(3.3.3.4) HI(A(X)) = lim HY(A(r(Xoe)) > HiL (X, Q).

X
We claim formula (3.3.3.3) defines a presheaf of commutative differential graded
Q-algebras A on the category of smooth k-schemes. Consider a morphism f :
X — Y of smooth k-schemes. Any non-empty finite family of étale fundamental
systems Y = {Y',...,Y"} of Y defines by pullback a non-empty finite family of
étale fundamental systems f*(Y) = {X xy Y!,..., X xy Y"} of X, with a canonical
morphism of pro-schemes f*(Y):: — Ytot. This induces a map

A(m(Y101)) — Alr(f(9)101)) — A(X).
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By passing to the colimit of the A(m(Y¢ot))’s, we get the expected map
[ AY) — AX).

3.3.4. Define a presheaf of commutative differential graded Qg-algebras Eg; ¢ on
Sm/k by the formula

(3.3.4.1) Beo(X) = A(X).
Then one has
(3.3.4.2) H"(Esi,0(X)) = HE (X, Qo) -

In particular, Eg , satisfies étale descent, whence it has the B.-G.-property. The
well known properties of étale cohomology proved by Artin and Grothendieck thus
imply:

Theorem 3.3.5. Eq ¢ is a mized Weil theory over smooth k-schemes.
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