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Introduction



A. Historical background

A.1. The conjectural theory described by Beilinson. In a landmarking paper, [Bei87],
A. Beilinson stated a series of conjectures which offer a complete renewal of the traditional theory
of pure motives invented by A. Grothendieck. Namely, he proposes to extend the notion of pure
motives to that of mixed motives with two models in mind: mixed Hodge structures defined by
P. Deligne one the one hand, perverse sheaves on the other hand defined in [BBD82]. One of
the main innovation, considered by Beilinson in analogy with the second model, is to consider a
triangulated version of mixed motives in which one could hope to find the more involved theory of
abelian mixed motives through the concept of t-structures. This hoped for theory was conjecturally
described by Beilinson in [Bei87, 5.10] under the name of motivic complezes.

It was modeled (see loc. cit., paragraph A) on the theory of étale I-torsion (resp. l-adic)
sheaves and their derived category as introduced fifty years ago by Grothendieck and M. Artin.
The major achievement of Grothendieck and his collaborators in [SGA4] was to define a theory
of coefficients systems relative to any scheme with a collection of operations, f., f*, fi, f',®, Hom,
satisfying a set of formulas now called the Grothendieck sixz functors formalism (see section A.5
in this introduction for more details). This formalism, formulated in the language of triangulated
categories, ultimately encode a very general duality theory. Note however that the complete duality
theory for [-torsion étale sheaves was completed only recently by the work of Gabber [ILO].

The theory was also conjectured to be deeply linked with Quillen algebraic K-theory (see
[Bei87, 5.10, §B]). In fact, up to torsion and for a regular scheme S, the ext-groups between two
Tate motives over S should coincide with Adams graded parts of Quillen algebraic K-theory.!

The ideas of Beilinson were very fecund because, not long after the publication of [Bei87], one
had three candidates for a triangulated category of mixed motives, respectively by M. Hanamura,
M. Levine, and V. Voevodsky. In this book, we will focus on Voevodsky’s theory.

A.2. Voevodsky’s motivic complexes. The first attempt of Voevodsky in defining the
category of motivic complexes, in his 1992 Harvard’s thesis, introduces the fundamental process
of Al-localization, which amounts to make the affine line contractible in the category of mixed
motives, by analogy with the topological case. It also involves the use of the h-topology which
was to become fundamental in the area of motives and cohomology. These two ingredients given,
Voevodsky defined the triangulated category of (effective) h-motives over any base in [Voe96].

However, Voevodsky was aware that his definition will give the correct answer to Beilinson’s
conjectural construction only with rational coefficients. In [VSF00, chap. 5], he introduces
another definition of motivic complexes over a perfect field with integral coefficients, still using
the Al'-localization process but this time introducing the notion of Nisnevich sheaves with transfers
and their derived category (see [MVWO6] for a detailed exposition). At the time being all the
properties foreseen by Beilinson are established for this integral category over a perfect field, except
for the construction of the motivic t-structure.? It remains to extend this definition to arbitrary
bases and to establishes the Grothendieck six functors formalism.

The path in this direction was laid down by Voevodsky in [Voel0a] were he uses the theory
of relative cycles invented by Suslin and Voevodsky to extend the definition of transfers. This
definition was also exploited by Ivorra in [Ivo07] to extend the definition of geometric motivic
complexes of Voevodsky over any base, avoiding the use of sheaves with transfers. Still it entirely
remained to construct Grothendieck six functors formalism for this definition.

A.3. Morel and Voevodsky homotopy theory. Soon after the introduction of Voevod-
sky’s motivic complexes, F. Morel and Voevodsky introduced the more general theory of A!l-
homotopy of schemes ([MV99]) whose design is to extend the framework of algebraic topology
to algebraic geometry and is built around the A'-localization tool. It is within this theory that
was invented another important tool in the motivic homotopy theory, the P!-stabilization process.
From the purely motivic point of view, this amounts to invert the Tate motive Z(1) for the tensor
product. From the homotopical point of view, this operation is much more involved and reveals

LSee below for the precise statement.
2This hoped for t-structure is described in [Voe92, Hyp. 0.0.21].
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the theory of spectra, objects which incarnate cohomology theories in algebraic topology. These
two processes, of Al-localization and P'-stabilization, applied to the category of simplicial Nis-
nevich sheaves, led to the stable A'-homotopy category of schemes (see [Jar00]) a triangulated
category with integral coefficients, defined over any base, which generalizes the category of motivic
complexes.?

Over a perfect field, and with rational coefficients, the relation between homotopy and motives
was clarified in an unpublished paper of Morel ([Mor06]): the rational stable Al-homotopy
category contains the stable (i.e. Pl-stable) version of the category of motivic complexes as an
explicit direct factor, called the +-part of the stable homotopy category.* Then Morel introduces
this 4+-part as a good candidate for the rational version of the triangulated category of motives
([Mor06, paragraph at the end of p.2]). We will dubbed the objects of this category the Morel
motives.

On the other hand, with integral coefficients, O. Rondigs et P.A. @stveer showed that over a
field of characteristic 0, the P'-stable category of motivic complexes coincides with the category
of modules over the ring spectrum which represents motivic cohomology (see [R@08]).° This ring
spectrum was introduced by Voevodsky (see [Voe98]) using the theory of relative cycles. It is
defined over any base and one is led to consider the category of modules over this ring spectrum
as a possible definition of the integral triangulated category of motives.

A.4. Cross functors. The definitive step towards the six functors formalism in motivic
homotopy theory was taken up by Voevodsky in a series of lectures were he laid down the theory
of cross functors. The main theorem of this theory consists in giving a criterion on a system
of triangulated categories indexed by schemes, equipped with a basic functoriality, to be able
to construct exceptional functors (fi, f') satisfying the properties required by Grothendieck 6
functors formalism. In particular, the system of triangulated categories must satisfy three notable
properties: the A'-localization property, the P'-stability property and the localization property.
Unfortunately, only an introductory part on this theory was released (see [Del01]) in which the
basic setup is established but which does not contain the proof of the main result.

The writing of this theory was accomplished by J. Ayoub in his thesis (see [Ayo07a, Ayo07b]).
Ayoub uses the axioms laid down by Voevodsky: he calls a system of triangulated categories sat-
isfying the properties alluded above a homotopy stable functor. However, he goes far beyond the
original result of Voevodsky: apart the complete theory of cross functors (concerned with fi, f'),
he also studied tensor structures, constructibility properties and their stability under the six op-
erations, t-structures and specialization functors such as the vanishing cycle functor. The main
example of a stable homotopy functor is the stable Al-homotopy category. One readily deduces
that the category of Morel motives is also a homotopy stable functor.

However, it is by no means obvious that the category of modules over the motivic homotopy
ring spectrum does meet the requirements of a homotopy stable functor. In fact, it can be seen
that this is equivalent to Conjecture 17 of Voevodsky in [Voe02b].

A.5. Grothendieck 6 functors formalism.

A.5.1. We now give the precise formulation of the Grothendieck 6 functors formalism. As
presented here, it is extracted from the properties of the derived category of I-torsion étale sheaves
obtained in [SGA4, tome 3].

A triangulated category .7, fibred over the category of schemes, satisfies the Grothendieck 6
functors formalism if the following conditions hold:

8Heuristically, the essential difference between stable A'-homotopy and motivic complexes is the presence of
transfers in the later case.

4Gee also Theorem 11 in this introduction and its corollary.

5See also Theorem 8 in this introduction for an extension of their result.

61t also coincides with formulas gathered by Deligne in an unpublished note which he graciously supported us
with.
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(1) There exists 3 pairs of adjoints functors as follows:
ffr7(X)=2 () : fi f any morphism,
fi: 7(Y)= Z(X): f', f any separated morphism of finite type,
(®, Hom), symetric closed monoidal structure on .7 (X).

(2) There exists a structure of a covariant (resp. contravariant) 2-functors on f +— fi, f — fi

(resp. f o f*, fr f').

(3) There exists a natural transformation

Ozf:f!—>f*

which is an isomorphism when f is proper. Moreover, « is a morphism of 2-functors.
(4) For any smooth separated morphism f : X — S in . of relative dimension d, there
exists a canonical natural isomorphism

P ST f(=d)[~2d)
where 7(—d) denotes the inverse of the Tate twist iterated d-times. Moreover p’ is an

isomorphism of 2-functors.
(5) For any cartesian square in .%:

v I x

T

Y 7> X,
such that f is separated of finite type, there exist natural isomorphisms
g f = flg",
gt = f'g..
(6) For any separated morphism of finite type f : Y — X, there exist natural isomorphisms
Ex(f,®): (fK)®x L — fi(K @y f*L),
Homx (fi(L), K) = f.Homy (L, f(K)),
JHom x (L, M) == Homy (f*(L), '(M)).

(Loc) For any closed immersion i : Z — S with complementary open immersion j, there exists
a distinguished triangle of natural transformations as follows:

it 1 it 2 ')
where o (resp. a-) denotes the counit (resp. unit) of the relevant adjunction.

A.5.2. The next part of Grothendieck 6 functors formalism is concerned with duality. This
kind of properties appears already in [Har66]. It is considered more axiomatically, in the case
of étale sheaves, in [SGAS5, Exp. 1.7 In loc. cit., Grothendieck states the fundamental property
of absolute purity and indicates its fundamental link with duality. We state these properties as
natural extensions of the properties given in the preceding paragraph; assume .7 satisfies these
preceding properties:

(7) Absolute purity.— For any closed immersion ¢ : Z — S of regular scheme of (constant)
codimension c¢, there exists a canonical isomorphism:
1z(—¢)[~2c] = i'(1s)

where 1 denotes the unit object for the tensor product.

"The duality properties are stated in the unpublished notes of Deligne as part of the complete formalism.
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(8) Duality.— Let S be regular scheme and Kg be any invertible object of 7 (S). For any
separated morphism f : X — S of finite type, put Kx = f'(Kg). For any object M of
T (X), put Dx(M) = Hom(M, Kx).

(a) For any X/S as above, Kx is a dualizing object of 7 (X). In other words, the
canonical map:
M — DX (DX (M))
is an isomorphism.
(b) For any X/S as above, and any objects M, N of 7(X), we have a canonical iso-
morphism
Dx(M®Dx(N)) ~ HomX(M,N).
(c) For any morphism between separated S-schemes of finite type f:Y — X, we have
natural isomorphisms

Dy (f*(M)) ~ f'(Dx(M))

F*(Dx (M)) ~ Dy (f(M))
Dx(fi(N)) = f«(Dy(N))
fiDy(N)) = Dx (f«(N)) -

A.5.3. The last property we want to exhibit as a natural extension of Grothendieck 6 functors
formalism is the compatibility with projective limits of schemes. The basis for the next statement
is [SGAA4, Exp. VI] though it does not appear explicitly. As in the case of the duality property,
it should involve some finiteness assumption. Note the formulation below is valid for an arbitrary
fibred triangulated monoidal category 7.

(9) Continuity.— Let (Sa)aca be an essentially affine projective system of schemes. Put

S = ](iLnaeA Sa-

Then the canonical functor

2—@9(6’&) — 7(9)
is an equivalence of monoidal triangulated categories.

B. Voevodsky’s motivic complexes

The primary goal of this treatise is to develop the theory of Voevodsky motives, integrally
over any base scheme®, within the framework of sheaves with transfers. Actually, we can define
Voevodsky’s motives with coefficients in an arbitrary ring A and prove all the results stated below
in that case but we restrict this presentation to integral coefficients for simplicity.

After refining and completing Suslin-Voevodsky’s theory of relative cycles, we introduce the
category #'mz’s of integral finite correspondences over smooth S-schemes and the related notion
of (Nisnevich) sheaves with transfers over a base scheme S (Def. 10.4.2) as in the usual case of
a perfect base field. Following the idea of stable homotopy, we define the triangulated category
DM(X) of stable motivic complexes (see Def. 11.1.1) as the P'-stabilization of the Al-localization
of the derived category of the (Grothendieck) abelian category of sheaves with transfers over S.

One easily gets that the fibred category DM is equipped with the basic functoriality needed
by the cross-functor formalism. The main difficulty is the localization property, property (Loc) in
Paragraph A.5.1. Unfortunately, though all the functors involved in the formulation of (Loc) are
well defined for DM, we can only prove this property when S and Z are smooth over some base
scheme (see Prop. 11.4.2). This is not enough to apply Ayoub’s results.

However, we are able to construct the 6 operations for DM using the method of Deligne, used
in [SGA4, XVII], and partially get the Grothendieck 6 functors formalism:

8Tn this introduction, all schemes will be assumed to be noetherian of finite dimension.



THEOREM 1 (see Th. 11.4.5). The triangulated category DM, fibred over the category of
schemes, satisfies the following part of the properties stated in Paragraph A.5.1:
properties (1), (2), (3),
property (4) when f is an open immersion or f is projective and smooth,
property (5) when g is smooth or f is projective and smooth,
property (6) when f is projective and smooth,
Property (Loc) when S and Z are smooth over some common base scheme.

One of the application of this theory is that we get a well defined integral motivic cohomology
theory for any scheme X:

H"(X,Z) = Homp(x) (1x, 1x (m)[n])
which enjoys the following properties (see section 11.2):

e it admits a ring structure, pullback maps associated with any morphism of schemes
compatible with the ring structure,

e it admits push-forward maps with respect to projective morphisms between schemes
smooth over some common base, or with respect to some finite morphisms (for example
finite flat; see Paragraph 11.2.4),

e it coincides with Voevodsky’s motivic cohomology groups when X is smooth over a
perfect field (see Example 11.2.3); in particular one gets the following identification with
higher Chow groups:

HY"(X,Z)=CH™(X,2m —n),

e it admits Chern classes and satisfies the projective bundle formula,
e it admits a localization long exact sequence associated with a closed immersion of schemes
smooth over some common base.

As in the classical case, any smooth S-scheme X admits a motive Mg(X) over X in DM(S).
Moreover, one defines the Tate motive 1g(1) as the reduced motive of PY. We defined the category
of constructible motives DM.(S) as the thick triangulated subcategory of DM generated by the
objects of the form Mg(X)(n) for a smooth S-scheme X and an integer n € Z, where 7(n) refers
to the n-th Tate twist. One gets the following generalization of the classical result obtained by
Voevodsky over a perfect field:

THEOREM 2 (see Th. 11.1.13). A motive M in DM(S) is constructible if and only if it is
compact,9
The category DM.(S) is equivalent to the category obtained from the bounded homotopy cate-

cor

gory of the additive category #'mz’s in the following way:
o take the Verdier quotient modulo the thick triangulated subcategory generated by:
— for any Nisnevich distinguished square W £y of smooth S-schemes:

oy N

UL x

W] 2= ] e [v] 245 [x]
— for any smooth S-scheme X, p: AL — X the canonical projection:
[Ak] = [X],

e invert the Tate twist,
e take the pseudo-abelian envelope.

The triangulated category DM.(X) is stable by the operations f*, f. when f is smooth
projective, and ® but we cannot prove the stability for the other operations of DM and a fortiori
do not get the duality properties (7) and (8) of the Grothendieck 6 functors formalism.

9Recall that M is compact if thefunctor Hom (M, —) commutes with arbitrary direct sums.
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However, we are able to prove the continuity property (9) for the category DM,

2-lim DM,.(Sa) =~ DM.(S),

where we only require that the transition morphism of (X,,) are affine and dominant (see Theorem
11.1.24) . Note this result allows us to extend the comparison of motivic cohomology with higher
Chow groups to arbitrary regular schemes of equal characteristics.

C. Beilinson motives

C.1. Definition and fundamental properties. As anticipated by Morel, the theory of
mixed motives with rational coefficients is much simpler and we succeed in establishing a complete
formalism for them. Our initial approach differs slightly from that of Morel. We construct, out
of the rational stable homotopy category and the ring spectrum associated with rational Quillen
K-theory a Q-linear triangulated category DMy (X), which we call the triangulated category of
Beilinson motives (see Def. 14.2.1). Essentially by construction, in the case where X is regular,
we have a natural identification

Homp, (x)(Qx, Qx (p)[g]) = GriKap—(X)q,

where the right hand side is the graded part of the algebraic K-theory of X with respect to the
~-filtration. These groups were first considered by Beilinson as the rational motivic cohomology
groups. We call them the Beilinson motivic cohomology groups.

One of the interest of our definition is that the localization property (Loc) can be easily
deduced from its validity for the stable homotopy category. Therefore, the cross-functor formalism
and more generally all the results of Ayoub can be applied to DMp. Using the constructions of
this book, we obtain a slightly more general and precise formalism.

THEOREM 3 (see Cor. 14.2.11 and Th. 2.4.50). All the standard Grothendieck sixz functors
formalism (see Paragraph A.5.1) is verified by the fibred triangulated category DMp.

Concerning duality for Beilinson motives, we first deduce from Quillen’s localization theorem
in algebraic K-theory the absolute purity theorem:

THEOREM 4 (see Th. 14.4.1). The absolute purity property (see A.5.2(7)) holds for DMg.

As said before, this result is not enough to establish duality for Beilinson motives. We first
have to use descent theory and resolution of singularities (as first explained by Grothendieck in
[SGAS5, 1.3]). Using the existence of trace maps in algebraic K-theory, we prove the following
result:

THEOREM 5 (h-descent, see Th. 14.3.3 and Th. 4.4.1). Consider a finite group G and a
pullback square of schemes

~

h
R

-
<

N < N3

=

-
in which 'Y 1is endowed with an action of G over X. Put U = X — Z and assume the following
three conditions are satisfied.

(a) The morphism f is proper and surjective.

(b) The induced morphism f~1(U) — U is finite.

(¢) The morphism f~1(U)/G — U is generically radicial.
Put a = foi. Then, for any object M of DMg(X), we get a canonical distinguished triangle in
DMjp(X):

M — i, i* (M) @ fo f*(M)¢ — a, a*(M)Y — MJ1]

where 79 means the invariants under the action of G, and the first (resp. second) map of the
triangle is induced by the difference (resp. sum) of the obvious adjunction morphisms.
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In fact, we show that this apparently simple result implies a much stronger descent property for
the fibred triangulated category DMy, the descent property for the h-topology, thus in particular
étale and even flat descent as well as proper descent.

C.2. Constructible Beilinson motives. The next step towards duality for Beilinson mo-
tives is the definition of a suitable finiteness condition. As in the case of Voevodsky motives, we
define the category of Beilinson constructible motives, denoted by DMy (X)), as the thick subcat-
egory of DMp (X) generated by the motives of the form Mx (Y)(p) := fi f'(Qx)(p) for f: Y — X
separated smooth of finite type, and p € Z. This category coincides with the full subcategory of
compact objects in DMg (X).10

The usefulness of this definition comes from the following result, which is the analog of Gab-
ber’s finiteness theorem in the l-adic setting. Analogously, its proof relies on absolute purity, (a
weak form of) proper descent as well as Gabber’s weak uniformization theorem.!!

THEOREM 6 (finiteness, see Th. 15.2.1). The subcategory DM . is stable under the siz oper-
ations of Grothendieck when restricted to excellent schemes.

The final statement concerning Grothendieck 6 functors formalism in the setting of Beilinson
motives is that, when one restricts to constructible Beilinson motives and separated B-schemes of
finite type for an excellent scheme B of dimension less than 2, the complete formalism is available:

THEOREM 7 (see Th. 15.2.4 and Prop. 15.1.6). The fibred category DMg . over the category
of schemes described above satisfies the complete Grothendieck 6 functors formalism described in
section A.5, in particular the duality property A.5.2(8) and the continuity property A.5.3(9).

REMARK. Note that the finiteness theorem as well as the duality property are also conse-
quences of [Ayo07a], respectively Scholie 2.2.34 and Theorem 2.3.73, applied to DMy when one
restricts to quasi-projective schemes over a field or a discrete valuation ring. As ours, the proof of
Ayoub uses in an essential way the absolute purity property (Theorem 4 stated above).

C.3. Comparison theorems. In the historical part of this introduction, we saw many ap-
proaches for the triangulated category of (rational) motives. We succeed in comparing them all
with our definition of Beilinson motives.

Denote by KGLg the algebraic K-theory spectrum in Morel and Voevodsky’s stable homotopy
category SH(SS). By virtue of a result of Riou, the y-filtration on K-theory induces a decomposition
of KGLs)QZ

KGLs.q ~ @ Hi s(n)[2n].
neZ
The ring spectrum Hp s represents Beilinson motivic cohomology. Almost by construction, the
category DMg(S) is the full subcategory of SHq(S) which consists of objects E such that the
unit map £ — Hp s ® F is an isomorphism. In fact, our first comparison result relates the
theory of Beilinson motives with the approach of Réndigs and @stveer through modules over a
ring spectrum:

THEOREM 8 (see Th. 14.2.9). For any scheme S, there is a canonical equivalence of categories
DMB (S) >~ HO(HB7s—mOd)
where the left hand side denotes the homotopy category of modules over the ring spectrum Hg s.

The next comparison involves the the h-topology: this is the Grothendieck topology on the
category of schemes, generated by étale surjective morphisms and proper surjective morphisms.
The first published work of Voevodsky on triangulated categories of mixed motives ([Voe96)),
introduces the A'-homotopy category of the derived category of h-sheaves. We consider a Q-
linear and P!-stable version of it, which we denote by DM, q(S). By construction, for any
S-scheme of finite type X, there is a h-motive Mg(X) in DMy, (S). We define DMy, q(95) as the

10Note the striking analogy with perfect complexes.

e, that, locally for the h-topology, any excellent scheme is regular, and any closed immersion between

excellent schemes is the embedding of a strict normal crossing divisor into a regular scheme.
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smallest triangulated full subcategory of DM, o(S) which is stable by (infinite) direct sums, and
which contains the objects Mg(X)(p), for X/S smooth of finite type, and p € Z. Using h-descent
in DMg, we get the following comparison result.

THEOREM 9 (see Th. 16.1.2). If S is excellent, then we have canonical equivalences of cate-
gories

DMB(S) >~ DMh’Q(S) .

In fact, we first prove this result for the variant of DMy, q(.5) obtained by replacing everywhere
the h-topology by the gfh-topology — for the later, coverings are generated by étale covers and finite
surjective morphisms. In particular we get an equivalence of categories: DMy, q(S) =~ DMgm,q(.5).
This result allows us to link Beilinson motives with Voevodsky’s motivic complexes. Let us denote
by DMgq the fibred category of stable motivic complexes alluded to in Paragraph B. Using the
preceding result in the case of the qfh-topology, we prove:

THEOREM 10 (see Th. 16.1.4). If S is excellent and geometrically unibranch, then there is a
canonical equivalence of categories

DM;5(S) ~ DMq(S) .

In particular, given such a scheme S, we get a description of DMg () as in Theorem 2 cited
above. Voevodsky’s integral (resp. rational) motivic cohomology is represented in SH(S) by a ring
spectrum Haq s (resp. H/?A 5)- The preceding theorem immediately gives an isomorphism of ring

12
spectra:

Hps~H s
As Beilinson motivic cohomology ring spectra over different bases are compatible with pullbacks,

we easily deduce the following corollary which solves affirmatively conjecture 17 of [Voe02b] in
some cases, and up to torsion:

COROLLARY. For any morphism f:T — S of excellent geometrically unibranch schemes, the
canonical map

f*H/%t,S — H/(?/I,T
is an isomorphism of ring spectra.

The last comparison statement is concerned with the approach of Morel. According to Morel,
the category SHq(S) can be decomposed into two factors, one of them being SHq(S)+, that is
the part of SHq(S) on which the map € : S’OQ — 59 induced by the permutation of the factors in
G, A Gy, acts as —1. Let S&+ be the unit object of SHq(S5)+.

Using the presentation of Beilinson motives in terms of Hi-modules (Theorem 8 cited above)

as well as Morel’s computation of the motivic sphere spectrum in terms of Milnor-Witt K-theory,
we obtain another proof of a result of Morel (see [Mor06)):

THEOREM 11 (see Th. 16.2.13). For any scheme S, the canonical map Sg, — Hp s is an
isomorphism.

In fact, we even get the following corollary:

COROLLARY. For any scheme S, there is a canonical equivalence of categories

SHQ(S)+ ~ DMB(S) .

12Note in particular that, when S is regular, we get an isomorphism:
Hﬁ;{l(S, Z)®Q~ G’/‘gKgpfq(S)Q

which extends the known isomorphism when S has equal characteristics. It is natural with respect to pullbacks
and compatible with products.



Recall from Morel theory that, when —1 is a sum of squares in all the residue fields of S, €
is equal to —Id on the whole of SHq(S). Thus in that particular case (e.g. S is a scheme over
an algebraically closed field), the category of Beilinson motives coincide with the rational stable
homotopy category. In general, we can introduce according to Morel the étale variant of SHqg(.S)
denoted by Da1 (S, Q).** As locally for the étale topology, —1 is always a square, and because
DMy satisfies étale descent, we get the following final illuminating comparison statement.

COROLLARY. For any scheme S, there is a canonical equivalence of categories
Da1¢(S,Q) ~ DMg(S).
Let us draw a conclusive picture which summarize most of the comparison results we obtained:

COROLLARY. Given any scheme S, the category DMy (S) is a full subcategory of the rational
stable homotopy category SHQ(S). Given an rational spectrum E over S, the following conditions
are equivalent:

(i) E is a Beilinson motive,
(ii) E is an Hy, s-module,
(iti) E satisfies étale descent,
(iii’) (S excellent) E satisfies qfh-descent,
(ii3”) (S excellent) E satisfies h-descent,

(iv) (S excellent geometrically unibranch) E admits transfers,

(v) the endomorphism ¢ € End(Sg) acts by —Id on E ie. ¢®1g=—1g.

REMARK. (see Corollary 14.2.16) Points (iv) and (v) are related to the orientation theory for
spectra (not only ring spectra). In fact, Hp g is the universal orientable rational ring spectrum
over S.

Let Q.Smg be the Q-linear envelop of the category Smg. On obtains (see Example 5.3.43 in

conjunction with Par. 5.3.35) that the full subcategory of compact objects of SHq(.S) is equivalent

to the category obtained from the homotopy category Kb(Q.SmS) by performing the following
operations:

e take the Verdier quotient modulo the thick triangulated subcategory generated by:

— for any Nisnevich distinguished square W E V' of smooth S-schemes:

I %

U-AXx

Qs(W) L% Qu(U) & Qs (V) L5 Qg (x)

— for any smooth S-scheme X, p: AL — X the canonical projection:

Qs(A%) & Qs(X).
e invert the Tate twist,
e take the pseudo-abelian envelope.
Let us denote by Da1 (S, Q) this category. We finally obtain the following concrete description
of Beilinson constructible motives:
COROLLARY. Given any scheme S, the category DMg .(S) is equivalent to the full subcategory
of Da1 (S, Q) made by the objects E which satisfies one the following equivalent conditions:
(i) (Galois descent) given any smooth S-scheme X and any Galois S-cover f : Y — X of
group G, the canonical map E® Qg(Y)/G — E ® Qg(X) is an isomorphism,
(ii) (Orientability) € acts by —Id on E,
Recall again the following remarks:

(1) When (—1) is a sum of square in every residue fields of S, conditions (i), (ii) are true for
any rational spectrum F over S.

By brief, this is the Pl-stabilization of the Al-localization of the derived category of sheaves of Q-vector
spaces over the lisse-étale of S.
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(2) When S is excellent and geometrically unibranch, the category DMg (S) is equivalent
to the category of rational geometric Voevodsky motives (same definition as in Theorem
2 but replacing Z by Q).

C.4. Realizations. The last feature of Beilinson motives is that they are easily realizable
in various cohomology theories. To get this fact, we use the setting of modules over a strict ring
spectrum.'® Given such a ring spectrum &£ in DMg(S), one can define, for any S-scheme X, the
triangulated category

D(X,€&) = Ho(Ex-mod),

where Ex = f*&€, for f: X — S the structural map.
We then have realization functors

DMg(X) = D(X,&), Mw—Ex®x M

which commute with the six operations of Grothendieck. Using Ayoub’s description of the Betti
realization, we obtain:

THEOREM 12. If S = Spec (k) with k a subfield of C, and if Eperi represents Betti cohomol-
ogy in DMg(S), then, for any k-scheme of finite type, the full subcategory of compact objects of
D(X, Egetti) is canonically equivalent to the derived category of constructible sheaves of geometric
origin D2(X(C), Q).

More generally, if S is the spectrum of some field k, given a mixed Weil cohomology &, with
coefficient field (of characteristic zero) K, we get realization functors

DMg o(X) > Do(X,E), M—Ex®x M

(where D.(X, &) stands for the category of compact objects of D(X, £)), which commute with the
six operations of Grothendieck (which preserve compact objects on both sides). Moreover, the
category D.(S5,€) is then canonically equivalent to the bounded derived category of the abelian
category of finite dimensional K-vector spaces. As a by-product, we get the following concrete
finiteness result: for any k-scheme of finite type X, and for any objects M and N in D.(X,¢),
the K-vector space Homp_(x (M, N[n]) is finite dimensional, and it is trivial for all but a finite
number of values of n.

If k is of characteristic zero, this abstract construction gives essentially the usual categories
of coefficients (as seen above in the case of Betti cohomology), and in a sequel of this work, we
shall prove that one recovers in this way the derived categories of constructible ¢-adic sheaves (of
geometric origin) in any characteristic. But something new happens in positive characteristic:

THEOREM 13. Let V' be a complete discrete valuation ring of mized characteristic, with field of
functions K, and residue field k. Then rigid cohomology is a K -linear mized Weil cohomology, and
thus defines a ring spectrum Erg in DMgp (k). We obtain a system of closed symmetric monoidal
triangulated categories Dyig(X) = De(X, Erig), for any k-scheme of finite type X, such that

HomD”'y(X) (]]'Xv ]]-X(p)[q]) = ngg(X)(p) )
as well as realization functors
R”'g : DMB,C(X) — D”'g(X)

which preserve the six operations of Grothendieck.

D. Detailed organization

The book is organized in four parts that we now review in more details.

Hie we say a ring spectrum is strict if it is a commutative monoid in the underlying model category.
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D.1. Grothendieck six functors formalism (Part 1). The first part is concerned with
the formalism described in section A.5 above. It is the foundational part of this work.

We use the language of fibred categories (introduced in [SGA1, VI]), complemented by that
of 2-functors (or pseudo-functors), in order to describe the 6 functors formalism. We first describe
an axioms which allow to derive the core formalism — i.e. the part described in section A.5.1 —
from simpler axioms. We do not claim originality in this task: our main contribution is to give
a synthesis of the approach of Deligne described in [SGA4, XVII] (see also [Har66, Appendix])
with that of Voevodsky developed by Ayoub in [Ayo07a].

Recall that a (cleaved) fibred category .# over .# can be seen as a family of categories . (.5)
for every object S of . together with a pullback functor f*: #(S) — .#(T) for any morphism
f:T — S of #.1 Given a suitable class & of morphisms in .7, we set up a systematic study of
a particular kind of fibred categories, called &?-fibred categories (definition 1.1.10): one where for
any f in &2, the pullback functor f* admits a left adjoint, generically denoted by f;. The functor
f# has to be thought as a variant of the exceptional direct image functor.t6

In section 1, we study basic properties of &-fibred categories which will be the core of the
6 functors formalism, such as base change formulas and projection formulas when an additional
monoidal structure is involved. These formulas are particular case of a compatibility relation be-
tween different kind of functors expressed through a canonical comparison morphism. Such kind
of comparison morphisms are generically called exchange morphisms. They are very versatile and
appears everywhere in the theory (see Paragraphs 1.1.6, 1.1.15, 1.1.24, 1.1.31, 1.1.33, 1.2.5). In
fact, they appears fundamentally in Grothendieck 6 functors formalism: in the list of properties
A.5.1, they are the isomorphisms of (5), (6) and even (4). In the direction of the full Grothendieck
functoriality, we introduce a core axiomatic for &-fibred categories that we consider as minimal:
the categories satisfying this axiomatic are called &-premotivic (section 1.4). &?-premotivic cat-
egories will form the basic setting in all this work. They will appear in three different flavours,
depending on which particular kind of additional structure we consider on categories: abelian,
triangulated and model categories.

In Section 2, we restrict our attention to the triangulated and geometric case, meaning that
we consider triangulated Z-fibred categories over a suitable category of schemes .. The aim
of the section is to develop, and extend, Grothendieck 6 functors formalism in this basic setting.
We exhibit many properties of such fibred categories which are indexed in the appendix. Let us
concentrate in this introduction on the two main properties which will corresponds respectively
to Deligne and Voevodsky’s approach on the 6 functors formalism.

The first one, called the support property and abbreviated by (Supp), asserts that the adjoint
functors of the kind f., for f proper, and j4, for 7 an open immersion, satisfy a gluing property
that allows to use the argument of Deligne to construct the exceptional direct image functor f.17
Several properties are derived from (Supp) and the basic axioms of &-fibred categories which lead
to a partial version of the 6 functors formalism (see Theorem 2.2.14).

The second property, most fundamental in the motivic context, is the localization property
abbreviated by (Loc), which is in fact part of the 6 functors formalism (see Paragraph A.5.1). It
has many interesting consequences and reformulations that are derived in section 2.3.1. Note that
(Loc) is also known in the literature as the “gluing formalism”. Some of the properties that we
prove in loc.cit. are already classical (see [BBD82]).

The most interesting consequence of (Loc) was discovered by Voevodsky: together with the
usual A'-localization and P'-stabilization properties of the motivic context, it implies the complete
basic 6 functors formalism as stated in Paragraph A.5.1. This was proved by Ayoub in [Ayo07a].

15T hese pullback functors are subject to the usual cocycle condition ; see section 1.

L6This kind of situation frequently happens: analytical case (open immersions), sheaves on the small étale site
(étale morphisms), Nisnevich sheaves on the smooth site (smooth morphisms).

17In the context of torsion étale sheaves of [SGA4, XVII], property (Supp) is a consequence of the proper
base change theorem.
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In section 2.4, we revisit the proof of Ayoub and give some improvement of his theorems (see
Theorem 2.4.50 for the precise statement):

e we remove the quasi-projectivity assumption for the existence of fi, replacing it by the
assumption that f is separated of finite type;

e we introduce the orientation property which allows to get a simpler more usual form to
the purity isomorphism (the one stated in point (4) of A.5.1);

e we give another proof of the main theorem in the oriented case by showing that relative
purity is equivalent to some (strong) duality property in the smooth projective case (see
Theorem 2.4.42);

e we directly incorporate the monoidal structure whereas Ayoub gives a separate discussion
for this.

Apart from these differences, the material of section 2.4 is very similar to that of [Ayo07a].
Moreover, in the non oriented case, it should be clear that we rely on the original argument of
Ayoub for the proof of Theorem 2.4.42.

Concerning terminology, we have called motivic triangulated category (Definition 2.4.45) what
Ayoub calls a “monoidal stable homotopy functor”.

The remaining of Part 1 is concerned with extensions of Grothendieck 6 functors formalism.

In Section 3, we show how to use the setting of &-fibred model categories as a framework to
formulate Deligne’s cohomological descent theory.

Unless in trivial cases, object of a derived category are not local.!® To formulate descent theory
in derived categories, the main idea of Deligne was to extend the derived category of a scheme by
one relative to a simplicial scheme, usually a hypercover with respect to a Grothendieck topology
(see [SGA4, Vbis]). The construction consists in first extending the theory of sheaves to the case
where the base is a simplicial schemes and then consider the associated derived category.

We generalize this construction to the case of an arbitrary &-fibred category equipped with
a model structure.!® In fact, we show in Section 3.1 how to extend a Z-fibred category over a
category of schemes to the corresponding category of simplicial schemes and even of arbitrary
diagrams of schemes. Most importantly, we show how to extend the fibred model structure to
the case of diagrams of schemes (see Prop. 3.1.11).2° Concretely, this means that we define a
derived functor of the kind Ly* (resp. Ry, ) for an arbitrary morphism ¢ of diagrams of schemes.
Let us underline that these derived functors mingles two different kinds of functoriality: the
usual pullback f* (resp. direct image f,) for a morphism of schemes f together with homotopy
colimits (resp. limits) — see the discussion in Paragraph 3.1.12 till Proposition 3.1.16. With
that extension in hands, we can easily formulate (cohomological) descent theory for arbitrary
Grothendieck topologies on the category of schemes for the homotopy category of a Z-fibred
model category: see Definition 3.2.5.

The end of Section 3 is devoted to concrete examples of descent in Z-fibred model categories,
and their relation with properties of the associated homotopy category, assuming it is triangu-
lated, as introduced in Section 2. The first and most simple example corresponds to the case of a
Grothendieck topology associated with a cd-structure in the sense of Voevodsky (as the Nisnevich
and the cdh-topology. See [VoelOb] or Paragraph 2.1.10). In that case, descent can be char-
acterized as the existence of certain distinguished triangles (Mayer-Vietoris for Zariski topology,

18The first example of this fact is the circle: any non trivial open subset of S! is contractible whereas S itself
is not.

Recall that model structures, introduced by Quillen, allow to perform all the usual constructions of derived
categories by localizing an arbitrary category with respect to a given class of morphisms called weak equivalences.
It contains in particular the usual case of complexes of an arbitrary abelian category with quasi-isomorphisms as
weak equivalences. The main construction of the theory of Quillen is that of left (resp. right) derived functors
which can be defined by replacing the usual notion of projective (resp. injective) resolution by that of cofibrant
(resp. fibrant) resolution.

20By restricting the morphisms of diagrams of schemes to a certain class denoted by Z.4t, we also show how
to get a Pcqrt-fibred model category over diagrams of schemes (Rem. 3.1.21) but this is not really needed in the
descent theory.
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Brown-Gersten for Nisnevich topology): this is Theorem 3.3.2 which is in fact a reformulation of
the results of Voevodsky.

We then proceed to the most fundamental case of descent in algebraic geometry, that for
proper surjective maps which allows in principle the use of resolution of singularities. In fact, the
main result of the whole of Section 3 is a characterization of h-descent which allows to reduce it, for
P-fibred homotopy triangulated categories which are rational and motivic, to a simple property
easily checked in practice?!: this is Theorem 3.3.37. Along the way, we proved also the following
results interesting in their own:

e several characterization of étale descent (Theorems 3.3.23 and 3.3.32);

e a characterization of qfh-descent (Theorem 3.3.25) as if it was defined by a cd-structure.??

In fact, the last point is the heart of the proof of the main Theorem, 3.3.37. Whereas the extension
of fibred homotopy categories to diagrams of schemes is not unprecedented (see [Ayo07b]), our
study of proper and h-descent seems to be completely new. In our opinion, it is one of the most
important technical innovation of this book.

In Section 4, we study the extension of Grothendieck 6 functors formalism in rational motivic
categories, mainly duality and continuity. As already mentioned, the general principle is not knew
and follows mainly the path laid by Grothendieck in [SGAS5].

In the case of an abstract motivic triangulated category — which is for the purpose of descent
theory the homotopy category of an underlying fibred model category as seen above — the first
task is to introduce a correct property of finiteness inherent to any duality theorem. This is done
following Voevodsky, as in the work of Ayoub, by introducing the notion of constructiblity in
Definition 4.2.1. The name is inspired by the étale case, but the notion of constructibility which
we consider here is defined a generation property which really corresponds to what Voevodsky
called geometric motives: constructible motives in our sense are generated by twists of motives of
smooth schemes and are stable by cones, direct factors and finite sums. Let us mention that in good
cases, the property of being constructible coincides with that of being compact in a triangulated
category, resounding with the theory of perfect complexes (in the context of l-adic sheaves, this
corresponds to “constructible of geometric origin”).

The main point on constructible motives is the study of their stability under the 6 operations
that we get from the axioms of a triangulated motivic category. This is done in Section 4.2. As
in the étale case, the crucial point is the stability with respect to the operation f,, when f is a
morphism of finite type between excellent schemes. In Theorem 4.2.24, we give conditions on a
motivic triangulated category so that the stability for f. is guaranteed (then the stability by the
other operations follows easily, see 4.2.29). Our proof follows essentially an argument of Gabber.
The general principle, going back to [SGA4, XIX, 5.1], is to use resolution of singularities to
reduce to an absolute purity statement which is among our assumptions.??

In Section 4.3, we introduce an important property of motivic triangulated categories, called
continuity, which allows reasoning that involves projective limits of schemes. In fact, it is shown
in Proposition 4.3.4 that this property implies the property (9) of the (extended) Grothendieck
6 functors formalism (see Paragraph A.5.3 above). We also give a criterion for continuity (4.3.6)
which will be applied later in concrete cases and draw some interesting consequences.

Finally, Section 4.4 deals with duality in itself for constructible motives, that is property (8) of
Paragraph A.5.2. The main theorem 4.4.21 asserts that, under the same condition than Theorem
4.2.24, and if one restricts to schemes that are separated of finite type over an excellent base
scheme B of dimension less or equal to 2, then the full duality property holds (see also Corollary
4.4.24). The proof follows the line of proof of the analog Th. 2.3.73 of [Ayo07a]. In particular
the main point is the fact that constructible motives are generated by some nice motives adapted
to the use of resolution of singularities: see Corollary 4.4.3. The main difference with op. cit. is

21This is the separation property defined in 2.1.7. Let us mention here it is a consequence of the existence of
well behaved trace maps (see the proof of Theorem 14.3.3).

22t is at the origin of the formulation of descent that we gave for DM in Theorem 5(b) above.

23 Absolute purity will be proved later for Beilinson motives.
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that we use De Jong equivariant resolution of singularities [dJ97], so that our assumptions are a
little bit more general.

D.2. The constructive part (Part 2). The purpose of this part is to give a method of
construction of triangulated categories that satisfies the formalism described in Part 1. We have
chosen to mainly use the setting of derived category. Also, we use our notion of &-fibred categories
(Z-premotivic with a good monoidal structure). Recall this means the pullback functor f* admits
a left adjoint fy when f € &2. Essentially, & will be either the class of smooth morphisms of
finite type or the class of all morphisms of finite type (eventually separated).

In Section 5.1, starting from a &?-premotivic abelian category o7, we first show how to prove
that the derived D(&7) is also a &-premotivic category. This consists in deriving the structural
functors of a Z-premotivic category, which is done by building a suitable underlying 4?-fibred
model category in Proposition 5.1.12. Actually, the proof of the axioms of a model category
has already appeared in our previous work [CDO09]. Let us mention the flavor of this model
structure: we can describe explicitly cofibrations as well as fibrations, by the use of an adapted
Grothendieck topology ¢. This model structure is linked with cohomological t-descent (as shown
later in Proposition 5.2.10). The advantage of our framework is to easily obtain the functoriality
of this construction (Paragraph 5.1.23), as well as other homotopical constructions (dg-structure:
Rem. 5.1.19, extension to diagrams of schemes: Par. 5.1.20). In paragraph 5.1.c, we also describe
in suitable cases the constructible objects of the derived category by a presentation similar to that
of Voevodsky’s geometric motives over a perfect field.

In Section 5.2 (resp. Section 5.3) we show how to describe the Al-localization (resp. P!-
stabilization) process in &-premotivic derived categories: to any Z?-premotivic abelian cate-
gory & is associated an A'-derived category Dzﬁi (&) (resp. Pl-stable and Al-derived category
Dai()) in Definition 5.2.16 (resp. 5.3.22). From the model category obtained in Section 5.1, the
construction uses the classical tools of motivic homotopy theory as introduced by Morel and Vo-
evodsky. Again, our framework allows to get the same homotopical constructions as in the simple
derived case as well as some nice universal properties. We also get a description of constructible
objects under suitable assumptions: Section 5.2.d (resp. 5.3.e). These sections are filled with
concrete examples.

In Section 6, we focus on the main (in fact universal) example of motivic derived category, the
Al-derived category of Morel, obtained by the process described above from the abelian premotivic
category of abelian sheaves over the smooth Nisnevich site. The main point here is that one gets
the localization property for this category by a theorem of Morel and Voevodsky. We give two
new contributions on this topic. First we show in Section 6.1 that the A'-derived category can
be embedded in a larger category which naturally contains objects that we can call motives of
singular schemes. This is useful to state descent properties and will be essential to study h-motives.
Second, we show in Section 6.3 how one can use the Al-derived category to obtain good properties
of another premotivic derived category satisfying suitable assumptions. This will be applied to
motivic complexes.

In Section 7, we go back to the case of an arbitrary monoidal &?-fibred model category .#
and explain how to use the setting of ring spectra and modules over ring spectra in the premotivic
context. The main construction associates to a suitable collection of (commutative) ring spectra R
in A a P-fibred monoidal category denoted by Ho(R- mod): Proposition 7.2.13. This construction
will be used several times:

e in the study of algebraic K-theory (Section 13): the category of modules over K-theory is
the fundamental technical tool to get motivic proper descent as well as motivic absolute
purity;

e in the study of Beilinson motives when we will relate them with modules over motivic
cohomology (Theorem 14.2.9);

e in the study of realizations associated with a mixed Weil cohomology (Section 17).

D.3. Motivic complexes (Part 3). This part is concerned with the constructions described
above, in Section B. Our aim is to extend the definition of Voevodsky’s integral motivic complexes
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to any base, then study their functoriality and introduce their non effective, or rather P!-stable,
counter-part.

Our first task, in Section 8, is to revisit Suslin-Voevodsky’s theory of relative cycles exposed in
[SVOO0Db]. Indeed, they will be at the heart of the general construction. Our presentation is made to
prepare the theory of finite correspondences, a particular case of relative cycles. Especially, we want
to give a meaning to the following picture representing the composition of finite correspondences
a from X to Y and 8 from Y to Z:

bRy a—=f—= 7.
Y’ v

a—=Y

\
X

(see also (9.1.4.1)). More precisely, we want to interpret this as a diagram of cycles. Thus we are
led to consider cycles (with their support) as objects of a category. Concretely, a cycle is considered
as a multi-pointed scheme, each point being affected with some multiplicity (an integral or rational
number).

This conceptual shift has the advantage of allowing a treatment of cycles analogue to that of
algebraic varieties, or rather schemes, promoted by Grothendieck via studying morphisms. Thus,
we replace the various groups of relative cycles introduced by Suslin and Voevodsky in op. cit. by
properties of morphisms of cycles. Here is a list of the principal ones:

e pseudo-dominant (8.1.2), equidimensional (8.1.3 and 8.3.18),
e pre-special (8.1.20),

e special (8.1.28),

e A-universal (8.1.48).

The most intriguing one, being pre-special, has no counter-part in op. cit. Its idea comes from
a mistake (fortunately insignificant) in the convention of Suslin and Voevodsky. Indeed, Lemma
3.2.4 of op. cit. is false whenever the base S is non reduced and irreducible: then any fat point
(zg,21) and any flat S-scheme give a counter-example.?* The explanation is that the operation
of specialization along a fat point does not take into account the geometric multiplicities of the
base. On the contrary, when X is flat over an irreducible scheme S, the geometric multiplicity of
any irreducible component of X is a multiple of the geometric multiplicity of S. This leads us to
the definition of a pre-special morphism of cycles 8/, where a divisibility condition appears in
the multiplicities of 5 with respect to that of a.?

The main achievement of Suslin and Voevodsky’s theory is the construction of a pullback
operation for relative cycles. In our language, it corresponds to a kind of tensor product, more
precisely a product of cycles relative to a common base cycle (as for example the cycle f ®y «
of the preceding picture). Despite our different presentation, the method to define this operation
follows closely the original idea of Suslin and Voevodsky: use the flatification theorem of Gruson
and Raynaud to reduce to the case of flat base change of cycles. Recall that the key point is to
find the correct condition on cycles — or rather morphisms of cycles in our language — so that one
obtains a uniquely defined operation independent of the chosen flatification. This is measured by
a specialization procedure (Definition 8.1.25) associated with fat points (Definition 8.1.22) and
leads to the central notion of special morphisms of cycles (Definition 8.1.28). An innovation that
we introduce in the theory is to give, as soon as possible, local definitions at a point in the style
of EGA. This is in particular the case for the property of being special.

Once this notion is in place, one defines for a base cycle «a, a special a-cycle 8 and any
morphism ¢ : @ — « the relative product denoted by 8 ®, ¢/, equivalently the base change of

24Explicitly, take S = Z = Spec (k[t]/(tz)) = {n}, R = (Kk[t]) The left hand side of the equality of 3.2.4 is
2.n while the right hand side is 7.

25T, anticipate the remaining of the construction, given a non reduced scheme S, this will allow for the
operation of pullback along the immersion S,..q — S associated with the reduction of S: it simply corresponds to
dividing by the geometric multiplicities of S, as the base change to S,..q does for flat S-schemes.

)’
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B/a along ¢ (Definition 8.1.39). This notion is close to the correspondence homomorphisms of
Section 3.2 of op. cit. In particular it usually involves denominators. The last important notion,
being A-universal, corresponds to cycles 8/« with coefficients in a ring A C Q, which keeps their
coefficients in A after any base change.

One sees that our language is especially convenient when it is time to consider the stability
of certain properties of morphisms of cycles by composition (Cor. 8.2.6) or base change (Cor.
8.1.45). Then the usual statements of intersection theory are proven in Section 8.2, still following
or extending Suslin and Voevodsky: commutativity, associativity, projection formulas. This makes
our relative product a good extension of the classical notion of exterior product of cycles (over a
field).

The focal point of intersection theory is the study of multiplicities. Thus we introduce Suslin-
Voevodsky’s multiplicities, as the ones appearing as a corollary of the existence of the relative
cycle 8 ®4 o (Definition 8.1.42). A very important result in the theory, already enlightened by
Suslin and Voevodsky, is the fact these multiplicities can be expressed in terms of Samuel multi-
plicities.?® In fact, we even prove a criterion for the property of being special at a point involving
Samuel multiplicities at the branches of the point: see Corollary 8.3.25. Roughly speaking, the
multiplicities arising from Samuel’s definition at each branches of the point must coincide: then
this common value is simply the Suslin-Voevodsky’s multiplicity.

Finally, still following the treatment of algebraic geometry by Grothendieck, we introduce
in the theory the study of the constructibility of properties of morphisms of cycles (special and
A-universal). Explicitly, we prove that given a relative cycle 5/a, when « is the cycle associated
with a scheme S, the locus where § is special (resp. A-universal) is an ind-constructible subset
of S (Lemma 8.3.4). This allows to prove the good behaviour of these notions with respect to
projective limits of schemes (see in particular 8.3.9). This will be the key point when proving the
continuity property — (9) of A.5.3 — of the fibred category DM.

The remaining of Part 3, consists in extending the theory of sheaves with transfers introduced
by Voevodsky, originally over a perfect field, to the case of an arbitrary base and apply to it the
general procedures studied in Part 2 to get the fibred category DM.

In Section 9, we work out the theory of finite correspondences using the formalism of relative
cycles. The construction is summarized in Corollary 9.4.1: given a class of morphisms & contained
in the class of separated morphisms of finite type and a ring of coefficients A, we produce a monoidal
P-fibred category, denoted by £25°", whose fiber over a noetherian scheme S (eventually singular)
is the category of £-schemes over S with morphisms the finite correspondences.

In Section 10, we develop the theory of sheaves with transfers along the very same line as the
original treatment of Voevodsky. This time, the outcome can be summarized by Corollaries 10.3.11
and 10.3.15: given a class & of morphisms as above and a suitable Grothendieck topology ¢, we
construct an abelian premotivic category Shy (<, A) which is compatible with the topology ¢ (cf
Part 2); its fiber over a scheme S is given by t-sheaves of A-modules with transfers (in particular
presheaves on 9&‘7’@).27 The section is closed with an important comparison result, essentially due
to Voevodsky, between Nisnevich sheaves with transfers and sheaves for the gfh-topology (with
rational coefficients over geometrically unibranch bases): see Theorem 10.5.14.

Finally, Section 11 is devoted to gather the work done previously and define the stable derived
category of motivic complexes DMy, given an arbitrary ring of coefficients A. The out-come has
already been described in Section B above.

D.4. Beilinson motives (Part 4). This part contains the construction of Beilinson motives
as well as the proof of all the properties stated before. It is based on the first and second parts
but independent of the third one — except in the comparison statements of Section 16.1.

Section 12 contains a short reminder on the stable homotopy category and the notion of
oriented ring spectra.

26When a correct regularity assumption is added, one reduces to the usual Serre’s Tor-intersection formula:
see 8.3.31 and 8.3.32).
27The most notable topologies t that fit in this result are the Nisnevich and the cdh ones. See Section 10.4.
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Section 13 is the heart of our construction. It contains a detailed study of the K-theory ring
spectrum KGL and the associated notion of KGL-modules in the homotopical sense (based on
the formalism introduced in Section 7). Using the works of several authors (most notably: Riou,
Nauman, Spitzweck, Dstveer), we show how the central results of Quillen on algebraic K-theory
give important properties of KGL-modules: absolute purity (Th. 13.6.3) and trace maps (Def.
13.7.4).

In Section 14, we finally introduce the definition of Beilinson motives. Let us describe it in
detail now. It is based on the process of Bousfield localization of the stable homotopy category
with respect to a cohomology. This operation is fundamental in modern algebraic topology. We
apply it in algebraic geometry to the rational stable homotopy category (or, what amount to
the same, to the rational stable Al-derived category of Morel, Section 6) and to the rational
K-theory spectrum KGLq: the Bousfield localization of Da1 A (S, Q) with respect to KGLq,s is
the category of Beilinson motives DMp(S) over S (Definition 14.2.1). Using the preceding study
of KGLq together with the decomposition of Riou recalled in the beginning of Section C.3, we
get the main properties of the premotivic category DMp: the h-descent theorem (14.3.4) and the
absolute purity theorem (14.4.1).

Then the theoretical background laid down in Part 1 is applied to DMp, given in particular
the complete Grothendieck six functors formalism for constructible Beilinson motives (Section 15).
Our work closes on the two main subjects described above on Beilinson motives: the comparison
statements (Section 16) and the study of motivic realizations (Section 17).

Notations and conventions

In every section, we will fix a category denoted by . which will contain our geometric objects.
Most of the time, . will be a category of schemes which are suitable for our needs; the required
hypothesis on . are given at the head of each section. In the text, when no precisions are given,
any scheme will be assumed to be an object of ..

When &7 is an additive category, we denote by 7% the pseudo-abelian enveloppe of 7. We
denote by C(<7) the category of complexes of 7. We consider K(<7) (resp. K’(7)) the category
of complexes (resp. bounded complexes) of &7 modulo the chain homotopy equivalences and when
o/ is abelian, we let D(/) be the derived category of <.

If A is a model category, Ho(.#') will denote its homotopy category.

We will use the notation

a:=29:p
to mean a pair of functors such that « is left adjoint to 8. Similarly, when we speak of an adjoint
pair of functors (a, 8), a will always be the left adjoint. We will denote by

ad(a, 8) : 1 — Ba (resp. ad (o, B) : aff — 1)

the unit (resp. counit) of the adjunction («, 8). Considering a natural tranformation n: F — G
of functors, we usually denote by the same letter 7 — when the context is clear — the induced
natural transformation AF B — AGB obtained when considering functors A and B composed on
the left and right with F' and G respectively.

In section 8, we will assume that equidimensional morphims have constant relative dimension.
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Part 1

Fibred categories and the six functors
formalism



1. General definitions and axiomatic

1.0. We assume that . is an arbitrary category.

We shall say that a class &2 of morphisms of . is admissible if it is has the following properties.

(Pa) Any isomorphism is in Z2.

(Pb) The class & is stable by composition.

(Pc) The class & is stable by pullbacks: for any morphism f : X — Y in & and any
morphism Y’ — Y, the pullback X’ = Y’ xy X is representable in ., and the projection
X' =Y isin £.

The morphisms which are in & will be called the Z-morphisms.?®
In what follows, we assume that an admissible class of morphisms &2 is fixed.

1.1. P-fibred categories.
1.1.a. Definitions. Let Fat be the 2-category of categories.

1.1.1. Let .# be a fibred category over ., seen as a 2-functor # : #°P — €Cat; see [SGAL,
Exp. VI
Given a morphism f: T — S in ., we shall denote by

froH(S)— #(T)
the corresponding pullback functor between the corresponding fibers. We shall always assume that

(1s)* = 1_4(s), and that for any morphisms W N N ., we have structural isomorphisms:
(1.1.1.1) g = (fo)*

which are subject to the usual cocyle condition with respect to composition of morphisms.
Given a morphism f : T — S in .7, if the corresponding inverse image functor f* has a left
adjoint, we shall denote it by
fo: M(T)— A(S).

For any morphisms W % T 7. S in . such that f* and ¢g* have a left adjoint, we have an
isomorphism obtained by transposition from the isomorphism (1.1.1.1):

(1.1.1.2) (f9)s = fags -

DEFINITION 1.1.2. A pre-Z-fibred category 4 over . is a fibred category .# over . such
that, for any morphism p : T — S in &, the pullback functor p* : #Z(S) — #(T) has a left
adjoint py : A (T) — A (S).

CONVENTION 1.1.3. Usually, we will consider that (1.1.1.1) and (1.1.1.2) are identities. Sim-
ilarly, we consider that for any object S of ., (15)* =1 _4(g) and (15); = 1%(5).29

EXAMPLE 1.1.4. Let S be an object of .. We let #2/S be the full subcategory of the comma
category . /S made of objects over S whose structural morphism is in £2. We will usually call
the objects of &2/S the £2-objects over S.

Given a morphism f: 7T — S in % and a &-morphism 7 : X — S, we put f*(n) =7 xg T
using the property (Pc) of & (see 1.0). This defines a functor f*: /S — 2/T.

Given two &-morphisms f: 7T — S and 7: Y — T, we put fy(m) = f o7 using the property
(Pb) of 2. this defines a functor f; : & /T — /5. According to the property of pullbacks, fj
is left adjoint to f*.

We thus get a pre-Z-fibred category &/?: S5+ 2/S.

28In practice, . will be an adequate subcategory of the category of noetherian schemes and & will be the class
of smooth morphisms (resp. étale morphisms, morphisms of finite type, separated or not necessarily separated) in
.

29We can always strictify globally the fibred category structure so that g*f* = (fg)* for any composable
morphisms f and g, and so that (1g)* = 1 4 (s) for any object S of .#; moreover, for a morphism h of . such that
a left adjoint of h* exists, and we can choose the left adjoint functor hy which we feel as the most convenient for
us, depending on the situation we deal with. For instance, if h = 1g, we can choose hy to be 1_4(g), and if h = fg,
with f* and g* having left adjoints, we can choose hy to be figy (with the unit and counit naturally induced by
composition).
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ExXAMPLE 1.1.5. Assume . is the category of noetherian schemes of finite dimension, and
& = Sm. For a scheme S of .7, let J4,(S) be the pointed homotopy category of schemes over S
defined by Morel and Voevodsky in [MV99]. Then according to op. cit., , is a pre-Sm-fibred
category over ..

1.1.6. Ezchange structures I.— Suppose given a weak Z2-fibred category ./Z .
Consider a commutative square of .

Y — X
gJ/ A if
TT>S

such that p and ¢ are ZZ-morphisms, we get using the identification of convention 1.1.3 a canonical
natural transformation

ad(py,p*) ad’(q3,4")
Ex(A]) : q19” ——— qs9" 0" py = 0" [0y — > [*py

called the exchange transformation between ¢z and g*.

REMARK 1.1.7. These exchange transformations satisfy a coherence condition with respect to
the relations (fg)* = ¢*f* and (fg)s = figs. As an example, consider two commutative squares
in &

J—Y —=X
o ool a s
W?T?S

and let A o © be the commutative square made by the exterior maps — it is usually called the hor-
izontal composition of the squares. Then, the following diagram of 2-morphisms is commutative:

- Ez(A0©); o
(aq')sh f*(pp')4

#
QGayh” ————= @19 p, ——— f

To see this, one divides this diagram as follows:



LY¥(,bb)

S d ytpip <P yipi
1% *l[/ - *’L[/

., d,y b
Gddpy

app
-~

—
)
) <
= —
2 2 S =
) 2 > =
S 2 * x
=Y Q. Y -
% * * =
NS S = S
* * * ;_E/
= =% = =
=
= =L
g et
Q S
u
-Q\ ~
)
=5
)
=
< _
k=3 *
Q Q
*
X S,
=
=
3
NSE
I
&
: 2
—
-Q\ ~ PQ
2 S
e ) 20 =
IS =5 —
Q Q _ <
¥ * * Q
=3 3 < =
* * * *
= 3 ~ —
S NS o "
R NN s ~
= S
N—
I *
= i
o
) )
= =
) < o
* * Q.
Kh \ 3 <
* * a
ks = =
S NS
] ]
E=a =
I
&
&
&.; k’_;
)
) 3
= hS|
= =
=

where ad, (resp. ad]) indicates the morphism obtained from the obvious unit morphism (resp.
counit morphism) of the adjunction (r4,r*) by eventually adding functors on the left or on the
right. The reader can check easily that each cell of the above diagram is commutative, proving
our claim.

Thus, according to our abuse of notation for natural transformations, Ex behaves as a con-
travariant functor with respect to the horizontal composition of squares. The same is true for

vertical composition of commutative squares.

REMARK 1.1.8. In the sequel, we will introduce several exchange transformation between
various functor. We speak of an exchange isomorphism when the transformation is an exchange
isomorphism. When only two kind of functors are involved, say of type a and b, we say that
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functors of type a and functors of type b commute when the exchange transformation is an
isomorphism.

As an example (see also next definition), when the exchange transformation Ez(A}) is an
isomorphism, we simply say that f* and py commute — or also that f* commutes with py.

1.1.9. Under the assumptions of 1.1.6, we will consider the following property:

(P-BC) P-base change— For any cartesian square

y 4 x

| s s

T—S8
P
such that p is a &-morphism, the exchange transformation

Ex(Af) s g™ — f*py

is an isomorphism.3°

DEFINITION 1.1.10. A &-fibred category over . is a pre-Z-fibred category .# over . which
satisfies the property of &?-base change.

ExampLE 1.1.11. Consider the notations of example 1.1.4. Then the transitivity property
of pullbacks of morphisms in & amounts to say that &7/? satisfies the 4-base change property.
Thus, &/? is in fact a P-fibred category, called the canonical &P-fibred category.

DEFINITION 1.1.12. A P-fibred category .# over .7 is complete if, for any morphism f : T —
S, the pullback functor f*: .#(S) — #(T) admits a right adjoint f. : #(S) — #(T).

REMARK 1.1.13. In the case where & is the class of isomorphisms a Z-fibred category is
what we usually call a bifibred category over .#.

ExXAMPLE 1.1.14. The pre-Sm-fibred category 74 of example 1.1.5 is a complete Sm-fibred
category according to [MV99].

1.1.15. Exchange structures II.— Let .# be a complete &-fibred category. Consider a com-
mutative square

x

Y
glA f
T

— S.
p

We obtain an exchange transformation:

¥ «p ad(g”,gx) - wprp ad (f7, 1)
Ex(A]) :p*fo — = 990" fe = 00" [ fr —— 9.¢".

Assume moreover that p and g are #2-morphism. Then we can check that Fz(Af) is the transpose
of the exchange Ex(Aa‘) Thus, when A is cartesian and p is a &-morphism, Fz(AZ) is an
isomorphism according to (£-BC).

We can also define an exchange transformation:

ad(f* f2), o pw - BADT . ad(g"g0)
Ex(Ap) : pyge ——" fuof "Pige ——— f24s9" 9. —" fuqy.
REMARK 1.1.16. As in remark 1.1.7, we obtain coherence results for these exchange transfor-

mations.
First with respect to the identifications of the kind f*¢* = (9f)*, (f9)« = fegx, (f9): = fe9s-

30T other words, f* commutes with py.



Secondly, when several exchange transformations of different kind are involved. As an example,
we consider the following commutative diagram in .%:

q q
7= v  =x

q¢'— v ___

h e % A f
//T\
Q/P r p\S
p\T%

Then the following diagram of natural transformations is commutative:

e L
9 P, — [ s,

Ba(e?)) E\I(F“

aq.h” [y}
Ex(AZ
* *
aqzh TFatey) 19 P:

We leave the verification to the reader (it is analogous to that of Remark 1.1.7 except that it
involves also to the compatibility of the unit and counit of an adjunction).

DEFINITION 1.1.17. Let .# be a complete &-fibred category. Consider a commutative square
in .
Yy 2> X
g A f
We will say that A is .# -transversal if the exchange transformation
Ex(AY) :p" fv — 94"
of 1.1.15 is an isomorphism.
Given an admissible class of morphisms @ in ., we say that .# has the transversality (resp.

cotransversality) property with respect to Q-morphisms, if, for any cartesian square A as above
such that f is in @ (resp. p is in Q), A is .#-transversal.

REMARK 1.1.18. Assume .7 is a sub-category of the category of schemes. When @ is the
class of smooth morphisms (resp. proper morphisms), the cotransversality (resp. transversality)
property with respect to @ is usually called the smooth base change property (resp. proper base
change property). See also Definition 2.2.13.

According to Paragraph 1.1.15, we derive the following consequence of our axioms:

ProroOSITION 1.1.19. Any complete &Z-fibred category has the cotransversality property with
respect to .

Let us note for future reference the following corollary:

COROLLARY 1.1.20. If A is a &-fibred category, then, for any monomorphism j: U — S in

P, the functor jy is fully faithful. If moreover A is complete, then the functor j, is fully faithful
as well.

PROOF. Because j is a monomorphism, we get a cartesian square in .

U=—=U

| s b

U—S.
j
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Remark that E:C(A;) : 1 — j7*jy is the unit of the adjunction (jy,j*). Thus the &?-base change
property shows that jy is fully faithful.

Assume # is complete. We remark similarly that Fx(A%) : j*j. — 1 is the counit of the
adjunction (j*,j.). Thus, the above proposition shows readily that j, is fully faithful. O

1.1.b. Monoidal structures. Let €at® be the sub-2-category of ¢at made of symmetric monoidal
categories whose 1-morphisms are (strong) symmetric monoidal functors and 2-morphisms are
symmetric monoidal transformations.

DEFINITION 1.1.21. A monoidal pre-22-fibred category over
is a 2-functor

M S — Cat®
such that .Z is a pre-Z-fibred category.

In other words, .# is a pre-Z-fibred category such that each of its fibers .Z(S) is endowed
with a structure of a monoidal category, and any pullback morphism f* is monoidal, with the
obvious coherent structures. For an object S of ., we will usually denote by ®g (resp. 1g) the
tensor product (resp. unit) of .Z(S).

In particular, we then have the following natural isomorphisms:

e for a morphism f: 7T — S in ., and objects M, N of .Z(5),
fr(M) @7 f*(N) = f*(M @s N);
e for a morphism f: 7T — S in .7,
fF(lg) = 1p.

CONVENTION 1.1.22. As in convention 1.1.3, we will generally consider that these structural
isomorphisms are identities.

ExampLE 1.1.23. Consider the notations of example 1.1.4.

Using the properties (Pb) and (Pc) of & (see 1.0), for two S-objects X and Y in #2/S, the
cartesian product X xg Y is an object of &7/S. This defines a symmetric monoidal structure on
/S with unit the trivial S-object S. Moreover, the functor f* defined in loc. cit. is monoidal.
Thus, the pre-#-fibred category &2/ is in fact monoidal.

1.1.24. Monoidal exchange structures I. Let .# be a monoidal pre-Z-fibred category .# over

.
Consider a &-morphism f: T — S, and M (resp. N) an object of .#(T) (resp. .#(S5)).
We get a morphism in .2 (.5)

Ex(ff,®): fs(M®r f*(N)) — fi(M) ®s N
as the composition
Je(M @7 f5(N)) = fy(f* fs(M) @1 f*(N)) = fof*(fs(M) ®s N) = fy(M) @s N .

This map is natural in M and N. It will be called the exchange transformation between f; and
7.

Remark also that the functor fy, as a left adjoint of a symmetric monoidal functor, is colax
symmetric monoidal: for any objects M and N of .#(T'), there is a canonical morphism

(11.24.1) Ji(M) @5 fy(N) = fy(M &1 N)
natural in M and N, as well as a natural map

(1.1.24.2) fa(lr) = 1g.



REMARK 1.1.25. As in remark 1.1.7, the preceding exchange transformations satisfy a coher-

ence condition for composable morphisms W 2 T ER S. We get in fact a commutative diagram:

Ex((£9);,®)

(f9): (M @5 (f9)*(N)) ((f9)s(M)) ©@w N

fi9:s(M @5 g* f*(N)) Mfu(gn(M) &7 [*(N)) RSl (fag9:(M)) @w N

As in remark 1.1.16, there is also a coherence relation when different kinds of exchange transfor-
mations are involved. Consider a commutative square in .%

vy L x

gl A lf
T—S
P
such that p and ¢ are &Z-morphisms and put h = f oq = pog. Then the following diagram is
commutative:
Exz(Ay) Ez(py,®)

49" (M @1 p* N) ———— f*p(M @1 p*N) ——— [*(p;M ®5 N)

” H . e Ez(qy,®) Ex(A}) . H .
4:(9*M ®y ¢* f*N) —— (q9"M) ®x f*N ——> (f*pyM) ®x f*N

We leave the verification to the reader.

1.1.26. Under the assumptions of 1.1.24, we will consider the following property:
(P-PF) P-projection formula— For any &-morphism f : T — S the exchange transformation

Ex(fy, @r) : f{(M @1 f*(N)) = fy(M) @5 N

is an isomorphism for all M and N.

DEFINITION 1.1.27. A monoidal &-fibred category over . is a monoidal pre-Z-fibred cate-
gory M : .S °P — Cat® over . which satisfies the £-projection formula.

ExXAMPLE 1.1.28. Consider the canonical monoidal weak &-fibred category &2/7 (see example
1.1.23). The transitivity property of pullbacks implies readily that £2/7 satisfies the property
(2-PF). Thus, &2/ is in fact a monoidal &-fibred category called canonical.

DEFINITION 1.1.29. A monoidal &-fibred category .# over . is complete if it satisfies the
following conditions:
(1) A is complete as a P-fibred category.
(2) For any object S of .7, the monoidal category .#(S) is closed (i.e. has an internal Hom).

In this case, we will usually denote by Homg the internal Hom in .#(S), so that we have
natural bijections

Hom//[(s)(A Xs B,C) ~ Hom//,(s)(A,HomS(B,C)) .

EXAMPLE 1.1.30. The &-fibred category 7, of example 1.1.14 is in fact a complete monoidal
P-fibred category. The tensor product is given by the smash product (see [MV99]).

1.1.31. Monoidal exchange structures 11— Let .# be a complete monoidal &-fibred category.
Consider a morphism f: 7T — S in .. Then we obtain an exchange transformation:
* ad(f 2 fx)
Ex(f,®s): (feM)®s N ——"= f.f*((f.M) ®s N)
ad'(f*,f+)

= L ((f £ M) @1 f*N) == £ (M @7 f5N).
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REMARK 1.1.32. As in remark 1.1.25, these exchange transformations are compatible with
the identifications (fg). = f«g« and (fg)* = g*f*.

Moreover, there is a coherence relation when composing the exchange transformations of the
kind Fz(f}, ®) with exchange transformations of the kind Ex(A%) as in loc. cit.

Finally, note another kind of coherence relations involving Ex(f}, ®), Ex(A}) (resp. Ez(f},®))
and Ex(Ay.).

We leave the formulation of these coherence relations to the reader, on the model of the
preceding ones.

1.1.33. Monoidal exchange structures II1.— Let .4 be a complete monoidal &-fibred category
and f:7T — S be a morphism in ..
Because f* is monoidal, we get by adjunction a canonical isomorphism

Homg(M, fuN) — fo Homp(f*M,N).

Assume that f is a #-morphism. Then from the &-projection formula, we get by adjunction two
canonical isomorphisms:

f*Homg(M,N) — Homp(f*M, f*N),
]{077715(](1;1]\47 N) — f*HomT(M, f*N)
These isomorphisms are generically called exchange isomorphisms.

1.1.c. Geometric sections.

1.1.34. Consider a weak Z-fibred category . .

Let S be a scheme. For any &-morphism p : X — S, we put Mg(X) := py(1x). According
to our conventions, this object is identified with pyp*(1s). In particular, it defines a covariant
functor Mg : /S — #(S).

Consider a cartesian square in %/

g
—

Y
ql A
T —

f

such that p is a &-morphism. With the notations of example 1.1.4, Y = f*(X). Then we get a
natural exchange transformation

P

p

B —

n

. . . Ex(]) .
Ex(Mr, f*) : Mr(f*(X)) = a5(1y) = 29" (1x) —— f'ps(1x) = f*Ms(X).
In other words, M defines a lax natural transformation &2/? — .
Consider Z-morphisms p: X — S, q:Y — 5. Let Z = X xg Y be the cartesian product
and consider the cartesian square:

7"y
q'iz €] \Lq
X —p> S.

Using the exchange transformations of the preceding paragraph, we get a canonical morphism
Ex(Ms,®s) : Ms(X xsY) — Ms(X) ®s Ms(Y)
as the composition
- Bx(®f) «
Ms(X xsY) =pygip”™ (ly) —— pp"qs(1y) py(lx @x p*qs(1y))
pi(lx) ®s gs(ly) = Ms(X) ®s Ms(Y).

In other words, the functor Mg is symmetric colax monoidal.
Remark finally that for any &-morphism p: T — S, and any &?-object Y over T, we obtain
according to convention an identification pyMr(Y) = Mg(Y).

Ez(py,®x)
—7
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DEeFINITION 1.1.35. Given a monoidal pre-Z-fibred category .# over ., the lax natural
transformation M : &2 /7 — # constructed above will be called the geometric sections of A .

The following lemma is obvious from the definitions above:

LEMMA 1.1.36. let A4 be a monoidal &-fibred category. Let M : 2|7 — M be the geometric
sections of M . Then:
(i) For any morphism f : T — S in 7, the exchange Ex(Mr, f*) defined above is an
isomorphism.
(ii) For any scheme S, the exchange Ex(Mg,®g) defined above is an isomorphism.

In other words, M is a cartesian functor and Mg is a (strong) symmetric monoidal functor.

1.1.37. In the situation of the lemma we thus obtain the following identifications:
[ f*Ms(X) ~ MT(X Xs T),
o pyMp(Y) ~ Mg(Y),
° Ms(X X5 Y) ~ Ms(X) ®s Ms(Y),

whenever it makes sense.
1.1.d. Twists.

1.1.38. Let .# be a pre-ZP-fibred category of .. Recall that a cartesian section of .# (i.e. a
cartesian functor A : . — .#) is the data of an object Ag of .#(S) for each object S of .7 and
of isomorphisms

fr(As) = Ar
for each morphism f : T — S, subject to coherence identities; see [SGA1, Exp. VI].
If A is monoidal, the tensor product of two cartesian sections is defined termwise.

DEFINITION 1.1.39. let .# be a monoidal pre-#-fibred category. A set of twists T for .4 is a
set of cartesian sections of .Z which is stable by tensor product (up to isomorphism), and contains
the unit 1. For short, when .# is endowed with a set of twists 7, we say also that .# is 7-twisted.

1.1.40. Let .# be a monoidal pre-Z-fibred category endowed with a set of twists 7.

The tensor product on 7 induces a monoid structure that we will denote by + (the unit object
of 7 will be written 0).

Consider an object i € 7. For any object S of ., we thus obtain an object t(i)s in .#(S)
associated with i. Given any object M of .#(S), we simply put:

M{i} = M Qg ig
and call this object the twist of M by i. We also define M{0} = M.
For any i,j € 7, and any object M of .#(S), we define M{i + j} = (M{i}){j}. Given a
morphism f : T — S, an object M of .Z(S) and a twist ¢ € 7, we also obtain f*(M{i}) =

(f*M){i}. If f is a F-morphism, for any object M of #(T), the exchange transformation
Ex(fy, ®7) of paragraph 1.1.6 induces a canonical morphism

Ex(fy, {i}) : fe(M{i}) = (fyM){i}.
We will say that f; commutes with T-twists (or simply twists when 7 is clear) if for any i € 7, the

natural transformation Ex(fy, {¢}) is an isomorphism.

DEFINITION 1.1.41. Let .# be a monoidal pre-Z-fibred category with a set of twists 7 and
M : &]? — # be the geometric sections of .Z.
We say 4 is T-generated if for any object S of .7, the family of functors

Hom‘///(s)(Ms(X){z’}, —) : ./%(S) — Set
indexed by a Z-object X/S and an element i € T is conservative.

Of course, we do not exclude the case where 7 is trivial, but then, we shall simply say that
M is geometrically generated.
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We shall frequently use the following proposition to characterize complete monoidal &-fibred
categories over .

PROPOSITION 1.1.42. Let A : . — €at® be a 2-functor such that:
(1) For any &-morphism f : T — S, the pullback functor f* . #(S) — .#(T) is monoidal
and admits a left adjoint fy in €.
(2) For any morphism f: T — S, the pullback functor f* : #(S) — #(T) admits a right
adjoint f. in €.
We consider .# as a monoidal weak &P -fibred category and denote by M : P /7 — M its associated
geometric sections. Suppose given a set of twists T such that # is T-generated. Then, the following
assertions are equivalent:
(i) A satisfies properties (#-BC) and (&?-PF)
(i.e. M is a complete monoidal P-fibred category.)
(ii) (a) M is a cartesian functor.
(b) For any object S of &, Mg is (strongly) monoidal.
(c) For any &-morphism f, fy commutes with T-twists.

PROOF. (i) = (4¢): This is obvious (see Lemma 1.1.36).
(i7) = (4): We use the following easy lemma:

LEMMA 1.1.43. Let 61 and 65 be categories, F,G : €1 — 6> be two left adjoint functors, and
n: F — G be a natural transformation. Let G be a class of objects of €1 which is generating in
the sense that the family of functors Home, (X, —) for X in G is conservative.
Then the following conditions are equivalent:
(1) n is an isomorphism.
(2) For all X in G, nx is an isomorphism.

Given this lemma, to prove (22-BC), we are reduced to check that the exchange transformation
Ez(A}) is an isomorphism when evaluated on an object Mr(U){i} for an object U of /T and
a twist 4 € 7. Then it follows from (i), 1.1.40 and example 1.1.11.3!

To prove (£-PF), we proceed in two steps first proving the case M = Mr(U){i} and N any
object of .#(S) using the same argument as above with the help of 1.1.28. Then, we can prove
the general case by another application of the same argument. O

Suppose given a complete monoidal F-fibered category .# with a set of twists 7. Let f :
T — S be a morphism of .. Then the exchange transformation 1.1.31 induces for any ¢ € T an
exchange transformation

Ex(fe,{i}) - (feM){i} = fo(M{i}).

DEFINITION 1.1.44. In the situation above, we say that f. commutes with T-twists (or simply
with twists when 7 is clear) if, for any ¢ € 7, the exchange transformation Ex(f.,{i}) is an
isomorphism.

It will happen frequently that twists are ®-invertible. Then f, commutes with twists as its
right adjoint does.

1.2. Morphisms of Z-fibred categories.
1.2.a. General case.

1.2.1. Consider two P-fibred categories .# and .#’ over .7, as well as a cartesian functor
©* 1 M — A" between the underlying fibred categories: for any object S of ., we have a functor

Gy MS) = AM(S),

31The cautious reader will use remark 1.1.7 to check that the corresponding map
Mx (U xp Y){i} = Mx (U xr Y){i}
is the identity.
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and for any map f: 7 — S in ., we have an isomorphism of functors cy

P

M(S)—25— (S)
(1.2.1.1) f*l Y e lf* e fros = o [T

M(T) ———4"(T)

Pr

satisfying some cocycle condition with respect to composition in .%.
For any &Z-morphism p: T — S, we construct an exchange morphism

Ex(py, %) - pypr — sy
as the composition

* ad(pﬁfp*) * ok C;1 * ok ad/(pﬁip*) *
Py — > PtPrD Py — 7 PP PsPt — 7 PsPi-

DEFINITION 1.2.2. Consider the situation above. We say that the cartesian functor
oM — M

is a morphism of P-fibred categories if, for any Z-morphism p, the exchange transformation
Ex(py, ¢*) is an isomorphism.

ExampPLE 1.2.3. If .# is a monoidal &-fibred category, then the geometric sections M :
P[? — M is a morphism of P-fibred categories (1.1.36).

DEFINITION 1.2.4. Let .# and .#' be two complete Z-fibred categories. A morphism of
complete P-fibred categories is a morphism of Z-fibred categories

oMM
such that, for any object S of .7, the functor % : 4 (S) — .#'(S) has a right adjoint
g M(S)— M(9).

When we want to indicate a notation for the right adjoint of a morphism as above, we use the
writing
O M= N
the left adjoint being in the left hand side.

1.2.5. Exchange structures III. Consider a morphism ¢* : .# — .4’ of complete P-fibred
categories.
Then for any morphism f : 7T — S in ./, we define exchange transformations

(1.2.5.1) Ex(¢*, fi) 1 5 fs — feor,
(1.2.5.2) Ex(f*, ¢u) 1 [Tous — @urf,

as the respective compositions

wp @ L) e e ad (SR o
psfe ——— [ sl = feor 7 fo —— fer,

ad’(f*,f*) *
——— perf"

REMARK 1.2.6. We warn the reader that ¢, : .#' — .# is not a cartesian functor in general,
meaning that the exchange transformation Fxz(f*, ¢.) is not necessarily an isomorphism, even
when f is a &-morphism.

f*SO*,S — f LP*,Sf*f* = f*f*%@*7Tf*
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1.2.b. Monoidal case.

DEFINITION 1.2.7. Let .# and .#’ be monoidal Z-fibred categories.

A morphisms of monoidal P-fibred categories is a morphism ¢* : A — H' of P-fibred
categories such that for any object S of ., the functor ¢% : #(X) — A7(S) has the structure of
a (strong) symmetric monoidal functor, and such that the structural isomorphisms (1.2.1.1) are
isomorphisms of symmetric monoidal functors.

In the case where .# and .#’ are complete monoidal Z-fibred categories, we shall say that
such a morphism ¢* is a morphism of complete monoidal &-fibred categories if ¢* is also a
morphism of complete &-fibred categories.

REMARK 1.2.8. If we denote by M(—,.#) and M(—, #") the geometric sections of .# and
M’ respectively, we have a natural identification:

05(Ms(X, A)) ~ Mg (X, .#").

1.2.9. Monoidal exchange structures IV. Consider a a morphism ¢* : .# — .#' of complete
monoidal Z-fibred categories. For objects M (resp. N) of .#(S) (resp. .#'(S)), we define an
exchange transformation

Ex(px,®,0%) 1 (px,sM) ®s N — ¢ 5(M @7 p5N),
natural in M and N, as the following composite

d( *1 *) *
(pesM) @5 N 222520 4, 505 ((r,sM) @5 N)

% * ad'(¢",px) *
= ¢u,5((P5px,sM) @1 P5N) —— s s(M @1 p5N).

As in remark 1.1.32, we get coherence relations between the various exchange transformations
associated with a morphism of monoidal Z-fibred categories. We left the formulation to the
reader.

Note also that, because ¢* is monoidal, we get by adjunction a canonical isomorphism:

Hom,_z(5)(M, ¢ sM") = . sHom g (s)(05M, M').

1.2.10. Consider two monoidal £-fibred categories .#, .4’ and a cartesian functor ¢* : .# —
A" such that, for any scheme S, ¢% : #(S) — #'(S) is monoidal.
Given a cartesian section K = (Kg)ge.» of ., we obtain for any morphism f:7 — S in .
a canonical map
[res(Ks) = op(f*(Ks)) = op(Kr)

which defines a cartesian section of .#’, which we denote by ¢*(K).

DEFINITION 1.2.11. Let (#,7) and (#',7") be twisted monoidal Z-fibred categories. Let
©* 1 M — M’ be a cartesian functor as above (resp. a morphism of monoidal &-fibred categories).

We say that ¢* : (A, 7) — (A',7") is compatible with twists if for any i € 7, the cartesian
section ¢*(7) is in 7/ (up to isomorphism in .Z").

REMARK 1.2.12. In particular, ¢* induces a map 7 — 7’ (if we consider the isomorphism
classes of objects). Moreover, for any object K of .#(S) and any twist ¢ € 7, we get an identifi-
cation:

o5(K{i}) ~ (e K){e"(i)}.
Moreover, the exchange transformation Ex(p., ®) induces an exchange:
Ex(p., {i}) « pus (E){i} = ous(K{"(1)}).
When this transformation is an isomorphism for any twist ¢ € 7, we say that ¢. commutes with

twists.

Note finally that Lemma 1.1.43 allows to prove, as for Proposition 1.1.42; the following useful
lemma:
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LEMMA 1.2.13. Consider two complete monoidal P-fibred categories M, #' and denote by
M(—, #) and M(—, #") their respective geometric sections. Let ¢* : M — M be a cartesian
functor such that

(1) For any scheme S, ¢% : M (S) — A'(S) is monoidal.

(2) For any scheme S, ¢% admits a right adjoint ¢, .
Assume M (resp. M) is T-generated (resp. T'-twisted) and that o* induces a surjective map from
the set of isomorphism classes of T-twists to the set of isomorphism classes of T’ -twists. Then the
following conditions are equivalent:

(i) ©* is a morphism of complete monoidal &P -fibred categories.
(ii) For any object X of P /S, the exchange transformation (cf. 1.2.1)

¢*MS(X?‘%) — MS(XV%I)
s an isomorphism.

1.3. Structures on Z-fibred categories.
1.3.a. Abstract definition.

1.3.1. We fix a sub-2-category € of %at with the following properties2:

(1) the 2-functor
Cat — Cat' , A— AP

sends € to €', where ¢’ denotes the 2-category whose objects and maps are those of ¥
and whose 2-morphisms are the 2-morphisms of %, put in the reverse direction.

(2) € is closed under adjunction: for any functor u: A — B in €, if a functor v: B — A is
a right adjoint or a left adjoint to u, then v is in €.

(3) the 2-morphisms of ¥ are closed by transposition: if

u:A=2B:vandu : A= B
are two adjunctions in ¢ (with the left adjoints on the left hand side), a natural trans-
formation u — «' is in € if and only if the corresponding natural transformation v’ — v
is in %.
We can then define and manipulate @-structured &?-fibred categories as follows.

DEFINITION 1.3.2. A % -structured &-fibred category (resp. € -structured complete &-fibred
category) A over . is simply a P-fibred category (resp. a complete F-fibred category) whose
underlying 2-functor .# : .#°P — ¥at factors through €.

If # and .4’ are ¥-structured fibred categories over ., a cartesian functor .# — .#' is 6 -
structured if the functors .#(S) — .#’(S) are in € for any object S of .7, and if all the structural
2-morphisms (1.2.1.1) are in € as well.

DEFINITION 1.3.3. A morphism of #-structured Z-fibred categories (resp. %-structured
complete P-fibred categories) is a morphism of Z?-fibred categories (resp. of complete Z-fibred
categories) which is €-structured as a cartesian functor.

1.3.4. Consider a 2-category % as in the paragraph 1.3.1. In order to deal with the monoidal
case, we will consider also a sub-2-category €® of ¢ such that:
(1) The objects of €® are objects of € equipped with a symmetric monoidal structure;
(2) the 1-morphisms of €® are exactly the 1-morphisms of ¢ which are symmetric monoidal
as functors;
(3) the 2-morphisms of € are exactly the 2-morphisms of ¢ which are symmetric monoidal
as natural transformations.

Note that ¢® satisfies condition (1) of 1.3.1, but it does not satisfies conditions (2) and (3) in
general. Instead, we get the following properties:

32See the following sections for examples.
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(2) If u: A — B is a functor in €%, a right (resp. left) adjoint v is a lax3® (resp. colax)
monoidal functor in €.
(3") Consider adjunctions

u:A=2B:vandu' : A= B:v
in € (with the left adjoints on the left hand side). If v — ' (resp. v — v') is a 2-

morphism in ¥® then v — v’ (resp. w — u') is a 2-morphism in 4 which is a symmetric
monoidal transformation of lax (resp. colax) monoidal functors.

We thus adopt the following definition:

DEFINITION 1.3.5. A (€, €®)-structured monoidal 2-fibred category (vesp. a (€, €®)-structured
complete monoidal P-fibred category) is simply a monoidal -fibred category (resp. a complete
monoidal £-fibred category) whose underlying 2-functor .# : .°? — %at® factors through €®.
Morphisms of such objects are defined in the same way.

Note that, with the hypothesis made on %, all the exchange natural transformations defined
in the preceding paragraphs lie in € and satisfy the appropriate coherence property with respect
to the monoidal structure.

1.3.b. The abelian case.

1.3.6. Let @b be the sub-2-category of ¥at made of the abelian categories, with the additive
functors as 1-morphisms, and the natural transformations as 2-morphisms. Obviously, it satisfies
properties of 1.3.1. When we will apply one of the definitions 1.3.2, 1.3.3 to the case ¥ = /b,
we will use the simple adjective abelian for «/b-structured. This allows to speak of morphisms of
abelian ZP-fibred categories.

Let «/b® be the sub-2-category of &/b made of the abelian monoidal categories, with 1-
morphisms the symmetric monoidal additive functors and 2-morphisms the symmetric monoidal
natural transformations. It satisfies the hypothesis of paragraph 1.3.4. When we will apply def-
inition 1.3.5 to the case of (@b, #b®), we will use the simple expression abelian monoidal for
(b, 2/b®)-structured monoidal. This allows to speak of morphisms of abelian monoidal 2-fibred
categories.

LEMMA 1.3.7. Consider an abelian &P-fibred category </ such that for any object S of .7,

A (S) is a Grothendieck abelian category. Then the following conditions are equivalent:
(i) < is complete.

(i) For any morphism f:T — S in 7, [* commutes with sums.
If in addition, < is monoidal, the following conditions are equivalent:

(V) < is monoidal complete.

(') (a) For any morphism f:T — S in 7, f* is right exact.

(b) For any object S of ., the bifunctor ®g is right exact.

In view of this lemma, we adopt the following definition:

DEFINITION 1.3.8. A Grothendieck abelian (resp. Grothendieck abelian monoidal) Z-fibred
category & over . is an abelian Z-fibred category which is complete (resp. complete monoidal)
and such that for any scheme S, &7(S5) is a Grothendieck abelian category.

REMARK 1.3.9. Let & be a Grothendieck abelian monoidal £-fibred category. Convention-
ally, we will denote by Mg(—, o) its geometric sections. Note that if o/ is 7-twisted, then any
object of &7 is a quotient of a direct sum of objects of shape Mg(X, «7){i} for a F-object X/S
and a twist i € 7.

1.3.10. Consider an abelian category </ which admits small sums. Recall the following defi-
nition:
An object X of T is finitely presented if the functor Hom & (X, —) commutes with small filtering

1
33For any object a, o’ in A, F is lax if there exists a structural map F(a) ® F(a') , F(a ® a’) satisfying

coherence relations (see [Mac98, XI. 2]). Colax is defined by reversing the arrow (1).
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colimits. A essentially small G of objects of &7 is called generating if for any object A of &/ there
exists an epimorphism of the form:
Paci— A

iel
where (G;);er is a family of objects if G.
DEFINITION 1.3.11. Let &7 be an abelian &-fibred category over ..
Given a set of twists 7 of &7, we say o is finitely 7-presented if for any object S of ., for
any -object X/S and any twist ¢ € 7, the object Mg(X){i} is finitely presented and the class
of such objects form an essentially small generating family of «7(.S).

REMARK 1.3.12.
1.3.c. The triangulated case.

1.3.13. Let .Jri be the sub-2-category of ¥at made of the triangulated categories, with the tri-
angulated functors as 1-morphisms, and the triangulated natural transformations as 2-morphisms.
Then Zri satisfies the properties of 1.3.1 (property (2) can be found for instance in [Ayo07a,
Lemma 2.1.23], and we leave property (3) as an exercise for the reader). When we will apply one
of the definitions 1.3.2, 1.3.3 to the case ¥ = Jri, we will use the simple adjective triangulated
for Jri-structured. This allows to speak of morphisms of triangulated 22-fibred categories.

Let Z7i® be the sub-2-category of Zri made of the triangulated monoidal categories, with 1-
morphisms the symmetric monoidal triangulated functors and 2-morphisms the symmetric monoidal
natural transformations. It satisfies the hypothesis of paragraph 1.3.4. When we will apply def-
inition 1.3.5 to the case of (Jri, Iri®), we will use the expression triangulated monoidal for
(Tri, Tri®)-structured monoidal. This allows to speak of morphisms of triangulated monoidal
P -fibred categories.

CONVENTION 1.3.14. The set of twists of a triangulated monoidal &?-fibred category .7 will
always be of the form Z x 7, by which we mean that 7 is a set of twists, while Z x 7 is the closure
of 7 by suspension functors [n], n € Z. In the notation, we shall often make the abuse of only
indicating 7. In particular, the expression 7 is 7-generated will mean conventionally that & is
(Z x T)-generated in the sense of definition 1.1.41.

1.3.15. Consider a triangulated category 7 which admits small sums. Recall the following
definitions:
An object X of 7 is called compact if the functor Hom o (X, —) commutes with small sums. A
class G of objects of .7 is called generating if the family of functor Hom # (X [n],—), X € G, n € Z,
is conservative.
The triangulated category 7 is called compactly generated if there exists a generating set G of
compact objects of 7. This property of being compact has been generalized by A. Neeman to
the property of being a-small for some cardinal « (¢f. [NeeOl, 4.1.1]) — recall compact=R,-
small. Then the property of being compactly generated has been generalized by Neeman to the
property of being well generated; see [Kra01] for a convenient characterization of well generated
triangulated categories.

DEFINITION 1.3.16. Let 7 be a triangulated £2-fibred category over .. We say that .7 is
compactly generated (resp. well generated ) if for any object S of ., 7(S) admits small sums
and is compactly generated (resp. well generated).

Given a set of twists 7 for .7, we say .7 is compactly T-generated if it is compactly generated
in the above sense and for any &2-object X/S, any twist ¢ € 7, Mg(X){i} is compact.

1.3.17. For a triangulated category .7 which has small sums, given a family G of objects
of 7, we denote by (G) the localizing subcategory of J generated by G, i.e. (G) is the smallest
triangulated full subcategory of .77 which is stable by small sums and which contains all the objects
in G. Recall that, in the case .7 is well generated (e.g. if .7 compactly generated), then the family
G generates .7 (in the sense that the family of functors {Hom & (X, —)}xcg is conservative) if and
only if 7 = (G). The following lemma is a consequence of [Nee0O1]:
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LEMMA 1.3.18. Let J be a triangulated monoidal &2-fibred category over & with geometric
sections M. Assume 7 is T-generated.
If T is well generated, then for any object S of .7,

T(S) = (Ms(X){i}; X/S a P-object,i € T)

Moreover, there exists a regular cardinal o such that all the objects of shape Mg(X){i} are a-
compact.

Note finally that the Brown representability theorem of Neeman (cf. [Nee01]) gives the
following lemma (analog of 1.3.7):

LEMMA 1.3.19. Consider a well generated triangulated &-fibred category . Then the fol-
lowing conditions are equivalent:
(i) T is complete.
(i) For any morphism f:T — S in 7, [* commutes with sums.

If in addition, T is monoidal, the following conditions are equivalent:

(1) T is monoidal complete.
(i) (a) For any morphism f:T — S in 7, f* is right exact.
(b) For any object S of .7, the bifunctor ®g is right exact.

We finish this section with a proposition which will constitute a useful trick:

ProrosITION 1.3.20. Consider an adjunction of triangulated categories
a: T =9 b
Assume that T admits a set of compact generators G such that any object in a(G) in compact in

T'. Then b commutes with direct sums. If in addition 7' is well generated then b admits a right
adjoint.

PROOF. The second assertion follows from the first one according to a corollary of the Brown
representability theorem of Neeman (cf. [Nee01, 8.4.4]).
For the first one, we consider a family (X;);cr of objects of &’ and prove that the canonical
morphism
Dierb(X;) = b(BierXi)
is an isomorphism in 7. To prove this, it is sufficient to apply the functor Hom & (G, —) for any
object G of G. Then the result is obvious from the assumptions. O

We shall often use the following standard argument to produce equivalences of triangulated
categories.

COROLLARY 1.3.21. Leta : 9 — .9’ be a triangulated functor between triangulated categories.
Assume that the functor a preserves small sums, and that J admits a small set of compact
generators G, such that a(G) form a family of compact objects in T'. Then a is fully faithful if
and only if, for any couple of objects G and G’ in G, the map

Hom 7 (G, G'[n]) = Hom 7 (a(G), a(G')[n])

is bijective for any integer n. If a is fully faithful, then a is an equivalence of categories if and
only if a(G) is a generating family in T'.

PROOF. Let us prove that this is a sufficient condition. As .7 is in particular well generated,
by the Brown representability theorem, the functor b admits a right adjoint b : .7’ — 7. By
virtue of the preceding proposition, the functor b preserves small sums. Let us prove that a is fully
faithful. We have to check that, for any object M of &, the map M — b(a(M)) is invertible. As
a and b are triangulated and preserve small sums, it is sufficient to check this when M runs over
a generating family of objects of .7 (e.g. G). As G is generating, it is sufficient to prove that the
map

Hom 4 (G, M|[n]) = Hom g (a(G),a(M)[n]) = Hom g (a(G), b(a(M))[n])
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is bijective for any integer n, which hold then by assumption. The functor a thus identifies &
with the localizing subcategory of 7/ generated by a(G); if moreover a(G) is a generating family
in 7', then .7’ = (a(G)), which also proves the last assertion. O

1.3.d. The model category case.

1.3.22. We shall use Hovey’s book [Hov99] for a general reference to the theory of model
categories. Note that, following loc. cit., all the model categories we shall consider will have small
limits and small colimits.

Let .# be the sub-2-category of ¥at made of the model categories, with 1-morphisms the left
Quillen functors and 2-morphisms the natural transformations. When we will apply definition
1.3.2 (resp. 1.3.3) to € = A, we will speak of a P-fibred model category for a .4 -structured
P-fibred category .# (resp. morphism of &-fibred model categories). Note that according to the
definition of left Quillen functors, .# is then automatically complete.

Given a property (P) of model categories (like being cofibrantly generated, left and/or right
proper, combinatorial, stable, etc), we will say that a Z?-fibred model category .# over .# has
the property (P) if, for any object S of .7, the model category .#(S) has the property (P).

For the monoidal case, we let .#Z% be the sub-2-categories of .# made of the symmetric
monoidal model categories (see [Hov99, Definition 4.2.6]), with l-morphisms the symmetric
monoidal left Quillen functors and 2-morphisms the symmetric monoidal natural transformations,
following the conditions of 1.3.4. When we will apply definition 1.3.5 to the case of (., .#%), we
will speak simply of a monoidal &-fibred model category (resp. morphism of monoidal &-fibred
model categories) for a (resp. morphism of) (., .#%)-structured monoidal Z-fibred category
M. Again, ./ is then monoidal complete.

REMARK 1.3.23. Let .# be a &-fibred model category over .. Then for any &?-morphism
p: X =Y, the inverse image functor p* : #(Y) — .#(X) has very strong exactness properties:
it preserves small limits and colimits (having both a left and a right adjoint), and it preserves
weak equivalences, cofibrations, and fibrations. The only non (completely) trivial assertion here
is about the preservation of weak equivalences. For this, one notices first that it preserves trivial
cofibrations and trivial fibrations (being both a left Quillen functor and a right Quillen functor). In
particular, by virtue of Ken Brown Lemma [Hov99, Lemma 1.1.12], it preserves weak equivalences
between cofibrant (resp. fibrant) objects. Given a weak equivalence u : M — N in #(Y'), we can
find a commutative square

M/#NI

|

M——N
in which the two vertical maps are trivial fibrations, and where v’ is a weak equivalence between
cofibrant objects, from which we deduce easily that p*(u) is a weak equivalence in .#(X).
1.3.24. Consider a Z-fibred model category .# over .. By assumption, we get the following

pairs of adjoint functors:

(a) For any morphism f: X — S of .7,

Lf*:Ho(#(S)) @ Ho(# (X)) : Rf.
(b) For any &-morphism p: T — S, the pullback functor
Lpy : Ho(#(S)) = Ho(#(T)) : Lp* = p* = Rp*

Moreover, the canonical isomorphism of shape (fg)* ~ ¢*f* induces a canonical isomorphism
R(fg)* ~ Rg*Rf*. In the situation of the £-base change formula 1.1.9, we obtain also that the
base change map

Lg;:Lg" — Lf"Lpy
is an isomorphism from the equivalent property of .#. Thus, we have defined a complete &-fibred
category whose fiber over S is Ho(.Z(S)).
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DEFINITION 1.3.25. Given a Z-fibred model category .# as above, the complete Z-fibred
category defined above will be denoted by Ho(.#) and called the homotopy &2-fibred category
associated with ..

1.3.26. Assume that .# is a monoidal &-fibred model category over .. Then, for any object
S of ., Ho(#)(S) has the structure of a symmetric closed monoidal category; see [Hov99,
Theorem 4.3.2]. The (derived) tensor product of Ho(.#)(S) will be denoted by M ®% N, and the
(derived) internal Hom will be written RHomg(M, N), while the unit object will be written 1g.

For any morphism f : T'— S in ., the derived functor L f* is symmetric monoidal as follows
from the equivalent property of its homologue f*.

Moreover, for any &-morphism p : T — S and for any object M in Ho(.#)(T') and any object
N in Ho(.#)(S), the exchange map of 1.1.24

Lpy(M ®@% p*(N)) — Lpy(M) @“ N
is an isomorphism.

DEFINITION 1.3.27. Given a monoidal £-fibred model category .# as above, the complete
monoidal Z-fibred category defined above will be denoted by Ho(.#) and called the homotopy
monoidal P-fibred category associated with . .

1.4. Premotivic categories. In the present article, we will focus on a particular type of
P-fibred category.

1.4.1. Let S be a scheme. Assume .¥ is a full subcategory of the category of S-schemes. In
most of this work, we will denote by .#7* the class of morphisms of finite type in .# and by Sm be
the class of smooth morphisms of finite type in .. There is an exception to this rule: throughout
Part 3, .7/t will be the class of separated morphisms of finite type in . and Sm will be the
class of separated smooth morphisms of finite type in .. However, the axiomatic which we will
present in the sequel can be applied identically in each cases so that the reader can freely use the
restriction that all morphisms of Sm and ./t are separated.

In any case, the classes Sm and ./t are admissible in . in the sense of 1.0 (this is automatic,
for instance, if .7 is stable by pullbacks).

DEFINITION 1.4.2. Let &2 be an admissible class of morphisms in ..

A P -premotivic category over . — or simply Z-premotivic category when & is clear — is
a complete monoidal £-fibred category over .. A morphism of &-premotivic categories is a
morphism of complete monoidal &?-fibred categories over .&.

As a particular case, when % is the 2-category Jri of triangulated categories (resp. @b of
abelian categories), a &-premotivic triangulated (resp. abelian) category over . is a (€,€%)-
structured complete monoidal £-fibred category over . (def. 1.3.5). Morphisms of £-premotivic
triangulated (resp. abelian) categories are defined accordingly.

We will also say: premotivic for Sm-premotivic and generalized premotivic for .#*-premotivic.

The sections of a &-premotivic category will be called premotives.

EXAMPLE 1.4.3. Let . be the category of noetherian schemes of finite dimension.

For such a scheme S, recall 77, (S) is the pointed homotopy category of Morel and Voevodsky;
cf. examples 1.1.5, 1.1.14, 1.1.30. Then, according to the fact recalled in these examples the
2-functor 47, is a geometrically generated premotivic category (recall Definition 1.1.41).

For such a scheme S, consider the stable homotopy category SH(S) of Morel and Voevodsky
(see [Jar00, Ayo0T7b]). According to [Ayo07b], it defines a triangulated premotivic category
denoted by SH. Moreover, it is compactly (Z x Z)-generated in the sense of definition 1.1.41
where the first factor refers to the suspension and the second one refers to the Tate twist (i.e. as
a triangulated premotivic category, it is compactly generated by the Tate twists).

1.4.4. Let 7 be a P-premotivic triangulated category with geometric sections M and 7 be a
set of twists for .7 (Definition 1.1.39).



20

Recall from Convention 1.3.14 (resp. and Definition 1.3.16) that .7 is said to be 7-generated
(resp. compactly 7-generated) if for any scheme S, the family of isomorphism of classes of pre-
motives of the form Mg(X){i} for a H-scheme X over S and a twist ¢ € T is a set of generators
(resp. compact generators) for the triangulated category 7 (S) (in the respective case, we also
assume 7 (S) admits small sums).

Let E be a premotive over S and X be a &-scheme over S. For any (n,i) € Z x 7, we define
the cohomology of X in degree n and twist ¢ with coefficients in E as:

H%' (X, E) = Homg s (Ms(X), E{i}(n)).

The fact J is T-generated amounts to say that any such premotive F is determined by its coho-
mology.

ExaMPLE 1.4.5. The premotivic triangulated category SH of the previous example is com-
pactly Z-generated where Z refers to the Tate twist (in other words it is compactly generated by
Tate twists).

DEFINITION 1.4.6. Let .# and .#' be £-premotivic categories.

A morphism of &-premotivic categories (or simply a premotivic morphism) is a morphism
o* 1 M — M’ of complete monoidal P-fibred categories. We shall also say that

o M2 M o,
is a premotivic adjunction. When moreover .# and .#' are &-premotivic triangulated (resp.
abelian) categories, we will ask ¢* is a compatible with the triangulated (resp. additive) structure
— as in Definition 1.3.3.

If we assume that .# (vesp. .#') is T-twisted (resp. 7'-twisted), we will say as in Definition
1.2.11 that ¢* is compatible with twists if for any i € 7, ©*(i) belongs up to isomorphism to 7.
We say ©* is strictly compatible with twists if it is compatible with twists and if any element of 7/
is isomorphic to the image of an element of 7.

Usually, premotivic categories comes equip with canonical twists (especially the Tate twist)
and premotivic morphisms are compatible with twists.

ExaMPLE 1.4.7. With the hypothesis and notations of 1.4.3, we get a premotivic adjunction
X0 =2 SH: Q®
induced by the infinite suspension functor according to [Jar00].

1.4.8. Let 7 (resp. /) be a triangulated &-premotivic category with geometric sections
M and set of twists 7. For any scheme S, we let 7 .(S) be the smallest triangulated thick*
subcategory of .7 (S) which contains premotives of shape Mg(S){i} (resp. Mgs(X, o/ ){i}) for a
P-scheme X /S and a twist i € 7. This subcategory is stable by the operations f*, p; and ®. In
particular, .7, . defines a not necessarily complete triangulated (resp. abelian) Z7-fibred category
over .. We also obtain a morphism of triangulated (resp. abelian) monoidal &-fibred categories,
fully faithful as a functor,

v Tre =T

DEFINITION 1.4.9. Consider the notations introduced above. We will call .7, . the 7-constructible
part of 7. For any scheme S, the objects of 7 .(S) will be called 7-constructible.

When 7 is clear from the context, we will put 7, := ; . and use the terminology constructible.

REMARK 1.4.10. The condition of 7-constructibility is a good categorical notion of finiteness
which extends the notion of geometric motives as introduced by Voevodsky. In the triangulated
motivic case, it will be studied thoroughly in section 4.

PROPOSITION 1.4.11. Let .7 be a T-twisted &-premotivic triangulated category. Let S be a
scheme such that:

(1) The category T (S) admits finite sums.

34; ¢. stable by direct factors.
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(2) For any &-scheme X over S, and any twist i € T, the premotive Mg(X){i} is compact.

Then, a premotive M over S is T-constructible if and only if it is compact.

ProOF. If J is any compactly generated triangulated category, then, for any small family C'
of compact generators, the thick triangulated category of Z generated by C' consists exactly of
the compact objects of .7. O

Thus, when the conditions of this proposition are fulfilled, the category 7 .(S) does not
depend on the particular choice of 7. This will often be the case in practice (see 5.1.33, 5.2.39,
5.3.42).

REMARK 1.4.12. The notion of compact objects in a triangulated category was heavily de-
veloped by A. Neeman. Its relation with finiteness conditions is particularly emphasized when
considering the derived category of complexes of quasi-coherent sheaves over a quasi-compact
separated scheme: in this triangulated category, being compact is equivalent to being perfect
([Nee96, Cor. 4.3)).

DEFINITION 1.4.13. Consider a 7-generated premotivic category .Z .
An enlargement of ./ is the data of a 7/-twisted generalized premotivic category .# together
with a premotivic adjunction

Py - M — M p*
(where . is considered as a premotivic category in the obvious way), satisfying the following
properties:
(a) For any scheme S in .7, the functor py g : A (S) — A (S) is fully faithful and its right
adjoint p% : A (S) = A (S) commutes with sums.
(b) py is strictly compatible with twists.

Again, this notion is defined similarly for a €-structured £-premotivic category.
Note that for any smooth S-scheme X, we get in the context of an enlargement as above the
following identifications:
ps.s(Ms(X)) ~ Mg(X),
p5(Ms (X)) = Ms(X)
where M (resp. M) denote the geometric sections of .# (resp. ).

Remember also that for any morphism of schemes f and any smooth morphism p, p; commutes
with f* and py, while p* commutes with f, and p*.

2. Triangulated Z-fibred categories in algebraic geometry

2.0. In this entire section, we fix a base scheme S assumed to be noetherian and a full
subcategory . of the category of noetherian S-schemes satisfying the following properties:

(a) .7 is closed under finite sums and pullback along morphisms of finite type.
(b) For any scheme S in ., any quasi-projective S-scheme belongs to .%.

In sections 2.2 and 2.4, we will add the following assumption on .&:

(¢) Any separated morphism f:Y — X in ., admits a compactification in .# in the sense
of [SGAA4, 3.2.5], i.e. admits a factorization of the form

y Ly 2hx

where j is an open immersion, p is proper, and Y belongs to .. Furthermore, if f is
quasi-projective, then p can be chosen to be projective.

(d) Chow’s lemma holds in . (i.e., for any proper morphism ¥ — X in ., there exists a
projective birational morphism p: Yy — Y in . such that fp is projective as well).
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A category .7 satisfying all these properties will be called adequate for future references.®

We also fix an admissible class & of morphisms in . and a complete triangulated &-fibred
category 7. We will add the following assumptions:

(d) In section 2.2 and 2.3, & contains the open immersions.
(e) In section 2.4, & contains the smooth morphisms of ..

In the case 7 is monoidal, we denote by
M:2?T—= T

its geometric sections.
According to the convention of 1.4.2, we will speak of the premotivic case when &2 is the class
of smooth morphisms of finite type®® in . and .7 is a premotivic triangulated category.

2.1. Elementary properties.

DEFINITION 2.1.1. We say that .7 is additive, if for any finite family (S;);e.» of schemes in
&, the canonical map

7 (s) mos

is an equivalence.
Recall this property implies in particular that .7 (&) = 0.

LEMMA 2.1.2. Let S be a scheme, p : Ay — S be the canonical projection. The following
conditions are equivalent:
(i) The functor p* : 7(S) = T (AY) is fully faithful.
(ii) The counit adjunction morphism 1 — p.p* is an isomorphism.

In the premotivic case, these conditions are equivalent to the following ones:
(111) The unit adjunction morphism pyp* — 1 is an isomorphism.

(iv) The morphism Ms(AY) £ 1g induced by p is an isomorphism.

(iv’) For any smooth S-scheme X, the morphism Mg(AL) Lxxw)., Mg(X) is an isomor-

phism.

The only thing to recall is that in the premotivic case, pyp* (M) = Mg(AL)®M and p.p*(M) =
Homs(Ms(Ag), M).

DEFINITION 2.1.3. The equivalent conditions of the previous lemma will be called the homo-
topy property for 7, denoted by (Htp).

2.1.4. Recall that a sieve R of a scheme X is a class of morphisms in .//X which is stable
by composition on the right by any morphism of schemes (see [SGAA4, 1.4]).

Given such a sieve R, we will say that .7 is R-separated if the class of functors f* for f € R
is conservative. Given two sieves R, R’ of X, the following properties are immediate:

(a) If R C R’ then 7 is R-separated implies .7 is R'-separated.
(b) If 7 is R-separated and is R’-separated then .7 is (R U R')-separated.

A family of morphisms (f; : X; — X);es of schemes defines a sieve R = (f;,i € I) such that f is
in R if and only if there exists ¢ € I such that f can be factored through f;. Obviously,

(¢) T is R-separated if and only if the family of functors (f;);er is conservative.

35For instance, the scheme S can be the spectrum of a prime field or of a Dedekind domain. The category
. might be the category of all noetherian S-schemes of finite dimension or simply the category of quasi-projective
S-schemes. In all these cases, property (c) is ensured by Nagata’s theorem (see [Con07]) and property (d) by
Chow’s lemma (see [EGAZ2, 5.6.1]).

36or smooth separated morphisms of finite type when applying this section in Part 3
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Recall that a topology on . is the data for any scheme X of a set of sieves of X satisfying certain
stability conditions (¢f. [SGA4, II, 1.1]), called t-covering sieves. A pre-topology ¢y on .# is the
data for any scheme X of a set of families of morphisms of shape (f; : X; — X);cr satisfying
certain stability conditions (cf. [SGA4, 11, 1.3]), called ty-covers. A pre-topology to generated a
unique topology ¢.

DEFINITION 2.1.5. Let t be a Grothendieck topology on .. We say that 7 is t-separated if
the following property holds:

(t-sep) For any t-covering sieve R, .7 is R-separated in the sense defined above.

Obviously, given two topologies t and ¢’ on .¥ such that ¢’ is finer than ¢, if .7 is t-separated
then it is ¢'-separated.

If the topology t on . is generated by a pre-topology to then 7 is t-separated if and only
if for any to-covers (f;)icr, the family of functors (f);cs is conservative — use [SGA4, 1.4] and
2.1.4(a)+(c).

2.1.6. Recall that a morphism of schemes f : T — S is radicial if it is injective and for any
point ¢ of T, the residual extension induced by f at ¢ is radicial (¢f. [EGA1, 3.5.4, 3.5.8])3" The
following definition is inspired by [Ayo07a, Def. 2.1.160].

DEFINITION 2.1.7. We say that 7 is separated (resp. semi-separated) if 7 is separated for
the topology generated by surjective families of morphisms of finite type (resp. finite radicial
morphisms) in .. We also denote by (Sep) (resp. (sSep)) this property.

REMARK 2.1.8. If 7 is additive, property (Sep) (resp. (sSep)) is equivalent to ask that for
any surjective morphism of finite type (resp. finite surjective radicial morphism) f: T — S in .,
the functor f* is conservative.

PRrROPOSITION 2.1.9. Assume T is semi-separated and satisfies the transversality property with
respect to finite surjective radicial morphisms.
Then for any finite surjective radicial morphism f :Y — X, the functor

o I9X)—> (%)
is an equivalence of categories.

PROOF. We first consider the case when f =7 is in addition a closed immersion. In this case,

we can consider the pullback square below.
Y p—
!

Yﬁ

N<—

Using the transversality property with respect to ¢, we see that the counit i*i, — 1 is an iso-
morphism. It thus remains to prove that the unit map 1 — 4,7* is an isomorphism. As i* is
conservative by semi-separability, it is sufficient to check that

is an isomorphism. But this is a section of the map i* i.i*(M) — ¢*(M), which is already known
to be an isomorphism.

Consider now the general case of a finite radicial extension f. We introduce the pullback
square

Y xy Y 2=y

3Tt is equivalent to ask that f is universally injective. When f is surjective, this is equivalent to ask that f
is a universal homeomorphism.
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Consider the diagonal immersion ¢ : Y — Y x x Y. Because Y is noetherian and p is separable, 7 is
finite (¢f. [EGAZ2, 6.1.5]) thus a closed immersion. As p is a universal homeomorphism, the same
is true for its section i. The preceding case thus implies that i* is an equivalence of categories.
Moreover, as pi = qi = 1y, we see that p* and ¢* are both quasi-inverses to ¢*, which implies that
they are isomorphic equivalences of categories. More precisely, we get canonical isomorphisms of
functors

1" ~p,~q, and i, ~p" ~q".

We check that the unit map 1 — f,f* is an isomorphism. Indeed, by semi-separability, it is
sufficient to prove this after applying the functor f*, and we get, using the transversality property
for f:

[Pt T g [T [
We then check that the counit map f*f, — 1 is an isomorphism as well. In fact, using again the
transversality property for f, we have isomorphisms

[ fe(M) ~ qp* (M) ~ i, (M) ~ M.
O

2.1.10. Recall from [VoelOb] that a cd-structure on .# is a collection P of commutative
squares of schemes

B

B
| e s
A—X

which is closed under isomorphisms. We will say that a square @) in P is P-distinguished.
Voevodsky associates to P a topology tp, the smallest topology such that:
e for any P-distinguished square @) as above, the sieve generated by {f : A = X,e: Y —
X1} is tp-covering on X.
e the empty sieve covers the empty scheme.

EXAMPLE 2.1.11. A Nisnevich distinguished square is a square () as above such that Q is
cartesian, f is étale, e is an open embedding with reduced complement Z and the induced map
f~Y(Z) — Z is an isomorphism. The corresponding cd-structure is called the upper cd-structure
(see section 2 of [VoelOc]). Because we work with noetherian schemes, the corresponding topology
is the Nisnevich topology (see proposition 2.16 of loc.cit.).

A proper cdh-distinguished square is a square ) as above such that @ is cartesian, f is
proper, e is a closed embedding with open complement U and the induced map f~1(U) — U is
an isomorphism. The corresponding cd-structure is called the lower cd-structure. The topology
associated with the lower cd-structure is called the proper cdh-topology.

The topology generated by the lower and upper cd-structures is by definition (according to
the preceding remark on Nisnevich topology) the cdh-topology.

All these three examples are complete cd-structures in the sense of [VoelOb, 2.3].

LEMMA 2.1.12. Let P be a complete cd-structure (see [VoelOb, def 2.3]) on . and tp be the
associated topology. The following conditions are equivalent:

(i) T is tp-separated.
(i) For any distinguished square @ for P of the above form, the pair of functors (e*, f*) is
conservative.

PRrROOF. This follows from the definition of a complete cd-structure and 2.1.4(a). O

REMARK 2.1.13. If we assume that . is stable by arbitrary pullback then any cd-structure
P on . such that P-distinguished squares are stable by pullback is complete (see [VoelOb, 2.4]).

2.2. Exceptional functors, following Deligne.
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2.2.a. The support axiom.
2.2.1. Consider an open immersion j : U — S. Applying 1.1.15 to the cartesian square

U=—=U

iﬂ'

we get a canonical natural transformation

. . Ex(Ag) . .
Vi g = Jple —— July = Ju
Recall that the functors jy and j, are fully faithful (see Corollary 1.1.20).
Note that according to remark 1.1.7, this natural transformation is compatible with the iden-
tifications of the kind (jk)y = jyky and (§k)« = jiks.

LEMMA 2.2.2. Let S be a scheme, U and V be subschemes such that S = U U V. We let
h:U — S (resp. k:V — §) be the canonical open immersions.

Assume that the functor (h*,k*) : T (S) = T(U) x T (V) is conservative and that 7 (&) = 0.
Then the natural transformation ~yp, (resp. i) is an isomorphism. Moreover, the functor (h*, k*)
is then an equivalence of categories.

PROOF. As hy and h, are fully faithful, we have h*hy ~ h*h,. By &-base change, we also
get k*hy ~ k*h, ~ 0. It remains to prove the last assertion. The functor R = (h*, k") has a left
adjoint L defined by L=hy ® ky:

L(M,N) :hﬁ(M)EBkﬁ(N).

The natural transformation LR — 1 is an isomorphism: to see this, is it sufficient to evaluate at h*
and k*, which gives an isomorphism in 7 (U) and .7 (V) respectively. The natural transformation
1 — RL is also an isomorphism because hy and ky are fully faithful. O

REMARK 2.2.3. Assume J is Zariski separated (definition 2.1.5). Then, as a corollary of this
lemma, .7 is additive (definition 2.1.1) if and only if .7 (&) = 0.

2.2.4. Exchange structures V.— Assume 7 is additive. We consider a commutative square of
schemes

v

(2.2.4.1) a) P
U

n<—H

k
—
A
—

J

such that j, k are an open immersions and p, ¢ are a proper morphisms.
This diagram can be factored into the following commutative diagram:

UxgT—j=T
\Lp’ e \LP

U—i—6S.

Then [ is an open and closed immersion so that the previous lemma implies the canonical morphism
v : ly — I, is an isomorphism. As a consequence, we get a natural exchange transformation

. . Ex(04.) P .
Ex(Ap) © fiqs = il ——— Pujile —— pujily = puky
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using the exchange of 1.1.15. Note that, with the notations introduced in 2.2.1, the following
diagram is commutative.

. Ex(Agy)
44 p*kﬁ

(2.2.4.2) ’qu*i \LP*’W@

JxQx — (JQ)* = (pk)* ép*k*

Indeed one sees first that it is sufficient to treat the case where A is cartesian. Then, as j; is a
fully faithful left adjoint to j* it is sufficient to check that (2.2.4.2) commutes after having applied
j*. Using the cotransversality property with respect to open immersions, one sees then that this
consists to verify the commutativity of (2.2.4.2) when j is the identity, in which case it is trivial.

DEFINITION 2.2.5. Let p: T — S be a proper morphism in .&.

We say that the triangulated £2-fibred category 7 satisfies the support property with respect
to p, denoted by (Supp,), if it is additive and for any commutative square of shape (2.2.4.1) the
exchange transformation Ex(Ay.) : jyg« — piky defined above is an isomorphism.

We say that 7 satisfies the support property, also denoted by (Supp), if it satisfies (Supp,)
for all proper morphism p in ..

By definition, it is sufficient to check the last property of property (Supp) in the case where A is
cartesian.
2.2.b. Exceptional direct image.

2.2.6. We denote by 7P (resp. S°P", /PT°P) the sub-category of the category . with
the same objects but morphisms are separated morphisms of finite type (resp. open immersions,
proper morphisms). We denote by

T S — Tri®
resp. F; 1 SP" — Tri®

the 2-functor defined respectively by morphisms of type f. and j; (f any morphism of schemes).
The proposition below is essentially based on a result of Deligne [SGA4, XVII, 3.3.2]:

PROPOSITION 2.2.7. Assume . is a monoidal &-fibred category and satisfies property (Supp).
Then there exists a unique 2-functor

R S5 Tri®
with the property that
G| goror = T wror, | popen = T
and for any commutative square A of shape (2.2.4.1), the composition of the structural isomor-
phisms
1t = grar = (jOh = (Pk)1 = piky = puky
is equal to the exchange transformation Ex(Ay,).
2.2.8. Under the assumptions of the proposition, for any separated morphism of finite type

f:Y = X, we will denote by fi: . 7(Y) — 7(X) the functor F(f). The functor f is called the
direct image functor with compact support or the left exceptional functor associated with f.

PrOOF. We recall the principle of the proof of Deligne. Let f : Y — X be a separated
morphism of finite type in .%.
Let € be the category of compactifications of f in ., i.e. of factorizations of f of the form

(2.2.8.1) vy Ly x
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where j is an open immersion, p is proper, and Y belongs to .#. Morphisms of ¢ are given by
commutative diagrams of the form

i Y
(2.2.8.2) Y= 4= X

in .. To any compactification of f of shape (2.2.8.1), we associate the functor p,js.
To any morphism of compactifications (2.2.8.2), we associate a natural isomorphism

/oo ./ EI(Au*)71 . o .
Dy = PeTaJy —— DuJls = Dufs-

where A stands for the commutative square made by removing 7 in the diagram (2.2.8.2), and
Ex(Ay.) is the corresponding natural transformation (see 2.2.4). The compatibility of Ex(Ay,)
with composition of morphisms of schemes shows that we have defined a functor

Ly 67" — Hom(7(Y), 7(X))

which sends all the maps of @ to isomorphisms (by the support property).

The category € is non-empty by the assumption 2.0(c) on ., and it is in fact left filtering;
see [SGA4, XVII, 3.2.6(ii)]. This defines a canonical functor f, : 7 (Y) — 7 (X), independent of
any choice compactification of f, defined in the category of functors Hom(Z (Y), (X)) by the
formula

f!zﬁgrf.

€’
If f = p is proper, then the compactification
vy >y L X
is an initial object of €%, which gives a canonical identification py = p,. Similarly, if f = j is an
open immersion, then the compactification
Y4 XS X

is a terminal object of €}, so that we get a canonical identification j1 = j;.
This construction is compatible with composition of morphisms. Let g: Z — Y and f:Y —
X be two separated morphisms of finite type in .. For any a couple of compactifications

Z5 724y andy Ly B X
of f and g respectively, we can choose a compactification
7oy
of jgq, and we get a canonical isomorphism

frar = pejs @ kg = D by kg o~ (pr)s (RE)g =~ (fg)r .

The independence of these isomorphisms with respect to the choices of compactification follows
from [SGA4, XVII, 3.2.6(iii)]. The cocycle conditions (i.e. the associativity) also follows formally
from [SGA4, XVII, 3.2.6]. The uniqueness statement is obvious. O

2.2.9. This construction is functorial in the following sense.
Define a 2-functor with support on 7 to be a triple (2, a,b), where:

(i) 2:.7° — Triis a 2-functor (we shall write the structural coherence isomorphisms as
cg.f  D(9f) = 2(9)2(f) for composable arrows f and g in .7*°P);

(i) a: Ti|srror = D] svror and b : g — D] soren are morphisms of 2-functors which agree
on objects, i.e. such that for any scheme S in .%, we have

Vs =as =bs: T(S) = 2(9);
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(iii) for any commutative square of shape (2.2.4.1) in which j and k are open immersions,
while p and ¢ are proper morphisms, the diagram below commutes.

. Ps Ex(Ags)
Vs T+ z ‘ g p*kﬁ
bq*\L i/aku
D()Vugs D(p)yrky

2@l - |2
. jy . sk
22 @)y == 2(jq) = D(pk)pv < 2 (p) 2 (k)yv
Morphisms of 2-functors with support on .7
(2,a,b) = (2',d,b)
are defined in the obvious way: these are morphisms of 2-functors 2 — 2’ which preserve all the
structure on the nose.

Using the arguments of the proof of 2.2.7, one checks easily that the category of 2-functors
with support has an initial object, which is nothing else but the 2-functor 7] together with the
identities of | srropr and of J; respectively. In particular, for any 2-functor 7 : #°P — Jri, a
morphism of 2-functors 9 — & is completely determined by its restrictions to .#P"°P and . °P<",

and by its compatibility with the exchange isomorphisms of type Exz(Ay.) in the sense described
in condition (iii) above.

PROPOSITION 2.2.10. Assume that .7 satisfies the support property and consider the notations
of Proposition 2.2.7. For any separated morphism of finite type f in &, there exists a canonical
natural transformation

af . f! — f* .
The collection of maps ay defines a morphism of 2-functors
a: R = T|gser , [ (ap: i = fy)
whose restrictions to PP and S °P" are respectively the identity and the morphism of 2-functors
v Ty = Ti|poven defined in 2.2.1.

PrOOF. The identities f. = f, for f proper (resp. projective) and the exchange natural
transformations of type Exz(Ayg,) turns Ji|»ser into a 2-functor with support (resp. restricted
support) on .7 (property (iii) of 2.2.9 is expressed by the commutative square (2.2.4.2)). O

PROPOSITION 2.2.11. Let 7' be another triangulated complete P-fibred category over ..
Assume that 7 and 7' both have the support property, and consider given a triangulated morphism

of P-fibred categories ©* : T — T’ (recall definition 1.2.2).
Then, there is a canonical family of natural transformations
Ex(o® fi) - ox fr = fiey
for each separated morphism of finite type f :' Y — X in 7, which is functorial with respect to

composition in & (i.e. defines a morphism of 2-functors) and such that, the following conditions
are verified:

(a) if [ is proper, then, under the identification fy = f., the map Ex(p*, fi) is the exchange
transformation Ex(p*, fi) 1 ©% f« = [« @} defined in 1.2.5;

(b) if f is an open immersion, then, under the identification fi = fy, the map Ex(o*, fi) is
the inverse of the exchange isomorphism Ex(fy, ©*) : fy 03 — ¢ fi defined in 1.2.1.

PROOF. The exchange maps of type Exz(p*, f) define a morphism of 2-functors
a: T gwror = T | pwror = F'| pron
while the inverse of the exchange isomorphisms of type Exz(fy, ¢*) define a morphism of 2-functors
b: T — T =T | poven,
in such a way that the triple (], a,b) is a 2-functor with support on 7. O
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COROLLARY 2.2.12. Suppose T satisfies the support property and consider the notations of
proposition 2.2.7.

(1) For any cartesian square

Y 7‘ X,
such that f is separated of finite type, there exists a canonical natural transformation

Bz(Af):g"fi = fig”

compatible with horizontal and vertical compositions of squares, and satisfying the fol-
lowing identifications in 7 (X')

(a) f proper: (b) f open immersion:

L. Ba(AD) Ba(A7)

g fr———=1[ig g fr——— hd'

| R | pean H *
g fe ——=fi9", gfu—>f".

Moreover, when g is a &2-morphism, Ex(A}) is an isomorphism.
(2) For any cartesian square A as in (1), assuming f is separated of finite type and g is a
P -morphism, there exists a canonical natural transformation

Ex(Agp) g fi — figs

compatible with horizontal and vertical compositions of squares, and satisfying the fol-
lowing identifications in 7 (X')

(a) f proper: (b) f open immersion:
E:E(Aul) (A !
g fi —— fg 9sf 4>f'gﬁ
| e, | |
gy f'x ——— fugi, 91 fy = fr9;.

(8) If furthermore J is monoidal then for any separated morphism of finite type f : Y — X,
there is a natural transformation

Ex(f,®): (fK)® L — (K@ f'L)

which is compatible with respect to composition in ., and such that, in each of the
following cases, we have the following identifications:

(a) f proper: (b) f open immersion:

KoL P2 ik ern (K)o L2 ke prr)

H H H o
LK) oL 2 p ko), (hK) el fke L),

As in the previous analogous cases, the natural transformations Fz(A}), Ex(2y) and Ex(f, ®)
will be called exchange transformations.

PROOF. To prove (1), consider a fixed map g : X’ — X in .. We consider the triangulated
P | X-fibred categories .7/ and 7" over .¥ /X defined by ' (Y) = 7(Y) and T"(Y) = 7(Y’)
for any X-scheme Y (in .#), with ¢’ : Y/ =Y xx X’ — Y the map obtained from ¥ — X by
pullback along g. The collection of functors

g*TY)—> T
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define an exact morphism of triangulated &2/ X-fibred categories over ./ X (by the &-base change
formula):

o T =T,
Applying the preceding proposition to the latter gives (1). The fact that we get an isomorphism
whenever g is a Z-morphism follows from the &-base change formula and from paragraph 1.1.15.

For point (2), we consider the notations above assuming that g is a Z-morphism. The

collection of functors
gg 7Y = T(Y)
associated with an X-scheme Y, ¢’ : Y/ =Y xx X’ — Y obtained from g as above, define an exact
morphism of triangulated &?/X-fibred categories over ./ X (applying again the &?-base change
formula):
o T = T
Applying the preceding proposition to the latter gives (2).

The proof of (3) is similar: fix a scheme X in .#, as well as an object L in .7 (X). Let .7’ be
the restriction of 7 to ./ X as above. We can consider L as a cartesian section of .7, and by the
P-projection formula, we then have an exact morphism of triangulated &/X-fibred categories
over ./ X:

Le(-): 7 - T
Here again, we can apply the preceding proposition and conclude.
O

2.2.c. Further properties. We will be particularly interested in the following properties of the
triangulated £-fibred category .

DEFINITION 2.2.13. Let f : Y — X be a morphism in .. We introduced the following
properties for 7, assuming in the third case that 7 is monoidal:

(Adjy) The functor f, admits a right adjoint. Under this assumption, we denote by f ' the right
adjoint of f,.
(BCf) Any cartesian square of . of the form

vy

Nt

Y — X,
f

is J-transversal (Def. 1.1.17) — i.e. the exchange transformation
Ex(AY) g fe = fig”

associated with A is an isomorphism.
(PF;) For any object premotive M over Y, and N over X, the exchange transformation (see
paragraph 1.1.31)

Ex(fi,@x): (M) @x N = fo(M @y f*N)

is an isomorphism.

We denote by (Adj) (resp. (BC), (PF)) the property (Adjr) (resp. (BCy), (PFy)) for any proper
morphism f in % and call it the adjoint property (resp. proper base change property, projection
formula).

We can summarize the construction and properties introduced in this section as follows:

THEOREM 2.2.14. Assume 7 satisfies the properties (Supp) and (Adj).
Then for any separated morphism of finite type f : Y — X in &, there exists an essentially
unique pair of adjoint functors
fi:7(Y)=7(X): f

called the exceptional functors, such that:
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(1) There exists a structure of a covariant (resp. contravariant) 2-functor on f — fi (resp.
fef).

(2) There exists a natural transformation oy : fi — f. compatible with composition in f
which is an isomorphism when f is proper.

(3) For any open immersion j, ji = j; and j' = j*.

(4) For any cartesian square

Yl fé X/

Nt

Y ? XJ
in which f is separated and of finite type, there exists natural transformations
Ex(AY): g"fi = flg",

Ex(A): glf" = f'g.
which are isomorphisms in the following three cases:
e f is an open immersion.
e g is a &-morphism.
e 7 salisfies the proper base change property (BC).
Assume that T is in addition monoidal. Then the following property holds:

(5) For any separated morphism of finite type f 1Y — X in 7, there exists natural trans-
formations

Ex(fi',®): (iK)®x L — fi(K®y f*L),
Homx (fi(L), K) — f.Homy (L, f'(K)),
f'Homx (L, M) — Homy (f*(L), f'(M)).

which are isomorphisms in the following cases:
e f is an open immersion.
e T salisfies the projection formula (PF).

Indeed the existence of f; follows from Proposition 2.2.7 while that of f' follows directly from
assumption (Adj). Assertions (1) and (3) follows from the construction, (2) is Proposition 2.2.10,
(4) (resp. (5)) follows from Corollary 2.2.12 and the definition of (BC) (resp. (PF)). Note also
that the second and third isomorphisms in (5) are obtained by transposition from Exz(fi, ®).

2.2.15. While the properties (BCy) and (PFy) are only reasonable in practice for proper
morphisms, this is not the case for the property (Adjs). Recall that an exact functor between
well generated triangulated categories admits a right adjoint if and only if it commutes with small

sums: this is an immediate consequence of the Brown representability theorem proved by Neeman
(cf. [Nee01, 8.4.4]).

PROPOSITION 2.2.16. Assume that Z is a compactly T-generated triangulated premotivic cat-
egory over /.

Then, for any morphism of schemes f : T — S, the functor f. : T(T) — J(S) admits a right
adjoint.

PRrROOF. This follows directly from Proposition 1.3.20. O

2.3. The localization property.
2.3.a. Definition.

2.3.1. Consider a closed immersion i : Z — S in .. Let U = S — Z be the complement open
subscheme of S and j : U — S the canonical immersion. We will use the following consequence of
the triangulated £-fibred structure on 7:

(a) The unit 1 — j*j; is an isomorphism.
(b) The counit j*j, — 1 is an isomorphism.
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(c) i*js = 0.
(d) j*i, = 0.
d’(jg.5* d(i™,is) .
(e) The composite map j3j* ad Gp.d") 12 (3) 141* 18 zero.

In fact, the first four relations all follow from the base change property (47-BC). Relation (e) is a
consequence of (d) once we have noticed that the following square is commutative

Jpi" ——=1

\

Jajini* i,

For the closed immersion 4 and the triangulated category 7, we introduce the property (Loc;)
made of the following assumptions:
(a) The pair of functors (j*,i*) is conservative.
(b) The counit i*i, M 1 is an isomorphism.
DEFINITION 2.3.2. We say that 7 satisfies the localization property, denoted by (Loc), if:
(1) g(@)=0.

(2) For any closed immersion ¢ in ., (Loc;) is satisfied.

The main consequence of the localization axiom is that it leads to the situation of the six
gluing functor (¢f. [BBD82, prop. 1.4.5]):

PROPOSITION 2.3.3. Leti: Z — S be a closed immersion with complementary open immersion
j:U — S such that (Loc;) is satisfied.
(1) The functor i, admits a right adjoint i'.
(2) For any K in J(S), there exists a unique map 0; i : 1,i*K — jyj*K[1]| such that the
triangle

ad'(j,57) ad(i” i.)

0; .
g1 K K i K —5 jyi* K]
is distinguished. The map 0; i 1is functorial in K.
(3) For any K in 7 (S), there evists a unique map 0; g : juj K — i i' K[1] such that the
triangle

d (i i d(G*,5e) . . . k. . .
’L*Z'K ad’ (1x,1) K ad(j*,j«) ]*j*K Af_> Z*Z!K[l]
1s distinguished. The map a;’K s functorial in K.

Under the property (Loc;), the canonical triangles appearing in (2) and (3) above are called
the localization triangles associated with i.

PRrOOF. We first consider point (2). For the existence, we consider a distinguished triangle

K ad’(j3,5) Kot
Applying 2.3.1(e), we obtain a factorization
K ik
S

We prove w is an isomorphism. According to the above triangle, j*C' = 0. From 2.3.1(d),
7*i4i* K = 0 so that j*w is an isomorphism. Applying i* to the above distinguished triangle, we
obtain from 2.3.1(c) that ¢*m is an isomorphism. Thus, applying * to the above commutative
diagram together with (Loc;) (b), we obtain that ¢*w is an isomorphism which concludes.
Consider amap K = L in .J (S) and suppose we have chosen maps a and b in the diagram:

o ad (G ad(i*in) . o

Jei* K K 11" K J1i*K([1]
l/ ad’ (jy,5* l/ ad(i*,i \L

'L (J4:3") I (i" yix) ii* L b i* L[]
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such that the horizontal lines are distinguished triangles. We can find a map h : 1,4*K — "L
completing the previous diagram into a morphism of triangles. Then the map w = h — @.i*(u)
satisfy the relation woad(i*,i.) = 0. Thus it can be lifted to a map in Hom(jyj*K[1],i.i*L). But
this is zero by adjunction and the relation 2.3.1(d). This proves both the naturality of 9; x and
its uniqueness.

For point (1) and (3), for any object K of .7 (S), we consider a distinguished triangle

D K 20T, g 1,

According to 2.3.1(b), j*D = 0. Thus according to the triangle of point (2) applied to D, we obtain
D =i,i*D. Arguing as for point (2), we thus obtain that D is unique and depends functorialy on
K so that, if we put i'K = *D, point (1) and (3) follows. O

REMARK 2.3.4. Consider the hypothesis and notations of the previous proposition.

(1) By transposition from 2.3.1(d), we deduce that 4'j, = 0.

(2) Assume that ¢ is a Z-morphism. Then the &-base change formula implies that i*j, = 0.
Dually, we get that i'j; = 0. By adjunction, we thus obtain J; x = 0 and 0; i = 0 for
any object K so that both localization triangles are split. In that case, we get that
T(8)=T(Z)x T(U).3®

The preceding proposition admits the following reciprocal statement:

LEMMA 2.3.5. Consider a closed immersion ¢ : Z — S in & with complementary open im-
mersion j: U — S. Then the following properties are equivalent:
(i) T satisfies (Loc;).
(i) (a) The functor iy is conservative.
(b) For any object K of T (S), there exists a map i.3* (K) — jyj*(K)[1] which fits into
a distinguished triangle
ad(i* i)

. ad’(j4,5") . .
it (K) —= K b (K) = jgg* (K)[1]

PROOF. The fact (i) implies (ii) follows from Proposition 2.3.3. Conversely, (ii)(b) implies
that the pair (¢*,j*) is conservative and it remains to prove (Loc;) (b). Let K be an object of

(S). Consider the distinguished triangle given by (ii)(b):

o ad'(jz.57) ad(i™,iv) . -
Ju"(K) =% K " (K) = jgg™ (K)[1].
If we apply ¢, on the left to this triangle, we get using 2.3.1(d) that the morphism
i (K) 22 i ()
is an isomorphism. Hence, by the zig-zag equation, the morphism
i (K) O (K
is an isomorphism. Property (ii)(a) thus implies that i*i.(K) ~ K. O

2.3.b. First consequences of localization. The following statement is straightforward.

PROPOSITION 2.3.6. Assume J satisfies the localization property and consider a scheme S in
.
(1) Let Syeq be the reduced scheme associated with S. The canonical immersion Syeq %8
induces an equivalence of categories:
V' T(S) = T (Sred)-
(2) For any any partition
(8) partition (S; 25 S)ier of S by locally closed subsets, the family of functors (v})scr is

K3
conservative (S; is considered with its canonical structure of a reduced subscheme of S).

LEMMA 2.3.7. If  satisfies the localization property (Loc) then it is additive.

38This remark explains why the localization property is too strong for generalized premotivic categories.
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Proor. Note that, by assumption, 7 (&) = 0. Then the assertion follows directly from
Lemma 2.2.2. (]

ProrosITION 2.3.8. If T satisfies the localization property then it satisfies the cdh-separation
property.
PRroOF. Consider a cartesian square of schemes

B—Y

e

A?X

According to Lemma 2.1.12, we have only to check that the pair of functors (e*, p*) is conservative
when @ is a Nisnevich (or respectively a proper cdh) distinguished square. Let v : A’ — X be the
complementary closed (resp. open) immersion to e, where A’ has the induced reduced subscheme
(resp. induced subscheme) structure. Consider the cartesian square

Y < B
ol e
X <A
By assumption on @), ¢ is an isomorphism. According to (Loc) (ii), (e*,v*) is conservative. This

concludes. O

The following proposition can be found in a slightly less precise and general form in [Ayo07a,
2.1.162].3°

PROPOSITION 2.3.9. Assume J satisfies the localization property.
Then the following conditions are equivalent:

(i) T is separated.

(ii) For a morphism f:T — S in .7, f*: T(S) — F(T) is conservative whenever f is:
(a) a finite étale cover;
(b) finite, faithfully flat and radicial.

PROOF. Ounly (ii) = (i) requires a proof. Consider a surjective morphism of finite type
f:T — S in .. According to [EGA4, 17.16.4], there exists a partition (S;);c; of S by (affine)
subschemes and a family of maps of the form

i h;
sy 8l 2 S,

such that g; (resp. h;) satisfies assumption (a) (resp. (b)) above and such that for any i € I,
f x5S admits a section. Thus, Proposition 2.3.6 concludes. O

2.3.c. Localization and exchange properties.
2.3.10. Consider a morphism of complete triangulated Z-fibred categories over .7
o T = T
Recall that for any morphism f : Y — X, there is an exchange transformation (1.2.5.1):
Ex(¢", f+) : px [« — fuipy

If 7 and .7 satisfies the support axiom and f is separated of finite type, we have constructed
(Proposition 2.2.11) another exchange transformation:

Ex(e", fi) : ox fr — figy
PROPOSITION 2.3.11. Consider a morphism ¢* : J — F' as above.

(1) Leti:Z — X be a closed immersion such that 7 and J' satisfy property (Loc;).
Then the exchange Ex(0*, i) : @ is — il is an isomorphism.

39 warning: the proof in loc. cit. seems to require that the schemes are excellent.
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(2) Assume T and T’ satisfy property (Loc).
Then the following conditions are equivalent:
(i) For any integer n > 0 and any scheme X in .7, the exchange Ex(p*, pns) is an
isomorphism where p, : P — X is the canonical projection.
(i) For any proper morphism f:Y — X, the exchange Ex(p*, f.) is an isomorphism.
(3) Assume T and T’ satisfy properties (Loc) and (Supp).
Then conditions (i) and (ii) above are equivalent to the following one:
(iii) For any separated morphism f :Y — X of finite type, the exchange Ex(p*, fi) is
an isomorphism.

REMARK 2.3.12. We will simply say that ¢* commutes with f; when assertion (iii) is fulfilled.
For an important case where this happens, see Proposition 2.4.53.

PROOF. Assertion (1) follows easily from the conservativity of (i*,j*) where j is the comple-
mentary open immersion and the relations of paragraph 2.3.1. Assertion (3) is an easy consequence
of the definition of f; and the exchange Ex(¢*, fi).

Concerning assertion (2), we have to prove that (i) implies (ii). We fix a morphism f: Y — X
and prove that the exchange Ex(*, fi) @ ¢} f« — fop’ is an isomorphism.

We first treat the case where f is projective. According to Proposition 2.3.8, .7 satisfies the
Zariski separation property. Using the (£7-BC) property, we see that the problem is local in X so
that we can assume X is affine. Then X admits an ample line bundle and there exists an integer
n > 0 such that f can be factored ([EGA2, (5.5.4)(ii)]) into a closed immersion ¢ : Y — P% and
the projection p,, : P% — X. Thus, assertion (1) and assumption (i) allows to conclude.

To treat the general case, we argue by noetherian induction on Y, assuming that for any
proper closed subscheme T of Y, the result is known for the restriction of f to T'. In fact, the case
T = @ is obvious because 7 (&) = 0.

According to Chow’s lemma [EGA2, 5.6.2], there exists a morphism p : Yy — Y such that:

(a) p and f o p are projective morphisms.

(b) There exists a dense open subscheme V; of Y over which p is an isomorphism.
Let T be the complement of V' in Y equipped with its reduced subscheme structure. Let j and i
be the respective immersion of T' and V in Y. According to point (3) of Proposition 2.3.3, it is
sufficient to prove that the following natural transformations are isomorphisms:

(2.3.12.1) Oy fale = [e@xlx.

(2.3.12.2) Py fedx =[x e

Concerning the first one, we consider the following commutative diagram:
Ez(p”,f+) Ex(p”,ix)

oy (f1)« (fi)vpX-

Thus the result follows from assertion (1) and the induction hypothesis.
Concerning the natural transformation (2.3.12.2), we consider the pullback square

Ez(o",(f1)«)

V=Y,

ay  p

V-Ly.
Assumption (b) above says that ¢ is an isomorphism which implies the relation: j. = p.l.q*.
In particular, it is sufficient to prove that the natural transformation 3 fip. — fi@kp« is an
isomorphism. This follows from the commutativity of the following diagram

Ex(p”, fx) Ez (™ ,px

)
W*Yf*p* - f*@ﬁ(p* f*p*SD}

El’(%’*;(fp)*)

|
©y (fp)« (fP)pXs
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according to the projective case treated above and assumption (b). The proof is complete. O

COROLLARY 2.3.13. In the next statements, we assume 7 is monoidal when it is needed.

(1) Leti:Z — X be a closed immersion such that 7 satisfies property (Loc; ).
Then T satisfies property (Supp;) (resp. (BC;), (PF;)).
(2) Assume T satisfies the localization property. Then the following properties of T are
equivalent:
(i) For any integer n > 0 and any scheme X in .7, p, : P% — X being the canonical
projection, 7 satisfies (Suppy, ) (resp. (BCy, ), (PFy,)).
(i) T satisfies (Supp) (resp. (BC), (PF)).
(8) Assume T is well generated and satisfies the localization property. Then the following
properties of T are equivalent:
(i’) For any integer n > 0 and any scheme X in .7, p, : P% — X being the canonical
projection, 7 satisfies (Adjp,, ).
(') T satisfies (Adj).

PROOF. As in the proof of Corollary 2.2.12, each respective case of assertions (1) and (2)
follows from the previous proposition applied to a particular type of morphisms ¢* : 7' — 7" of
complete Z2-fibred triangulated categories over a subcategory ./ of ..

For property (Supp), we proceed as follows. We fix an open immersion j : U — X and
let " = /X. For any Y/X, we let jy = Y xx U — Y be the pullback of j. We put
T'Y)=TY xxU)and 7"(Y) = F(Y) and let ¢} be the functor:

jyﬁg(YXXU)—)y(Y)

For the property (BC) (resp. (PF)), we refer the reader to the proof of assertion (1) (resp.
(2)) in Corollary 2.2.12.

Finally we consider assertion (3). It is sufficient to prove that (i) implies ().
According to the Brown representability theorem [Nee01, 8.4.4], the property (Adjy) for a proper
morphism f is equivalent to ask that f, preserves small sum.
Consider an arbitrary set I. For any scheme S, we put Z1(S) = 7(S)!, that is the category of
families of object of .7 (S) indexed by I. Then .71 is obviously a complete triangulated Z-fibred
category over . (limits and colimits are computed termwise). For any scheme S, we consider the
functor:

05 THS) = T(S),(Mi)ier = ZML
il

Then ¢* : 1 — 7 is obviously a morphism of complete Z-fibred categories. Thus, given
condition (i’), the preceding proposition applied to ¢* shows that for any proper morphism f, f.
commutes with sums indexed by I. As this is true for any I, we obtain (4i’). O

2.3.d. Localization and monoidal structure.

2.3.14. Assume .7 is monoidal and let M denote its geometric sections. Fix a closed immersion
i:Z — S in . with complementary open immersion j : U — S. We fix an object Mg(S/S — Z)
of 7(S) and a distinguished triangle
(2.3.14.1) Mg(S — Z) 25 15 25 Mg(S/S — Z) %5 Ms(S — 2)[1].

Remark that according to 2.3.1(c), the map i*(p;) : 1z — i*Mg(S/S — Z) is an isomorphism.
Given any object K in 7(S), we thus obtain an isomorphism

i*(Ms(S/S — 2) 05 K) = i*(Ms(S/S — 2)) @7 *(K) 225 1, @, i*(K) = i*(K)

which is natural in K. It induces by adjunction a map

(2.3.14.2) Y : Ms(S/S — Z) @5 K — i,i*(K)
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which is natural in K.
For any #-scheme X/S, we put Mg(X/X — Xz) = Mg(S/S —Z)®g Ms(X) so that we get from
(2.3.14.1) a canonical distinguished triangle:

Mg(X — Xz) 2% Mg(X) — Mg(X/X — Xz) — Ms(X — X2)[1].
The map (2.3.14.2) for K = Mg(X) gives a canonical map
(23143) 77/}2'7)( : Ms(X/X — Xz) — Z*(Mz(Xz))

PROPOSITION 2.3.15. Consider the previous hypothesis and notations. Then the following
conditions are equivalent:
(i) T satisfies the property (Loc;).
(i) (a) The functor i, is conservative.
(b) The morphism ;g : Mg(S/S — Z) — i.(1z) is an isomorphism.
(¢) For any object K of T (S), the exchange transformation

Ba(i*,®) : (iu17) @5 K — iyi* K

is an isomorphism.
(i) (a) The functor i, is conservative.
(b) The morphism ; g : Mg(S/S — Z) — i.(1z) is an isomorphism.
(c) For any objects K and L of 7 (S), the exchange transformation
Ex(if,®): (1.K) ®s L = i.(K ®z i"L)
is an isomorphism.
Assume in addition that 7 is well generated and T-generated as a triangulated P -fibred category.
Then the above conditions are equivalent to the following one:
(iv) (a) The functor i, is conservative, commutes with direct sums and with T-twists.
(b) The morphism v; x : Ms(X/X — Xz) — i.(Mz(Xz)) is an isomorphism for any
P-scheme X/8S.

In particular, (Loc;) implies that for any object K of .77 (S), the localization triangle of 2.3.3
. I Ok . %
Ja3"(K) = K = i,i" (K) =5 jaj" (K)[1]

is canonically isomorphic (through exchange transformations) to the triangle (2.3.14.1) tensored
with K.

PROOF. (i) = (ii%) : According to (Loc;) (a), we need only to check that the maps in (iii)(b) and
(iii)(c) are isomorphisms after applying i* and j*. This follows easily from (Loc;) (b).

(#i1) = (it) : Obvious

(#3) = () : According to (ii)(b), the distinguished triangle (2.3.14.1) is isomorphic to a triangle
of the form

ad’ (j4,5%) ad(i* i)

Js" (Ls) lg ii"(Ls) = jyg" (Ls)-
According to (ii)(c), this latter triangle tensored with K is isomorphic through exchange transfor-
mations to a triangle of the form

Jgd" (K)
Thus Lemma 2.3.5 allows to conclude.
To end the proof, we remark by using the equations for the adjunction (i*,4.) that for any
object M of 7(S5), the following diagram is commutative:

Ms(S/S - Z) @ K Ba(i%,®)

ii* (K) =——— i, (1 ® i*i* (K)).

ad’ (j3,5") K ad(i"ix)

ixi™(K) = jyj " (K).
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Note that (i) implies that 4, is conservative and commutes with direct sums (see 2.3.3) and (ii)(c)
implies it commutes with twists. According to the above diagram, (ii)(b) implies (iv)(b).

We prove that reciprocally that (iv) implies (ii). Because (ii)(b) (resp. (ii)(a)) is a particular case
of (iv)(b) (resp. (iv)(a)), we have only to prove (ii)(b). In view of the previous diagram, we are
reduced to prove that for any object K of .7(S), the map v; x is an isomorphism. Consider the
full subcategory % of .7 (S) made of the objects K such that 1); x is an isomorphism. Then % is
triangulated. Using (iv)(a), % is stable by small sums and 7-twists. By assumption, it contains
the objects of the form Mg(X) for a &-scheme X/S. Thus, because 7 is well generated by
assumption, Lemma 1.3.18 concludes. O

LEMMA 2.3.16. Consider a closed immersion i : Z — S. We assume the following conditions
are satisfied in addition to that of 2.0:

o 7 is well generated, T-generated, and satisfies the Zariski separation property.
e For any P-scheme Xo/Z and any point xo of Xo, there exists an open neighbourhood
Uy of xg in Xy and a P-scheme U/S such that Uy = U xg z .40

Then the functor i, is conservative.

PRrROOF. Consider an object K of .7 (Z) such that i, (K) = 0. We prove that K = 0.
Because 7 is T-generated, it is sufficient to prove that for a &-morphism py : Xg — Z and a
twist (n,m) € Z x 7,

Hom g (z)(Mz(Xo){m}[n], K) = 0.
Because Mz(Xo) = pos(1x,), this equivalent to prove that

Hom 7 (x,)(1x,{m}n], po(K)) = 0.

Using the Zariski separation property on .7, this latter assumption is local in Xy. Thus, according
to the assumption on the class &2, we can assume there exists a &-scheme X/S such that Xy =
X xg Z. Thus Mz(Xo){m}n] = i*(Ms(X){m}[n]) and the initial assumption on K allows to
conclude. 0

Note for future applications the following interesting corollaries:

COROLLARY 2.3.17. Assume Z is a premotivic triangulated category which is compactly T-
generated for a group of twists T (i.e. any twists in T admits a tensor inverse) and which satisfies
the Zariski separation property.

Then, for any closed immersion i, the functor i, is conservative, commutes with sums and
with twists.

This is a consequence of lemmas 2.3.16 and 2.2.16. In fact, under these conditions, i, commutes
with arbitrary T-twists because it is true for its (left) adjoint i*.

COROLLARY 2.3.18. Assume 7 satisfies the assumptions of the preceding corollary. Then the
following conditions on a closed immersion i are equivalent:

(i) T satisfies the property (Loc;).
(it) For any scheme S in . and any smooth S-scheme X, the map (2.3.14.3)

wi,X : Ms(X/X — Xz) — ’L*Mz(Xz>
s an isomorphism.
We finish this section with the following useful result:

PROPOSITION 2.3.19. Assume 7 is T-generated and consider a 7'-generated triangulated & -
fibred category T’ and a morphism

o (T, )2 (T 7).

We assume the following properties:

40This property is trivial when &2 is the class of open immersions or the class of morphisms of finite type in
. Tt is also true when & is the class of étale morphism or & = Sm (c¢f. [EGAA4, 18.1.1]).
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(a) the morphism ©* is strictly compatible with twists;
(b) T is well generated.
We consider a closed immersion i : Z — S and further assume the following properties:
(c) T satisfies the property (Loc;).
(d) The exchange transformation Ex(@*, i) : p* i — 10" is an isomorphism.
(e) The functor i, : T'(Z) — T'(S) commutes with T'-twists.*!
Then 7' satisfies the property (Loc;).

ProoOF. Note that, under the above assumptions, ¢, is conservative (in fact, for any -
scheme X/S and any twists ¢ € 7/, the premotive Mg(X){i} is in the essential image of ¢*).
Thus, if 4, : T(Z) — 7 (S) is conservative (resp. commute with sums), then i, : 7'(S) — 77(S)
is conservative (resp. commute with sums) using the isomorphism @i, >~ i.@x.

Let M (resp. M') be the geometric sections of 7 (resp. 7'). As in 2.3.14, we fix a distinguished
triangle
Ms(S — Z) 25 15 25 Mg(S/S — Z) 2 Ms(S — 2)[1].
and we put M¢(S/S—2Z) = ¢*Ms(S/S—Z). According to loc. cit., we thus get for any &7-scheme
X/S canonical maps
Vix Msg(X/X — Xz) = i, Mz(Xz),
¢§,X M(X/X — Xz) = .My (Xz).

By construction, the following diagram is commutative:

% ©* Y, 2 Ex(p~ i) . *
O Mg(X/X — Xz) — > 0*i, My (Xy) — "> i, 0" My (X z)
] " |
Mg(X/X — Xz) My(Xz)
Thus, Proposition 2.3.15 allows to conclude. O

2.4. Purity and the theorem of Ayoub. Recall we assume &2 = Sm in this section.
2.4.a. The stability property. The following section is directly inspired by the work of Ayoub
in [Ayo07a, §1.5].*2 We claim no originality except for a closer look on the needed axioms.

DEFINITION 2.4.1. A pointed smooth S-scheme will be a couple (f, s) of morphisms of . such
that f: X — S is a smooth separated morphism of finite type and s : S — X is a section of f.
We associate with a pointed smooth scheme (f, s) the following endofunctor of .7 (.5)

Th(f,s) = fys«
called the associated Thom transformation.
If 7 satisfies (Adjs) (recall: s, admits a right adjoint denoted by s'), we put
Th'(f,s) :=s"f*
and call it the associated adjoint Thom transformation.

REMARK 2.4.2. Note that because f is separated, s is a closed immersion.

EXAMPLE 2.4.3. (1) Let p: E — X be a vector bundle and sq be its zero section. Fol-
lowing [Ayo07a], we put Th(E) := Th(p, sp) and call it simply the Thom transformation
associated with E/X.

(2) Consider a pointed smooth S-scheme (f,s) such that f is étale. Then s is an open
and closed immersion. Thus, if 7 is additive, s, = s; according to Lemma 2.2.2. In
particular, Th(f,s) = Ids.

41This will be satisfied if any 7/-twists is invertible because the left adjoint of i« commutes with 7/-twists.
425ee also [Del01, §5].
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DEFINITION 2.4.4. We will say that 7 satisfies the stability property, denoted by (Stab), if for
any point smooth scheme (f, s), the Thom transformation Th(f,s) is an equivalence of categories.

2.4.5. Consider a commutative diagram in .% of the form

S
t/J/ \
(2.4.5.1) VI ——Y

ST

such that A is a cartesian square, (f,s), (g,t) are smooth pointed schemes and ¢ is a smooth
separated morphism of finite type. Then we get a canonical exchange morphism:

Ez(Aga
(2.4.5.2) Thg,t) = fipgsit, —— 20y fus.plt, = Th(f,s)Th(p,t).
This is an isomorphism as soon as Ex(Ag.) is an isomorphism. The following lemma gives a
sufficient condition for this to happen.

LEMMA 2.4.6. Consider the above notations. If 7 satisfies (Locs) then the natural transfor-
mations Ex(Ay.) is an isomorphism for any square A as above.

This lemma follows easily from the definition of (Locy), the relations of paragraph 2.3.1 and
the P-base change formula (£2-BC). It motivates the next definition:

DEFINITION 2.4.7. We say that 7 satisfies the weak localization property (wLoc) if it satisfies
(Locs) for any closed immersion s which admits a smooth retraction.

PROPOSITION 2.4.8. Assume that 7 satisfies the Nisnevich separation property. Then the
following conditions are equivalent:
(i) T satisfies (wLoc).
(i) For any scheme S and any closed immersion i : Z — X between smooth S-schemes, T

satisfies (Loc;).

ProoOF. Of course, (ii) implies (i). We prove the reciprocal statement. The Nisnevich sepa-
ration property says that for any Nisnevich cover f: X’ — X, the functor f* is conservative. We
deduce from that point the properties (Loc;) (a) and (Loc;) (b) are local in X with respect to
the Nisnevich topology — for (b), one also uses the smooth projection formula. Thus, we can con-
clude as locally for the Nisnevich topology, ¢ admits a smooth retraction (see for example [Dég07,
4.5.11]). O

Applying the second point of Example 2.4.3, we easily deduce from that construction the
following kind of excision property:

LEMMA 2.4.9. Assume that J satisfies (wLoc).
Then, given any diagram (2.4.5.1) satisfying the assumption as above and such that p is étale,
the natural transformation (2.4.5.2) gives an isomorphism:

Th(g,t) —— Th(f,s).

2.4.10. To any short exact sequence of vector bundles over a scheme S

(0) 0-F S ELE" -0,
we can associate a commutative diagram

S

E YsF

be N

S—=FE'"—38
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where the non labeled map are either the canonical projections or the zero sections of the rel-
evant vector bundles, and A is cartesian. Using the notation of Example 2.4.3, the exchange
transformation (2.4.5.2) associated with this diagram has the following form:

Thio): Th(E) — Th(E") o Th(E").

Recall from the above that this natural transformation is an isomorphism as soon as 7 satisfies
(wLoc).

PROPOSITION 2.4.11. Assume 7 satisfies (wLoc) and (Zar-sep). Then the following conditions
are equivalent:

i e complete triangulated Sm-fibred cateqory 7 satisfies the stability property.
) Th lete tri lated Sm-fibred cat T sati the stabilit (
(ii) For any scheme S, the Thom transformation Th(AY) is an equivalence of categories.

PrROOF. We have to prove that (ii) implies (i). Note that according to the above paragraph,
we already now that for any scheme S and any integer n > 0, Th(A%Z) ~ Th(AL)>" is an
equivalence.

We consider a smooth pointed scheme (f : X — S,s) and we prove that Th(f,s) is an
equivalence.

Recall that (Locg) implies (Adj) s (first point of Proposition 2.3.3). In particular, Th(f,s)
admits a right adjoint Th'(f, s) and we have to prove that the adjunction morphisms are isomor-
phisms.

Consider an open immersion j : U — S and let (fo,s9) be the restriction of the smooth S-
point (f,s) over U. Property (Locs) implies (BC;) (Corollary 2.3.13). Thus, using also property
(£2-BC), we obtain a canonical isomorphism:

3 Th(f,s) — Th(fo,s0)j".
Recall also that (Locs) implies (Supps) (again Corollary 2.3.13). Thus we get a canonical isomor-
phism:

3¢ Th(fo,80) — Th(f,s)js
which gives by adjunction an isomorphism:

7—]1/(‘]807 So)j* L) j*Th/(f, S)

Thus, (Zar-sep) shows that the property for Th(f,s) to be an equivalence is Zariski local in S.
Consider a point a € S, x = s(a). As X is smooth over S, there exists an open subscheme

U C X, an integer n > 0 and an étale S-morphism 7 : U — A% which fits into the following
cartesian square:

SO —U

S AL
where v is the zero section (c¢f. [EGA4, 17.12.2]). Note that the scheme Sy = s7(U) is an open
neighbourhood of a in S. Let us put Xo = f~1(Sg) and Uy = U N Xy. Then we get the following
commutative diagram:

Xo

BN

so—>= Uy —f5—= 5o

T e

n
A%

So

where 7 is the restriction of © above Sy and v is again the zero section. According to Lemma
2.4.9, we get isomorphisms

Th(fo,s0) = Th(f},s6) =~ Th(AL).

Thus, according to the beginning of the proof, Th(fo, so) is an equivalence. This concludes because
Sp is an open neighbourhood of a in S. O
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DEFINITION 2.4.12. Assume that 7 is monoidal.
(1) For any smooth pointed scheme (f : X — S, s), we put Mg(X/X — s(5)) := fys.(1s).
(2) For any vector bundle E/S with projection f and zero section s, we define the Thom
premotive associated with E over S as MThg(E) = fys.(1s).

2.4.13. We assume .7 is monoidal and satisfies properties (wLoc) and (Zar-sep).

In each case of the previous definition, if we apply f; to the distinguished triangle obtained
from point (2) of Proposition 2.3.3 applied to s, we get the following canonical distinguished
triangles:

Mg (X — () = Mg(X) =Ms(X/X — s(5)) 5

Ms(E*) — Ms(E) =MThg(E) =5
where the first map is induced by the obvious open immersion.
Moreover, property (Loc,) implies (PF;) (see Corollary 2.3.13). Thus for any premotive K
over S, the following composite map is an isomorphism:

Th(f,s).K = fys.(K) = fys.(Ls ®s 5" F*(K)) 20220 f (s, (1s) @x £7(K)

(2.4.13.1)
Ba(f] )
—>

(fis:(Ls)) ®s K = Mg(X/X — s(5)) ®@s K
Similarly, in the case of a vector bundle E/S, we get a canonical isomorphism:
Th(E).K — MThs(F) ®s K.
From these isomorphisms, we deduce easily the following corollary of the previous proposition:

COROLLARY 2.4.14. Consider the above notations and assumptions. Then the following prop-
erties are equivalent:
(i) T satisfies the stability property.
(i) For any smooth pointed scheme (X — S,s), the premotive Mg(X/X — s(S5)) is ®-
invertible.
(i1i) For any vector bundle E/S the Thom premotive MThg(E) is ®-invertible.
(iv) For any scheme S, the premotive MThg(AL) is @-invertible.

REMARK 2.4.15. Assume that .7 satisfies the assumptions and the equivalent conditions of
the previous corollary. Then, under the notations of Paragraph 2.4.10, we associate with the exact
sequence (o) a canonical isomorphism

(2.4.15.1) Ths(o) : MThg(E) — MThs(E") ©s MThs(E'").

Recall that Deligne introduced in [Del87, 4.12] the Picard category K (S) of virtual vector bundle
over a scheme S.

Then, it follows from the above isomorphism and the universal properties of K (.5) (see [Del87,
4.3]) that the functor MThg can be extended uniquely to a symmetric monoidal functor:

MThs : K(S) = T7(9).
The reader is referred to [Ayo07a, th. 1.5.18] for a detailed argument.

2.4.16. Assume 7 is monoidal. For any scheme S, the canonical projection p : PL — S
is a split epimorphism. A splitting is given by the inclusion of the infinite point v : S — Pg.
The induced map p, : Mg(Pg) — Lg is a split epimorphism. Thus it admits a kernel K in the
triangulated category 7 (S).

DEFINITION 2.4.17. Under the above assumption and notations, we define the Tate premotive
over S as the object 1g(1) = K[—-2] of .7(S).

The monoid generated by the cartesian section (1g)g defines a canonical N-twist on .7 called
the Tate twist. The n-th Tate twist of an object K is denoted by K (n).
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2.4.18. Consider again the assumption of Paragraph 2.4.13.
According to Lemma 2.4.9, we get a canonical isomorphism

MThs(Ag) = Ms(Ag/Ag —{0}) = Ms(Pg/Pg — {0}).

On the other hand, 15(1)[2] is by definition the cokernel of the monomorphism v, : 1g —
Mg (PY). Thus we get a canonical morphism:

(2.4.18.1) 1s(1)[2] = Ms(PL/Ps —{0}) —= MThs(AL).
From this definition and Corollary 2.4.14 the following result is obvious:

COROLLARY 2.4.19. Consider the above assumption and notations. Then the following con-
ditions are equivalent:

(i) T satisfies the homotopy property.
(ii) For any scheme S, the arrow (2.4.18.1) is an isomorphism.

When these equivalent assertions are satisfied, the following conditions are equivalent:
(i) T satisfies the stability property.
(iv) For any scheme S, the Tate premotive 15(1) is ®-invertible.

2.4.b. The purity property.
2.4.20. Let f : X — S be a smooth proper morphism in .. We consider the following
cartesian square:
X xg X L> X
(2.4.20.1) f’l A J{f
X S

where f’ (resp. f”) is the projection on the first (resp. second) factor. Let § : X — X xg¢ X be
the diagonal embedding. Note that (f’, ) is a smooth pointed scheme which depends only on f.
We put:
Y= Th(fla §) = fyj/(s*
We then define a canonical morphism:
Ex(Aygy)
Py fi = fufl6. ——= fufib. = fuo ¥y

using the exchange transformation introduced in paragraph 1.1.15.

DEFINITION 2.4.21. We say that f is J -pure, or simply pure when .7 is clear, when the
following conditions are satisfied:
(1) The natural transformation X7 is an equivalence.
(2) The morphism py : fz = f. o Xy is an isomorphism.
Then py is called the purity isomorphism associated with f. We say also that f is universally
T -pure if f is pure after any base change along a morphism of ..
We introduce the following properties on .7:
o 7 satisfies the purity property (Pur) if any proper smooth morphism is pure.
e 7 satisfies the weak purity property (wPur) if for any scheme S and any integer n > 0,
the canonical projection p,, : P — S is pure.

REMARK 2.4.22. Consider the above notations and assume f is pure.
Then f, admits a right adjoint f' and we deduce by transposition from p ¢ a canonical iso-
morphism:
prifr =57 o f
Recall also that, when 0, admits a right adjoint &', 3 admits as a right adjoint the transformation
Q= §'f*. In particular, Qf = E}Tl.

The following lemma shows the importance of the purity property.
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LEMMA 2.4.23. Assume that J satisfies (wLoc). Let f :' Y — X be a proper smooth morphism.
If [ is universally pure then the following conditions hold:

(1) T satisfies (Suppy) and (BCy).
(2) For any cartesian square
Z Y
ol a o
X S

xi > ix.

such that g is smooth, the exchange transformation:
Ex(Ag) : gsfe — fihy
18 an 1somorphism.
(3) If moreover 7 is monoidal then T satisfies (PFy).
ProOOF. We first prove condition (2). By assumption, the natural transformation % 7 is an

equivalence. for f and f: by assumption the natural transformations ¥ = féé* and X F= f! 5*)
are equivalences. Thus, it is sufficient to prove that the natural transformation

~ Ex(Agy)
91 f: S ——> fuhy3;

is an isomorphism.
For matter of notations, let us also introduce the following cartesian squares:

£

70 gxy 72—tz

R

XT>XXSX7>X

using the notations of 2.4.20. Thus, by definition: Xy = f{d., X7 = f'6.. Then we consider the
following diagram of exchange transformations:

- ps JO
92/ : 95 . f15.
J{Ew(ﬁu*)
p Ex(Ty.) ~ o~
fihg ——— [ fl0uhy <" f, flksb, === f.hy 16,

Note that it only involves exchange transformations of type Ex (74, ): it is commutative by compat-
ibility of these exchange transformations with composition. By assumption, the transformations
py and pj; are isomorphisms. Moreover the property (Locy) is satisfied and it implies (Supps)
according to Corollary 2.3.13. Thus Ex(T'y.) is an isomorphism and this concludes the proof of
(2).

For condition (1), we note that (2) already implies (Suppy). Thus we have only to prove
(BCy). We consider a square of shape A as in the statement of the lemma without assuming that
g is smooth. We have to prove that

Ex(AY) : g* f. — fuh*
is an isomorphism. We proceed as for condition (2). It is sufficient to prove that Ex(A%) is an

isomorphism after composition on the right with ;. Then we consider the following commutative
diagram of exchange transformations:

g*fti g*f*fu/(s*
EI(AD\L lEI(Ai)

Fopk Pi FOAIS 1k Ez(T) £ f % Ew(@;{) £k gl
fiht o b <2 F s, <0 e g,

br
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According to (£7-BC), Ex(A;‘) and E:c(@?{) are isomorphisms. By assumption, py and p; are
isomorphisms. Moreover, property (Locs) is satisfied and this implies Fz(I'}) is an isomorphism
according to Corollary 2.3.13. Condition (1) is proved.

It remains to prove (3). We consider again the notations of the cartesian diagram (2.4.20.1).
For any premotives K over X and L over S, we consider the following commutative diagram of
exchange transformations (see Remark 1.1.32):

F(K @ f1(L)) ——— 116, (K @ 8% " (L))
Ex(6;,®)
L6 (K) © £ (L))
Ea(f;.®) Ba(f{",®)
£ (f8.(K) @ f*(L))

Ex(f;,®)
f*fgé*(K) ® L.

By definition, the exchanges Ex(f},®) and Ex(f;*,®) are isomorphisms. By assumption, the
arrows labelled p; are isomorphisms. Moreover, the property (Loc;s) is satisfied: Corollary 2.3.13
implies that Fz(df,®) is an isomorphism. We deduce from this that the arrow Fz(f}, ®) is an
isomorphism. This concludes the proof of (3) as the functor Xy = fﬁ’ 0 is an equivalence according
to the hypothesis on f. O

Pr

fi(K)® L

2.4.24. Assume that 7 satisfies the support property (Supp). Then we can extend Definition
2.4.21 to the case of a smooth separated morphism of finite type f : X — S. We still consider
the cartesian square (2.4.20.1) and the diagonal embedding § : X — X xg X. Again, (f’,9) is a
smooth pointed scheme so that we can put

Sy = Th(f'.8) = f{5.

and we define a canonical morphism:

(2.4.24.1) by fo = fifi /(51 flfﬁél = fioXy.

using the exchange transformation of point (2) in Corollary 2.2.12.

Auv

DEFINITION 2.4.25. Using the notations above, we say that f is .7 -pure, or simply pure when
T 1is clear, when the following conditions are satisfied:

(1) The natural transformation X7 is an equivalence.
(2) The morphism py : fy — fio Xy is an isomorphism.

We can easily deduce from the construction of the exchange transformation Fx(Ay) that,
when 7 satisfies properties (Stab) and (Pur), any smooth separated morphism of finite type f is
pure. The following theorem is a consequence of the formalism developed previously.

THEOREM 2.4.26. Assume that T satisfies the localization and weak purity properties. Then
the following conditions hold:

(1) T satisfies the stability property.
(2) T satisfies the support and base change properties.
If moreover J is monoidal, it satisfies the projection formula.
(8) Any smooth separated morphism of finite type is pure.
(4) For any projective morphism f, the property (Adjs) holds.
If moreover J is well generated, then the adjoint property holds in general.

PROOF. We start by proving condition (1). As (Loc) implies (Zar-sep), we can apply Propo-
sition 2.4.11 and we have only to prove that for any scheme S, Th(AY) is an equivalence. Let
s: 8 — A} be the zero section and j : AL — P} be the canonical open immersion. Put ¢t = jos.
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According to Lemma 2.4.9, j induces an isomorphism 7 h(Ag) ~ Th(pi,s). Consider now the
following cartesian squares:

S * ~pP,—" 5§

Sl’ i/s’ A J{s

1 1 1 1
Ps—>PsxsPg e Py
1

where p) (resp. ¢) is the projection on the first factor (resp. diagonal embedding). The property
(Locs) implies that s*s, = 1 and that the exchange transformation Ex(Ay.) is an isomorphism
according to Corollary 2.3.13. Thus we get an isomorphism of functors:
—1
Th(p1,s) = p1gS« = S S4D145« M) s*p’lﬁsis* = s*p’lﬁé*s* = 5"%,, 54
and this proves (1) because p; is pure.

Condition (2) follows simply from Corollary 2.3.13. In fact, for any scheme S, the weak purity
assumption on 7 implies that p, : P% — S is universally pure. Thus, Lemma 2.4.23 implies
properties (Supp,, ) and (BC,,) so that we can apply Corollary 2.3.13 to get (Supp) and (BC).
The same argument applies to the property (PF) in the monoidal case.

For condition (3), we consider a smooth separated morphism of finite type g : ¥ — S and we
prove it is pure. According to (1), ¥, is an equivalence. Thus, by definition of p,, it is sufficient
to prove that for any cartesian square:

z Ly
o oa o
X—S5
I
with f separated of finite type, the exchange transformation
Ex(Ag) < gifi = fiby

is an isomorphism.
To do this, we apply Proposition 2.3.11, as in the case of Corollary 2.3.13. We consider the
obvious complete Sm-fibred triangulated categories .7’ and 7" over .¥/S which to an S-scheme
Y associates:

e 7'(Y)=T(Y xg X).

e T"Y)=9(Y).
We consider the morphism ¢* : 7" — 7" such that for any S-scheme Y, ¢} = (Y xgp);. As for
any scheme S, p, : P4 — S is universally pure, Lemma 2.4.23 shows that ¢* satisfies condition
(i) of Proposition 2.3.11. According to that Proposition, (i) is equivalent to condition (iii), and
(iii) is precisely what we want.

It remains only to prove condition (4). According to property (Pur), any smooth proper
morphism [ satisfies (Adjs). According to (Loc) and Proposition 2.3.3 any closed immersion i
satisfies (Adj;). It follows easily that any projective morphism f satisfies (Adjs). When .7 is well
generated, we simply apply point (4) of Corollary 2.3.13. O

REMARK 2.4.27. In particular, in the assumption of the previous theorem, if 7 satisfies
properties (Loc), (wPur) and (Adj)*?, we can apply Theorem 2.2.14 to .7 so that we get a complete
formalism of operations (f*, f., fi, f') satisfying all the desired formulas.

Thus the preceding theorem gives another look at the main result of [Ayo07a, 1.4.2]. In fact,
the proof given here is simpler as the assumptions of our theorem are stronger. However, we do
not use the homotopy property in our theorem.

43Note that under the assumptions of the previous theorem, we know that for any proper smooth morphism
f, f« admits a right adjoint. The same is true for a proper morphism which can be factorized as a closed immersion
followed by a smooth proper morphism according to (Loc).
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We end up this section with the theorem of Ayoub [Ayo0T7a, 1.4.2], which can be stated in a
simpler form according to the preceding theorem:

THEOREM 2.4.28 (Ayoub). Assume J satisfies the localization, homotopy and stability prop-
erties.
Then T is weakly pure.

In fact, this theorem is proved explicitly in op. cit., Theorem 1.7.9.

REMARK 2.4.29. Recall that Ayoub proves more than just this theorem: indeed he constructs
the whole formalism of the 6 functors for quasi-projective morphisms for his monoidal homotopy
stable functors — see again [AyoO7a]. The work we have done here is to isolate the crucial
properties of purity and weak purity. Also, using the construction of Deligne, we have showed how
to avoid the assumption of quasi-projectiveness made by Ayoub. Finally, the interest of Theorem
2.4.26 is to give a possible approach to the 6 functors formalism without requiring the homotopy
property ; this is a question which has been indirectly adressed by many mathematicians (Bloch,
Esnault, Barbieri-Viale, ...)

2.4.c. Duality, purity and orientation.

2.4.30. This section is concerned with the relation between purity and duality. We will assume
that 7 is premotivic.

Recall that an object M of a monoidal category .# is called strongly dualizable if there exists
an object M’ such that (M’ ® —) is both right and left adjoint to (M ® —). Then, M’ is called
the strong dual of M.

In case .# is closed monoidal, we will say that a morphism of the form

p:MeM —1
is a perfect pairing if the natural transformation
(M ® —) — Hom(M', —)
obtained from p by adjunction is an isomorphism. Then M is strongly dualizable with dual M’.

ProprosITION 2.4.31. Let f: X — S be a smooth proper morphism.
If f is pure then the premotive Mg(X) is strongly dualizable in 7 (S) with dual:

fo(Ix) =~ fi(Q(1x))

where Q¢ denotes the inverse of Y.

PROOF. By assumption, ¥ is an automorphism of the category 7 (X). Moreover, the identi-
fication (2.4.13.1) can be rewritten as X (M) = X ,(1x) ®x M for any premotive M over X. The
fact X5 is an equivalence means that X (1 x) is a ®-invertible object, whose inverse is T := Qy(1g).
In particular, we get: Qp (M) =T ® M.

According to the Sm-projection formula, the functor Mg(X) ® . is isomorphic to f; f*. Thus,
its right adjoint is f.f*. As f is pure by assumption, this last functor is isomorphic to f4€2sf*.
Using the observation at the beginning of the proof and the Sm-projection formula again, we
obtain:

Qs (N) = (T @ [*(N)) = f(T) @ N.
Moreover, the right adjoint of fyQ¢f* is f.Xf*. Using again the purity isomorphism for f, this
last functor can be identified with f;f* and this concludes. O

2.4.32. Assume again that the premotivic triangulated category .7 satisfies properties (wLoc)
and (Nis-sep).

Let S be a scheme. A smooth closed S-pair will be pair (X, Z) of smooth S-schemes such that
Z is closed subscheme of X. We consider the canonical projection p : X — S and the immersion
1: Z — X associated with (X, Z). Note that according to Proposition 2.4.8, 7 satisfies property
(Loc;). Then we define the premotive of (X, Z) as follows:

(2.4.32.1) Ms(X/X — Z) := pyiv(1z).
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According to property (Loc;), we thus get a canonical distinguished triangle:
(2.4.32.2) Ms(X — Z) 25 Mg(X) > Ms(X/X — 7)
Note that given any smooth morphism p: S — Sy, we get obviously:
(2.4.32.3) pyMs(X/X — Z) = Mg, (X/X — Z).
Moreover, given any morphism f : 7T — S, we get an exchange isomorphism:
(2.4.32.4) f*Ms(X/X — Z) = Mp(Xp /X1 — Z7).

A morphism of smooth closed S-pairs (Y,T) — (X, Z) will be a couple (f,g) which fits into a
commutative diagram

Tty

o s s
7 — X,

?

with 4, k the canonical immersions, and such that T = f~!(Z) as a set. We can associate with
(f,g) a morphism of premotives:
* Ez(a))™! W Bxy .
Ms(Y)Y —T) = qk.g"(1z) ————— g3 f 1. (1z) — 1"pyin(1z) = Ms(X/X — 2).
Indeed, the exchange map Fx(AZ) is an isomorphism according to (Loc;) and Corollary 2.3.13.
It is easy to check that the triangle (2.4.32.2) is functorial with respect to morphisms of closed
S-pairs. Before proving the next theorem, we state the following lemma.

LEMMA 2.4.33. Consider the assumptions and notations above.
Let (f,g) : (Y,T) — (X, Z) be a morphism of smooth closed S-pairs such that f is étale and
g is an isomorphism. Then the induced map Mg(Y/Y —T) = Mg(X/X — Z) is an isomorphism.

PRrROOF. According to the identification 2.4.32.3, it is sufficient to treat the case where X = Z.
Let U =X — Z and j : U — X be the obvious immersion. Then (f, j) is a Nisnevich cover of X.
According to (Nis-sep), it is sufficient to prove that the pullback of Mx (Y/Y -T) - Mx(X/X—Z)
along f and j is an isomorphism. This is obvious using 2.4.32.4. O

2.4.34. We consider again the assumption of the paragraph preceding the above lemma.

Fix a smooth closed S-pair (X, Z). Let BzX (resp. Bz(AY) be the blow-up of X (resp. AY)
with center in Z (resp. {0} x Z). We define the deformation space associated with (X, Z) as the
S-scheme DzX = Bz(A%) — BzX. Note also DzZ = A is a closed subscheme of Dz X ; the
couple (DzX,A}L) is a smooth closed S-pair.

Let Nz X be the normal bundle of Z in X. The scheme Dz X is fibred over A'. Moreover, the
0-fiber of (DzX, A') is the closed pair (NzX, Z) corresponding to the zero section and the 1-fiber
is the closed pair (X, Z). In particular, we get the following morphisms of closed pairs:

(2.4.34.1) (X,2) L (DX, AL) &2 (N2 X, 2)

We are now ready to state the purity theorem for smooth closed pairs in our abstract formalism.
Though our assumptions are more general, this theorem follows exactly from the method of Morel
and Voevodsky used to prove this result in the homotopy category J# (see [MV99, §3, 2.24]):

THEOREM 2.4.35. Consider the above assumptions and notations and suppose that 7 satisfies
the homotopy property. Then the morphisms

Ms(X/X — Z) 255 Mg(DzX/DyX — Al) <2~ Mg(N;X/N}X) = MThs(NzX).
are isomorphisms.

PROOF. By noetherian induction and the preceding lemma, the statement is local in X for
the Nisnevich topology. Thus, because (X, Z) is a smooth closed S-pair, we can assume that there
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exists an étale map 7 : X — A%ZY¢ such that 771(A§) = Z — of. [EGAA4, 17.12.2]. Consider the
pullback square

X’ X
q\L 1x7|Z \LW

A" x Z

A" x AS.

There is an obvious closed immersion Z — X’ and its image is contained in ¢=!(Z). As q is étale,
Z is a direct factor of ¢7%(Z). Put W = ¢ 1(Z) — Z and Q = X’ — W. Thus Q is an open
subscheme of X', and the reader can check that p and ¢ induces morphisms of smooth closed
S-pairs
(X, Z) + (92,2) = (AL, Z).

Applying again the preceding lemma, these morphisms induces isomorphisms on the associated
premotives. Thus we are reduced to the case of the closed S-pair (A%, Z). A direct computation
shows that Dz(A%) ~ A' x A”%. Under this isomorphism dy (resp. di) corresponds to the 0-
section (resp. l-section) of A! x A% corresponding to the first factor. Thus, we conclude using
the homotopy property. O

2.4.36. The interest of the previous theorem is to simplify the purity isomorphism. Let us
restate the assumptions on the triangulated premotivic category 7 :
o .7 satisfies properties (Nis-sep), (wLoc) and (Htp).
Then applying the above theorem, we get for any smooth closed S-pair (X, Z) a canonical isomor-
phism
(2.4.36.1) pxz: Ms(X/X —Z) = MThs(NzX)

COROLLARY 2.4.37. Consider the assumptions and notations above.

(1) For any smooth pointed S-scheme (f,s) and any premotive K over S, we get a canonical
isomorphism

Px,s

Th(f,s).K ~ Ms(X/X — 5(5)) @5 K 222 MThg(N,) ®s K.

where the first isomorphism is given by the map (2.4.13.1) and N is the normal bundle

of s.
(2) For any smooth separated morphism of finite type f : X — S with tangent bundle** Ty,
and any premotive K over X, we get a canonical isomorphism:

Pxx,x: Zf(K) BEAGEY MThx(Tf) ®Rx K

— here, (XX, X) stands for the closed pair corresponding to the diagonal embedding of
X/S.

In the assumption of point (2), we thus get a canonical map:
(2.4.37.1) f(K) 2 (S5 K) = i(MThx(Ty) @x K)
that we will still denote by ps and call the purity isomorphism associated with f.

DEFINITION 2.4.38. Assume the triangulated premotivic category 7 satisfies (wLoc). As
usual, M (1) denotes the Tate twist of a premotive M.

An orientation t of & will be the data for each smooth scheme X and each vector bundle
E/X of rank n of an isomorphism

tg : MThx(E) — 1x(n)[2n],

called the Thom isomorphism, satisfying the following coherence properties:

44We define T as the normal bundle of the diagonal immersion § : X — X xg X.
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(a) Given a scheme X and an isomorphism of vector bundles ¢ : E — F' of ranks n over X,
the following diagram is commutative:

P

MThx(E) MThx (F).
’ 1x(n)[2n] ’

(b) For any morphism f : Y — X of schemes, and any vector bundle E/X of rank n with
pullback F over Y, the following diagram commutes:

P (MThy (E)) £+ f*(1x (n)[2n])

Ni J/N

MThy (F) — = 1y (n)[2n]

where the vertical maps are the canonical isomorphisms.
(¢) For any scheme X and any exact sequence (o) of vector bundles over X

v

0—-E L ELE >0,
if n (resp. m) denotes the rank of the vector bundle E’ (resp. E”), the following diagram
commutes:

MThy(E) —2 ) MThy(E') @ MThyx (E")

tEl ltE/®tE//

Ix(n+m)[2n+2m| —— 1x(n)[2n] ® Lx(m)[2m]
where the map Thx (o) is the isomorphism (2.4.15.1) associated with (o) and the bottom
vertical one is the obvious identification.

We will also say that 7 is oriented when the choice of one particular orientation is not essential.
Note that the Thom isomorphism can be viewed as a cohomology class in
HZ""(Thx(E)) := Hom(x)(MThx (E), 15(n)[2n])
which in classical homotopy theory is called the Thom class.

2.4.39. Suppose the triangulated premotivic category .7 satisfies the following properties:
e 7 satisfies properties (Nis-sep), (wLoc), (Htp).
e 7 admits an orientation t.
Consider a smooth closed S-pair (X, Z) of codimension n. Let p (resp. ¢) be the structural
morphism of X/S (resp. Z/S) and i : Z — X the associated immersion. Then we associate with
(X, Z) the following form of the purity isomorphism:

Px,z

(2.4.39.1) Pz Ms(X/X — Z) 222 MThg(NX)

qﬁ(tNZX)
-

Ms(Z)(n)[2n]
where px 7 is the isomorphism (2.4.36.1). For future reference, note that we deduce from this the
so-called Gysin morphism:
t
(2.4.39.2) P Mg(X) 5 Ms(X/)X — Z) 222 Mg(Z)(n)[21]
where 7 is the following map:

ad(i* i .
Ms(X) = ps(1x) "2 b i*(1y) = Ms(X/X — Z).

As a particular case, we get using the notation of Corollary 2.4.37, point (2), an isomorphism:

Pxx,x

tr
Pxx : Sp(K) =5 MThx (Ty) ® K — K(d)[2d]
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In particular, when J satisfies property (Supp), the purity comparison map associated with f
can be rewritten as:

(2.4.39.3) P s frony XN f(d)2d]
EXAMPLE 2.4.40. Assume as in the above definition that 7 is premotivic and satisfies prop-
erties (wLoc) and (Nis-sep).
We suppose the following two additional conditions are fulfilled:
(a’) There exists a morphism of triangulated premotivic categories:
0 SHS T 1o,
where SH is the stable homotopy category of Morel and Voevodsky — see Example 1.4.3.

(b’) For any scheme X, let Pic(X) be the Picard group of X. We assume there exists an
application

¢1 : Pie(X) = H3'(X) := Hom g x)(M(X), 1x(1)[2])

which is natural with respect to contravariant functoriality — we do not require c¢; is a
morphism of abelian groups.

Then one can apply the results of [Dég08] to 7 (X) for any scheme X. All the references
which follows will be within loc. cit.: according to section 2.3.2, the triangulated category .7 (X)
satisfies the axioms of Paragraph 2.1.%° Then the existence of the Thom isomorphism follows
from Proposition 4.3 and, more explicitly, from Paragraph 4.4. Property (a) and (b) of the above
definition are easy — explicitly, this is a consequence of 4.10 — and Property (c) follows from Lemma
4.30.

To sum up, the assumptions (a’) and (b’) guarantees the existence of a canonical orientation of
7 in the sense of the above definition. Moreover, the purity isomorphism (2.4.39.1) as well as the
Gysin morphism (2.4.39.2) associated in the preceding paragraph for this particular orientation
coincide with the one defined in [Dég08] (see in particular the uniqueness statement of [Dég08,
Prop. 4.3]).

Note moreover that assuming 7 satisfies all the properties above except (b’), the data of an
orientation of .7 is equivalent to the data of a map ¢; as in (b’). Indeed, if t is an orientation of
7, given any line bundle L/X with zero section s, we put ¢1(L) = p(tz) where p is the following
composite map:

H%NThx(L)) — H3' (L) = HZ'(X)
where the first map is induced by the canonical projection Mx (L) — MThx(L). Then ¢; depends

only on the isomorphism classes of L/ X — property (a) of the above definition — and it is compatible
with pullbacks — property (c) of the above definition.

2.4.41. We now assume the following conditions on the triangulated premotivic category 7 :
e 7 satisfies properties (Nis-sep), (wLoc), (Htp) and (Stab).
e 7 admits an orientation t.

Let f : X — S be a smooth proper morphism of dimension d. Note we do not need that .7
satisfies property (Supp) to rewrite the purity comparison map as follows:

(2.4.41.1) pY: fy = fu(d)[2d)

(see Paragraph 2.4.39).
Note also that using the Gysin morphism (2.4.39.2) associated with the diagonal immersion
0: X — X xg X, we get the following morphism:

(24.41.2) 1 : Mg(X) ® Mg(X)(~d)[~2d] = Ms(X xs X)(—d)[—2d] — Mg(X) L= 1.

4BNote in particular that for any smooth closed S-pair, we obtain a canonical isomorphism in .7 (S) of the
form:
O (E°X/X — Z) ~ Ms(X/X — Z)
where one the left hand side X/X — Z stands for the homotopy cofiber of the open immersion (X — Z) — X while
the left hand side is defined by Equality (2.4.32.1).
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THEOREM 2.4.42. Consider the assumptions and notations above. Then the following condi-
tions are equivalent:
(i) f is pure: py is an isomorphism.
(i) The natural transformation py.f* is an isomorphism.
(ii) The premotive Mg(X) is strongly dualizable and ,u} s a perfect pairing.

PROOF. In this proof, we put 7(K) = K(d)[2d]. As  satisfies property (Stab), f. com-
mutes with Tate twist (def. 1.1.44). This means we the following exchange transformation is an
isomorphism:

(2.4.42.1) Ex, :7f. — foT.

We first prove that (i) is equivalent to (i’). One implication is obvious so that we have only
to prove that (i) implies (i). Guided by a method of Ayoub (see [Ay007a 1.7.14, 1.7.15], we will
construct a right inverse ¢, and a left inverse ¢, to the morphism pt 7 as the following composite
maps:

ad(f* 1), v PR fTFO7! . d'(f*,f)

b1 fur M) g g B perg = forpef, O faf e 2 fi
8 v, GRS «p ad (fi,f7)

G2 :fuT s fuT P L fif D

Let us check that p} o ¢1 = 1. To prove this relation, we prove that the following diagram is
commutative:

ad(f Fe) (pyffo™t ad’ (f*,£4) Py

for )y pep g B ey o f. f fur
"
For e f P g g, P g )
fof o T f G fur
(3)
for D) g g ad (" 1.) fur.

The commutativity of (1) and (2) is obvious and the commutativity of (3) follows from Formula
(2.4.42.1) defining Fz,. Then the result follows from the usual formula between the unit and
counit of an adjunction. The relation ¢ o p} =1 is proved using the same kind of computations.

It remains to prove that (i) and (i) are equivalent to (ii). We already know from Proposition
2.4.31 that (i) implies the premotive Mg(X) is strongly dualizable. Saying that ,u} is a perfect
pairing amounts to prove that the natural transformation obtained by adjunction

dy + (Ms(X) ® =) — Hom(Ms(X), —(d)[2d])

is an isomorphism. On the other hand, as we have already seen previously, the smooth projection
formula implies an identification of functors:

fof "t = (Ms(X) @ —),

(2.4.42.2) fuf* = Hom(Mg(X), —).

Thus, to finish the proof, it will be enough to show that the map

fof” YL prf = ff
is equal to d} through the identifications (2.4.42.2).
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Let us consider the following cartesian square

Xxg X=X

A

and put g = f o f”. According to the definition of ,u}, and notably Formula (2.4.39.2) for the
Gysin map 6, the natural transformation of functors (u;c ® —) can be described as the following
compositum:

L hfr —— fﬂﬂﬁ’—gg—i——a 8,8 g*

F‘XXX d'(fz,f")
—)T

=fufiouf* —= firf" = fuf T

Note in particular that the base change map EJ:(Ag) corresponds to the first identification in
Formula (2.4.41.2). Thus we have to prove the preceding composite map is equal to the following
one, obtained by adjunction from p}:

Eac(Au*

Lf fuf™ = Lf R b0 ——— fof " fu fiof”

PXXX, pp forft = foft e AU,

CLUTTD, g o ad'(f3,57) -

This amounts to prove, after some easy cancellation, the commutativity of the following diagram:

N Ex(Ags
F* fy e f 6, 2 e Fofl's.
EfL’(AE)l J{ad/(fﬁf*)
[ LT o L}

According to the definition of the exchange transformation Ex(Ay.) (cf Paragraph 1.1.14), we can
divide this diagram into the following pieces:

J fe e g8, NI g g s, LSS peg gy e g TS D e g g,
Ex(A]) Ba(a]) ad(F* 1) ad'(£*,£.) ad'(£*,£.)
FLf —— 1 15, R R Sy
(%)
fer ad(5" 5. f10.

Every part of this diagram is obviously commutative except for part (x). As f”§ = 1, the axioms
of a 2-functors (for f* and f, say) implies that the unit map

o fﬁ/f//* RN fﬁ/f//*(f//(;)*(flld)*
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is the canonical identification that we get using 1, = 1 and 1* = 1. We can consider the following
diagram:

fﬁlf/,* (&3 fﬁ/fl/* (f//5)*(f//5)* fﬁ/fl/* 4/5*
% ad(f”*.,f,i’) * * ad(‘;*v(;*) * * 1ooplts gt
fif" ———= " S (f76).(f"0) ad'(f7,£)
ad,(f”*7f>:l) ad/(f,,*,fi,)
. . ad(8*,6.) . e
fé 1 fé 1 fé(s*(s f// fﬁ’a*
for which each part is obviously commutative. This concludes. O

As a corollary, together with the results of [Dég08], we get the following theorem:

COROLLARY 2.4.43. Let us assume the following conditions on the triangulated premotivic
category 7 :
(a) T satisfies properties (Nis-sep), (wLoc), (Htp) and (Stab).
(b) T admits an orientation t.
(c) There exists a morphism of triangulated premotivic categories:

P SHE2 T v, .
Then any smooth projective morphism is 7 -pure. In particular, J is weakly pure.

PROOF. According to Example 2.4.40, one can apply the results of [Dég08] to the triangulated
category 7 (X). Then it follows from [Dég08, 5.23] that condition (ii) of the above theorem is
satisfied. 0

REMARK 2.4.44. This theorem is to be compared with the result of Ayoub recalled in Theorem
2.4.28. On the one hand, if .7 satisfies the localization property, we get another proof of this result
under the additional assumption that & is oriented. On the other hand, the above theorem does
not require the assumption that 7 satisfies (Loc); this is important as we can only prove (wLoc)
for the category DM, introduced in Definition 11.1.1.

2.4.d. Motivic categories. This section summarizes the main constructions of this part and
draws a conclusive theorem.

DEFINITION 2.4.45. A motivic triangulated category over . is a premotivic triangulated cat-
egory over . which satisfies the homotopy, stability, localization and adjoint property.

REMARK 2.4.46. Without the adjoint property, this definition corresponds to what Ayoub
called a monoidal stable homotopy 2-functor (cf [AyoO7a, def. 2.3.1]). We think our shorter
terminology fits well in the spirit of the current theory of mixed motives.

REMARK 2.4.47. Assume 7 is a premotivic triangulated category such that:

(1) .7 is well generated.
(2) T satisfies the homotopy and stability properties.
(3) 7 satisfies the localization property.

Then .7 is a motivic triangulated category in the above sense. Indeed, property (Adj) is proved
under the above assumptions in point (4) of Theorem 2.4.26. Note also that if .7 is compactly
T-generated, we simply obtain property (Adj) from Lemma 2.2.16.46

461 our examples, (1) will always be satisfied, (2) will be obtained by construction and (3) will be the hard
point.
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EXAMPLE 2.4.48. According to the previous remark, the premotivic category SH of example
1.4.3 is a motivic category. In fact, property (1) is proved in [Ayo07a, 4.5.67], property (2) follows
by definition and property (3) is proved in [Ayo07a, 4.5.44].

2.4.49. In the next theorem, we summarize what is now called the Grothendieck 6 functors
formalism. In fact, this is a consequence of the axioms in the above definition, as a result of the
work done in previous sections. More precisely:

e We apply Theorem 2.4.26 using the theorem of Ayoub recalled in 2.4.28, and use the
generalized theorem of Morel and Voevodsky, Theorem 2.4.35, to get the form (2.4.37.1)
of the purity isomorphism.

e In the case where 7 is oriented, we use the form (2.4.41.1) of the purity isomorphism.
Recall that, when 7 satisfies assumption (c) of Corollary 2.4.43, then we have given a
different proof of the Theorem of Ayoub and the theorem below follows from 2.4.26 and
2.4.43.

THEOREM 2.4.50. Let 7 be a motivic triangulated category.
Then, for any separated morphism of finite type f : Y — X in .7, there exists a pair of adjoint
functors, the exceptional functors,

such that:

(1) There exists a structure of a covariant (resp. contravariant) 2-functor on f — fi (resp.
Fer 1.

(2) There ezists a natural transformation ay : fi — f. which is an isomorphism when f is
proper. Moreover, o is a morphism of 2-functors.

(8) For any smooth separated morphism of finite type f: X — S in & with tangent bundle
Ty, there are canonical natural isomorphisms

pr:fy — H(MThx(Ty) ©x .)
ph ff— MThx(~Ty) ®x f'

which are dual to each other — the Thom premotive MThx (Ty) is ®-invertible with
inverse MThx(—Ty).

If  admits an orientation t and f has dimension d then there are canonical natural
1somorphisms

py: fy — fi(d)[2d]
Pl — fi(=d)-2d]
which are dual to each other.
(4) For any cartesian square:

Y — X,
f
such that f is separated of finite type, there exist natural isomorphisms
g f = flg”,
gf" = flg..
(5) For any separated morphism of finite type f :Y — X in 7, there exist natural isomor-
phisms

Ex(ff,®): (fK)®x L — fi(K ®y f*L),
Homx (fi(L),K) == f.Homy (L, f'(K)),
f'Homx (L, M) —= Homy (f*(L), f(M)).
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REMARK 2.4.51. It is important to precise that in the case where the morphisms in . are
assumed to be quasi-projective, this theorem is proved by Ayoub in [Ayo07a] if we except the
case where .7 is oriented in point (3).7

With regards to this theorem, our contribution is to extend the result of Ayoub to the non
quasi-projective case and to consider the oriented case — which is crucial in the theory of motives.
Recall also we have given another proof of this result in the case where the motivic category 7
satisfies in addition the assumptions of Corollary 2.4.43 — which will always be the case for the
different categories of motives introduced here.

REMARK 2.4.52. The purity isomorphism is compatible with composition. Given smooth
separated morphisms of finite type

vy4x4s
we obtain (¢f. [EGA4, 17.2.3]) an exact sequence of vector bundles over YV
(o) 0— g 'Ty = Tpy — T, — 0.
which according to Remark 2.4.15 induces an isomorphism:

MThy (o)
Sy

€5 : MThy (T},) MThy (T,) ®y MThy (g7 T¢) =5 ¢* MThx (Tf) @y MThy (T,).

One can check the following diagram is commutative:
(f9)3(K) f29:(K)

Propg

5i(MThy(Ty) ©x 0/ (MThy(T,) 0 K))
pfg E"E(g!*7®)71

f!g! (Q*MThy(Tf) Ky MThy(Tg) Ry K)

-1
€o

(foh(MTh(Tyy) ® K) === fig (MTh(T},) ® K).

This is not an easy check.*® In fact, this is one of the key technical point in the proof of the main
Theorem of Ayoub ([Ayo07a, 1.4.2]). We refer the reader to [Ayo07a, 1.5] for details.

Note also that given the commutativity of the above diagram, if .7 admits an orientation t,
it readily follows from axiom (c) of Definition 2.4.38 that the following diagram is commutative:

(f9)s(K) f19¢(K)
p}gl ip}op;
(foW(K)(n +m)[2n + 2m] == figi(K)(n + m)[2n + 2m]

where n (resp. m) is the relative dimension of f (resp. g).

Morphisms of triangulated motivic categories are compatible with Grothendieck 6 operations
in the following sense:

PROPOSITION 2.4.53. Let 7 and 7' be motivic triangulated categories and
o T =29 o,
be an adjunction of premotivic categories.
47This theorem was first announced by Voevodsky but only notes covering the basic setting were to be found
by the time Ayoub wrote the proof.

48The main point is to check that the isomorphism of Theorem 2.4.35 is compatible with composition (of
closed immersions). On that particular point, see [Dég08, Th. 4.32, Cor. 4.33].
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Then ©* (resp. ¢.) commutes with the operations f* (resp. f.), for any morphism of schemes
f, as well as with the operation py (resp. p'), for any separated morphism of finite type p.
Moreover, ¢* is monoidal and for any premotive M € 7 (S), N € 7'(S), the canonical map

Hom(M, ¢.(N)) = @« Hom(p"(M), N)
is an isomorphism.

PROOF. The only thing to prove is that ¢* commutes with p; as the other statements follows
either from the definitions or by adjunction. This follows from Proposition 2.3.11, the purity
property in .7 and .7’ (property (3) in the above theorem) and the fact ¢* commutes with py
when p is smooth by assumption. O

REMARK 2.4.54. With additional assumptions on 7 and 7, and over a field, we will see that
©* commutes with all of the six operations (see Theorem 4.4.25).

3. Descent in &-fibred model categories

3.0. In this section, . is an abstract category and &2 an admissible class of morphisms in .%.
In section 3.3 however, we will consider as in 2.0 a noetherian base scheme S and we will
assume that . is an adequate category of S-schemes satisfying the following condition on .7:
(a) Any scheme in . is finite dimensional.
Moreover, in sections 3.3.c and 3.3.d, we will even assume:
(a’) Any scheme in . is quasi-excellent and finite dimensional.
We fix an admissible class & of morphisms in . which contains the class of étale morphisms
in . and a stable combinatorial &-fibred model category .# over .7.
In section 3.3.d, we will assume furthermore that:
(b) The stable model &-fibred category .# is Q-linear (see 3.2.14).

3.1. Extension of £-fibred categories to diagrams.
3.1.a. The general case.

3.1.1. Assume given a P-fibered category .# over .. Then .# can be extended to .7-
diagrams (i.e. functors from a small category to .#) as follows. Let I be a small category, and
Z a functor from I to .. For an object i of I, we will denote by Z; the fiber of 2 at i (i.e.
the evaluation of 2" at ¢), and, for a map w : ¢ — j in I, we will still denote by u : Z; — % the
morphism induced by u. We define the category .# (2, I) as follows.

An object of A (X, 1) is a couple (M, a), where M is the data of an object M; in .#(Z;) for
any object ¢ of I, and a is the data of a morphism a, : u*(M;) — M; for any morphism v : i — j
in I, such that, for any object ¢ of I, the map ay, is the identity of M; (we will always assume
that 1} is the identity functor), and, for any composable morphisms u:4 — jandv:j — kin I,
the following diagram commutes.

Wt (M) —=> (vu)* (M)

u* (av)l iavu

u* (M) M;

A morphism p : (M,a) — (N,b) is a collection of morphisms
pi: M; = N;
in A (%;), for each object 4 in I, such that, for any morphism « : ¢ — j in I, the following diagram

commutes.
u” (p;)
—> U
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In the case where . is a monoidal Z-fibred category, the category . (%", I) is naturally endowed
with a symmetric monoidal structure. Given two objects (M,a) and (N,b) of A (%2, I), their
tensor product

(M,a) & (N.b) = (M ® N,a )
is defined as follows. For any object i of I,
and for any map v : 4 — j in I, the map (a ® b),, is the composition of the isomorphism u*(M; ®
N;) ~ u*(M;) ® u*(N;) with the morphism
Note finally that if .# is a complete monoidal £-fibred category, then .# (2", I) admits an internal
Hom.

3.1.2. Ewvaluation functors. Assume now that for any S, .#(S) admits small sums.
For each object i of I, we have a functor

(3.1.2.1) T2 ) = M)

(]\47 (l) — Ml
called the evaluation functor associated with i. This functor i* has a left adjoint
(3.1.2.2) iy ML) = M(Z )

defined as follows. If M is an object of .#(Z;), then 44(M) is the data (M’,a’) such that for any
object 7 of I,
(3.1.2.3) (ig(M)), =M= J[ w(),

uw€Homy (j5,7)

and, for any morphism v : k — j in I, the map a is the canonical map induced by the collection
of maps

(3.1.2.4) viut (M) ~ (w)* (M) — H w* (M)
w€EHomy (k,i)
for u € Homy(j, ).
If we assume that .# is a complete Z-fibred category and that .Z(S) admits small products
for any S, then ¢* has a right adjoint
(3.1.2.5) iw: M X)) = ML, T)
given, for any object M of .#(Z;) by the formula

(3.1.2.6) @(M); = [ w(),

uEHomy (¢,5)

with transition map given by the dual formula of 3.1.2.4.

3.1.3. Functoriality. Assume that .Z if a &-fibred category suth that for any object S of .7,
A (S) has small colimits.

Remember that, if 2~ and % are .-diagrams, indexed respectively by small categories I and
J, a morphism of .-diagrams ¢ : (Z,I) — (#,J) is a couple ¢ = (a, f), where f: I — J is a
functor, and o : 2" — f*(#) is a natural transformation (where f*(#) = % o f). In particular,
for any object ¢ of I, we have a morphism

@i s Zi = Dy
in .. This turns .-diagrams into a strict 2-category: the identity of (27,I) is the couple
(1a,1p), and, if ¢ = (o, f) : (Z,I) — (#,J) and ¥ = (B,9) : (#,J) — (£, K) are two
composable morphisms, the morphism ¢ o ¢ : (Z7,I) — (£, K) is the couple (gf,~), where for
each object i of I, the map
Vit Zi = Zy(s)
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is the composition
i By
i =5 D) —— Ly -
There is also a notion of natural transformation between morphisms of .-diagrams: if ¢ = («, f)

and ¢’ = (¢, f') are two morphisms from (2, I) to (¢, J), a natural transformation ¢ from ¢ to
¢’ is a natural transformation ¢ : f — f’ such that the following diagram of functors commutes.

7N

Wof o f

t

This makes the category of .#-diagrams a (strict) 2-category.
To a morphism of diagrams ¢ = («, f) : (Z',I) = (%, J), we associate a functor

o MY T) = ME )

as follows. For an object (M,a) of 4 (%), ¢*(M,a) = (¢*(M),¢*(a)) is the object of A (Z")
defined by ¢*(M); = aj (My;y) for i in I, and by the formula

e (a)u = ai(agw)) : ai fu) (My)) = u" aj (M) = o5 (M)
foru:i— jin I.
We will say that a morphism ¢ : (27,1) = (%, J) is a &-morphism if, for any object i in I,
the morphism «; : 2 — %(;) is a &-morphism. For such a morphism ¢, the functor ¢* has a
left adjoint which we denote by

oy ME )= MY, T).

For instance, given a .#-diagram 2~ indexed by a small category I, each object ¢ of I defines a
Z-morphism of diagrams i : 2; — (2,I) (where 2Z; is indexed by the terminal category), so
that the corresponding the functor 4y corresponds precisely to (3.1.2.2).

Assume that . is a complete P-fibred category such that .#(S) has small limits for any
object S of .. Then the functor ¢* has a right adjoint which we denote by

Ou ML) — MY, T).

In the case where ¢ is the morphism i : Z; — (£, I) defined by an object ¢ of I, i, corresponds
precisely to (3.1.2.5).

REMARK 3.1.4. This construction can be applied in particular to any Grothendieck abelian
(monoidal) P-fibred category (cf. definition 1.3.8). The triangulated case cannot be treated in
general without assuming a thorough structure — this is the purpose of the next section.

3.1.b. The model category case.

3.1.5. Let .# be a P-fibred model category over . (c¢f. 1.3.22). Given a .-diagram 2~
indexed by a small category I, we will say that a morphism of .Z(2,I) is a termwise weak
equivalence (resp. a termuwise fibration, resp. a termwise cofibration) if, for any object ¢ of I, its
image by the functor i* is a weak equivalence (resp. a fibration, resp. a cofibration) in .Z(Z;).

PROPOSITION 3.1.6. If A is a cofibrantly generated &-fibred model category over ., then, for
any & -diagram £ indezed by a small category I, the category M (2 ,I) is a cofibrantly generated
model category whose weak equivalences (resp. fibrations) are the termwise weak equivalences (resp.
the termuwise fibrations). This model category structure on (X ,I) will be called the projective
model structure.

Moreover, any cofibration of (2 ,I) is a termwise cofibration, and the family of functors

i* :Ho(A)(Z ,I) — Ho(A)(Z;) , i€ Ob(l),

18 conservative.
If A is left proper (resp. right proper, resp. combinatorial, resp. stable), then so is the
projective model category structure on A (Z).
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PROOF. Let 27 be the .#-diagram indexed by the set of objects of I (seen as a discrete
category), whose fiber at 4 is Z;. Let ¢ : (2°,0b1) — (2°,I) be the inclusion (i.e. the map
which is the identity on objects and which is the identity on each fiber). As ¢ is clearly a &-
morphism, we have an adjunction

oy 1 M (X0, 00]) = [[#(25) =t (2,1 : o7

The functor ¢4 can be made explicit: it sends a family of objects (M;); (with M, in #(Z;))
to the sum of the i4(M;)’s indexed by the set of objects of I. Note also that this proposition is
trivially verified whenever 279 = 2°. Using the explicit formula for iy given in 3.1.2, it is then
straightforward to check that the adjunction (py, ¢*) satisfies the assumptions of [Cra95, Theorem
3.3], which proves the existence of the projective model structure on .# (2", I). Furthermore, the
generating cofibrations (resp. trivial cofibrations of .#Z (2", I)) can be described as follows. For
each object i of I, let A; (resp. B;) be a generating set of cofibrations (resp. of trivial cofibrations
in #(Z;). The class of termwise trivial fibrations (resp. of termwise fibrations) of .# (2", I) is the
class of maps which have the right lifting property with respect to the set A = U;eri3(A;) (resp.
to the set B = U;cri4(B;)). Hence, the set A (resp. B) generates the class of cofibrations (resp.
of trivial cofibrations). In particular, as any element of A is a termwise cofibration (which follows
immediately from the explicit formula for 44 given in 3.1.2), and as termwise cofibrations are stable
by pushouts, transfinite compositions and retracts, any cofibration is a termwise cofibration (by
the small object argument).

As any fibration (resp. cofibration) of .Z(2",1) is a termwise fibration (resp. a termwise
cofibration), it is clear that, whenever the model categories .#(Z;) are right (resp. left) proper,
the model category .# (2, 1) has the same property.

The functor ¢* preserves fibrations and cofibrations, while it also preserves and detects weak
equivalences (by definition). This implies that the induced functor

¢+ Ho(# ) (2", 1) — Ho(.&)(2°°, Ob I) ~ [ [ Ho(.# )(25)

is conservative (using the facts that the set of maps from a cofibrant object to a fibrant object in
the homotopy category of a model category is the set of homotopy classes of maps, and that a
morphism of a model category is a weak equivalence if and only if it induces an isomorphism in
the homotopy category). As ¢* commutes to limits and colimits, this implies that it commutes
to homotopy limits and to homotopy colimits (up to weak equivalences). Using the conservativity
property, this implies that a commutative square of .# (%", I) is a homotopy pushout (resp. a
homotopy pullback) if and only if it is so in .# (2%, Ob I). Remember that stable model categories
are characterized as those in which a commutative square is a homotopy pullback square if and
only if it is a homotopy pushout square. As a consequence, if all the model categories .#(Z;) are
stable, as .#(2°, ObI) is then obviously stable as well, the model category .# (% ,I) has the
same property.

It remains to prove that, if .#(X,I) is a combinatorial model category for any object X of
<, then A (%2 ,I) is combinatorial as well. For each object 7 in I, let G; be a set of accessible
generators of . (X%;). Note that, for any object i of I, the functor 44 has a left adjoint ¢* which
commutes to colimits (having itself a right adjoint 7). It is then easy to check that the set of
objects of shape i4(M), for M in G; and ¢ in I, is a small set of accessible generators of .# (2", I).
This implies that .# (2, I) is accessible and ends the proof. O

PRrROPOSITION 3.1.7. Let .4 be a combinatorial &Z-fibred model category over . Then, for
any . -diagram 2" indexed by a small category I, the category 4 (2 ,I) is a combinatorial model
category whose weak equivalences (resp. cofibrations) are the termwise weak equivalences (resp.
the termwise cofibrations). This model category structure on A (2 ,1) will be called the injective



3. DESCENT IN #-FIBRED MODEL CATEGORIES 61
model structure®®.
termuwise fibration.

If A is left proper (resp. right proper, resp. stable), then so is the injective model category
structure on M (2, I).

Moreover, any fibration of the injective model structure on A (2 ,1) is a

PROOF. See [Barl0, Theorem 2.28] for the existence of such a model structure (if, for any
object X in .7, all the cofibrations of .#(X) are monomorphisms, this can also be done following
mutatis mutandis the proof of [Ayo07a, Proposition 4.5.9]). Any trivial cofibration of the pro-
jective model structure being a termwise trivial cofibration, any fibration of the injective model
structure is a fibration of the projective model structure, hence a termwise fibration.

The assertions about properness follows from their analogs for the projective model structure
and from [Cis06, Corollary 1.5.21] (or can be proved directly; see [Barl0, Proposition 2.31]).
Similarly, the assertion on stability follows from their analogs for the projective model structure.

O

3.1.8. From now on, we assume that a combinatorial £-fibred model category .# over .7 is
given. Then, for any .-diagram (2", I), we have two model category structures on .Z (2", I), and
the identity defines a left Quillen equivalence from the projective model structure to the injective
model structure. This fact will be used for the understanding of the functorialities coming from
morphisms of diagrams of S-schemes.

3.1.9. The category of .-diagrams admits small sums. If {(%#;,1;)},cs is a small family of
#-diagrams, then their sum is the .#-diagram (£, I), where

1=1[5.
jeJ
and £ is the functor from I to . defined by
Zi =%; whenever i € Ij.
PROPOSITION 3.1.10. For any small family of .7 -diagrams {(%;,1;)}cs, the canonical functor
Ho(.2)( I1 %) = T] Ho(.2)(#)
jeJ jeJ
is an equivalence of categories.

PROOF. The functor
a(11%) > I] -« )
jeJ jeJ
is an equivalence of categories. It thus remains an equivalence after localization. To conclude, it
is sufficient to see that the homotopy category of a product of model categories is the product of
their homotopy categories, which follows rather easily from the explicit description of the homotopy
category of a model category; see e.g. [Hov99, Theorem 1.2.10]. O

PROPOSITION 3.1.11. Let ¢ = (o, f) : (2, 1) = (%, J) be a morphism of . -diagrams.
(i) The adjunction ¢* : M (¥, J) = A (X, 1) : p. is a Quillen adjunction with respect to
the injective model structures. In particular, it induces a derived adjunction
Ly* : Ho(Z)(%,J) 2 Ho(A)(Z',I) : Ry .

(i1) If ¢ is a &-morphism, then the adjunction @y : M (X, I) = M (Y, J) : ¢* is a Quillen
adjunction with respect to the projective model structures, and the functor p* preserves
weak equivalences. In particular, we get a derived adjunction

Loy : Ho(#)(Z',I) 2 Ho(A) (¥, J) : Lo* = ¢* = Ro".

49Quite unfortunately, this corresponds to the ‘semi-projective’ model structure introduced in [AyoQ7a, Def.
45.8].
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PRrROOF. The functor ¢* obviously preserves termwise cofibrations and termwise trivial cofi-
brations (we reduce to the case of a morphism of . using the explicit description of ¢* given
in 3.1.3), which proves the first assertion. Similarly, the second assertion follows from the fact
that, under the assumption that ¢ is a ZZ-morphism, the functor ¢* preserves termwise weak
equivalences (see Remark 1.3.23), as well as termwise fibrations. O

3.1.12. The computation of the (derived) functors Ry, (and Ly, whenever it makes sense)
given by Proposition 3.1.11 has to do with homotopy limits (and homotopy colimits). It is easier
to first understand this in the non derived version as follows.

Consider first the trivial case of a constant .#-diagram: let X be an object of %, and I a
small category. Then, seeing X as the constant functor I — . with value X, we have a projection
map p; : (X,I) - X. From the very definition, the category .#(X,I) is simply the category of
presheaves on I with values in .Z(X), so that the inverse image functor
(3.1.12.1) Py M(X) = M(X,T) = H(X)
is the ‘constant diagram functor’, while its right adjoint

(3.1.12.2) lim = p; , (X, 1)~ H(X)
Iop

is the limit functor, and its left adjoint,

(3.1.12.3) lim = p;, (X, 1) = 4(X)
Iop

is the colimit functor.

Let S be an object of .. A #-diagram over S is the data of a #-diagram (27, I), together
with a morphism of .-diagrams p : (2,I) — S (i.e. its a ./ S-diagram). Such a map p factors
as

(3.1.12.4) CRIEYCNIEYD

where m = (p, 1;). Then one checks easily that, for any object M of .# (2", I), and for any object
i of I, one has

(3.1.12.5) mo(M); = p, (M),
where p, : Z; — S is the structural map, from which we deduce the formula

(3.1.12.6) ps(M) ~ 1&1 e (M); =~ 1&11 P (M),

icIor iclop

Remark that, if I is a small category with a terminal object w, then any .%-diagram 2" indexed by
I is a .’-diagram over 2, and we deduce from the computations above that, if p : (27, 1) = 2,
denotes the canonical map, then, for any object M of .4 (2", 1),

(3.1.12.7) pe(M) ~ M, .

Consider now a morphism of .-diagrams ¢ = (a, f) : (Z,1) — (#,J). For each object j,
we can form the following pullback square of categories.

I)j =1
(3.1.12.8) f/ji f

in which J/j is the category of objects of J over j (which has a terminal object, namely (j,1,),
and v; is the canonical projection; the category I/j is thus the category of pairs (¢, a), where ¢ is
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an object of I, and a : f(i) — j a morphism in J. From this, we can form the following pullback
of .-diagrams

(2 /3, 1/§) > (2, 1)

(3.1.12.9) ga/jl lgp
(@ /5. J]j) 5—= (¥, J)

v

in which Z/j = Z oy, #/j = % owvj, and the maps u; and v; are the one induced by u; and
vj respectively. For an object M of .# (% ,I) (resp. an object N of .#(#,J)), we define M/j
(resp. N/j) as the object of .# (2 /j,1/j) (vesp. of .# (% /j,J/j)) obtained as M/j = uj(M)
(resp. N/j = v;(N)). With these conventions, for any object M of .# (%", I) and any object j of
the indexing category J, one gets the formula

(31.12.10) e M)y = (M)~ lim  aga(M).
(i,)€I/5°P

This implies that the natural map
(3.1.12.11) (M) /] =i pu(M) = (0/5)s 13 (M) = (¢/7) (M)

is an isomorphism: to prove this, it is sufficient to obtain an isomorphism from (3.1.12.11) after
evaluating by any object (j',a : j/ — j) of J/j, which follows readily from (3.1.12.10) and from
the obvious fact that (I/5)/(j’,a) is canonically isomorphic to I/j’.

In order to deduce from the computations above their derived versions, we need two lemmata.

LEMMA 3.1.13. Let Z be a -diagram indexed by a small category I, and i an object of I.
Then the evaluation functor

i M X)) = ML)
is a right Quillen functor with respect to the injective model structure, and it preserves weak
equivalences.

PROOF. Proving that the functor ¢* is a right Quillen functor is equivalent to proving that its
left adjoint (3.1.2.2) is a left Quillen functor with respect to the injective model structure, which
follows immediately from its computation (3.1.2.3), as, in any model category, cofibrations and
trivial cofibrations are stable by small sums. The last assertion is obvious from the very definition
of the weak equivalences in .Z (2", I). O

LEMMA 3.1.14. For any pullback square of . -diagrams of shape (3.1.12.9), the functors
py o ML) = M2 )5, 1/5), M= M[j
vi « MY 1) — MY )5, T]j), N N/j

are right Quillen functors with respect to the injective model structure, and they preserve weak
equivalences.

PRrOOF. It is sufficient to prove this for the functor (as vy is simply the special case where

I =J and f is the identity). The fact that j preserves weak equivalences is obvious, so that it
remains to prove that it is a right Quillen functor. We thus have to prove that left adjoint of ],

is s A4 T)G) — M (2T,

is a left Quillen functor. In other words, we have to prove that, for any object i of I, the functor
Vg ML) = ML)

is a left Quillen functor. For any object M of .# (2 ,I), we have a natural isomorphism

i g (M) ~ T G,

a€Hom  (f(i),J)
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But we know that the functors (7, a)y are left Quillen functors, so that the stability of cofibrations
and trivial cofibrations by small sums and this description of the functor i*u;; achieves the
proof. (]

PROPOSITION 3.1.15. Let S be an object of .7, and p : (Z,I) — S a -diagram over S,
and consider the canonical factorization (3.1.12.4). For any object M of Ho(.#)(Z,I), there are
canonical isomorphisms and Ho(#)(S):

Rm.(M); ~Rp; .(M;) and Rp.(M) =~ R lim Rp; .(M;).
i€Iop
In particular, if furthermore the category I has a terminal object w, then

Rp. (M) ~ Rpy,(M.,) -

PRrROOF. This follows immediately from (3.1.12.5) and (3.1.12.6) and from the fact that deriv-
ing (right) Quillen functors is compatible with composition. O

PROPOSITION 3.1.16. We consider the pullback square of 7-diagrams (3.1.12.9) (as well as
the notations thereof ). For any object M of Ho(M#)(Z ,I), and any object j of J, we have natural
isomorphisms

Re.(M); ~  Rlm R, (M;) and Re.(M)/j~R(e/j)«(M/])
(i,a)el /5P
in Ho(A)(%;) and in Ho(.#)(¥% /4, J/j) respectively.
PRrROOF. Using again the fact that deriving right Quillen functors is compatible with compo-

sition, by virtue of Lemma 3.1.13 and Lemma 3.1.14, this is a direct translation of (3.1.12.10) and
(3.1.12.11). O

PROPOSITION 3.1.17. Let u : T — S be a P-morphism of %, and p : (Z,I) = S a -
diagram over S. Consider the pullback square of ./ -diagrams

(@, 1) —2= (2°,1)

r—p3

(i.e. % =T xgZ; for any object i of I). Then, for any object M of Ho(.#)(Z",I), the canonical
map
Lu* Rp.(M) — Rq,. Lv* (M)
is an isomorphism in Ho(.#)(T).
PrOOF. By Remark 1.3.23, the functor v* is both a left and a right Quillen functor which
preserves weak equivalences, so that the functor Lv* = v* = Rv* preserves homotopy limits.
Hence, by Proposition 3.1.15, one reduces to the case where [ is the terminal category, i.e. to the

transposition of the isomorphism given by the 42-base change formula (#-BC) for the homotopy
P-fibred category Ho(.Z) (see 1.1.19). O

3.1.18. A morphism of .-diagrams v = («, f) : (#",J') — (#,J), is cartesian if, for any
arrow ¢ — 7 in J’, the induced commutative square

@i/ - @j/
Dii) — Y5)

is cartesian.
A morphism of .*/-diagrams v = (a, f) : (%', J) = (¥, J) is reduced if J =J" and f =1,.
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PROPOSITION 3.1.19. Let v : (#',J) — (#,J) be a reduced cartesian &-morphism of .-
diagrams, and ¢ = (o, f) : (Z,1) = (¥, J) a morphism of .#-diagrams. Consider the pullback
square of .7 -diagrams

(2, 1) —=(2,1)
wl l
(@', J)—— (¥, ])

(i.e. X = X, Zi for any object i of I). Then, for any object M of Ho(.#)(Z, 1), the

f(@)
canonical map
Lv* Ry, (M) — Ry L™ (M)

is an isomorphism in Ho(.Z) (%', J).
PRrROOF. By virtue of Proposition 3.1.6, it is sufficient to prove that the map
JLv* Ry, (M) — j"Ryp. L™ (M)
is an isomorphism for any object j of J. Let p : (27/4,1/j) — %; and q : (Z'/j,J,j) — ¥} be

the canonical maps. As v is cartesian, we have a pullback square of .#-diagrams

(27/5,1/5) L (2 /5, 1/3)

2
But v; being a &-morphism, by virtue of Proposition 3.1.17, we thus have an isomorphism

Lvj Rp.(M/j) ~ R L(p/j)*(M/j) = Ra.(Lp" (M)/j) -
Applying Proposition 3.1.16 and the last assertion of Proposition 3.1.15 twice, we also have canon-
ical isomorphisms

J"Reu(M) = Rp.(M/j) and  j*Rep. Lp* (M) = Ra. (Lu* (M)/5).
The obvious identity j*Lv* = Lv}j* achieves the proof. O

COROLLARY 3.1.20. Under the assumptions of Proposition 3.1.19, for any object N of the
category Ho(A) (%", j), the canonical map

Ly L™ (N) — L™ Ly (N)
is an isomorphism in Ho(4) (X, I).

REMARK 3.1.21. The class of cartesian &Z-morphisms form an admissible class of morphisms
in the category of .#-diagrams, which we denote by &.4.+. Proposition 3.1.11 and the preceding
corollary thus asserts that Ho(.#Z) is a &.,-fibred category over the category of .#-diagrams.

3.1.22. We shall deal sometimes with diagrams of .#’-diagrams. Let I be a small category,
and % a functor from I to the category of .-diagrams. For each object i of I, we have a .7-
diagram (% (i), J;), and, for each map u : i — ¢/, we have a functor f, : J; — Jy as well as a
natural transformation «, : Z(i) — Z(i’) o fu, subject to coherence identities. In particular,
the correspondance ¢ — J; defines a functor from I to the category of small categories. Let
Iz be the cofibred category over I associated to it; see [SGA1, Exp. VI]. Explicitely, Iz is
described as follows. The objects are the couples (i,z), where 4 is an object of I, and x is an
object of J;. A morphism (i,2) — (i’,2’) is a couple (u,v), where w : i — i’ is a morphism of
I, and v : fy(z) — 2’ is a morphism of J;. The identity of (i,x) is the couple (1;,1,), and,
for two morphisms (u,v) : (i,2) — (¢,2') and (v/,0") : (¢,2") — (i,2”), their composition
(u”,v") : (i,z) = (¢",2") is defined by w’ = ' o u, while v” is the composition of the map

Fur (@) = Fur (ful@)) 2295 £ (@) =5 a2
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The functor p : I — I is simply the projection (¢,z) — 4. For each object i of I, we get a
canonical pullback square of categories

£;
Ji——1g
P

(3.1.22.1) ql

— 7
K3

in which ¢ is the functor from the terminal category e which corresponds to the object i, and ¢; is
the functor defined by ¢;(x) = (i, ).

The functor .# defines a .-diagram ([.#, I#): for an object (i,z) of Iz, ([F) (2 = F(i)a,
and for a morphism (u,v) : (¢,2) — (i, 2), the map

(U,U) : (fy)(z,a:) = ng.(Z)av — (fﬁ)(i’,m’) = ng.(zl)a:’

is simply the morphism induced by «a,, and v. For each object i of I, there is a natural morphism
of ¥-diagrams
(3.1.22.2) N (FG), L) = ([F,1z),
given by \; = (173, li)

PROPOSITION 3.1.23. Let X be an object of 7, and f : & — X a morphism of functors (where

X is considered as the constant functor from I to .7 -diagrams with value the functor from e to
defined by X ). Then, for each object i of I, we have a canonical pullback square of .7 -diagrams

(F (i), i) = ([F, 1)

X (X, 1)

in which ¢ and @; are the obvious morphisms induced by f (where, this time, (X, I) is seen as the
constant functor from I to .7 with value X ).
Moreover, for any object M of Ho(#)([F,1%), the natural map

i R (M) = Rps(M); — Reps « A (M)

is an isomorphism. In particular, if we also write by abuse of notation f for the induced map of
< -diagrams from (fﬁ, Iz) to X, we have a natural isomorphism

Rf.(M) ~ Rlim Rep; . Aj(M).
ielor
Proor. This pullback square is the one induced by (3.1.22.1). We shall prove first that the
map
" Ripu (M) = Repu (M) = Repi « A7 (M)
is an isomorphism in the particular case where I has a terminal object w and ¢ = w. By virtue of
Propositions 3.1.15 and 3.1.16, we have isomorphisms

(3.1.23.1) w* Ry (M) ~ R%Gi%n Ry (M); ~ 1(11)&1[ Riz (M z)) 5
ielor i,x)ElY

where ¢; , : Z (i), — X denotes the map induced by f. We are thus reduced to prove that the
canonical map

(3.1.23.2) Rlim Re; . (M 2)) — Rlim Ry, o« (M(y,2)) ~ Repwo s« AL (M)
(i,a:)e];-f xeJP

is an isomorphim. As Ig is cofibred over I, and as w is a terminal object of I, the inclusion
functor £, : J, — Iz has a left adjoint, whence is coaspherical in any weak basic localizer (i.e.
is homotopy cofinal); see [Mal05, 1.1.9, 1.1.16 and 1.1.25]. As any model category defines a
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Grothendieck derivator ([Cis03, Thm. 6.11]), it follows from [Cis03, Cor. 1.15] that the map
(3.1.23.2) is an isomorphism.

To prove the general case, we proceed as follows. Let .# /i be the functor obtained by com-
posing .% with the canonical functor v; : I/i — I. Then, keeping track of the conventions adopted
in 3.1.12, we check easily that (I/i)z,; = (I#)/i and that [(F /i) = ([.#)/i. Moreover, the
pullback square (3.1.22.1) is the composition of the following pullback squares of categories.

Ji—2sIz)i Iy

L 1/i ‘ I

Vi
The pullback square of the proposition is thus the composition of the following pullback squares.

(F (i), Ji) —=> ([ F /i, 15 i) = (| 7. 15)

The natural transformations
(i, L))" R(p/i)x = R af  and o7 Rpw = R(p/i). 1]

are both isomorphisms: the first one comes from the fact that (i,1;) is a terminal object of I/i,
and the second one from Proposition 3.1.16. We thus get:

" Repu (M) ~ (i, 1;)" vi Repu (M)

~ (i, 1) R(p/1)« pi (M)

~ Repi .« aj i (M)
The last assertion of the proposition is then a straightforward application of Proposition 3.1.15. [

ProOPOSITION 3.1.24. If .4 is a monoidal P-fibred combinatorial model category over .7,

then, for any -diagram Z indexed by a small category I, the injective model structure turns
AM(Z 1) into a symmetric monoidal model category. In particular, the categories Ho(A)(Z 1)
are canonically endowed with a closed symmetric monoidal structure, in such a way that, for any
morphism of 7 -diagrams ¢ : (2, 1) — (¥, J), the functor Lo* : Ho(A ) (¥ ,J) — Ho(A) (X, I)
is symmetric monoidal.

PRrROOF. This is obvious from the definition of a symmetric monoidal model category, as
the tensor product of .#(Z,I) is defined termwise, as well as the cofibrations and the trivial
cofibrations. 0

PROPOSITION 3.1.25. Assume that 4 is a monoidal &-fibred combinatorial model category
over 7, and consider a reduced cartesian &-morphism ¢ = («, f) : (Z°,I) = (#,I). Then, for
any object M in Ho(#)(Z ,I) and any object N in Ho(#)(¥, 1), the canonical map

Lips (M &% " (N)) = Lg(M) &% N
is an isomorphism.
PROOF. Let ¢ be an object of I. It is sufficient to prove that the map
Ly (M &% " (N)) = i*Ligy (M) &% N

is an isomorphism in Ho(.#)(Z;). Using Corollary 3.1.20, we see that this map can be identified
with the map
Lois(M; @ ¢} (Ni)) = Lip s (M;) @ N,
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which is an isomorphism according to the &-projection formula for the homotopy &2-fibred cate-
gory Ho(.Z). O
3.1.26. Let (27,1) be a .#-diagram. An object M of .# (2", I) is homotopy cartesian if, for
any map « : ¢ — j in I, the structural map u*(M;) — M, induces an isomorphism
Lu*(M;) ~ M;
in Ho(.#)(2,1) (i.e. if there exists a weak equivalence M} — M; with M} cofibrant in .#(Z7)
such that the map u*(M}) — M; is a weak equivalence in . (27)).

We denote by Ho( ) (2", I) heart the full subcategory of Ho(.#) (2", I) spanned by homotopy
cartesian sections.

DEFINITION 3.1.27. A cofibrantly generated model category ¥ is tractable if there exist sets
I and J of cofibrations between cofibrant objects which generate the class of cofibrations and the
class of trivial cofibrations respectively.

REMARK 3.1.28. If .Z is a combinatorial and tractable &2-fibred model category over .%, then
so are the projective and the injective model structures on .# (2, I); see [Bar10, Thm. 2.28 and
2.30].

PRrOPOSITION 3.1.29. If .# is tractable, then the inclusion functor
Ho(A)(Z , 1) heart — Ho( ) (X, 1)
admits a right adjoint.

PRrROOF. This follows from the fact that the cofibrant homotopy cartesian sections are the
cofibrant objects of a right Bousfield localization of the injective model structure on .# (%", I);
see [Bar10, Theorem 5.25]. O

DEFINITION 3.1.30. Let .# and .#’ two Z-fibred model categories over .. A Quillen
morphism ~ from .# to .#' is a morphism of Z-fibred categories v : .# — .#' such that
v M(X) — A (X) is a left Quillen functor for any object X of ..

REMARK 3.1.31. If v : .# — .#' is a Quillen morphism between Z-fibred combinatorial
model categories, then, for any .-diagram (27, ), we get a Quillen adjunction

VoM X D)= (X))
(with the injective model structures as well as with the projective model structures).

PROPOSITION 3.1.32. For any Quillen morphism ~v : M — M, the derived adjunctions
Ly* : Ho(#)(X) = Ho(#")(X) : Ry,
define a morphism of P-fibred categories Ho(.#) — Ho(.#') over . If moreover .# and A’

are combinatorial, then the morphism Ho(#) — Ho(A4") extends to a morphism of P .qr-fibred
categories over the category of & -diagrams.

PrOOF. This follows immediately from [Hov99, Theorem 1.4.3]. O
3.2. Hypercovers, descent, and derived global sections.

3.2.1. Let . be an essentially small category, and & an admissible class of morphisms in
.#. We assume that a Grothendieck topology t on .7 is given. We shall write .’ for the full
subcategory of the category of .-diagrams whose objects are the small families X = {X;};cs of
objects of . (seen as functors from a discrete category to .#). The category . is equivalent to
the full subcategory of the category of presheaves of sets on . spanned by sums of representable
presheaves. In particular, small sums are representable in .#™ (but note that the functor from
. to M does not preserve sums). Finally, we remark that the topology t extends naturally to
a Grothendieck topology on . such that the topology t on .7 is the topology induced from the
inclusion . C .. The covering maps for this topology on .7 will be called ¢-covers (note that
the inclusion . C .#™ is continuous and induces an equivalence between the topos of t-sheaves
on . and the topos of t-sheaves on .#11).
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Let A be the category of non-empty finite ordinals. Remember that a simplicial object of .7
is a presheaf on A with values in .#". For a simplicial set K and an object X of ., we denote
by K x X the simplicial object of .#™ defined by

(KxX),= ][ X . n>o0.
reK,

We write A™ for the standard combinatorial simplex of dimension n, and i, : 9A™ — A™ for its
boundary inclusion.

A morphism p : 2" — % between simplicial objects of .#M is a t-hypercover if, locally for
the t-topology, it has the right lifting property with respect to boundary inclusions of standard
simplices, which, in a more precise way, means that, for any integer n > 0, any object U of .#!,
and any commutative square

ON"x U 2 &

A" x U ——¥ ,
Y

there exists a t-covering ¢ : V' — U, and a morphism of simplicial objects z : A™ x V — %, such
that the diagram bellow commutes.

z(1xq)

OA" XV —= %

A" XV ——= &
y(1xq)

A t-hypercover of an object X of .#! is a a t-hypercover p : 2~ — X (where X is considered as a
constant simplicial object).

REMARK 3.2.2. This definition of t-hypercover is equivalent to the one given in [SGA4,
Exp. V, 7.3.1.4].

3.2.3. Let 2 be a simplicial object of .M. It is in particular a functor from the category
A°P to the category of .#-diagrams, so that the constructions and considerations of 3.1.22 apply
to 2. In particular, there is a .-diagram 2 associated to 27, namely 2" = ([ 2, (A%)4).
More explicitely, for each integer n > 0, there is a family {27, , }zek, of objects of ., such that

(3.2.3.1) Zn=1] %=

zeK,

In fact, the sets K, form a simplicial set K, and the category (A°P) o can be identified over A°P to
the category (A/K)°?, where A/K is the fibred category over A whose fiber over n is the set K,
(seen as a discrete category), i.e. the category of simplices of K. We shall call K the underlying
simplicial set of 2, while the decomposition (3.2.3.1) will be called the local presentation of 2.
The construction 2 +— 2 is functorial. If p : 2~ — % is a morphism of simplicial objects of
M we shall still denote by p : 2~ — % the induced morphism of .%’-diagrams. In particular, for
a morphism of p : 2~ — X, where X is an object of .#™, p: 2 — X denotes the corresponding
morphism of .#-diagrams.

Let .# be a &-fibred combinatorial model category over .. Given a simplicial object 2~ of
I we define the category Ho(.#)(%") by the formula:

(3.2.3.2) Ho(A)(Z') =Ho(A)([ 2, (AP)g) .
Given an object X of . and a morphism p : 2~ — X, we have a derived adjunction

(3.2.3.3) Lp* : Ho(#)(X) = Ho(A)(Z) : Rps .
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PROPOSITION 3.2.4. Consider an object X of .7, a simplicial object 2" of #™, as well as a
morphism p : £ — X. Denote by K the underlying simplicial set of 2, and for each integer
n > 0 and each simplex x € K, write ppy : Znx — X for the morphism of Y induced by
the local presentation of 2 (3.2.3.1). Then, for any object M of Ho(.#)(X), there are canonical
isomorphisms

—

Rp.Rp* (M) ~ RlimRp, Ly’ (M) ~ ng( I1 an)x7*Lpr7$(M)) .
neA neA rxeK,

PROOF. The first isomorphism is a direct application of the last assertion of Proposition 3.1.23
for # = 2, while the second one follows from the first one by Proposition 3.1.10. g

DEFINITION 3.2.5. Given an object Y of .#™, an object M of Ho(.#)(Y') will be said to satisfy
t-descent if it has the following property: for any morphism f : X — Y and any t-hypercover
p: Z — X, the map

Rf.Lf*(M) = Rf. Rp, Lp" Lf*(M)

is an isomorphism in Ho(.#)(Y").
We shall say that .# (or by abuse, that Ho(.#)) satisfies t-descent if, for any object Y of
U any object of Ho(.#)(Y) satisfies ¢-descent.

PROPOSITION 3.2.6. If Y = {Yi}icsr is a small family of objects of ¥ (seen as an object
of M), then an object M of Ho(.#)(Y) satisfies t-descent if and only if, for any i € I, any
morphism f: X =Y, of 7, and any t-hypercover p: Z — X, the map

Rf.Lf"(M;) — Rf. Rp. Lp™ L f*(M;)
is an isomorphism in Ho(.#Z)(Y;).
ProoF. This follows from the definition and from Proposition 3.1.10. O

COROLLARY 3.2.7. The &-fibred model category .# satisfies t-descent if and only if, for any
object X of .7, and any t-hypercover p : Z — X, the functor

Lp* : Ho(A#)(X) — Ho(A4)(Z')
is fully faithful.
PROPOSITION 3.2.8. If # satisfies t-descent, then, for any t-cover f:Y — X, the functor
Lf*:Ho(#)(X) — Ho()(Y)
18 conservative.

PROOF. Let f :Y — X be a t-cover, and u : M — M’ a morphism of Ho(.#)(X) whose
image by Lf* is an isomorphism. We can consider the Cech t-hypercover associated to f, that is
the simplicial object % over X defined by

%:YXXYXX“-X)(Y.

n + 1 times

Let p: % — X be the canonical map. For each n > 0, the map p, : %, — X factor through f,
from wich we deduce that the functor

Lp;, : Ho(.#)(X) — Ho(.#) (%)
sends u to an isomorphism. This implies that the functor
Lp* : Ho(#)(X) — Ho(A)(¥)

sends u to an isomorphism as well. But, as % is a t-hypercover of X, the functor Lp* is fully
faithful, from which we deduce that u is an isomorphism by the Yoneda Lemma. O
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3.2.9. Let ¥ be a complete and cocomplete category. For an object X of .7, define PSh (.%/ X, ¥)
as the category of presheaves on ./ X with values in #". Then PSh (C/—, %) is a &-fibred cate-
gory (where, by abuse of notations, . denotes also the class of all maps in .#): this is a special
case of the constructions explained in 3.1.2 applied to ¥/, seen as a fibred category over the ter-
minal category. To be more explicit, for each object X of .#™, we have a ¥ -enriched Yoneda
embedding

(3.2.9.1) ISUNX x ¥V - PSh(S/X, V) UM}y UM,
where, if U = {U, };¢cs is a small family of objects of ./ X, U ® M is the presheaf

(3.2.9.2) Ve[ 11 M.

1€l acHomy,5(V,U;)
For a morphism f: X — Y in ., the functor
fFPSh(&Z)Y, V) - PSh(S/X,¥)

is the functor defined by composition with the corresponding functor /X — /Y. The functor
f* has always a left adjoint

fy :PSh(S/X, V) = PSh(S)Y, V),
which is the unique colimit preserving functor defined by
KUsM) =UeM,

where, on the left hand side U is considered as an object over X, while, on the right hand side,
U is considered as an object over Y by composition with f. Similary, if all the pullbacks by f are
representable in . (e.g. if f is a &-morphism), the functor f* can be described as the colimit
preserving functor defined by the formula

fflUM)=(XxyU)®@ M.

If ¥ is a cofibrantly generated model category, then, for each object X of ., the category
PSh(/X,¥) is naturally endowed with the projective model category structure, i.e. with the
cofibrantly generated model category structure whose weak equivalences and fibrations are defined
termwise (this is Proposition 3.1.6 applied to ¥, seen as a fibred category over the terminal
category). The cofibrations of the projective model category structure on PSh (.¥/X,¥") will be
called the projective cofibrations. If moreover ¥ is combinatorial (resp. left proper, resp. right
proper, resp. stable), so is PSh (/X,¥). In particular, if ¥ is a combinatorial model category,
then PSh (.&%7/—, ) is a &-fibred combinatorial model category over .&.

According to Definition 3.2.5, it thus makes sense to speak of ¢-descent in PSh (. /—, ¥).

If U = {U,}icr is a small family of objects of . over X, and if F is a presheaf over .7 /X, we
define

(3.2.9.3) FU)=]]FW).
iel
the functor F — F(U) is a right adjoint to the functor £ — U ® E.
We remark that a termwise fibrant presheaf F' on /X satisfies t-descent if and only if, for
any object Y of ., and any t-hypercover % — Y over X, the map
F(Y) - Rlim F(%,)
neA

is an isomorphism in Ho(¥).

ProroSITION 3.2.10. If ¥ is combinatorial and left proper, then the category of presheaves
PSh (/X,¥) admits a combinatorial model category structure whose cofibrations are the projec-
tive cofibrations, and whose fibrant objects are the termwise fibrant objects which satisfy t-descent.
This model category structure will be called the t-local model category structure, and the corre-
sponding homotopy category will be denoted by Ho(PSh (Z/X, V).
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Moreover, any termwise weak equivalence is a weak equivalence for the t-local model structure,
and the induced functor

a* : Ho(PSh(7/X,¥)) — Ho(PSh(./X, ¥))
admits a fully faithful right adjoint
as : Hoi(PSh (< /X, 7)) — Ho(PSh (. /X, ¥))
whose essential image consists precisely of the full subcategory of Ho(PSh (. /X, ")) spanned by
the presheaves which satisfy t-descent.
PROOF. Let H be the class of maps of shape

(3.2.10.1) hogc&loign% QF—->YQ®FE,

where Y is an object of /" over X, # — Y is a t-hypercover, and E is a cofibrant replacement of
an object which is either a source or a target of a generating cofibration of ¥". Define the t-local
model category structure as the left Bousfield localization of Pr(./X,¥") by H; see [BarlO,
Theorem 4.7]. We shall call t-local weak equivalences the weak equivalences of the t-local model
category structure. For each object Y over X, the functor Y ® (—) is a left Quillen functor from
¥ to Pr(#/X, 7). We thus get a total left derived functor

Y @Y (=) : Ho(¥) — Hoy(PSh (.#/ X, ¥))

whose right adjoint is the evaluation at Y. For any object E of ¥ and any t-local fibrant presheaf
F on /X with values in ¥, we thus have natural bijections

(3.2.10.2) Hom(E, F(Y)) ~ Hom(Y ®" E, F),

and, for any simplicial object % of .# /X, identifications

(3.2.10.3) Hom(E, Rlim F(%,)) ~ Hom( Llim %, oV E F),
neA neA

One sees easily that, for any t-hypercover # — Y and any cofibrant object E of ¥, the map

(3.2.10.4) Llim %, " E —Y @“ E
neA

is an isomorphism in the ¢-local homotopy category Ho.(PSh (. /X, #')): by the small object ar-
gument, the smallest full subcategory of Ho(PSh (.#/X, ¥')) which is stable by homotopy colimits
and which contains the source and the targets of the generating cofibrations is Ho,(PSh (/X %))
itself, and the class of objects E of ¥ such that the map (3.2.10.4) is an isomorphism in Ho(¥)
is sable by homotopy colimits. Similarly, we see that, for any object F, the functor (—) ®@% E
preserves sums. As a consequence, we get from (3.2.10.2) and (3.2.10.3) that the fibrant objects of
the t-local model category structure are precisely the termwise fibrant objects F' of the projective
model structure which satisfy t-descent. The last part of the proposition follows from the general
yoga of left Bousfield localizations. O

3.2.11. Let .# be a ZP-fibred combinatorial model category over ., and S an object of .77 .
Denote by
S LS =S
the canonical forgetful functor. Then there is a canonical morphism of .-diagrams
(3.2.11.1) o:(S,7/8) = (5,7/S)
(where (S,.7/S) stands for the constant diagram with value S). This defines a functor
(3.2.11.2) Ro. : Ho(#)(S,7/S) — Ho( ) (S, /S) = Ho(PSh (7 /S, #(S))) .

For an object M of Ho(.#)(S), one defines the presheaf of geometric derived global sections of
M over S by the formula

(3.2.11.3) RT yeom(—, M) = Ro, Lo* (M) .
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This is a presheaf on ./S with values in .Z(S) whose evaluation on a morphism f : X — S is,
by virtue of Propositions 3.1.15 and 3.1.16,

(3.2.11.4) RT yeom (X, M) ~ Rf, Lf*(M).

PROPOSITION 3.2.12. For an object M of Ho(.#)(S), the following conditions are equivalent.

(a) The object M satisfies t-descent.
(b) The presheaf RT geom (—, M) satisfies t-descent.

PROOF. For any morphism f : X — S and any ¢-hypercover p: 2 — X over S, we have, by
Proposition 3.2.4 and formula (3.2.11.4), an isomorphism

Rf.Rp. Lp* Lf*(M) ~ RIm RT geom (25, M).
neA

From there, we see easily that conditions (a) and (b) are equivalent. O

3.2.13. The preceding proposition allows to reduce descent problems in a fibred model category
to descent problems in a category of presheaves with values in a model category. On can even
go further and reduce the problem to category of presheaves with values in an ‘elementary model
category’ as follows.

Consider a model category #". Then one can associate to ¥ its corresponding prederivator
Ho(7), that is the strict 2-functor from the 2-category of small categories to the 2-category of
categories, defined by

(3.2.13.1) Ho(7)(I) = Ho(¥!") = Ho(PSh (I, %))
for any small category I. More explicitly: for any functor u : I — J, one gets a functor
u* : Ho(¥)(J) — Ho(¥)(I)

(induced by the composition with ), and for any morphism of functors

one has a morphism of functors

*

u
P

Ho(¥)(I) _ o) Ho(¥)(J)

v*

Moreover, the prederivator Ho(¥) is then a Grothendieck derivator; see [Cis03, Thm. 6.11]. This
means in particular that, for any functor between small categories u : I — J, the functor u* has
a left adjoint

(3.2.13.2) Luy : Ho(¥)(1) — Ho(7)(J)
as well as a right adjoint
(3.2.13.3) Ru. : Ho(?)(I) — Ho(¥)(J)

(in the case where J = e is the terminal category, then Luy is the homotopy colimit functor, while
Ru. is the homotopy limit functor).
If ¥ and ¥’ are two model categories, a morphism of derivators

¢ :Ho(?) — Ho(?")
is simply a morphism of 2-functors, that is the data of functors
&;:Ho(?)(I) — Ho(¥')(I)
together with coherent isomorphisms

u (2 (F)) = &r(u*(F))
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for any functor w : I — J and any presheaf F' on J with values in ¥ (see [Cis03, p. 210] for a
precise definition).

Such a morphism @ is said to be continuousmorphism!continuous if, for any functor u : I — J,
and any object F' of Ho(¥)(I), the canonical map

(3.2.13.4) ®; Ru,(F) — Ru, &;(F)

is an isomorphism. One can check that a morphism of derivators @ is continuous if and only if
it commutes with homotopy limits (i.e. if and only if the maps (3.2.13.4) are isomorphisms in
the case where J = e is the terminal category); see [Cis08, Prop. 2.6]. For instance, the total
right derived functor of any right Quillen functor defines a continuous morphism of derivators; see
[Cis03, Prop. 6.12].

Dually a morphism @ of derivators is cocontinuous if, for any functor v : I — J, and any
object F of Ho(¥)(I), the canonical map

(3.2.13.5) Luy@;(F) — &5 Luw(F)
is an isomorphism.

3.2.14. We shall say that a stable model category ¥ is Q-linear if all the objects of the
triangulated category Ho(¥") are uniquely divisible.

THEOREM 3.2.15. Let ¥ be a model category (resp. a stable model category, resp. a Q-linear
stable model category), and denote by S the model category of simplicial sets (resp. the stable
model category of S'-spectra, resp. the Q-linear stable model category of complexes of Q-vector
spaces). Denote by 1 the unit object of the closed symmetric monoidal category Ho(S).

Then, for each object E of Ho(¥), there exists a unique continuous morphism of derivators

RHom(E, —) : Ho(¥) — Ho(S)
such that, for any object F' of Ho(¥), there is a functorial bijection
Hompo(sy (1, RHom(E, F)) ~ Homgey) (E, F)) .

PROOF. Note that the stable Q-linear case follows from the stable case and from the fact
that the derivator of complexes of Q-vector spaces is (equivalent to) the full subderivator of the
derivator of S'-spectra spanned by uniquely divisible objects.

It thus remains to prove the theorem in the case where ¥ be a model category (resp. a stable
model category) and S is the model category of simplicial sets (resp. the stable model category of
Sl-spectra). The existence of RHom(FE, —) follows then from [Cis03, Prop. 6.13] (resp. [CT11,
Lemma A.6]).

For the unicity, as we don’t really need it here, we shall only sketch the proof (the case of
simplicial sets is done in [Cis03, Rem. 6.14]). One uses the universal property of the derivator
Ho(S): by virtue of [Cis08, Cor. 3.26] (resp. of [CT11, Thm. A.5]), for any model category (resp.
stable model category) ¥’ there is a canonical equivalence of categories between the category
of cocontinous morphisms from Ho(S) to Ho(¥#’) and the homotopy category Ho(¥). As a
consequence, the derivator Ho(S) admits a unique closed symmetric monoidal structure, and any
derivator (resp. triangulated derivator) is naturally and uniquely enriched in Ho(S); see [Cis08,
Thm. 5.22]. More concretely, this universal property gives, for any object E in Ho(¥”), a unique
cocontinuous morphism of derivators

Ho(S) — Ho(?') K—-K®FE
such that 1 ® F = E. For a fixed K in Ho(S)(I), this defines a cocontinuous morphism of
derivators

Ho(7') - Ho(¥'"") |, E—KQ®E

which has a right adjoint

Ho(7''") - Ho(¥') , Fw~—FX.
Let

RHom(E, —) : Ho(¥) — Ho(S)
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be a continuous morphism such that, for any object F' of ¥, there is a functorial bijection
ir : Homye(sy (1, RHom(E, F)) ~ Homy,(y)(E, F)) .
Then, for any object K of Ho(S)(I), and any object F' of Ho(?")(I) a canonical isomorphism
RHom(E, FX) ~ RHom(E, F)¥

which is completely determined by being the identity for K = 1 (this requires the full univer-
sal property of Ho(S) given by by [Cis08, Thm. 3.24] (resp. by the dual version of [CT11,
Thm. A.5])). We thus get from the functorial bijections i the natural bijections:

Hompo(s)(n (K, RHom(E, F)) ~Homy,s) (1, RHom(E, F)*)
~Homyy,(s) (1, RHom(E, F¥))
~Homy,(y)(E, F&)
~Hompye(y (1) (K ® E,F).
In other words, RHom(FE, —) has to be a right adjoint to (—) ® E. O

REMARK 3.2.16. The preceding theorem mostly holds for abstract derivators. The only prob-
lem is for the existence of the morphism RHom(FE, —) (the unicity is always clear). However, this
problem disapears for derivators which have a Quillen model (as we have seen above), as well as
for triangulated derivators (see [CT11, Lemma A.6]). Hence Theorem 3.2.15 holds in fact for any
triangulated Grothendieck derivator.

In the case when ¥ is a combinatorial model category (which, in practice, will essentially
always be the case), the enrichment over simplicial sets (resp, in the stable case, over spectra) can
be constructed via Quillen functors by Dugger’s presentation theorems [Dug01] (resp. [Dug06]).

COROLLARY 3.2.17. Let A be a P-fibred combinatorial model category (resp. a stable 2-
fibred combinatorial model category, resp. a Q-linear stable 22 -fibred combinatorial model category)
over ., and S the model category of simplicial sets (resp. the stable model category of S*-spectra,
resp. the Q-linear stable model category of complezes of Q-vector spaces).

Consider an object S of &, a morphism f : X — S, and a morphism of .%-diagrams p :
(Z,I) = X over S. Then, for an object M of Ho(.#)(S), the following conditions are equivalent.

(a) The map
RA L (M) = RJ. Rp. Lp" Lf* (1)
is an isomorphism in Ho(#)(S).
(b) The map
RTjeom (X, M) — Rl'&n RT jeom (Zi, M)
iclor
is an isomorphism in Ho(.4)(S).
(¢) For any object E of Ho(.#)(S), the map
RHom(E, R jeom (X, M)) — Ryﬂl RHom(E, RT jeom (25, M))
iEqor

is an isomorphism in Ho(S).

PROOF. The equivalence between (a) and (b) follows from Propositions 3.1.15 and 3.1.16,
which give the formula

Rf.Rp. Lp*Lf* (M) ~ R@ ngeom(%, M).
icIop
The identification
Homp sy (1, RHom(E, F)) ~ Homge(.z)(s) (£, F)

and the Yoneda Lemma show that a map in Ho(.#)(S) is an isomorphism if and only its image
by RHom(E, —) is an isomorphism for any object E of Ho(.#)(S). Moreover, as RHom(E, —)
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is continuous, for any small category I and any presheaf F' on I with values in .Z(5), there is a
canonical isomorphism

RHom(E, Rlim F;)) ~ Rlim RHom(E, F})).

ST

i€lop

=

This proves the equivalence between contitions (b) and (c). O

COROLLARY 3.2.18. Under the assumptions of Corollary 3.2.17, given an object S of %, an
object M of Ho(.#)(S) satisfies t-descent if and only if, for any object E of Ho(.# )(S) the presheaf
of simplicial sets (resp. of S-spectra, resp. of complexes of Q-vector spaces)

RHom(E, R jeom (—, M))
satisfies t-descent over ./ /S.

PRrROOF. This follows from the preceding corollary, using the formula given by Proposition
3.2.4. 0

REMARK 3.2.19. We need the category . to be small in some sense to apply the two preceding
corollaries because we need to make sense of the projective model category structure of Proposition
3.2.10. However, we can use these corollaries even if the site . is not small as well: we can either
use the theory of universes, or apply these corollaries to all the adequate small subsites of .. As
a consequence, we shall feel free to use Corollaries 3.2.17 and 3.2.18 for non necessarily small sites
.7, leaving to the reader the task to avoid set-theoretic difficulties according to her/his taste.

DEFINITION 3.2.20. For an Sl-spectrum E and an integer n, we define its nth cohomology
group H™(E) by the formula
H"(E) = 7n(E),
where 7; stands for the ith stable homotopy group functor.
Let .# be a monoidal &-fibred stable combinatorial model category over .. Given an object

S of . as well as an object M of Ho(.#)(S), we define the presheaf of absolute derived global
sections of M over S by the formula

RI'(—, M) = RHom(1g, RT yepm(—, M)).

For a map X — S of ¥/, we thus have the absolute cohomology of X with coefficients in M,
RI(X, M), as well as the cohomology groups of X with coefficients in M:

H™"(X,M)=H"(RI'(X,M)).
We have canonical isomorphisms of abelian groups
H"(X, M) ~ Homyq(.z)s)(1s, Rf. Lf*(M))
~ Hompo(.a)(x)(Ix, Lf*(M)).

Note that, if moreover . is Q-linear, the presheaf RI'(—, M) can be considered as a presheaf
of complexes of Q-vector spaces on .#/S.

3.3. Descent over schemes. The aim of this section is to give natural sufficient conditions
for .# to satisfy descent with respect to various Grothendieck topologies®.

501 fact, using remark 3.2.16, all of this section (results and proofs) holds for an abstract algebraic prederivator
in the sense of Ayoub [Ayo07a, Def. 2.4.13] without any changes (note that the results of 3.1.b are in fact a proof
that (stable) combinatorial fibred model categories over .# give rise to algebraic prederivators). The only interest
of considering a fibred model category over .7 is that it allows to formulate things in a little more naive way.
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3.3.a. Localization and Nisnevich descent.

3.3.1. Recall from example 2.1.11 that a Nisnevich distinguished square is a pullback square
of schemes
v—sy
(3.3.1.1) gi !

in which f is étale, j is an open immersion with reduced complement Z and the induced morphism
f~Y(Z) — Z is an isomorphism.

For any scheme X in ., we denote by Xyjs the small Nisnevich site of X.

THEOREM 3.3.2 (Morel-Voevodsky). Let ¥ be a (combinatorial) model category and T a
scheme in 7. For a presheaf F' on Tnis with values in ¥, the following conditions are equivalent.
(i) F(2) is a terminal object in Ho(¥'), and for any Nisnevich distinguished square (3.3.1.1)
i Tnis, the square
F(X)——=F(Y)

L

F(U) —— F(V)

18 a homotopy pullback square in ¥ .
(ii) The presheaf F satisfies Nisnevich descent on Tis.

PROOF. By virtue of corollaries 3.2.17 and 3.2.18, it is sufficient to prove this in the case
where ¥ is the usual model category of simplicial sets, in which case this is precisely Morel and
Voevodsky’s theorem; see [MV99, VoelOb, VoelOc]. O

3.3.3. Consider a Nisnevich distinguished square (3.3.1.1) and put a = jg = fI. According to
our general assumption 3.0, the maps a, j and f are &-morphisms. For any object M of .#(X),
we obtain a commutative square in .# (which is well defined as an object in the homotopy of
commutative squares in .Z (X)):

Laga* M —— Lfy f*(M)
(333.1) i l
Ljsj* (M) —— M.
We also obtain another commutative square in .# by appyling the functor RHomx (—, 1x):

M Rf. f*(M)

(3.3.3.2) l l

Rj. j*(M) —— Ra. a*(M).

PROPOSITION 3.3.4. If the category Ho(.#') has the localization property, then for any Nis-
nevich distinguished square (3.3.1.1) and any object M of Ho(.#)(X), the squares (3.3.3.1) and
(3.3.3.2) are homotopy cartesians.

PrROOF. Let i : Z — X be the complement of the open immersion j (Z being endowed with
the reduced structure) and p : f~!(Z) — Z the map induced by f.

We have only to prove that one of the squares (3.3.3.1), (3.3.3.2) are cartesian. We choose the
square (3.3.3.1).

Because the pair of functor (Li*, j*) is conservative on Ho(.#)(X), we have only to check that
the pullback of (3.3.3.1) along j* or Li* is homotopy cartesian. But, using the &?-base change
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property, we see that the image of (3.3.3.1) by j* is (canonically isomorphic to) the commutative
square

Lgja* (M) == Lgga™ (M)
J* (M) == j"(M)

which is obviously homotopy cartesian.
Using again the Z?-base change property, we obtain that the image of (3.3.3.1) by Li* is
isomorphic in Ho(.#Z) to the square

0 —— pyp*Li* (M)

|

00— Li*(M)

which is again obviously homotopy cartesian because p is an isomorphism (note for this last reason,
ps = Lpy). O

COROLLARY 3.3.5. If Ho(.#) has the localization property then it satisfies Nisnevich descent.

ProOF. This corollary thus follows immediately from Corollary 3.2.17, Theorem 3.3.2 and
Proposition 3.3.4. O

REMARK 3.3.6. Note that using Theorem 3.3.2, if we assume only that Ho(.#) satisfies Nis-
nevich descent, then the squares (3.3.3.1) and (3.3.3.2) are homotopy cartesians for any Nisnevich
distinguished square (3.3.1.1).

Assume that .# is monoidal with geometric sections M. Let S be a base scheme and consider
a Nisnevich distinguished square (3.3.1.1) of smooth S-schemes. Then the fact that the square
(3.3.3.1) is homotopy cartesian implies there exists a canonical distinguished triangle:

Mg (V) 2% Mg (U) @ Ms(Y) L7725 Mg(X) — Ms(V)[1]

It is called the Mayer-Vietoris triangle associated with the square (3.3.1.1).
3.3.b. Proper base change isomorphism and descent by blow-ups.

3.3.7. Recall from example 2.1.11 that a cdh-distinguished square is a pullback square of
schemes

k
_—

(3.3.7.1) 9

N<—H
NT’<

—
7

in which f is proper surjective, i a closed immersion and the induced map f~}(X —2) - X — Z
is an isomorphism.

Recall from Example 2.1.11 the cdh-topology is the Grothendieck topology on the category of
schemes generated by Nisnevich coverings and by coverings of shape {Z — X, Y — X} for any
cdh-distinguished square (3.3.7.1).

THEOREM 3.3.8 (Voevodsky). Let ¥ be a (combinatorial) model category. For a presheaf F
on . with values in ¥, the following conditions are equivalent.

(i) The presheaf F satisfies cdh-descent on & .
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(ii) The presheaf F' satisfies Nisnevich descent and, for any cdh-distinguished square (3.3.7.1)
of &, the square

F(X)——=F()

L

F(Z)——= F(T)
s a homotopy pullback square in ¥ .

PROOF. It is sufficient to prove this in the case where 7 is the usual model category of simpli-
cial sets; see corollaries 3.2.17 and 3.2.18. As the distinguished cdh-squares define a bounded reg-
ular and reduced cd-structure on ., the equivalence between (i) and (ii) follows from Voevodsky’s
theorems on descent with respect to topologies defined by cd-structures [VoelOb, VoelOc]. O

3.3.9. Consider a cdh-distinguished square (3.3.7.1) and put a = ig = fk. For any object
M of #(X), we obtain a commutative square in .# (which is well defined as an object in the
homotopy of commutative squares in .Z (X)):

M—— ~Rf.Lf*(M)

(3.3.9.1) l i

Ri, Li*(M) — Ra, La*(M)

PROPOSITION 3.3.10. Assume Ho(.#) satisfies the localization property and the transversality
property with respect to proper morphisms. Then the following conditions hold:

(i) For any cdh-distinguished square (3.3.7.1), and any object M of Ho(.#)(X) the commu-
tative square (3.3.9.1) is homotopy cartesian.

(i) The &-fibred model category Ho(. ) satisfies cdh-descent.

PROOF. We first prove (i). Consider a cdh-distinguished square (3.3.7.1) and let j : U — X be
the complement open immersion of 4. As the pair of functor (Li*, j*) is conservative on Ho(.#Z)(X),
we have only to check that the image of (3.3.9.1) under Li* and j* is homotopy cartesian.

Using projective transversality, we see that the image of (3.3.9.1) by the functor Li* is (iso-
morphic to) the homotopy pullback square

Li*(M) — Rg, Lg* Li* (M)

Li* (M) — Rg, Lg* Li* (M)

Let h : f~1(U) — U be the pullback of f over U. As j is an open immersion, it is by
assumption a &-morphism and the &-base change formula implies that the image of (3.3.9.1) by
j* is (isomorphic to) the commutative square

Lj*(M) —> Rh,Lh*Lj* (M)

l l

0:0

which is obviously homotopy cartesian because h is an isomorphism.

We then prove (ii). We already know that .# satisfies Nisnevich descent (Corollary 3.3.5).
Thus, by virtue of the equivalence between conditions (i) and (ii) of Theorem 3.3.8, the computa-
tion above, together with corollaries 3.2.17 and 3.2.18 imply that .# satisfies cdh-descent. O
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3.3.11. To any cdh-distinguished square (3.3.7.1), one associates a diagram of schemes % over
X as follows. Let ™ be the category freely generated by the oriented graph

a——>b

(3.3.11.1) l

C

Then % is the functor from ™ to ./ X defined by the following diagram.
LI
(3.3.11.2) gl

Z

We then have a canonical map ¢ : # — X, and the second assertion of Theorem 3.3.10 can be
reformulated by saying that the adjunction map

M — Ry, Lo* (M)

is an isomorphism for any object M of Ho(.#)(X): indeed, by virtue of Proposition 3.1.15,
Ry, Lp*(M) is the homotopy limit of the diagram

Rf.Lf*(M)

|

Ri, Li*(M) —> Ra, La*(M)

in Ho(.#)(X). In other words, if .# has the properties of localization and of projective transver-
sality, then the functor

Lo* : Ho(A)(X) — Ho(.#) (%, )
is fully faithful.

3.3.c. Proper descent with rational coefficients I: Galois excision. From now on, we assume
that any scheme in .7 is quasi-excellent® (in fact, we shall only use the fact that the normalization
of a quasi-excellent schemes gives rise to a finite surjective morphism, so that, in fact, universally
japanese schemes would be enough). We fix a scheme S in ., and we shall work with S-schemes
in % (assuming these form an essentially small category).

3.3.12. The h-topology (resp. the qfh-topology) is the Grothendieck topology on the category of
schemes associated to the pretopology whose coverings are the universal topological epimorphisms
(resp. the quasi-finite universal topological epimorphisms). This topology has been introduced
and studied by Voevodsky in [Voe96].

The h-topology is finer than the cdh-topology and, of course, finer than the gqfh-topology. The
gfh-topology is in turn finer than the étale topology. An interesting feature of the h-topology (resp.
of the gfh-topology) is that any proper (resp. finite) surjective map is an h-cover. In fact, the
h-topology (resp. the gfh-topology) can be described as the topology generated by the Nisnevich
coverings and by the proper (resp. finite) surjective maps; see Lemma 3.3.28 (resp. Lemma 3.3.27)
below for a precise statement.

3.3.13. Consider a morphism of schemes f : Y — X. Consider the group of automorphisms
G = Auty (X) of the X-scheme Y.

Assuming X is connected, we say according to [SGA1, exp. V] that f is a Galois cover if it
is finite étale (thus surjective) and G operates transitively and faithfully on any (or simply one)
of the geometric fibers of Y/X. Then G is called the Galois group of Y/X.5?

515ee 4.1.1 below for a reminder on quasi-excellent schemes.
52The map f induces a one to one correspondence between the generic points of Y and that of X. For any
generic point y € Y, z = f(y), the residual extension ky/k; is a Galois extension with Galois group G.
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When X is not connected, we will still say that f is a Galois cover if it is so over any connected
component of X. Then G will be called the Galois group of X. If (X;);e; is the family connected
components of X, then G is the product of the Galois groups G; of f x x X; for each i € I. The
group Gj is equal to the Galois group of any residual extension over a generic point of X;.

The following definition is an extension of the definition 5.5 of [SV0O0b]:

DEFINITION 3.3.14. A pseudo-Galois cover is a finite surjective morphism of schemes f : Y —
X which can be factored as
v Lox 2 x
where f’ is a Galois cover and p is radicial®® (such a p is automatically finite and surjective).
Note that the group G defined by the Galois cover f’ is independent of the choice of the

factorization. In fact, if X denotes the semi-localization of X at its generic points, considering the
cartesian squares

Y —X —=X
Vo v
vy Lo xPox

then G = Autg(Y) — for any point y € Y, 2’ = f'(y), x = f(y), Ka /K, is the maximal radicial
sub-extension of the normal extension k,/k;. It will be called the Galois group of Y/X.

Remark also that Y is a G-torsor over X locally for the gfh-topology (i.e. it is a Galois object
of group G in the gfh-topos of X): this comes from the fact that finite radicial epimorphisms are
isomorphisms locally for the qfh-topology (any universal homeomorphism has this property by
[Voe96, prop. 3.2.5]).

Let f:Y — X be a finite morphism, and G a finite group acting on Y over X. Note that, as
Y is affine on X, the scheme theoretic quotient Y/G exists; see [SGA1, Exp. V, Cor. 1.8]. Such
scheme-theoretic quotients are stable by flat pullbacks; see [SGA1, Exp. V, Prop. 1.9].

DEFINITION 3.3.15. Let G be finite group. A qfh-distinguished square of group G is a pullback
square of S-schemes of shape

~

h
_—

(3.3.15.1) g

-~
[,

N<—M

P

>
7

in which Y is endowed with an action of G over X, and satisfying the following three conditions.

(a) The morphism f is finite and surjective.
(b) The induced morphism f~Y(X — Z) — f~1(X — Z2)/G is flat.
(¢) The morphism f~}(X — Z)/G — X — Z is radicial.

Immediate examples of qfh-distinguished squares of trivial group are the following. The scheme
Y might be the normalization of X, and Z is a nowhere dense closed subscheme out of which f is
an isomorphism; or Y is dense open subscheme of X which is the disjoint union of its irreducible
components; or Y is a closed subscheme of X inducing an isomorphism Y,eq >~ X,eq.

A gfh-distinguished square of group G (3.3.15.1) will be said to be pseudo-Galois if Z is
nowhere dense in X and if the map f~}(X — Z) — X — Z is a pseudo-Galois cover of group G.

The main examples of pseudo-Galois qfh-distinguished squares will come from the following
situation.

PROPOSITION 3.3.16. Consider an irreducible normal scheme X, and a finite extension L of
its field of functions k(X). Let K be the inseparable closure of k(X) in L, and assume that L/ K
is a Galois extension of group G. Denote by Y the normalization of X in L. Then the action of

53Gee 2.1.6 for a reminder on radicial morphisms.
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G on k(Y) = L extends naturally to an action on'Y over X. Furthermore, there exists a closed
subscheme Z of X, such that the pullback square

T——Y

b

is a pseudo-Galois qth-distinguished square of group G.

PROOF. The action of G on L extends naturally to an action on Y over X by functoriality.
Furthermore, Y/G is the normalization of X in K, so that Y/G — X is finite radicial and surjective
(see [Voe96, Lemma 3.1.7] or [Bou98, V, §2, n° 3, lem. 4]). By construction, Y is generically a
Galois cover over Y/G, which implies the result (see [EGA4, Cor. 18.2.4)). O

3.3.17. For a given S-scheme T, we shall denote by L(T) the corresponding representable
gfh-sheaf of sets (remember that the qfh-topology is not subcanonical, so that L(T) has to be
distinguished from T itself). Beware that, in general, there is no reason that, given a finite group G
acting on T, the scheme-theoretic quotient L(T/G) (whenever defined) and the gfh-sheaf-theoretic
quotient L(T')/G would coincide.

LEMMA 3.3.18. Let f: Y — X be a separated morphism, G a finite group acting on 'Y over
X, and Z a closed subscheme of X such that f is finite and surjective over X — Z, and such that
the quotient map f~1(X — Z) — f~Y(X — Z)/G is flat, while the map f~Y(X — 2)/G — X — Z
is radicial. For g € G, write g : Y =Y for the corresponding automorphism of Y, and define Y
as the image of the diagonal Y — Y X x Y composed with the automorphism ly Xx g:Y xXxY —
Y xx Y. Then, if T = Z xx Y, we get a qth-cover of Y xx Y by closed subschemes:

Y xxY=(TxzT)U|]Y,.
geG

PRrROOF. Note that, as f is separated, the diagonal Y — Y X x Y is a closed embedding, so
that the Y;’s are closed subschemes of Y xx Y. As the map Y Xy, Y — Y xx Y is a universal
homeomorphism, we may assume that Y/G = X. It is sufficient to prove that, if y and y’ are two
geometric points of Y whose images coincide in X and do not belong to Z, there exists an element
g of G such that y/ = gy (which means that the pair (y,y’) belongs to Y;). For this purpose,
we may assume, without loss of generality, that Z = @. Then, by assumption, Y is flat over X,
from which we get the identification (Y xx Y)/G ~Y xx (Y/G) ~ Y (where the action of G on
Y xx Y is trivial on the first factor and is induced by the action on Y on the second factor). This
achieves the proof. O

PROPOSITION 3.3.19. For any qfh-distinguished square of group G (3.3.15.1), the commutative
square

L(T)/G —— L(Y)/G
L(Z) L(X)

is a pullback and a pushout in the category of qfh-sheaves. Moreover, if X is normal and if Z is
nowhere dense in X, then the canonical map L(Y)/G — L(Y/G) ~ L(X) is an isomorphism of
afh-sheaves (which implies that L(T)/G — L(Z) is an isomorphism as well).

PRrROOF. Note that this commutative square is a pullback because it was so before taking the
quotients by G (as colimits are universal in any topos). As f is a qfh-cover, it is sufficient to prove
that

L(T) xr(z) L(T') /G —— L(Y) xp(x) L(Y)/G

| |

L(T) L(Y)
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is a pushout square. This latter square fits into the following commutative diagram

L(T) L(Y)

| |

L(T) X z) L(T) /G —= L(Y) xx) L(Y)/G

l |

L(T) L(Y)

in which the two vertical composed maps are identities (the vertical maps of the upper commutative
square are obtained from the diagonals by taking the quotients under the natural action of G on
the right component). It is thus sufficient to prove that the upper square is a pushout. As the
lower square is a pullback, the upper one shares the same property; moreover, all the maps in the
upper commutative square are monomorphisms of qfh-sheaves, so that it is sufficient to prove that
the map (L(T') xpz)y L(T)/G) L L(Y') — L(Y') X1(x) L(Y')/G is an epimorphism of qfh-sheaves.
According to Lemma 3.3.18, this follows from the commutativity of the diagram

L(T x5z T)1I (ngc L(Yg)) L LY xxY)

| |

(L(T) X 1(2) L(T)/G) L L(Y) —— L(Y) x(x) L(Y)/G

in which the vertical maps are obviously epimorphic.

Assume now that X is normal and that Z is nowhere dense in X, and let us prove that the
canonical map L(Y)/G — L(X) is an isomorphism of gfh-sheaves. This is equivalent to prove
that, for any qfh-sheaf of sets F, the map f*: F(X) — F(Y) induces a bijection

F(X)~F(Y)%.

Let F be a gfh-sheaf. The map f*: F(X) — F(Y) is injective because f is a qfh-cover, and it is
clear that the image of f* lies in F(Y ).

Let a be a section of F' over Y which is invariant under the action of G. Denote by pry, pry :
Y xx Y — Y the two canonical projections. With the notations introduced in Lemma 3.3.18, we
have

pri(a)ly, = a = a.g = pry(a)ly,

for every element g in G. As Z does not contain any generic point of X, the scheme T x z T does
not contain any generic point of Y X x Y neither: as any irreducible component of Y dominates
an irreducible component of X, and, as X is normal, the finite map Y — X is universally open; in
particular, the projection pr; : ¥ xx Y — Y is universally open, which implies that any generic
point of Y X x Y lies over a generic point of Y. By virtue of [Voe96, prop. 3.1.4], Lemma 3.3.18
thus gives a gfh-cover of Y X x Y by closed subschemes of shape

VxxY=|]Y,.
geG
This implies that
pri(a) = pry(a).

The morphism Y — X being a gfh-cover and F' a gfh-sheaf, we deduce that the section a lies in
the image of f*. O
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COROLLARY 3.3.20. For any qfh-distinguished square of group G (3.3.15.1), we get a bicarte-
sian square of qfh-sheaves of abelian groups

Zo(T)a —= Zgm(Y)c

l |

Zon(Z) —— Zgm(X)

(where the subscript G stands for the coinvariants under the action of G). In other words, there
is a canonical short exact sequence of sheaves of abelian groups

0— quh(T)G — quh(Z) D quh(Y)G — quh(X) — 0.

PROOF. As the abelianization functor preserves colimits and monomorphisms, the preceding
proposition implies formally that we have a short exact sequence of shape

quh(T)G — quh(Z) D quh(Y)G — quh(X) — 0,

while the left exactness follows from the fact that Z — X being a monomorphism, the map
obtained by pullback, L(T)/G — L(Y)/G, is a monomorphism as well. O

3.3.21. Let ¥ be a Q-linear stable model category (see 3.2.14).

Consider a finite group G, and an object E of ¥, endowed with an action of G. By viewing G
as a category with one object we can see E as functor from G to ¥ and take its homotopy limit
in Ho(7), which we denote by E" (in the literature, E*“ is called the object of homotopy fired
points under the action of G on E). One the other hand, the category Ho(¥) is, by assumption,
a Q-linear triangulated category with small sums, and, in particular, a Q-linear pseudo-abelian
category so that we can define E¢ as the object of Ho(#') defined by

(3.3.21.1) E¢ =Imp,
where p : E — F is the projector defined in Ho(¥') by the formula
1
(3.3.21.2) pa) == g
#G geG

The inclusion E¢ — E induces a canonical isomorphism
(3.3.21.3) E¢ 5 gh¢

in Ho(%): to see this, by virtue of Theorem 3.2.15, we can assume that ¥ is the model category
of complexes of Q-vector spaces, in which case it is obvious.

COROLLARY 3.3.22. Let C be a presheaf of complexes of Q-vector spaces on the category of
S-schemes. Then, for any qfh-distinguished square of group G (3.3.15.1), the commutative square

REgm (X, Cqm) —— R (Y, Cqm)®

| |

qufh(Z7 quh) - Rquh(T7 quh)G

is a homotopy pullback square in the derived category of Q-vector spaces. In particular, we get a
long exact sequence of shape

Hgfh(Xv Cqm) — th(Z, Catn) @ c;lfh(yv quh)G - ;lth(Ta Cqﬂl)G - Hng}ql(Xa Cqtm)

If furthermore X is normal and Z is nowhere dense in X, then the maps
Hi, (X, Cqm) — Heg, (Y, quh)G and  Hgg, (Z,Cqm) — Hep, (T, quh)G

are isomorphisms for any integer n.
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PROOF. Let Cym — C’ be a fibrant resolution in the gfh-local injective model category struc-
ture on the category of qfh-sheaves of complexes of Q-vector spaces; see for instance [Ayo07a,
Cor. 4.4.42]. Then for U =Y, T, we have a natural isomorphism of complexes

Hom(Qqm(U)g, C') = C'(U)°
which gives an isomorphism
RHom(quh(U)Ga Oqfh) =~ Rquh(Ua C(qfh)G

in the derived category of the abelian category of Q-vector spaces. This corollary thus follows
formally from Corollary 3.3.20 by evaluating at the derived functor RHom(—, Cqm).

If furthermore X is normal, then one deduces the isomorphism Hy, (X, Cqm) ~ Hlg, (Y, Cym)®
from the fact that L(Y)/G ~ L(Y/G) ~ X (Proposition 3.3.19), which implies that Zqm (Y )g ~
Zym (X). The isomorphism Hig, (Z, Cqm) ~ Hg, (T, Cym)¢ then comes as a byproduct of the long
exact sequence above. O

THEOREM 3.3.23. Let X be a scheme, and C be a presheaf of complexes of Q-vector spaces
on the small étale site of X. Then C satisfies étale descent if and only if it has the following
properties.

(a) The complex C satisfies Nisnevich descent.
(b) For any étale X-scheme U and any Galois cover V.— U of group G, the map C(U) —
C(V)€ is a quasi-isomorphism.

PROOF. These are certainly necessary conditions. To prove that they are sufficient, note
that the Nisnevich cohomological dimension and the rational étale cohomological dimension of
a noetherian scheme are bounded by the dimension; see [M'V99, proposition 1.8, page 98] and
[Voe96, Lemma 3.4.7]. By virtue of [SV00a, Theorem 0.3], for 7 = Nis, ét, we have strongly
convergent spectral sequences

EY® = H2(U, HY(C);) = HZT(U,Cy).

Condition (a) gives isomorphisms HPT9(C(U)) ~ HE9(U, Cnis), so that it is sufficient to prove
that, for each of the cohomology presheaves F' = H9(C'), we have

HI]\JIis(U» Fis) =~ Hgt(Uv Fe).

As the rational étale cohomology of any henselian scheme is trivial in non-zero degrees, it is
sufficient to prove that, for any local henselian scheme U (obtained as the henselisation of an étale
X-scheme at some point), Fnis(U) =~ Fg(U). Let G be the absolute Galois group of the closed
point of U. Then we have

Frnis(U) = F(U) and  Fg(U) :@F(UQ)GQ,

where the U,’s run over all the Galois covers of U corresponding to the finite quotients G — G,,.
But it follows from (b) that F(U) ~ F(U,)% for any a, so that Fyis(U) ~ Fg (U). O

LEMMA 3.3.24. Any qfh-cover admits a refinement of the form Z — Y — X, where Z — 'Y
is a finite surjective morphism, and Y — X is an étale cover.

PRrOOF. This property being clearly local on X with respect to the étale topology, we can
assume that X is strictly henselian, in which case this follows from [Voe96, Lemma 3.4.2]. g

THEOREM 3.3.25. A presheaf of complezes of Q-vector spaces C on the category of S-schemes
satisfies qfth-descent if and only if it has the following two properties:

(a) the complex C satisfies Nisnevich descent;
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(b) for any pseudo-Galois qth-distinguished square of group G (3.3.15.1), the commutative
square

C(X)——=0(Y)¢

L

C(Z)——=C(T)¢
18 a homotopy pullback square in the derived category of Q-vector spaces.

PRrROOF. Any complex of presheaves of Q-vector spaces satisfying qfh-descent satisfies prop-
erties (a) and (b): property (a) follows from the fact that the gfh-topology is finer than the étale
topology; property (b) is Corollary 3.3.22.

Assume now that C' satisfies these two properties. Let ¢ : C — C’ be a morphism of presheaves
of complexes of Q-vector spaces which is a quasi-isomorphism locally for the gfh-topology, and
such that C' satisfies gqfh-descent (such a morphism exists thanks to the gfh-local model category
structure on the category of presheaves of complexes of Q-vector spaces; see Proposition 3.2.10).
Then the cone of ¢ also satisfies conditions (a) and (b). Hence it is sufficient to prove the theorem
in the case where C' is acyclic locally for the gfh-topology.

Assume from now on that Cypm is an acyclic complex of gfh-sheaves, and denote by H"(C)
the nth cohomology presheaf associated to C. We know that the associated qfh-sheaves vanish,
and we want to deduce that H"(C) = 0.

We shall prove by induction on d that, for any S-scheme X of dimension d and for any integer
n, the group H"(C)(X) = H™(C(X)) vanishes. The case where d < 0 follows from the fact,
that by (a), the presheaves H™(C') send finite sums to finite direct sums, so that, in particular,
H"(C)(2) = 0. Before going further, notice that condition (b) implies H"(C)(Xeq) = H™(C)(X)
for any S-scheme X (consider the case where, in the diagram (3.3.15.1), Z =Y =T = X,¢q), so
that it is always harmless to replace X by its reduction. Assume now that d > 0, and that the
vanishing of H"(C)(X) is known whenever X is of dimension < d and for any integer n. Under
this inductive assumption, we have the following reduction principle.

Consider a pseudo-Galois gfh-distinguished square of group G (3.3.15.1). If Z and T are of
dimension < d, then by condition (b), the map H"(C)(X) — H"(C)(Y)Y is an isomorphism:
indeed, we have an exact sequence of shape

H"HO)T) — H™(C)(X) = H™(C)(Z) & H"(C)(Y)¥ = H"(C)(T)€,

which implies our assertion by induction on d.

We shall prove now the vanishing of H™(C)(T') for normal S-schemes T' of dimension d. Let
a be a section of H"(C') over such a T. As H"(C)qm(T) = 0, there exists a gth-cover g : Y — T
such that ¢*(a) = 0. But, by virtue of Lemma 3.3.24, we can assume g is the composition of a
finite surjective morphism f : Y — X and of an étale cover e : X — T'. We claim that e*(a) = 0.
To prove it, as, by (a), the presheaf H"(C') sends finite sums to finite direct sums, we can assume
that X is normal and connected. Refining f further, we can assume that Y is the normalization
of X in a finite extension of k(X), and that k(Y) is a Galois extension of group G over the
inseparable closure of k(X) in k(Y). By virtue of Proposition 3.3.16, we get by the reduction
principle the identification H™(C)(X) = H™(C)(Y)Y, whence e*(a) = 0. As a consequence, the
restriction of the presheaf of complexes C to the category of normal S-schemes of dimension < d is
acyclic locally for the étale topology (note that this is quite meaningful, as any étale scheme over
a normal scheme is normal; see [EGA4, Prop. 18.10.7]). But C satisfies étale descent (by virtue
of Theorem 3.3.23 this follows formally from property (a) and from property (b) for Z = @), so
that H™(C)(T) = HJ (T, Cs) = 0 for any normal S-scheme T of dimension < d and any integer
n.

Consider now a reduced S-scheme X of dimension < d. Let p : T — X be the normalization of
X. As p is birational (see [EGAZ2, Cor. 6.3.8]) and finite surjective (because X is quasi-excellent),
we can apply the reduction principle and see that the pullback map p* : H*(C)(X) — H™(C)(T) =
0 is an isomorphism for any integer n, which achieves the induction and the proof. O
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LEMMA 3.3.26. Etale coverings are finite étale coverings locally for the Nisnevich topology:
any étale cover admits a refinement of the form Z —Y — X, where Z — Y is a finite étale cover
and Y — X is a Nisnevich cover.

PRrROOF. This property being local on X for the Nisnevich topology, it is sufficient to prove
this in the case where X is local henselian. Then, by virtue of [EGA4, Cor. 18.5.12 and Prop.
18.5.15], we can even assume that X is the spectrum of field, in which case this is obvious. O

LEMMA 3.3.27. Any qfh-cover admits a refinement of the form Z — Y — X, where Z — 'Y
is a finite surjective morphism, and Y — X is a Nisnevich cover.

PROOF. As finite surjective morphisms are stable by pullback and composition, this follows
immediately from lemmata 3.3.24 and 3.3.26. ]

LEMMA 3.3.28. Any h-cover of an integral scheme X admits a refinement of the form
U—>7—-Y—>X,

where U — Z is a finite surjective morphism, Z — Y is a Nisnevich cover, Y — X 1is a proper
surjective birational map, and Y is normal.

PROOF. By virtue of [Voe96, Theorem 3.1.9], any h-cover admits a refinement of shape
W-V-—>X,

where W — V is a gth-cover, and V — X is a proper surjective birational map. By replacing V'
by its normalization Y, we get a refinement of shape

WxyY—=Y—>X

where W xy Y — Y is a gfh-cover, and Y — X is proper surjective birational map. We conclude
by Lemma 3.3.27. (]

LEMMA 3.3.29. Let C be a presheaf of compleres of Q-vector spaces on the category of S-
schemes satisfying qfh-descent. Then, for any finite surjective morphism f :' Y — X with X
normal, the map f*: H"(C)(X) — H"(C)(Y) is a monomorphism.

PROOF. It is clearly sufficient to prove this when X is connected. Then, up to refinement, we
can assume that f is a map as in Proposition 3.3.16. In this case, by virtue of Corollary 3.3.22,
the Q-vector space H"(C)(X) ~ H"(C)(Y)% is a direct factor of H™"(C)(Y). d

THEOREM 3.3.30. A presheaf of complexes of Q-vector spaces on the category of S-schemes
satisfies h-descent if and only if it satisfies qfh-descent and cdh-descent.

PRrROOF. This is certainly a necessary condition, as the h-topology is finer than the qfh-
topology and the cdh-topology. For the converse, as in the proof of Theorem 3.3.25, it is suf-
ficient to prove that any presheaf of complexes of Q-vector spaces C on the category of S-schemes
satisfying qfh-descent and cdh-descent, and which is acyclic locally for the h-topology, is acyclic.
We shall prove by noetherian induction that, given such a complex C, for any integer n, and any
S-scheme X, for any section a of H®(C) over X, there exists a cdh-cover X’ — X on which a
vanishes. In other words, we shall get that C' is acyclic locally for the cdh-topology, and, as C sat-
isfies cdh-descent, this will imply that H™(C)(X) = H2;,(X, Cean) = 0 for any integer n and any
S-scheme X. Note that the presheaves H™(C) send finite sums to finite direct sums (which follows,
for instance, from the fact that C satisfies Nisnevich descent). In particular, H"(C)(@) = 0 for
any integer n.

Let X be an S-scheme, and a € H"(C)(X). We have a cdh-cover of X of shape X'II X" — X,
where X’ is the sum of the irreducible components of X,.; and X" is a nowhere dense closed
subscheme of X, so that we can assume X is integral. Let a be a section of the presheaf H"(C)
over X. As H"(C)p, = 0, by virtue of Lemma 3.3.28, there exists a proper surjective birationnal
map p : Y — X with Y normal, a Nisnevich cover q : Z — Y, and a surjective finite morphism
r: U — Z such that r*(¢*(p*(a))) = 0 in H"(C)(U). But then, Z is normal as well (see [EGA4,
Prop. 18.10.7]), so that, by Lemma 3.3.29, we have ¢*(p*(a)) = 0 in H"(C)(Z). Let T be a
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nowhere dense closed subscheme of X such that p is an isomorphism over X — T'. By noetherian
induction, there exists a cdh-cover T" — T such that a|7s vanishes. Hence the section a vanishes
on the cdh-cover T'11 Z — X. O

3.3.d. Proper descent with rational coefficients II: separation. From now on, we assume that
Ho(#) is Q-linear.

ProrosiTION 3.3.31. Let f : Y — X be a morphism of schemes in ., and G a finite group
acting on'Y over X. Denote by & the scheme Y considered a functor from G to the category of
S-schemes, and denote by ¢ : (#,G) — X the morphism induced by f. Then, for any object M
of Ho(#)(X), there are canonical isomorphisms

(RfLf* (M) ~ (Rf. Lf*(M))"® ~ Ry, Lg*(M).

PROOF. The second isomorphism comes from Proposition 3.1.15, and the first, from (3.3.21.3).
O

THEOREM 3.3.32. If Ho(#) satisfies Nisnevich descent, the following conditions are equiva-
lent:

(i) Ho(A) satisfies étale descent.
(i) for any finite étale cover f:Y — X, the functor

Lf*:Ho(4)(X) — Ho()(Y)

18 conservative;
(iii) for any finite Galois cover f:Y — X of group G, and for any object M of Ho(.#)(X),
the canonical map
M — (Rf.Lf*(M))¢
s an isomorphism.

PROOF. The equivalence between (i) and (iii) follows from Theorem 3.3.23 by corollaries 3.2.17
and 3.2.18, and Proposition 3.2.8 shows that (i) implies (ii). It is thus sufficient to prove that (ii)
implies (iii). Let f : Y — X be a finite Galois cover of group G. As the functor f* = Lf* is
conservative by assumption, it is sufficient to check that the map M — (Rf. Lf*(M))® becomes
an isomorphism after applying f*. By virtue of Proposition 3.1.17, this just means that it is
sufficient to prove (iii) when f has a section, i.e. when Y is isomorphic to the trivial G-torsor over
X. In this case, we have the (equivariant) identification P, o M ~ Rf. Lf*(M), where G acts

on the left term by permuting the factors. Hence M ~ (Rf, Lf*(M))%. O

PROPOSITION 3.3.33. Assume that Ho(.#) has the localization property. The following con-
ditions are equivalent:
(i) Ho(A) is separated.
(i1) Ho(A) is semi-separated and satisfies étale descent.

PrOOF. This follows from Proposition 2.3.9 and Theorem 3.3.32. O

COROLLARY 3.3.34. Assume that all the residue fields of S are of characteristic zero, and that
Ho(.#) has the property of localization. Then the following conditions are equivalent:
(i) Ho(A) is separated.
(i) Ho( A ) satisfies étale descent.

ProOF. Consider a radicial finite surjective morphism f : Y — X in .#. To prove that the
functor Lf* is conservative, as Ho(.#) has the property of localization, by noetherian induction,
we may replace X by any dense open subscheme U (and Y by U xx Y). The residue fields of
X being of characteristic zero, this means that we may assume that f induces an isomorphism
after reduction Y,eq >~ X,q. But it is clear that, by the localization property, such a morphism
f induces an equivalence of categories Lf*, so that Ho(.#) is automatically semi-separated. We
conclude by Proposition 3.3.33. O
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PROPOSITION 3.3.35. Assume that Ho(.#) is separated, satisfies the localization property the
proper transversality property. Then, for any pseudo-Galois cover f:Y — X of group G, and for
any object M of Ho(A)(X), the canonical map

M — (Rf, Lf*(M))"
is an isomorphism.

PROOF. By Proposition 3.3.33, this is an easy consequence of Proposition 2.1.9 and of condi-
tion (iii) of Theorem 3.3.32. O

3.3.36. From now on, we assume furthermore that any scheme in . is quasi-excellent.

THEOREM 3.3.37. Assume that Ho(.#) satisfies the localization and proper transversality prop-
erties. Then the following conditions are equivalent:
(i) Ho(A) is separated;
(i) Ho(A) satisfies h-descent;
(111) Ho(A) satisfies qfh-descent;
(iv) for any qfh-distinguished square (3.3.15.1) of group G, if we write a = fh=ig: T — X
for the composed map, then, for any object M of Ho(#)(X), the commutative square

M

(RfLf*(M))“
(3.3.37.1) i
Ri, Li*(M) —> (Ra, La*(M))®

18 homotopy cartesian;
(v) the same as condition (iv), but only for pseudo-Galois qfh-distinguished squares.

PROOF. As ./ satisfies cdh-descent (Theorem 3.3.10), the equivalence between conditions (ii)
and (iii) follows from Theorem 3.3.30 by Corollary 3.2.18. Similarly, Theorem 3.3.25 and corollaries
3.3.22, 3.2.17 and 3.2.18 show that conditions (iii), (iv) and (v) are equivalent. As étale surjective
morphisms as well as finite radicial epimorphisms are gfh-coverings, it follows from Proposition
3.2.8, Theorem 3.3.32 and Proposition 3.3.33, that condition (iii) implies condition (i). It thus
remains to prove that condition (i) implies condition (v). So let us consider a pseudo-Galois qfh-
distinguished square (3.3.15.1) of group G, and prove that (3.3.37.1) is homotopy cartesian. Using
proper transversality, we see that the image of (3.3.37.1) by the functor Li* is (isomorphic to) the
homotopy pullback square

Li* (M) — (Rg. Lg* Li* (M))“
Li* (M) — (Rg, Lg* Li* (M

)¢

Write j : U — X for the complement open immersion of i, and b : f~Y(U) — U for the map
induced by f. As j is étale, we see, using Proposition 3.1.17, that the image of (3.3.9.1) by
j* = Lj* is (isomorphic to) the square

7" (M) —— (Rb, Lb* j*(M))“

l l

0 0

in which the upper horizontal map is an isomorphism by Proposition 3.3.35. Hence it is a homotopy
pullback square. Thus, because the pair of functors (Li*, j*) is conservative on Ho(.#)(X), the
square (3.3.37.1) is homotopy cartesian. O
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COROLLARY 3.3.38. Assume that all the residue fields of S are of characteristic zero, and that
Ho(A#) has the localization and proper transversality properties. Then Ho(.#) satisfies h-descent
if and only if it satisfies étale descent.

Proor. This follows from Corollary 3.3.34 and Theorem 3.3.37. O

COROLLARY 3.3.39. Assume that Ho(#) is separated and has the localization and proper
transversality properties. Let f :Y — X be a finite surjective morphism, with X normal, and G a
group acting on'Y over X, such that the map Y/G — X is generically radicial (i.e. radicial over
a dense open subscheme of X ). Consider at last a pullback square of the following shape.

Y ——=Y

f'l J{f
X —=X
Then, for any object M of Ho(.#)(X'), the natural map
M — (RfLLf™(M)C
is an isomorphism.

PROOF. For any presheaf C of complexes of Q-vector spaces on ./ X, one has an isomorphism
Rquh (X/, quh) ~ Rquh(Y/, quh)G .

This follows from the fact that we have an isomorphism of gfh-sheaves of sets L(Y)/G ~ L(X)
(the map Y — Y/G being generically flat, this is Proposition 3.3.19), which implies that the map
L(Y")/G — L(X') is an isomorphism of gfh-sheaves (by the universality of colimits in topoi), and
implies this assertion (as in the proof of 3.3.22).

By virtue of Theorem 3.3.37, Ho(.#) satisfies gqfh-descent, so that the preceding computations
imply the result by corollaries 3.2.17 and 3.2.18. O

COROLLARY 3.3.40. Assume that Ho(.#) is separated and has the localization and proper
transversality properties. Then for any finite surjective morphism f:Y — X with X normal, the
morphism

M — Rf. Lf*(M)

is a monomorphism and admits a functorial splitting in Ho(.#)(X). Furthermore, this remains
true after base change by any map X' — X.

PROOF. It is sufficient to treat the case where X is connected. We may replace Y by a
normalization of X in a suitable finite extension of its field of function, and assume that a finite
group G acts on Y over X, so that the properties described in the preceding corollary are fulfilled
(see 3.3.16). O

REMARK 3.3.41. The condition (iv) of Theorem 3.3.37 can be reformulated in a more global
way as follows (this won’t be used in these notes, but this might be useful for the reader who might
want to formulate all this in terms of (pre-)algebraic derivators [Ayo07a, Def. 2.4.13]). Given a
gfh-distinguished square (3.3.15.1) of group G, we can form a functor .# from category I = ™
(3.3.11.1) to the category of diagrams of S-schemes corresponding to the diagram of diagrams of
S-schemes

(7,6) " @ @)
|
7z

in which 7 and % correspond to T anf Y respectively, seen as functor from G to /X. The
construction of 3.1.22 gives a diagram of X-schemes ( f Z, 1) which can be described explicitely
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as follows. The category I# is the cofibred category over I associated to the functor from ™ to
the category of small categories defined by the diagram

G
e

in which e stands for the terminal category, and G for the category with one object associated to
G. Tt has thus three objects a, b, ¢ (see (3.3.11.1)), and the morphisms are determined by
* iy =g
Homy, (z,y) = (@ ifx#yandz=b,c;
G otherwise.

The functor .# sends a, b, c to T,Y, Z respectively, and simply encodes the fact that the diagram

L v

|

Z
is G-equivariant, the action on Z being trivial. Now, by propositions 3.1.23 and 3.3.31, if
v (Z,1z) — (X,) denotes the canonical map, for any object M of Ho(.#)(X), the ob-
ject R, Lo* (M) is the functor from | = 7 °? to .#(X) corresponding to the diagram below (of
course, this is well defined only in the homotopy category of the category of functors from _I to

A (X))
(RfLf*(M))S

|

Ri, Li* (M) — (Ra, La*(M))€

As a consequence, if ¢ : ([#,1z) — X denotes the structural map, the object R, Lyp*(M) is
simply the homotopy homotopy limit of the diagram of .#(X) above, so that condition (iv) of
Theorem 3.3.37 can now be reformulated by saying that the map
M = R L™ (M)
is an isomorphism, i.e. that the functor
Ly* : Ho(#)(X) — Ho(A)([F, 1)
is fully faithful.

4. Constructible motives

4.0. Consider as in 2.0 a base scheme S and a sub-category . of the category of S-schemes.
In section 4.4, and for the main theorem of section 4.2, we will assume:

(a) Any scheme in . is quasi-excellent.>*

Apart in Definition 4.3.2 and the subsequent proposition, where we will consider an abstract
situation, we will be concerned with the study of a fixed premotivic triangulated category 7 over
.7 (recall Definition 2.4.45) such that:

(b) 7 is motivic (see Definition 2.4.45).
(¢) Z is endowed with a set of twists 7 (see Paragraph 1.4.4) which is stable under Tate
twists 1(p)[q], for p,q € Z.

54gee Paragraph 4.1.1. The reader can safely restrict his attention to the more classical notion of an excellent
scheme ([EGA4, IV, 7.8.5]).
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(d) < is the homotopy category associated with a stable combinatorial Sm-fibred model
category .4 over .#.%°
As usual, the geometric section of 7 will be denoted by M.
Unless explicitly referring to the underlying model category .#, we will not indicate in the
notation of the six operations that the functors are derived functors.

4.1. Resolution of singularities. The aim of this subsection is to gather the results from
the theory of resolution of singularities that will be used subsequently.

4.1.1. In [EGAA4, 1V, 7.8.2], Grothendieck defined the notion of an ezcellent ring. Matsumura
introduced in [Mat70] the weaker notion of a quasi-excellent ring A. Recall A is quasi-excellent
if the following conditions hold:

(1) A is noetherian.
(2) For any prime ideal p, Ap being the completion of A at p, the canonical morphism
A — A, is regular (see 4.1.4 below).
(3) For any A-algebra B of finite type, the regular locus of Spec (B) is open.
Then a ring A is excellent if it is quasi-excellent and universally catenary. Following Gabber, we
say a scheme X is quasi-excellent (excellent) if it admits an open cover by affine schemes whose
rings are quasi-excellent (excellent, respectively).

THEOREM 4.1.2 (Gabber’s weak local uniformisation). Let X be a quasi-excellent scheme, and
Z C X a nowhere dense closed subscheme. Then there exists a finite h-cover {f; : Vi = X}ier
such that for all i in I, f; is a morphism of finite type, the scheme Y; is regular, and fi_l(Z) 18
either empty or the support of a strict normal crossing divisor in Y;.

See [I1108] for a sketch of proof. A complete argument can be found in [ILO]. Note that, if we
are only interested in schemes of finite type over Spec (R), for R either a field, a complete discrete
valuation ring, or a Dedekind domain whose field of functions is a global field, this is an immediate
consequence of de Jong’s resolution of singularities by alterations; see [dJ96]. One can also deduce
the case of schemes of finite type over an excellent noetherian scheme of dimension lesser or equal
to 2 from [dJ97]; see Theorem 4.1.10 and Corollary 4.1.11 below for a precise statement.

REMARK 4.1.3. This theorem will be used in the proof of Lemma 4.2.14 which is the key point
for the proof of Theorem 4.2.16.

4.1.4. Recall that a morphism of rings u : A — B is regular if it is flat, and if, for any
prime ideal p in A, with residue field k(p), the x(p)-algebra x(p) ® 4 B is geometrically regular
(equivalently, this means that, for any prime ideal q of B, the A-algebra By is formally smooth
for the g-adic topology). We recall the following great generalization of Neron’s desingularisation
theorem:

THEOREM 4.1.5 (Popescu-Spivakovsky). A morphism of noetherian rings u : A — B is reqular
if and only if B is a filtered colimit of smooth A-algebras of finite type.

PROOF. See [Spi99, theorems 1.1 and 1.2]. O

4.1.6. Recall that an alteration is a proper surjective morphism p : X’ — X which is generically
finite, i.e. such that there exists a dense open subscheme U C X over which p is finite.

DEFINITION 4.1.7 (de Jong). Let X be a noetherian scheme endowed with an action of a finite
group G. A Galois alteration of the couple (X, G) is the data of a finite group G’, of a surjective
morphism of groups G’ — G, of an alteration X’ — X, and of an action of G’ on X’, such that:

(i) the map X' — X is G’-equivariant;
(ii) for any irreducible component T of X, there exists a unique irreducible component 7" of
X’ over T, and the corresponding finite field extension

k(T)¢ C k(T

is purely inseparable.

55We use this assumption to use freely the descent theory described in section 3.3.
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In practice, we shall keep the morphism of groups G’ — G implicit, and we shall say that (X’ —
X,G) is a Galois alteration of (X, Q).

Given a noetherian scheme X, a Galois alteration of X is a Galois alteration (X' — X, G)
of (X,e), where e denotes the trivial group. In this case, we shall say that X’ — X is a Galois
alteration of X of group G.

REMARK 4.1.8. If p: X’ — X is a Galois alteration of group G over X, then, if X and X' are
normal, irreducible and quasi-excellent, p can be factored as a radicial finite surjective morphism
X" — X, followed by a Galois alteration X’ — X" of group G, such that k(X") = k(X")¢ (just
define X" as the normalization of X in k(X’)%). In other words, up to a radicial finite surjective
morphism, X is generically the quotient of X’ under the action of G.

DEFINITION 4.1.9. A noetherian scheme S admits canonical dominant resolution of singu-
larities up to quotient singularities if, for any Galois alteration S’ — S of group G, and for
any G-equivariant nowhere dense closed subscheme Z’ C S’, there exists a Galois alteration
(p:8" — 8,G) of (,G), such that S” is regular and projective over S, and such that the
inverse image of Z’ in S” is contained in a G’-equivariant strict normal crossing divisor (i.e. a
strict normal crossing divisor whose irreducible components are stable under the action of G).

A noetherian scheme S admits canonical resolution of singularities up to quotient singularities
if any integral closed subscheme of S admits canonical dominant resolution of singularities up to
quotient singularities.

A noetherian scheme S admits wide resolution of singularities up to quotient singularities if,
for any separated S-scheme of finite type X, and any nowhere dense closed subscheme Z C X,
there exists a projective Galois alteration p : X’ — X of group G, with X’ regular, such that,
in each connected component of X', Z/ = p~1(Z) is either empty, either the support of a strict
normal crossing divisor.

THEOREM 4.1.10 (de Jong). If an excellent noetherian scheme of finite dimension S admits
canonical resolution of singularities up to quotient singularities, then any separated S-scheme of
finite type admits canonical resolution of singularities up to quotient singularities.

PrROOF. Let X be an integral separated S-scheme of finite type. There exists a finite morphism
S’ — S, with S’ integral, an integral dominant S’-scheme X’ and a radicial extension X’ — X
over S, such that X’ has a geometrically irreducible generic fiber over S’. It follows then from
(the proof of) [dJ97, theorem 5.13] that X’ admits canonical dominant resolution of singularities
up to quotient singularities, which implies that X has the same property. O

COROLLARY 4.1.11 (de Jong). Let S be an excellent noetherian scheme of dimension lesser
or equal to 2. Then any separated scheme of finite type over S admits canonical resolution of
singularities up to quotient singularities. In particular, S admits wide resolution of singularities
up to quotient singularities.

PROOF. See [dJ97, corollary 5.15]. O

4.2. Finiteness theorems. The aim of this section is to study the notion of 7-constructibility
in the triangulated motivic case and to study its stability properties under Grothendieck six op-
erations. Recall the following particular case of Definition 1.4.9:

DEFINITION 4.2.1. For a scheme X in ., we denote by Z.(X) the thick triangulated sub-
category of 7 (X) generated by premotives of the form Mx (Y){i} for a smooth X-scheme Y and
a twist i € 7. We will say that a premotive in Z.(X) is 7-constructible, or, simply, constructible.

REMARK 4.2.2. Let us mention that our main examples:

e the stable homotopy category SH (cf. Example 1.4.3),
e the category of Voevodsky motives DM (cf. Definition 11.1.1),
e the category of Beilinson motives DMy (cf. Definition 14.2.1)

are all generated by the Tate twists (i.e. 7 = Z). Recall also Proposition 1.4.11: it applies to all
these examples so that constructible premotives coincides with compact objects.?®

56Notice however this fact is not true for étale motivic complexes.
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PROPOSITION 4.2.3. If M and N are constructible in 7 (X), so is M @x N.

Proor. For a fixed M, the full subcategory of 7 (X) spanned by objects such that M @ x N
is constructible is a thick triangulated subcategory of .7 (X). In the case M is of shape Mx (Y ){n}
for Y smooth over X and n € 7, this proves that M ® x N is constructible whenever IV is. By the
same argument, using the symmetry of the tensor product, we get to the general case. O

Similarly, one has the following conservation property.
PROPOSITION 4.2.4. For any morphism f: X — Y of schemes, the functor
7)) I7(X)
preserves constructible objects. If moreover f is smooth, the functor
fy: 7(X) = 7(Y)
also preserves constructible objects.

COROLLARY 4.2.5. The categories F.(X) form a thick triangulated monoidal Sm-fibred sub-
category of T .

PROPOSITION 4.2.6. Let X a scheme, and X = |J;c; Ui a cover of X by open subschemes.
An object M of T (X)) is constructible if and only if its restriction to U; is constructible in 7 (U;)
foralliel.

Proor. This is a necessary condition by 4.2.4. For the converse, as X is noetherian, it is
sufficient to treat the case where I is finite. Proceeding by induction on the cardinal of I it is
sufficient to treat the case of a cover by two open subschemes X = U UV. For an open immersion
j: W — X, write My = j3 j*(M). If the restrictions of M to U and V are constructible, then so
is its restriction to U N'V. According to Proposition 3.3.4, we get a distinguished triangle

MUOV — MU (&) MV — M — MUﬂV[l]
in which M is constructible for W = U, V,U NV (using 4.2.4 again). Thus the premotive M is

constructible. 0

COROLLARY 4.2.7. For any scheme X and any vector bundle E over X, the functors Th(E)
and Th(—E) preserve constructible objects in T (X).

PROOF. To prove that Th(E) and Th(—FE) preserves constructible objects, by virtue of the
preceding proposition, we may assume that F is trivial of rank r. It is thus sufficient to prove that
M (r) is constructible whenever M is so for any integer r. For we may assume that M = 1x{n}
for some n € 7 (using 4.2.4), this is true by assumption on 7; see 4.0(c). O

COROLLARY 4.2.8. Let f: X =Y a morphism of finite type. The property that the functor
fe: T(X)— T(Y)
preserves constructible objects is local on' Y with respect to the Zariski topology.

PrOOF. Consider a finite Zariski cover {v; : Y; — Y},er, and write f; : X; — Y, for the
pullback of f along v; for each ¢ in I. Assume that the functors f; . preserves constructible
objects; we shall prove that f, has the same property. Let M be a constructible object in .7 (X).
Then for ¢ € I, using the smooth base change isomorphism (for open immersions), we see that the
restriction of f.(M) to Y; is isomorphic to the image by f; . of the restriction of M to X;, hence
is constructible. The preceding proposition thus implies that f.(M) is constructible. O

PROPOSITION 4.2.9. For any closed immersion i : Z — X, the functor
ix: T(2) = T(X)

preserves constructible objects.
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Proor. It is sufficient to prove that for any smooth Z-scheme Yy and any twist n € 7, the
premotive i.(Mz(Yo){n}) is constructible in .7 (X). According to the Mayer-Vietoris triangle (see
Remark 3.3.6), this assertion is local in X. Thus we can assume there exists a smooth X-scheme
Y such that Yy =Y xx Z (apply [EGA4, 18.1.1]). Put U = X — Z and let j : U — X be the
obvious open immersion. From the localization property, we get a distinguished triangle

Mx (Y xx Uln} = Mx(Y){n} = i.(Mz(Yo){n}) = Mx (Y xx U){n}[1]

and this concludes. (]

COROLLARY 4.2.10. Leti: Z — X be a closed immersion with open complement j : U — X.
an object M of T (X) is constructible if and only if 7*(M) and i*(M) are constructible in 7 (U)
and T (Z) respectively.

PrOOF. We have a distinguished triangle
Jg (M) = M — iy i* (M) — jg 5 (M)[1] .
Hence this assertion follows from propositions 4.2.4 and 4.2.9. O

PRrROPOSITION 4.2.11. If f: X = Y is proper, then the functor
fe: T(X)— T(Y)
preserves constructible objects.

PrOOF. We shall first consider the case where f is projective. As this property is local on
Y (Corollary 4.2.8), we may assume that f factors as a closed immersion i : X — P} followed
by the canonical projection p : P} — Y. By virtue of Proposition 4.2.9, we can assume that
f = p. In this case, the functor p, is isomorphic to py composed with the quasi-inverse of the
Thom endofunctor associated to the cotangent bundle of p; see 2.4.50 (3). Therefore, the functor
P« preserves constructible objects by virtue of Proposition 4.2.4 and of Corollary 4.2.7. The case
where f is proper follows easily from the projective case, using Chow’s lemma and cdh-descent
(the homotopy pullback squares (3.3.9.1)), by induction on the dimension of X. O

COROLLARY 4.2.12. If f: X =Y is separated of finite type, then the functor
fi: T(X)—> Z7(Y)
preserves constructible objects.

PROOF. It is sufficient to treat the case where f is either an open immersion, either a proper
morphism, which follows respectively from 4.2.4 and 4.2.11. O

PROPOSITION 4.2.13. Let X be a scheme. The category of constructible objects in T (X) is
the smallest thick triangulated subcategory which contains the objects of shape fi.(1x:{n}), where
f: X' — X is a (strictly) projective morphism, and n € T.

PROOF. Let 7,(X) be the smallest thick triangulated subcategory which contains the objects
of shape f,(1x/{n}), where f : X’ — X is a (strictly) projective morphism, and n € 7. Proposition
4.2.11 shows that J,(X) C J.(X), to that it is sufficient to prove the reverse inclusion. Note that,
for any separated smooth morphism f, locally for the Zariski topology, f; coincides with fi up to
a Tate twist. In other words, it is sufficient to prove that, for any separated morphism of finite
type f: Y — X, fi(Lly) belongs to 7,(X). If we factor f into an open immersion j : ¥ — X’
followed by a proper morphism p : X’ — X, we see that is sufficient to prove that j3(1y) belongs
to J,(X’). This follows straight away from the localization property. O

The following lemma is the key geometrical point for the finiteness Theorem 4.2.16

LEMMA 4.2.14. Let j : U — X be a dense open immersion such that X is quasi-excellent.
Then, there exists the following data:
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(i) a finite h-cover {f; : Y; — X }ier such that for alli in I, f; is a morphism of finite type,
the scheme Y; is regular, and fi_l(U) is either Y; itself or the complement of a strict
normal crossing divisor in Y;; we shall write

fy=J[v—-x
iel
for the induced global h-cover;
(i) a commutative diagram

X" 9 )%

(4.2.14.1) ql if
bd $X’ L‘X

in which: p is a proper birational morphism, X' is normal, u is a Nisnevich cover, and
q s a finite surjective morphism.

Let T (resp. T') be a closed subscheme of X (resp. X') and assume that for any irreducible
component Ty of T', the following inequality is satisfied:

(4.2.14.2) codimy/(T") > codimy (Tp),

Then, possibly after shrinking X in an open neighbourhood of the generic points of T in X, one
can replace X" by an open cover and X" by its pullback along this cover, in such a way that we
have in addition the following properties:

(i4) p(T') C T and the induced map T' — T is finite and pseudo-dominant;®”
(iv) if we write T" = u=(T"), the induced map T" — T’ is an isomorphism.

PROOF. The existence of f : ¥ — X as in (i) follows from Gabber’s weak uniformisation
theorem (see 4.1.2), while the commutative diagram (4.2.14.1) satisfying property (ii) is ensured
by Lemma 3.3.28.

Consider moreover closed subschemes T C X and 7" C X’ satisfying (4.2.14.2).

We first show that, by shrinking X in an open neighbourhood of the generic points of T
and by replacing the diagram (4.2.14.1) by its pullback over this neighbourhood, we can assume
that condition (iii) is satisfied. Note that shrinking X in this way does not change the condition
(4.2.14.2) because codimx (Tp) does not change and codimy-(7”) can only increase.’®

Note first that, by shrinking X, we can assume that any irreducible component Tj) of T’
dominates an irreducible component Tj of T. In fact, given an irreducible component Tf; which
does not satisfies this condition, p(7T}) is a closed subscheme of X disjoint from the set of generic
points of T' and replacing X by X — f(T}}), we can throw out T§.

Further, shrinking X again, we can assume that for any pair (7{,Tp) as in the preceding
paragraph, p(T}) C Tp. In fact, in any case, as p(T}) is closed we get that Ty C p(T}). Let Z be
the closure of p(T}) —Tp in X. Then Z does not contain any generic point of T (because p(T}) is
irreducible), and p(T) N (X — Z) C Tp. Thus it is sufficient to replace X by X — Z to ensure this
assumption.

Consider again a pair (T{, Tp) as in the two preceding paragraphs and the induced commutative
square:

T, —= X'

(4.2.14.3) PO\L ip
TO — X

57Recall from 8.1.3 that this means that any irreducible component of 7' dominates an irreducible component
of T.
58Remember that for any scheme X, codimx (@) = +oo.
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We show that the map pg is generically finite. In fact, this will conclude the first step, because
if it is true for any irreducible component T of T", we can shrink X again so that the dominant
morphism pg : T} — Tp becomes finite.

Denote by ¢ (resp. ¢) the codimension of Ty in X (resp. T} in X'). Note that (4.2.14.2) gives
the inequality ¢’ > c¢. Let ty be the generic point of Ty,  the localization of X at tg and consider
the pullback of (4.2.14.3):

W' ——Q
(4.2.14.4) qol J{q
{to} —Q.

We have to prove that dim(W’) = 0. Consider an irreducible component € of ' containing W’.
As g is still proper birational, €}, corresponds to a unique irreducible component g of €2 such that
¢ induces a proper birational map Qf — Qg. According to [EGAA4, 5.6.6], we get the inequality

dim(€2)) < dim(Q).
Thus, we obtain the following inequalities:
dim(W’) < dim(Qp) — codimg (W) < dim(€g) — codimg (W') < dim(2) — codimgy (W').
As this is true for any irreducible component §2f, of €', we finally obtain:
dim(W’) < dim(2) — codimg (W') < c—¢

and this concludes the first step.

Keeping T and T as above, as the map from T to T’ is a Nisnevich cover, it is a split
epimorphism in a neighbourhood of the generic points of 77 in X’. Hence, as the map X' — X
is proper and birational, we can find a neighbourhood of the generic points of 7" in X over which
the map 7" — T’ admits a section s : T — T”. Let S be a closed subset of X" such that
T" = s(T") 101 S (which exists because X” — X' is étale). The map (X" —T")II (X" - S) - X'
is then a Nisnevich cover. Replacing X" by (X” —T")II (X" — S) (and X" by the pullback of
X" — X" along (X" —T")II (X" —S) — X'), we may assume that the induced map 7" — 71" is
an isomorphism, without modifying further the data f, p, T and T”. This gives property (iv) and
ends the proof the lemma. O

4.2.15. Let 9 be a full Open-fibred subcategory of 7 (where Open stands for the class of
open immersions). We assume that 7 has the following properties.
(a) for any scheme X in ., Z(X) is a thick subcategory of .7(X) which contains the
objects of the form 1x{n}, n € 7;
(b) for any separated morphism of finite type f: X — Y in .#, % is stable under fi;
(c) for any dense open immersion j : U — X, with X regular, which is the complement of a
strict normal crossing divisor, j.(1y{n}) is in F(U) for any n € 7.
Properties (a) and (b) have the following consequences: any constructible object belongs to Jp;
given a closed immersion i : Z — X with complement open immersion j : U — X, an object M of
T (X) belongs to Zp(X) if and only if j*(M) and * (M) belongs to % (U) and F(Z) respectively;
for any scheme X in ., the condition that an object of .7 (X)) belongs to % (X) is local on X for
the Zariski topology.

THEOREM 4.2.16. Consider the above hypothesis and assume that 7 is Q-linear and separated.
Let'Y be a quasi-excellent scheme and f : X — Y be a morphism of finite type.
Then for any constructible object M of 7 (X), the object f.(M) belongs to F(Y).

PRrROOF. It is sufficient to prove that, for any dense open immersion j : U — X, and for any
n € 7, the object j.(1y{n}) is in Z5. Indeed, assume this is known. We want to prove that
f«(M) is in FH(Y) whenever M is constructible. We deduce from property (b) of 4.2.15 and from
Proposition 4.2.13 that it is sufficient to consider the case where M = 1x{n}, with n € 7. Then,
as this property is assumed to be known for dense open immersions, by an easy Mayer-Vietoris
argument, we see that the condition that f.(1x{n}) belongs to 9 is local on X with respect to
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the Zariski topology. Therefore, we may assume that f is separated. Consider a compactification
of f,i.e. a commutative diagram

) v
fl /
f
X
with j a dense open immersion, and f proper. By property (b) of 4.2.15, we may assume that
f =7 is a dense open immersion.

Let j : U — X be a dense open immersion. We shall prove by induction on the dimension
of X that , for any n € 7, the object j.(1y{n}) is in F5. The case where X is of dimension < 0
follows from the fact the map j is then an isomorphism, which implies that j; ~ j., and allows to
conclude (because % is Open-fibred).

Assume that dim X > 0. Following an argument used by Gabber [I1107] in the context of
{-adic sheaves, we shall prove by induction on ¢ > 0 that there exists a closed subscheme T' C X of
codimension > ¢ such that, for any n € 7, the restriction of j.(1y{n}) to X —T isin FH(X —T).
As X is of finite dimension, this will obviously prove Theorem 4.2.16.

The case where ¢ = 0 is clear: we can choose T such that X —7T = U. If ¢ > 0, we choose a
closed subscheme T" of X, of codimension > ¢ — 1, such that the restriction of j.(1y{n}) to X - T
is in 9. It is then sufficient to find a dense open subscheme V' of X, which contains all the generic
points of T', and such that the restriction of j.(1y{n}) to V is in Fp: for such a V', we shall obtain
that the restriction of j,(1y{n}) to VU (X —T) is in %, the complement of V U (X — T') being
the support of a closed subscheme of codimension > ¢ in X. In particular, using the smooth base
change isomorphism (for open immersions), we can always replace X by a generic neighbourhood
of T. Tt is sufficient to prove that, possibly after shrinking X as above, the pullback of j.(1y{n})
along T — X is in 9, (as we already know that its restriction to X — T is in .%).

We may assume that T is purely of codimension ¢. We may assume that we have data as in
points (i) and (ii) of Lemma 4.2.14. We let j' : U’ — X’ denote the pullback of j alongp : X’ — X.
Then, we can find, by induction on ¢, a closed subscheme T" in X', of codimension > ¢ — 1, such
that the restriction of j,(1y{n}) to X’ — T’ is in %. By shrinking X, we may assume that
conditions (iii) and (iv) of Lemma 4.2.14 are fulfilled as well.

For an X-scheme w : W — X and a closed subscheme Z C W, we shall write

(W, Z) = wa i i* jwx jiw (Lw{n}),

where i : Z — W denotes the inclusion, and jw : Wy — W stands for the pullback of j along w.
This construction is functorial with respect to morphisms of pairs of X-schemes: if W' — W is a
morphism of X-schemes, with Z’ and Z two closed subschemes of W’ and W respectively, such
that Z’ is sent to Z, then we get a natural map (W, Z) — (W', Z’). Remember that we want
to prove that (X, T) is in . This will be done via the following lemmas (which hold assuming
all the conditions stated in Lemma 4.2.14 as well as our inductive assumptions).

LEMMA 4.2.17. The cone of the map o(X,T) = (X', T") is in F.
The map ¢(X,T) — (X', T") factors as
P(X.T) = (X', p~ (1)) = (X', T").

By the octahedral axiom, it is sufficient to prove that each of these two maps has a cone in 7.
We shall prove first that the cone of the map ¢(X',p~1(T)) = (X', T") is in J. Given an
immersion a : S — X', we shall write

Mg = aja*(M).
We then have distinguished triangles

Mp—l(T),T/ — Mp—l(T) — Mpr — Mp—l(T),T/ [1] .
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For M = j.(1y{n}) (recall j/ is the pullback of j along p) the image of this triangle by p. gives
a distinguished triangle

pe(Mp—1(py—7/) = @(X',p7 1 (T)) = (X', T") = pu(Mp-1(py—7)[1] .
As the restriction of M = j.(1y{n}) to X’ — T’ is in F by assumption on 7", the object
My, -1 (ry—1 is in F as well (by property (b) of 4.2.15 and because % is Open-fibred), from which
we deduce that p.(M,-1(7y_7) is in Jp (using the condition (iii) of Lemma 4.2.14 and the property
(b) of 4.2.15).

Let V be a dense open subscheme of X such that p~*(V) — V is an isomorphism. We
may assume that V' C U, and write ¢ : Z — U for the complement closed immersion. Let
py : U = p~1(U) — U be the pullback of p along j, and let Z be the reduced closure of Z in X.
We thus get the commutative squares of immersions below,

Z—k>Z Z’LZ’

zJ{ ll and z"i ll’

UHX U/ HX/
J i’

where the square on the right is obtained from the one on the left by pulling back along p : X’ — X.
As p is an isomorphism over V', we get by cdh-descent (Proposition 3.3.10) the homotopy pullback
square below.

ILU{n} —_— pU,*(]]-U/{n})

| |

ix " (1z{n}) — 4. i" pux (Lo {n})
If a : T — X denotes the inclusion, applying the functor a, a* j, to the commutative square above,

we see from the proper base change formula and from the identification j, i, ~ [, k. that we get
a commutative square isomorphic to the following one

(X, T) ———o(X',p~ (1))

l |

90(27201—‘) H@(Z/,p_l(ZmT))7

which is thus homotopy cartesian as well. It is sufficient to prove that the two objects ¢(Z, ZNT)
and p(Z',p~Y(ZNT)) are in F. It follows from the proper base change formula that the object
©(Z,ZNT) is canonically isomorphic to the restriction to T of I, k.(1z{n}). As dim Z < dim X,
we know that the object k. (1z{n}) is in Z. By property (b) of 4.2.15, we obtain that ¢(Z, ZNT)
is in . Similarly, the object ¢(Z’,p~*(Z NT)) is canonically isomorphic to the restriction of
P LK. (1z{n}) to T, and, as dim Z’ < dim X’ (because, p being an isomorphism over the dense
open subscheme V of X, Z’ does not contain any generic point of X'), k.(1z {n}) is in F. We
deduce again from property (b) of 4.2.15 that ¢(Z’,p~1(Z N T)) is in F as well, which achieves
the proof of the lemma.

LEMMA 4.2.18. The map (X', T") — (X", T") is an isomorphism in T (X).

Condition (iv) of Lemma 4.2.14 can be reformulated by saying that we have the Nisnevich distin-
guished square below.

X" " X
X -T——X'

This lemma follows then by Nisnevich excision (Proposition 3.3.4) and smooth base change (for
étale maps).
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LEMMA 4.2.19. Let T" be the pullback of T" along the finite surjective morphism X" — X"'.
The map (X", T") = (X", T") is a split monomorphism in 7 (X).

We have the following pullback squares

=117
T t X J U

Lok

T s X J U’

111

in which j” and 7" denote the pullback of j along pu and pugq respectively, while s and ¢ are the
inclusions. By the proper base change formula applied to the left hand square, we see that the
map (X", T") = o(X"',T"") is isomorphic to the image of the map

3 Qur{n}) = . ¢" j! (Lo {n}) = ¢. 3 (Lo {n}).
by f«s*, where f : T” — T is the map induced by p (note that f is proper as T" ~ T’ by

assumption). As ¢, 77" ~ j% qu ., we are thus reduced to prove that the unit map

Lyr{n} = qu«(1ym{n})

is a split monomorphism. As X” is normal (because X’ is so by assumption, while X" — X' is
étale), this follows immediately from Corollary 3.3.40.
Now, we can finish the proof of Theorem 4.2.16. Consider the Verdier quotient

D= 7(X)/%(X).

We want to prove that, under the conditions stated in Lemma 4.2.14, we have ¢(X,T) ~ 0 in D.
Let 7 : T — T be the map induced by puq: X" — X. If a : T""" — Y denotes the map induced
by g : X" =Y, and jy : Yy — Y the pullback of j by f, we have the commutative diagram
below.

e(X,T) (X", T")

\/

T a® jy(Ly, {n})

By virtue of lemmas 4.2.17, 4.2.19, and 4.2.18, the horizontal map is a split monomorphism in D.
It is thus sufficient to prove that this map vanishes in D, for which it will be sufficient to prove
that m, a* jy . (1y, {n}) is in 5. The morphism = is finite (by construction, the map 7" — T”
is an isomorphism, while the maps 7"/ — T" and T’ — T are finite). Under this condition, 9
is stable under the operations m, and a*. To finish the proof of the theorem, it remains to check
that jy «(1y,{n}) is in p, which follows from property (c) of 4.2.15 (and additivity). d

DEFINITION 4.2.20. We shall say that 7 is 7-compatible if it satisfies the following two con-
ditions.

(a) For any closed immersion i : Z — X between regular schemes in .#, the image of 1 x{n},
n € 7, by the exceptional inverse image functor i' : .7 (X) — Z(Z) is constructible.

(b) For any scheme X, any n € 7, and any constructible object M in Z(X), the object
Homyx (1x{n}, M) is constructible.

As usual, when 7 is the monoid generated by the Tate twist, we say compatible with Tate twists.

REMARK 4.2.21. Condition (b) of the definition above will come essentially for free if the
objects 1x{n} are ®-invertible with constructible ®-quasi-inverse (which will hold in practice,
essentially by definition).

EXAMPLE 4.2.22. In pratice, condition (a) of the definition above will be a consequence of the
absolute purity theorem. In particular, the category of Beilinson motives DMy is compatible with
Tate twist as a corollary of the fact the Tate twist is invertible and Theorem 14.4.1.
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LEMMA 4.2.23. Assume that & is T-compatible. Let i : Z — X be a closed immersion, with
X regular, and Z the support of a strict normal crossing divisor. Then i'(1x{n}) is constructible
for any n € 7. As a consequence, if j : U — X denotes the complement open immersion, then
J«(Iy{n}) is constructible for any n € 7.

PROOF. The first assertion follows easily by induction on the number of irreducible compo-
nents of Z, using Proposition 4.2.6. The second assertion follows from the distinguished triangles

ini' (M) = M — j, j* (M) = i, i (M)[1]
and from Lemma 4.2.9. O

THEOREM 4.2.24. Assume that 7 is Q-linear, separated, and T-compatible.
Then, for any morphism of finite type f : X — Y such that'Y is quasi-excellent, the functor

fo: T(X) = T(Y)
preserves constructible objects.
PRrROOF. By virtue of propositions 4.2.4 and 4.2.11 as well as of Lemma 4.2.23, if .7 is 7-

compatible, we can apply Theorem 4.2.16, where 7 stands for the subcategory of constructible
objects. O

COROLLARY 4.2.25. Under the assumptions of the above theorem, for any quasi-excellent
scheme X, and for any couple of constructible objects M and N in 7 (X), the object Homx (M, N)
is constructible.

ProOOF. It is sufficient to treat the case where M = fy(1y{n}),fornerand f:Y — X a
smooth morphism. But then, we have, by transposition of the Sm-projection formula, a natural
isomorphism:

Homx(M,N) ~ f, Hom(1y{n}, f*(N)).

This corollary follows then immediately from Proposition 4.2.4 and from Theorem 4.2.24. O

COROLLARY 4.2.26. Under the assumptions of the above theorem, for any closed immersion
i:Z — X such that X is quasi-excellent, the functor

i T (X) = T(Z)
preserves constructible objects.

PROOF. Let j : U — X be the complement open immersion. For an object M of .7 (X), we
have the following distinguished triangle.

i i (M) = M = j, j* (M) — i, i' (M)[1].

By virtue of Proposition 4.2.6 and Theorem 4.2.24, if M is constructible, then j. j*(M) have the
same property, which allows to conclude. O

LEMMA 4.2.27. Let f: X — Y be a separated morphism of finite type. The condition that the
functor f' preserves constructible objects in 7 is local over X and overY for the Zariski topology.

PROOF. If u : X’ — X is a Zariski cover, then we have, by definition, u* = u', so that, by
Proposition 4.2.6, the condition that f' preserves T-constructibility is equivalent to the condition
that u* f' ~ (fu)' preserves T-constructibility. Let v : Y/ — Y be a Zariski cover, and consider
the following pullback square.

X —tsX
|l
Y/’UHY

We then have a natural isomorphism u* f' ~ ¢'v*, and, as u is still a Zariski cover, we deduce
again from Proposition 4.2.6 that, if g preserves T-constructibility, so does f'. O



COROLLARY 4.2.28. Under the assuptions of the above theorem, for any separated morphism
of finite type f : X =Y, the functor

7)) = 7(X)
preserves constructible objects.

PROOF. By virtue of the preceding lemma, we may assume that f is affine. We can then
factor f as an immersion ¢ : X — AY followed by the canonical projection p : A} — Y. The case
of an immersion is reduced to the case of an open immersion (4.2.4) and to the case of a closed
immersion (4.2.26). Thus we may assume that f = p, in which case p' ~ p*(—)(n)[2n] (according
to point (3) of Theorem 2.4.50), so that we conclude by 4.2.4 and 4.2.9. O

In conclusion, we have proved the following finiteness theorem:

THEOREM 4.2.29. Assume the motivic triangulated category 7 is Q-linear, separated and
T-compatible.”?

Then constructible objects of T are closed under the siz operations of Grothendieck when
restricted to the subcategory ' of . made of quasi-excellent schemes and morphisms of finite
type. In particular, J. is a T-generated motivic category over ..

4.3. Continuity.

4.3.1. For the next definition, we consider an admissible class & of morphisms in .% and an
abstract symmetric monoidal &2-fibred model category .# over ..

Let (So)aca be a projective system of schemes in ., with affine dominant transition maps,
and such that S = @ae N Sa is representable in . (we assume that A is a partially ordered set to
keep the notations simple). For each index «, we denote by p, : S — S, the canonical projection.
Given an index ag € A and an object E,, in Ho(.#)(Sa,), we write E, for the pullback of E,,
along the map S, — S,,, and put E = Lp} (E,).

DEFINITION 4.3.2. Consider the assumptions above and let 7 be a set of twists of Ho(.Z).

We say that Ho(.#) is T-continuous, or continuous (if 7 is clearly specified by the context), if
it is 7-generated and if, given any projective system of schemes {S,} as above, for any index «y,
any object Ey, in Ho(.#)(S4,), and any twist n € 7, the canonical map

lim Homuyo(.z)(s,)(1s.{n}, Ea) = Hompo(s)(1s{n}, E),
a>agp
is bijective.
ExXAMPLE 4.3.3. The main examples of 7-continuous categories will be seen afterwards:

e the A'-derived category Da1 5 (Example 6.1.13);

e the category of motivic complexes DMy, and its effective counterpart DMXﬁ (Theorem
11.1.24);
e the motivic category DMy of Beilinson motives (Proposition 14.3.1).

The interest of this property is to allow a description of constructible objects over S in terms
of constructible objects over the S,’s.

PROPOSITION 4.3.4. Assume, under the hypothesis of 4.8.1, that Ho(.#) is T-continuous.
Consider a scheme S in ., as well as a projective system of schemes {S,} in . with affine
transition maps and such that S = @a Se-

Then, for any index og, and for any objects Cy, and Eq, in Ho( A )(Sa,), if Ca, is con-
structible, then the canonical map

(4.3.4.1) lim Hompo(.z)(s.)(Ca: Ea) = Homo()(s) (C, E)

a>ap

59Remember also that .7 is associated with a combinatorial stable premotivic model category.
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is bijective. Moreover, the canonical functor

(4.3.4.2) 2-lim Ho (.4 )o(Sa) — Ho(.#0).(S)

is an equivalence of monoidal triangulated categories.

PROOF. To prove the first assertion, we may assume, without loss of generality, that Cy, =
Ms,,, (Xao){n} for some some smooth S,,-scheme of finite type X,,, and n € 7. Consider an
object Ey, in Ho(#)(Sa,). For a > ag, write X, (resp. E,) for the pullback of X,, (resp. of
E,,) along the map S, — S,,. Similarly, write X (resp. F) for the pullback of X,, (resp. of
E,,) along the map S — S,,. We shall also write E/, (resp. E’) for the pullback of E, (resp. E)
along the smooth map X, — S, (resp. X — S). Then, {X,} is a projective system of schemes
in ., with affine transition maps, such that X = ima X . Therefore, by continuity, we have the
following natural isomorphism, which proves the first assertion.

lim Homyyo () (s.,) (Ms, (Xa){n}, Ea) ~lim Hompo(z)(x.) (1x. {n}, Eq)

EHOHIHO(//{)(X) (]lx{n}, El)
~Homyo(x)(s)(Ms(X){n}, E)

Note that the first assertion implies that the functor (4.3.4.2) is fully faithful. Note that pseudo-
abelian triangulated categories are stable by filtered 2-colimits. In particular, the source of the
functor (4.3.4.2) can be seen as a thick subcategory of Ho(.#)(S). The essential surjectivity of
(4.3.4.2) follows from the fact that, for any smooth S-scheme of finite type X, there exists some
index «, and some smooth S,-scheme X,, such that X ~ S xg  X,; see [EGA4, 8.8.2 and
17.7.8]: this implies that the essential image of the fully faithful functor (4.3.4.2) contains all the
objects of shape Mg(X){n} for n € 7 and X smooth over S, so that it contains Ho(.#).(S), by
definition. O

4.3.5. Before showing how the assumption of continuity can be used in the case of motivic
categories, we state a proposition which later on will allow us to show continuity in concrete cases.
We consider again the assumptions and notations of 4.3.1 assuming the transition maps of
the pro-scheme (S,) are &-morphisms. For each index a € A, we choose a small set I, (resp.
Jo) of generating cofibrations (resp. of generating trivial cofibration) in Ho(.#)(S,). We also
choose a small set I (resp. J) of generating cofibrations (resp. of generating trivial cofibration) in
Ho(.#)(S).
Consider the following assumptions:
(a) We have I C JyeaPi(Ia) and J C Uyea Ph(Ja)-
(b) For any index ay, if Cy,, and E,, are two objects of 4 (S,,), with C,, either a source
or a target of a map in I, U J,,, the natural map

lim Hom 4 s,,)(Ca; Ea) = Hom, 4 (s)(C, E)
a€cA
is bijective.

PROPOSITION 4.3.6. Under the assumptions of 4.3.5, for any indexr ag € A, the pullback
functor ph M (Sa,) — A(S) preserves fibrations and trivial fibrations. Moreover, given an
index ag € A, as well as two objects Co, and Eq, in M (Sa,), if Ca belongs to smallest full
subcategory of Ho( M )(Sa,) which is closed under finite homotopy colimits and which contains the
source and targets of I,,, then, the canonical map

lim Hompo () (s.) (Cas Fa) = Homuo(.ar)(s)(C, E)
a€cA
is bijective.
PRrROOF. We shall prove first that, for any index ag € A, the pullback functor p;, —preserves

fibrations and trivial fibrations. By assumption, for any o > «q, the pullback functor along the
Z-morphism S, — Sy, is both a left Quillen functor and a right Quillen functor. Let E,, — Fj,
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be a trivial fibration (resp. a fibration) of .#(S,,). Let i : C — D a generating cofibration (resp.
a generating trivial cofibration) in .Z(S). By condition (a) of 4.3.5, we may assume that there
exists ay € A, a cofibration (resp. a trivial cofibration) io, : Co, = Dy, , such that i = p, (ia, ).
We want to prove that the map

Hom(D, E) — Hom(C, E) X gom(c,ry Hom(D, F)
is surjective. But, by condition (b) of 4.3.5, this map is isomorphic to the filtered colimit of the
surjective maps
Hom(Dy, Eq) — Hom(Cu, Eo) XHom(Cy,F,) Hom(Dq, Fy)

with a > sup(ap, @1), which proves the first assertion.

To prove the second assertion, we may assume that C,, is cofibrant and that E,, if fibrant.
The set of maps from a cofibrant object to a fibrant object in the homotopy category of a model
category can be described as homotopy classes of maps. Therefore, using the fact that pj, preserves
cofibrations and fibrations, as well as the trivial ones, we see it is sufficient to prove that the map

lig Hom//{(sa)(Ca, E,) — Hom/ﬂ(s)(C, E)
a€cA

is bijective for some nice cofibrant replacement of C,,. But the assumptions on C,, imply that
it is weakly equivalent to an object Cf, such that the map @ — C/, belongs to the smallest
class of maps in .#(S,,), which contains I,,, and which is closed under pushouts and (finite)
compositions. We may thus assume that Co, = C}, . In that case, Cy,, is in particular contained
in the smallest full subcategory of .#(S,,) which is stable by finite colimits and which contains
the source and targets of I,,. As filtered colimits commute with finite limits in the category of
sets, we conclude by using again condition (a) of 4.3.5. O

We now go back to the situation of a motivic triangulated category 7 satisfying our general
assumptions 4.0

LEMMA 4.3.7. Let a: X —Y be a morphism in .. Assume that X =lim Xo, where {Xa}
is a projective system of smooth affine Y -schemes. If 7 is T-continuous, then, for any objects E
and F in I (Y), with E constructible, there is a canonical isomorphism

a* Homy (E, F) ~ Homx (a*(E),a"(F)).
ProoF. We have
ax Homx (a*(E),a*(F)) ~ Homy (E,a.a*(F)),
so that the map F — a, a*(F)) induces a map
Homy (E,F) — ax Homx (a*(E),a"(F)),
hence, by adjunction, a map
a* Homy (E,F) — Homx (a*(E),a"(F)).

We already know that the later is an isomorphism whenever a is smooth.

Let us write a,, : Xo — Y for the structural maps. Let C be a constructible object in .7 (X).
By Proposition 4.3.4, we may assume that there exists an index aq, and a constructible object
Co, in T (Xa,), such that, if we write C,, for the pullback of C,, along the map X, — X,, for
o > ag, we have isomorphisms:

Hom(C,a* Homy (E, F)) :@Hom(Ca, ay, Homy (E, F))
:@Hom(Ca, Homx (a}(E),al(F)))

:@Hom(ca ®x, 0g(E),al(F))

~Hom(C ®x a*(E),a"(F))
~Hom(C, Homx (a*(E),a"(F))).
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As constructible objects generate J (X)), this proves the lemma. O

4.3.8. Let X be a scheme in .. Assume that, for any point z of X, the corresponding
morphism i, : Spec (ﬁ;}x) — X isin & (where ﬁgm denotes the henselisation of Oy ). Consider
at last a scheme of finite type Y over X, and write

ag @ Y, = Spec (ﬁ’%z) XxY =Y
for the morphism obtained by pullback. Finally, for an object FE of 7 (Y), let us write
E,=dai(E).

ProOPOSITION 4.3.9. Under the assumptions of 4.3.8, if moreover J is T-continuous, then,
the family of functors
gY)-»9%,), Er—E,, z€X,

s conservative.

PROOF. Let E be an object of Z(Y) such that E, ~ 0 for any point z of X. For any
constructible object C' of 7 (Y), we have a presheaf of Sl-spectra on the small Nisnevich site of
X:

F:U+— F(U)=Hom(My (U xxY), Homy (C,E)).
It is sufficient to prove that F/(X) is acyclic. As .7 satisfies Nisnevich descent (3.3.4), it is sufficient
to prove that F' is acyclic locally for the Nisnevich topology, i.e. that, for any point = of X, the
spectrum F'(Spec (ﬁ;}x)) is acyclic. Writing Spec (ﬁ;}x) as the projective limit of the Nisnevich
neighbourhoods of z in X, we see easily, using Proposition 4.3.4 and Lemma 4.3.7, that, for any
integer i, m;(F(Spec (0% ,)) ~ Hom(Cy, E,[i]) ~ 0. O

PROPOSITION 4.3.10. Let S be a quasi-excellent noetherian and henselian scheme. Write S
for its completion along its closed point, and assume that both S and S are in . Consider an
S-scheme of finite type X, and write i : S xg X — X for the induced map. If T is T-continuous,
then the pullback functor

i T(X) = T(8 x5 X)

18 conservative.

PROOF. As S is quasi-excellent, the map S — S is regular. By Popescu’s theorem, we can
then write S = I'&HQ Sa, where {S,} is a projective system of schemes with affine transition maps,
and such that each scheme S, is smooth over S. Moreover, as S and S have the same residue
field, and as S is henselian, each map S, has a section. Write X, = S, Xg X, so that we have
X = yila X, Consider a constructible object C' and an object E in 7 (X). Then, as the maps
X, — X have sections, it follows from the first assertion of Proposition 4.3.4 that the map

Homg(x) (C, E) — Homg(stX)(i*(C)’ Z*(E))

is a monomorphism (as a filtered colimit of such things). Hence, if i*(E) ~ 0, for any constructible
object C' in .7(X), we have Hom 7 (x(C, E) ~ 0. Therefore, as 7-constructible objects generate
T (X), we get E ~ 0. O

PROPOSITION 4.3.11. Let a : X — Y be a reqular morphism in . If T is T-continuous,
then, for any objects E and F in T (Y'), with E constructible, there is a canonical isomorphism

a* Homy (E,F) ~ Homx (a*(E),a"(F)).
PROOF. We want to prove that the canonical map
a* Homy (E,F) — Homx(a*(E),a”(F))

is an isomorphism, while we already know it is so whenever a is smooth. Therefore, to prove the
general case, we see that the problem is local on X and on Y with respect to the Zariski topology.
In particular, we may assume that both X and Y are affine. By Pospecu’s Theorem 4.1.5, we thus
have X = &iﬂla Xa, where {X,} is a projective system of smooth affine Y-schemes. We conclude
by Lemma 4.3.7. O



106

PrOPOSITION 4.3.12. Consider the following pullback square in & .

X 2> X

)]s

Y/?Y

Assume that [ is separated of finite type and that b is regular. Then, if T is T-continuous, for
any object E in T (Y), there is a canonical isomorphism in (X'):

a* f{(B) = ¢'b*(B).
PROOF. We have a canonical map
FE) = arg' b (E) = f' b, 0" (E),
which gives, by adjunction, a natural morphism
a* f'(B) = ¢'b"(E).

The latter is invertible whenever b is smooth: this is obvious in the case of an open immersion, so
that, by Zariski descent, it is sufficient to treat the case where b is smooth with trivial cotangent
bundle of rank d; in this case, by relative purity (2.4.50 (3)), this reduces to the canonical isomor-
phism a'f' ~ ¢'b' evaluated at E(—d)[—2d]. To prove the general case, as the condition is local on
X and on Y for the Zariski topology, we may assume that f factors as an immersion X — P%,
followed by the canonical projection Py — Y. We deduce from there that it is sufficient to treat
the case where f is either a closed immersion, either a smooth morphism of finite type. The case
where f (hence also g) is smooth follows by relative purity (2.4.50): we can then replace f' and
g' by f* and ¢g* respectively, and the formula follows from the fact that a*f* ~ ¢*b*. We may
thus assume that f is a closed immersion. As g is a closed immersion as well, the functor g is
conservative (it is fully faithful). Therefore, it is sufficient to prove that the map

b* fi f/(E) ~ gra* f{(E) = g1g' b*(E)
is invertible. Then, using Proposition 4.3.11 (which makes sense because f, preserves T-construc-
tibility by 4.2.11), and the projection formula, we have
b* fi f1(E) ~ b*Homy (fi(1x), E)
~ Homy:(b* fi(1x),b"(E))
~ Homy (q(1x/),b"(E))
~g1g'b"(E),
which achieves the proof. O

LEMMA 4.3.13. Let f : X — Y be a morphism in . Assume that X = Y&na X, and
Y =lim Yo, where {Xo} and {Ya} are projective systems fo schemes with affine transition maps,
while f is induced by a system of morphisms fo @ Xo — Yo. Let ag be some index, Cy, a
constructible object of T (Ya,), and Eo, an object of 7 (Xo,). If T is T-continuous, then we have
a natural isomorphism of abelian groups

@ Homﬂ(YQ) (Con foz,*(Ea)) = Homﬂ(Y) (07 f* (E)) .

a>ap

PrOOF. By virtue of Proposition 4.3.4, we have a natural isomorphism

hﬂ Homg(xa)(f;(ca), Ea) = Homﬁ(Y)(f*(C)a E) :

a>ap

The expected formula follows by adjunction. O
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PrOPOSITION 4.3.14. Consider the following pullback square in & .

X 25X

1)

YI?Y

with b reqular. If T is T-continuous, then, for any object E in T (X), there is a canonical
isomorphism in T (Y'):
b* f«(E) = g.a”(F).

ProOF. This proposition is true in the case where b is smooth (by definition of Sm-fibred
categories), from which we deduce, by Zariski separation, that this property is local on ¥ and on
Y’ for the Zariski topology. In particular, we may assume that both Y and Y are affine. Then, by
Popescu’s Theorem 4.1.5, we may assume that Y’ = lim Y, where {Y]} is a projective system
of smooth Y-algebras. Then, using the preceding lemma as well as Proposition 4.3.4, we reduce
easily the proposition to the case where b is smooth. O

PROPOSITION 4.3.15. Assume that T is T-continuous, Q-linear and semi-separated, and con-
sider a field k, with inseparable closure k', such that both Spec (k) and Spec (k') are in &. Given
a k-scheme X write X' = k' ®, X, and f : X' — X for the canonical projection. Then the functor

1 7(X) = 7(X")
is an equivalence of categories.

ProoF. It follows immediately from Proposition 4.3.4 and from Proposition 2.1.9 that the
functor

15 T0(X) = (X))

is an equivalence of categories. Similarly, for any objects C' and F in .7 (X), if C is constructible,
the map

Hom z(x)(C, E) — Hom g x)(f*(C), f*(E))
is bijective. As constructible objects generate 7 (X), this implies that the functor
2 7(X) = 7(X")

is fully faithful. As the latter is essentially surjective on a set of generators, this implies that it is
an equivalence of categories (see 1.3.21). O

4.4. Duality. The aim of this section is to prove a local duality theorem in Ho(.#) (see
4.4.21 and 4.4.24).

If we work with rational coefficients, resolution of singularities up to quotient singularities is
almost as good as classical resolution of singularities: we have the following replacement of the
blow-up formula.

THEOREM 4.4.1. Assume that Ho(.#) is Q-linear and separated. Let X be a scheme in ..
Consider a proper surjective morphism p : X' — X and a finite group G acting on X' over X.
Assume that there is a closed subscheme Z C X such that U = X — Z is normal, while the induced
map py : U = p~Y(U) — U is finite, and the map U'/G — U is generically radicial (i.e. is
radicial over an open dense subscheme of U) — e.g. this situation occurs when p is a Galois
alteration. Then the pullback square

Z/$X/

(4.4.1.1) ql ip
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induces an homotopy pullback square
M~ (Rp. Lp*(M))°
(4.4.1.2) i
Ri, Li* (M) — (Ri.Rq. Lg* Li*(M))¢
for any object M of Ho(.#)(X).
PrOOF. We already know that, for any object N of Ho(.#)(U), the map
N — (Rpy. Lpj; (N)©

is an isomorphism (Corollary 3.3.39). The proof is then similar to the proof of condition (iv) of
Theorem 3.3.37. U

REMARK 4.4.2. Under the assumptions of the preceding theorem, applying the total derived
functor RHomx (—, F) to the homotopy pullback square (4.4.1.2) for M = 1y, we obtain the
homotopy pushout square

(hqq' i (E))a — (pp'(E))c
(4.4.2.1) l l

ivi'(E) E

for any object E of Ho(.Z)(X) .

COROLLARY 4.4.3. Assume that Ho(.#) is Q-linear and separated. Let B be a scheme in
<, admitting wide resolution of singularities up to quotient singularities. Consider a separated
B-scheme of finite type S, endowed with a closed subscheme T' C S. The category of constructible
objects in Ho(#)(S) is the smallest thick triangulated subcategory which contains the objects of
shape Rf.(1x{n}) for n € 7, and for f : X — S a projective morphism, with X regular and
connected, such that f=Y(T),q is either empty, either X itself, either the support of a strict
normal crossing divisor.

PrROOF. Let Ho(.#)(S)" be the smallest thick triangulated subcategory of Ho(.#)(S) which
contains the objects of shape Rf,(1x{n}) for n € 7 and f: X — S a projective morphism with
X regular and connected, while f~1(T),cq is empty, or X itself, or the support of a strict normal
crossing divisor. We clearly have Ho(.#)(S)" C Ho(#).(S) (Proposition 4.2.11). To prove the
reverse inclusion, by virtue of Proposition 4.2.13, it is sufficient to prove that, for any n € 7, and
any projective morphism f : X — S, the object Rf.(1x{n}) belongs to Ho(.#)(S)". We shall
proceed by induction on the dimension of X. If X is of dimension < 0, we may replace it by
its reduction, which is regular. If X is of dimension > 0, by assumption on B, there exists a
Galois alteration p : X’ — X of group G, with X’ regular and projective over S (and in which
T becomes either empty, either X’ itself, either the support of a strict normal crossing divisor, in
each connected component of X’). Choose a closed subscheme Z C X, such that U = X — Z is
a normal dense open subscheme, and such that the induced map 7 : U’ = p~*(U) — U is a finite
morphism, and consider the pullback square (4.4.1.1). As Z and Z' = p~1(Z) are of dimension
smaller than the dimension of X, we conclude from the homotopy pullback square obtained by
appyling the functor Rfy to (4.4.1.2) for M = 1x{n},ne 7. O

DEFINITION 4.4.4. Let S be a scheme in .. An object R of Ho(.#Z)(S) is T-dualizing if it
satisfies the following conditions.

(i) The object R is constructible.
(ii) For any constructible object M of Ho(.#)(S), the natural map

M — RHomg(RHomg(M, R), R)

is an isomorphism.
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REMARK 4.4.5. If Ho(.#) is T-compatible, Q-linear and separated, then, in particular, the six
operations of Grothendieck preserve 7-constructibility in Ho(.#) (4.2.29). Under this assumtion,
for any scheme X in ., and any ®-invertible object U in Ho(.#)(X) which is constructible, its
quasi-inverse is constructible: the quasi-inverse of U is simply its dual U" = RHom/(U, 1x), which
is constructible by virtue of 4.2.25.

PROPOSITION 4.4.6. Assume that Ho(.#) is T-compatible, Q-linear and separated, and con-
sider a scheme X in 7.

(i) Let R be a T-dualizing object, and U be a constructible ®-invertible object in Ho(.A )(X).
Then U ®% R is T-dualizing.
(ii) Let R and R’ be two T-dualizing objects in Ho(.#)(X). Then the evaluation map

RHomg(R,R) @2 R — R’
s an isomorphism.

PRrROOF. This follows immediately from [Ayo07a, 2.1.139]. O
PROPOSITION 4.4.7. Consider an open immersion j : U — X in .. If R is a T-dualizing
object in Ho(.#)(X), then j'(R) is T-dualizing in Ho(.)(U).
PrOOF. If M is a constructible object in Ho(.#)(U), then ji(M) is constructible, and the
map
(4.4.7.1) Ji(M) = RHomx(RHomx (j1(M), R), R)
is an isomorphism. Using the isomorphisms of type
M =~ j* (M) =j'5(M) and j*RHomx (A, B) ~ RHomy(j*(A),5*(B)),
we see that the image of the map (4.4.7.1) by the functor j* = j' is isomorphic to the map
(4.4.7.2) M — RHomy (RHomy (M, 5 (R)), 7' (R)),
which proves the proposition. O
PROPOSITION 4.4.8. Let X be a scheme in .7, and R an object in Ho(.#)(X). Assume there

exists an open cover X = J,c; Us such that the restriction of R on each of the open subschemes
U, is T-dualizing in Ho( 4 )(U;). Then R is T-dualizing.

PROOF. We already know that the property of 7-constructibility is local with respect to the
Zariski topology (4.2.6). Denote by j; : U; — X the corresponding open immersions, and put
R; = ji(R). Let M be a constructible object in Ho(.#)(X). Then, for all i € I, the image by
i5 = _]l of the map

M — RHomx(RHomx (M, R), R)

is isomorphic to the map
ji (M) — RHomy, (RHomy, (j; (M), R;), R;) -

This proposition thus follows from the property of separation with respect to the Zariski topology.
O

COROLLARY 4.4.9. Let f : X — Y be a separated morphism of finite type in . Given an
object R of Ho(.#)(Y'), the property for f'(R) of being a T-dualizing object in Ho(.#)(X) is local
over X and overY for the Zariski topology.

PROPOSITION 4.4.10. Assume that Ho(.#) is T-compatible. Let i : Z — X be a closed
immersion and R be a T-dualizing object in Ho(.#)(X). Then i'(R) is T-dualizing in Ho(.#)(Z).

PROOF. As Ho(.#) is T-compatible, we already know that i'(R) is constructible. For any
objects M and R of Ho(.#)(Z) and Ho(.#)(X) respectively, we have the identification:

iyRHomz(M,i'(R)) ~ RHomx (iy(M), R) .
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Let 7 : U — X be the complement immersion. Then we have
J'RHomx (iy(M), R) ~ RHomy (5 iy(M),j'(R)) ~ 0,
so that
RHomx (ii(M), R) ~ iy Li*RHomx (i:(M), R) .
As iy is fully faithful, this provides a canonical isomorphism
Li*RHomx (iy(M), R) ~ i'RHomyx, (iy(M), R) .
Under this identification, we see easily that the map
(M) — RHomx (RHomx (iy(M), R), R)
is isomorphic to the image by ¢, of the map
M — RHomz(RHomz(M,i'(R)),i'(R)).
As iy is fully faithful, it is conservative, and this ends the proof. O
PROPOSITION 4.4.11. Assume that Ho(.#) is T-compatible, Q-linear and separated, and con-
sider a scheme B in . which admits wide resolution of singularities up to quotient singularities.

Consider a separated B-scheme of finite type S, and a constructible object R in Ho(.#)(S). The
following conditions are equivalent.

(i) For any separated morphism of finite type f : X — S, the object f'(R) is T-dualizing.

(ii) For any projective morphism f : X — S, the object f'(R) is T-dualizing.

(iii) For any projective morphism f : X — S, with X regular, the object f'(R) is T-dualizing.

(iv) For any projective morphism f: X — S, with X regular, and for any n € T, the map
(4.4.11.1) 1x{n} — RHomx(RHomx(1x{n}, f'(R)), f'(R))

is an isomorphism in Ho(.#)(X).

If, furthermore, for any regular separated B-scheme of finite type X, and for any n € 7, the object
1x{n} is ®-invertible, then these conditions are equivalent to the following one.

(v) For any projective morphism [ : X — S, with X regular, the map
(4.4.11.2) Lx — RHomx(f'(R), f'(R))
is an isomorphism in Ho(.#)(X).

PROOF. It is clear that (i) implies (ii), which implies (iii), which implies (iv). Let us check
that condition (ii) also implies condition (i). Let f : X — S be a morphism of separated B-
schemes of finite type, with S regular. We want to prove that f'(1g) is 7-dualizing, while we
already know it is true whenever f is projective. In the general case, by virtue of Corollary 4.4.9,
we may assume that f is quasi-projective, so that f = pj, where p is projective, and j is an open
immersion. As f' ~ j'p', we conclude with Proposition 4.4.7. Under the additional assumption,
the equivalence between (iv) and (v) is obvious. It thus remains to prove that (iv) implies (ii). It
is in fact sufficient to prove that, under condition (iv), the object R itself is 7-dualizing. To prove
that the map

(4.4.11.3) M — RHomx(RHomx(M,R),R)

is an isomorphism for any constructible object M of Ho(.#Z)(S), it is sufficient to consider the case
where M = Rf.(1x{n}) = fi(lx{n}), where n € 7 and f : X — S is a projective morphism with
X regular (Corollary 4.4.3). For any object A of Ho(.#)(X), we have canonical isomorphisms

RHoms(fi(A), R) ~ Rf. RHomx (A, f'(R))
= fiRHomx (A, f'(R)),
from which we get a natural isomorphism:

RHoms(RHoms(fi(A), R), R) ~ fi RHomx(RHomx (A, f'(R)), f'(R)).
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Under these identifications, the map (4.4.11.3) for M = fi(1x{n}) is the image of the map
(4.4.11.1) by the functor f;. As (4.4.11.1) is invertible by assumption, this proves that R is
T-dualizing. U

LEMMA 4.4.12. Let X be a scheme in .7, and R be an object of Ho(.# )(X). The property for
R of being ®-invertible is local over X with respect to the Zariski topology.

PrOOF. Let R" = RHom(R, 1x) be the dual of R. The object R is ®-invertible if and only
if the evaluation map
R e% R — 1x
is invertible. Let j : U — X be an open immersion. Then, for any objects M and N in Ho(.#Z)(X),
we have the identification

J"RHomx (M, N) ~ RHomy (§*(M),j*(N)).

In particular, we have j*(R") ~ j*(R)". As j* is monoidal, the lemma follows from the fact that
Ho(.#') has the property of separation with respect to the Zariski topology. O

DEFINITION 4.4.13. We shall say that Ho(.#) is T-dualizable if it satisfies the following con-
ditions:
(i) Ho(.#) is T-compatible (4.2.20);
(ii) for any closed immersion between regular schemes i : Z — S in ., the object i'(1g) is
®-invertible (i.e. the functor i'(1g) ®% (—) is an equivalence of categories);
(ii) for any regular scheme X in ., and for any n € 7, the map

I1x{n} - RHomx(RHomx(1x{n},1x),1x)
is an isomorphism.

As in other similar situations, we simply say dualizable with respect to Tate twist when the
set of twists 7 is generated by the Tate twist.

EXAMPLE 4.4.14. In practice, the property of being dualizable with respect to Tate twist is a
consequence of the absolute purity theorem. Our main example is the motivic category DMp of
Beilinson motives over excellent noetherian schemes, as a consequence of Theorem 14.4.1.

REMARK 4.4.15. Note that, whenever the set of twists 7 consists of rigid objects (which will
be the case in practice), conditions (i) and (ii) of the preceding definition are equivalent to the
condition that '(1x) is constructible and ®-invertible for any closed immersion i between regular
separated schemes in ., while condition (iii) is then automatic. This principle gives easily the
property of 7-purity when . is made of schemes of finite type over some field:

PROPOSITION 4.4.16. Assume that . consists exactly of schemes of finite type over a field k,
and that one of the following conditions is satisfied:
(a) the field k is perfect;
(b) Ho(A) is semi-separated (2.1.7).
If the objects 1{n} are rigid in Ho(.# )(Spec (k)) for all n € 7, then Ho(A) is T-dualizable.

PROOF. For any k-scheme of finite type f : X — Spec (k), as the functor Lf* is symmetric
monoidal, the objects 1x{n} are rigid in Ho(.#)(X) for all n € 7. Therefore, as stated in remark
4.4.15, we have only to prove that, for any closed immersion i : Z — X between regular k-schemes
of finite type, the object i'(1x) is ®-invertible and constructible. We may assume that X and Z
are smooth (under condition (a), this is clear, and under condition (b), by virtue of Proposition
2.1.9, we may replace k by any of its finite extensions). Using 4.4.12 and 4.2.6, we may also assume
that X is quasi-projective and that Z is purely of codimension ¢ in X, while the normal bundle
of 4 is trivial. This proposition is then a consequence of relative purity (2.4.50), which gives a
canonical isomorphism 7'(1x) ~ 1z (—c)[—2c]. O

PROPOSITION 4.4.17. Assume that .# consists of schemes of finite type over a field k and that
Ho(.#) has the following properties:



(a) it is T-dualizable;

(b) for any n € 7, 1{n} is rigid;

(c) either k is perfect, either Ho(.#) is continuous.
Then, any constructible object of Ho(.# ) (k) is rigid.

PROOF. By 4.3.15, it is sufficient to treat the case where k is perfect. It is well known that
rigid objects form a thick subcategory of Ho(.#). Thus we conclude easily from Corollary 4.4.3
and Proposition 2.4.31. O

LEMMA 4.4.18. Assume that Ho( ) is T-dualizable. Then, for any projective morphism
f:X — 8 between reqular schemes in .7, the object f'(1g) is @-invertible and constructible.

PROOF. As, for any open immersion j : U — X, one has j* = j', we deduce easily from
Lemma 4.4.12 (resp. Proposition 4.2.6) that the property for f'(1g) of being ®-invertible (resp.
constructible) is local on S for the Zariski topology. Therefore, we may assume that S is separated
over B and that f factors as a closed immersion i : X — P?% followed by the canonical projection

p: P% — S. Using relative purity for p, we have the following computations:
fi(ls) > i'p'(Ls) =i (Ipg(n)[2n]) = @' (Lpy) (n)[2n].

As i is a closed immersion between regular schemes, the object i!(lpg) is ®-invertible and con-
structible by assumption on Ho(.#), which implies that f'(1g) is ®-invertible and constructible
as well. 0

DEFINITION 4.4.19. Let B a scheme in .. We shall say that local duality holds over B in
Ho(.#) if, for any separated morphism of finite type f : X — S, with S regular and of finite type
over B, the object f'(1g) is 7-dualizing in Ho(.#)(X).

REMARK 4.4.20. By definition, if Ho(.#) is 7-compatible, and if local duality holds over B in
Ho(#), then the restriction of Ho(.#) to the category of B-schemes of finite type is 7-dualizable.
A convenient sufficient condition for local duality to hold in Ho(.#) is the following (in particular,
using the result below as well as Proposition 4.4.16, local duality holds almost systematically over

fields).

THEOREM 4.4.21. Assume that Ho(.#) is T-dualizable, Q-linear and separated, and consider
a scheme B in ¥ which admits wide resolution of singularities up to quotient singularities (e.g.
B might be any scheme which is separated and of finite type over an excellent noetherian scheme
of dimension lesser or equal to 2 in .#; see 4.1.11). Then local duality holds over B in Ho(4).

PROOF. Let S be a regular separated B-scheme of finite type. Then, for any separated mor-
phism of finite type f : X — S, the object f'(1g) is 7-dualizing: Lemma 4.4.18 implies immediately
condition (iv) of Proposition 4.4.11. The general case (without the separation assumption on 5)
follows easily from Corollary 4.4.8. O

PROPOSITION 4.4.22. Consider a scheme B in 7. Assume that Ho(.#) is T-dualizable, and
that local duality holds over B in Ho(.#). Consider a reqular B-scheme of finite type S.

(i) An object of Ho(A)(S) is T-dualizing if and only if it is constructible and ®-invertible.

(ii) For any separated morphism of S-schemes of finite type f : X — Y, and for any 7-
dualizing object R in Ho(.#)(Y), the object f'(R) is T-dualizing in Ho(.4)(X).

PROOF. As the unit of Ho(.#)(S) is 7-dualizing by assumption, Proposition 4.4.6 implies
that an object of Ho(.#)(S) is 7-dualizing if and only if it is constructible and ®-invertible.

Consider a regular B-scheme of finite type S, as well as a separated morphism of S-schemes
of finite type f : X — Y, as well as a 7-dualizing object R in Ho(.#)(Y). To prove that f'(R) is
7-dualizing, by virtue of Corollary 4.4.8, we may assume that Y is separated over S. Denote by
u and v the structural maps from X and Y to S respectively. As we already know that v'(1g) is
7-dualizing, by virtue of Proposition 4.4.6, there exists a constructible and ®-invertible object U



4. CONSTRUCTIBLE MOTIVES 113

in Ho(.#)(Y) such that U ®% R ~ v'(1g). As the functor Lf* is symmetric monoidal, it preserves
®-invertible objects and their duals, from which we deduce the following isomorphisms:

u'(lg) ~ f'v'(Ls)
~ f'(U @% R)
~ f'RHomy (U™, R)
~ RHomx (Lf*(U")
~ RHomx (Lf*(U)",
~Lf*(U) ®% f'(R).

F{(R)
F{(R)

)

The object a'(1g) being 7-dualizing, while L f*(U) is constructible and invertible, we deduce from
Proposition 4.4.6 that f'(R) is 7-dualizing as well. O

4.4.23. Assume that Ho(.#) is 7-dualizable, Q-linear and separated.

Consider a scheme B in .#, such that local duality holds over B in Ho(.#') — this is the case
if B admits wide resolution of singularities up to quotient singularities according to the above
Theorem. Consider a fixed regular B-scheme of finite type S, as well as a constructible and ®-
invertible object R in Ho(.#)(S) (in the case S is of pure dimension d, it might be wise to consider
R = 15(d)[2d], but an arbitrary R as above is eligible by 4.4.22). Then, for any separated S-scheme
of finite type f: X — S, we define the local duality functor

Dx : Ho(#)(X)" — Ho(.4)(X)
by the formula
Dx (M) = RHomx (M, f'(R)).
This functor Dx is right adjoint to itself.
COROLLARY 4.4.24. Under the above assumptions, we have the following properties of the
motivic triangulated category Ho(4):

(a) For any separated S-scheme of finite type X, the functor Dx preserves constructible
objects.
(b) For any separated S-scheme of finite type X, the natural map

is an isomorphism for any constructible object M in Ho(.4)(X).
(¢) For any separated S-scheme of finite type X, and for any objects M and N in Ho(.#)(X),
if N is constructible, then we have a canonical isomorphism

Dx (M ®% Dx(N)) ~ RHomx(M,N).

(d) For any morphism between separated S-schemes of finite type f 1Y — X, we have
natural isomorphisms

Dy (f*(M)) ~ f(Dx(M))
fH(Dx(M)) ~ Dy (f'(M))
Dx(fi(N)) = fu(Dy(N))
Dy (N)) ~ Dx(f.(N))

for any constructible objects M and N in Ho(.#)(X) and Ho(.#)(Y) respectively.

This corollary sums up what must be called the Grothendieck duality property for the motivic
triangulated category Ho(.#') with respect to the set of twists 7.



114

PROOF. Assertions (a) and (b) are only stated for the record®; see 4.2.25. To prove (c), we
see that we have an obvious isomorphism
Dx (M @% P) ~ RHomx (M, Dx(P))

for any objects M and P. If N is constructible, we may replace P by Dx (N) and get the expected
formula using (b). The identification Dy f* ~ f "Dy is a special case of the formula

RHomy (f*(A), f(B)) ~ f'RHomx (A, B).
Therefore, we also get:

f*Dx ~D? f*Dx ~ Dy f' D% ~ Dy f'.
The two other formulas of (d) follow by adjunction. O

THEOREM 4.4.25. Assume that . consists of schemes of finite type over a field k, and con-
sider a separated T'-generated motivic triangulated category ' over .7, as well as a premotivic
morphism

0"+ I =Ho(M)— T'.
We suppose that the following properties hold:
(a) T is T-dualizable and Q-linear and separated;
(b) the object 1{i} is rigid in T (k) for anyi € .
Then, the premotivic morphism
T =T

commutes with the sixz operations.

REMARK 4.4.26. Remark that, as a corollary, we obtain immediately, under the assumptions
of the theorem that 7’ is ¢*(7)-dualizable and that the functor ¢* commutes with the duality
functors on 7 and .7, respectively obtained by applying the above corollary in the case B =
Spec (k).

PROOF. Given a morphism of finite type f : X — Spec(k), let us consider the following
property.

(¥)¢ For any constructible object M in 7 (X), the natural exchange map

" fo(M) = fu o™ (M)
is invertible.
We will first prove the theorem assuming that property () holds for any f.
Let u: X — Y be a k-morphism of finite type. We claim that the exchange map
" (M) > u, " (M)

is invertible for any 7-constructible object M of .7 (X).
It is sufficient to prove that, for any smooth separated k-morphism of finite type g : T'— X,
any constructible object M in 7 (X) and any twist ¢ in 7/, the natural map

Hom g (x)(g4(1r){i}, ¢" us(M)) — Hom g (x) (g4 (Lr){i}, us(M))

is bijective. Consider the following commutative diagram of morphisms of schemes:

\% Y T

60We have put to a lot of assumptions here: in fact, if Ho(.#) is 7-dualizable and if local duality holds over B
in Ho(.#), the six Grothendieck operations preserve constructible objects on the restriction of Ho(.#Z') to B-schemes
of finite type; we leave this as a formal exercice for the reader.
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in which the square is cartesian. Recall that the functor v, preserves constructible objects by
virtue of Theorem 4.2.16. Then we conclude by the computations below:

Hom 7/ (v)(gs(17){i}, ¢* ui(M)) = Hom g/ (7)(Ly {i}, g% " us(M))

= Hom 7/ (7)(1y {i}, " g* u.(M))
g " (L){i}, " g™ us(
g 0" (Le){i}, " va B*(

(
)( M))
)(

= Hom g () (11 {i}, (bg)« " va ™ (M)
( (M)
(
(

)

M))
)
)

= Hom z/(r

= Hom 7/ (1

= Hom g/(x) (Li{i}, ¢* (bg)« v K" (M))  (by (%)ng)
= Hom g1y (1i{i}, (bgv)s o™ h*(M))  (by (*)bgo)
= Hom g k) (Lx{i}, (bg)« g" s ™ (M))

= Homg(v)(gs(Lr){i}, us ¢" (M))

From there, we see that, for any k-scheme of finite type X and any 7-constructible objects M and
N of (X), the natural map
@*(Homx (M, N)) = Homx (¢* (M), ¢"(N))

is invertible in .7/(X). For this, we may assume that M = f;(1y{i}) for a smooth morphism of
finite type f : Y — X and a twist ¢, in which case we have

" (Homx (M, N)) = ¢" fu [*(N) = fu f* ¢"(N) = Homx (" (M), 9" (N)).

It remains to prove that for any separated k-morphism f : X — Y of finite type and any con-
structible object N in .7 (X), the exchange map:
¢" [HN) = [ (N)
is an isomorphism. It is easy to see that this property is local for the Zariski topology, both on
X and on Y, so that we may assume that f is affine. Therefore, it is sufficient to consider the
situation where f i either a closed immersion or a separated smooth map. In the smooth case, as
f'is of the form f*(d)[2d], this is obvious. If f = i is a closed immersion with open complement j,
as we already know that ¢* commutes with u, for any morphism wu, this property follows straight
away from the localization distinguished triangles

i 1= gt =

It remains to prove property ()¢ for any morphism f of finite type.
We claim it is sufficient to prove that, for any k-scheme of finite type X with structural
morphism f, the following property holds:

(xx)x For any twist i € T, the natural exchange map

" fr(Ix{i}) = fe 0" (1x{i})
is invertible.

Indeed, by virtue of Theorem 4.2.13, we may assume that M = w,(1lw{i}) for w: W — X a
projective k-morphism, and ¢ € 7. As the exchange map ¢* w, — w, ¢* is invertible (Proposition
2.4.53), we see that we may assume that M = 1 x{i} for some twist i.

Let us prove property (xx)x in the case X is in addition smooth over k. As ¢* is monoidal,
for any rigid object M of Z (k), we get the identification:

" (MY) = " (M),

On the other hand, according to assumption (b), the object f3(1x) is rigid in J (k) as well as in

(k) (because the functor ¢* is symmetric monoidal and commutes with the operations of the
form fy for f smooth). Thus we get:

fe(Ix{i}) = Homp(fs(1x), Iu{i}) = fe(1x)"{i}.
Then property (#x)x readily follows.
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We finally prove property (xx)x for any algebraic k-scheme X. We will proceed by induction
on the dimension of X.

In case dim(X) < 0, the result is obvious. Let us assume dim(X) > 0. According to the
localization property, we can assume that X is reduced. Let k be an inseparable closure of k and
X = X @y k. According to De Jong theorem applied to X (see Th. 4.1.10 for S = Spec (k)), there
exists a Galois alteration X’ — X of group G such that X’ is smooth over k.

We can assume that such a smooth alteration exists over a finite inseparable extension field
E/k. Because J (resp. 7') is Q-linear and separated, the base change functor 7* associated with
the finite morphism 7 : Spec (E) — Spec (k) and relative to the premotivic category 7 (resp. J)
is an equivalence of categories (see Proposition 2.1.9). Thus we can replace k by E and assume
that there exists a Galois alteration p : X’ — X of group G such that X’ is a smooth k-scheme.
Using the localization property, we can assume X is reduced. Then there exists a nowhere dense
closed subscheme v : Z — X such that U = X — Z is regular (thus normal) and the induced map
ply : p 1 (U) — U is finite. Thus we can apply Theorem 4.4.1 to the cartesian square:

Z/ VHI X/

Z—"sX
and we get the distinguished triangle in 7 (X) (thus in 7/(X) as well, as the functor ¢* is
monoidal and commutes with the operations of the form wu, for any proper morphism u) of the
form:
Lx{i} = pe(Lx (i) @ v (12{i}) = (vq). (12 {i})¢

for any twist 7. If we consider the triangles in .7 (k) and .7 (k) obtained by applying the functor f.,
where f is the structural morphism of X/k, we deduce that property (xx)x follows from properties
(#%)x7, ()7, (%) 2. Thus we can conclude applying either the case of a smooth k-scheme treated
above or the induction hypothesis as dim(Z) = dim(Z’) < dim(X). O
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Construction of fibred categories



5. Fibred derived categories

5.0. In this entire section, we fix a full subcategory . of the category of noetherian S-schemes
satisfying the following properties:

(a) .7 is closed under finite sums and pullback along morphisms of finite type.
(b) For any scheme S in ., any quasi-projective S-scheme belongs to .%.

We fix an admissible class of morphisms & of . All our &-premotivic categories (cf.
definition 1.4.2) are defined over .. Moreover, for any abelian &-premotivic category 7 in this
section, we assume the following:

(c) o is a Grothendieck abelian Z2-premotivic category (see definition 1.3.8 and the recall
below).
(d)  is given with a generating set of twists 7. We sometimes refer to it as the twists of < .
(e) We will denote by Mg(X,.e/), or simply by Mg(X), the geometric section over a -
scheme X/S.
Without precision, any scheme will be assumed to be an object of ..
In section 5.2, except possibly for 5.2.a, we assume further:

(f) & contains the class of smooth finite type morphisms.
In section 5.3, we assume (f) and instead of (d) above.
5.0.27. We will refer sometimes to the canonical dg-structure of the category of complexes

C(&) over an abelian category «7. Recall that to any complexes K and L over ./, we associate
a complex of abelian groups Hom$, (K, L) whose component in degree n € Z is

[ Hom., (K7, L7+
pEZ

and whose differential in degree n € Z is defined by the formula:
(fp)pez = (dL © fp - (_1)n~fp+1 o dK))pez-

In other words, this is the image of the bicomplex Hom, (K, L) by the Tot-product functor
which we denote by Tot™. Of course, the associated homotopy category is the category K()
of complexes up to chain homotopy equivalence.

5.1. From abelian premotives to triangulated premotives.

5.1.a. Abelian premotives: recall and examples. Consider an abelian &-premotivic category
/. According to the convention of 5.0, for any scheme S, /s is a Grothendieck abelian closed
symmetric monoidal category. Moreover, if 7 denotes the twists of <7, the essentially small family

(MS(X){i})Xegz/s,ieT

is a family of generators of &/5 in the sense of [Gro57].

ExAMPLE 5.1.1. Consider a fixed ring A. Let PSh(Z2/S, A) be the category of A-presheaves
(i.e. presheaves of A-modules) on #/S. For any HP-scheme X/S, we let Ag(X) be the free
A-presheaf on &7/S represented by X. Then PSh(Z2/S,A) is a Grothendieck abelian category
generated by the essentially small family (As(X)) Xep/s"
There is a unique symmetric closed monoidal structure on PSh(42/S, A) such that

As(X) Rg As(Y) = As(X X5 Y)

Finally the existence of functors f*, f. and, in the case when f is a &-morphism, of f;, follows
from general sheaf theory (cf. [SGA4]).
Thus, PSh(Z2, A) defines an abelian &7-premotivic category.

5.1.2. Consider an abstract abelian &-premotivic category /. To any premotive M of g,
we can associate a presheaf of abelian groups

X + Hom,y, (Mg(X), M)
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which we denote by . (M).
This defines a functor 7, : @5 — PSh(22/S,Z). It admits the following left adjoint:
~*:PSW(P/S,Z) — ots, F— 113 Mg (X, o)
X/F
where the colimit runs over the category of representable presheaves over F'.
It is now easy to check we have defined a morphism of (complete) abelian &-premotivic
categories:

(5.1.2.1) v* :PSh(P,Z) = A : ..

Moreover PSh(Z2,Z) appears as the initial abelian &-premotivic category.
Remark that the functor v, : &/ — PSh(Z?/S,Z) is conservative if the set of twists 7 of &7 is
trivial.

DEFINITION 5.1.3. A &-admissible topology ¢ is a Grothendieck pretopology ¢ on the category
&, such that any t-covering family consists of &Z-morphisms.

Note that, for any scheme S in ., such a topology ¢ induces a pretopology on & /S (which
we denote by the same letter). For any morphism (resp. &-morphism) f : T — S, the functor f*
(resp. fy) preserves t-covering families.

As £ is fixed in all this section, we will simply say admissible for &-admissible.

EXAMPLE 5.1.4. Let ¢t be an admissible topology. We denote by Sh;(4?/S,A) the category
of t-sheaves of A-modules on &?/S. Given a P-scheme X/S, we let AL(X) be the free A-linear
t-sheaf represented by X. Then, Sh;(£2/S, A) is an abelian Grothendieck category with generators
(A5(X))xew/s-

As in the preceding example, the category Sh;(Z2?/S,A) admits a unique closed symmetric
monoidal structure such that AL (X) ®s AL(Y) = AL(X xgY). Finally, for any morphism f :
T — S of schemes, the existence of functors f*, f. (resp. fy when f is a &-morphism) follows from
the general theory of sheaves (see again [SGA4]: according to our assumption on t and [SGA4,
III, 1.6], the functors f*: #/S — & /T and fy : /T — £/S (for f in &) are continuous).

Thus, Shy (£, A) defines an abelian &-premotivic category (with trivial set of twists).

The associated t-sheaf functor induces a morphism

(5.1.4.1) ay : PSh(Z,A) 2 Shy (2, A) : ag ..

REMARK 5.1.5. Recall the abelian category Sh;(Z/S,Z) is a localization of the category
PSh(S,Z) in the sense of Gabriel-Zisman. In particular, given an abstract abelian &2-premotivic
category &7, the canonical morphism

v :PSh(L/S,Z) = s : .
induces a unique morphism
Shy(£/S,Z) = s
if and only if for any presheaf of abelian groups F' on /S such that a;(F) = F; = 0, one has
v*(F) = 0.
We leave to the reader the exercise which consists to formulate the universal property of the
abelian Z-premotivic category Shy (<2, Z).5!

5.1.b. The t-descent model category structure.

5.1.6. Consider an abelian &-premotivic category 7 with set of twists 7.

We let C(7) be the F-fibered abelian category over . whose fibers over a scheme S is the
category C(&s) of (unbounded) complexes in «Zs. For any scheme S, we let 15 : &g — C(s)
the embedding which sends an object of @75 to the corresponding complex concentrated in degree
Z€ero.

If o7 is T-twisted, then the category C(%Zs) is obviously (Z X 7)-twisted. The following lemma
is straightforward :

61We will formulate a derived version in the paragraph on descent properties for derived premotives (¢f. 5.2.9).
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LEMMA 5.1.7. With the notations above, there is a unique structure of abelian & -premotivic
category on C(4/) such that the functor v : &/ — C(<) is a morphism of abelian & -premotivic
categories.

5.1.8. For a scheme S, let (£2/S)Y be the category introduced in 3.2.1. The functor Mg(—)
can be extended to (#/S)! by associating to a family (X;);cs of Z-schemes over S the premotive

P ars(x
iel
If X is a simplicial object of (£2/S)!, we denote by Mg(X) the complex associated with the
simplicial object of /s obtained by applying degreewise the above extension of Mg(—).

DEFINITION 5.1.9. Let o/ be an abelian &Z-premotivic category and ¢ be an admissible topol-

ogy.
Let S be a scheme and C be an object of C(s) :

(1) The complex C is said to be local (with respect to the geometric section) if, for any
P-scheme X/S and any pair (n,i) € Z X 7, the canonical morphism

Homg (o) (Ms (X){i}[n], C) = Homp(ag) (Ms(X){i}[n],C)

is an isomorphism.
(2) The complex C' is said to be t-flasque if for any t-hypercover X — X in £/S, for any
(n,i) € Z x 7, the canonical morphism

Homg (o) (Ms(X){2}[n], C) = Homy (o) (Ms(X){i}[n], C)
is an isomorphism.

We say the abelian &2-premotivic category «f satifies cohomological t-descent if for any t-hypercover
X — X of a P-scheme X/S, and for any i € 7, the map

Ms(X){i} — Ms(X){i}
is a quasi-isomorphism (or equivalently, if any local complex is t-flasque).
We say that o is compatible with t if < satisfies cohomological t-descent, and if, for any
scheme S, any t-flasque complex of g is local.

ExAMPLE 5.1.10. Consider the notations of 5.1.4.
Consider the canonical dg-structure on C(Shy(Z/S,A)) (see 5.1.1). By definition, for any
complexes D and C' of sheaves, we get an equality:
Hom sn,(2/s,0)) (D, C) = H(Homg, /5 0 (D, C)) = H®(Tot™ Homgp, /5,4 (D, C)).
In the case where D = AL(X) (resp. D = A4L(X)) for a P-scheme X/S (resp. a simplicial
Z-scheme over S) we obtain the following identification:
Homg sny(2/s.0)) (As(X), C) = H(C(X)).
(resp. Homg(sh, /5,0y (A5(X), C) = H*(Tot™ O(X))).
Thus, we get the following equivalences:
C is local < for any &-scheme X/S, H'(X,C) ~ H"(C(X)).
C is t-flasque < for any t-hypercover X — X, H"(C(X)) ~ H"(Tot™ C(X)).
According to the computation of cohomology with hypercovers (c¢f. [Bro74)), if the complex

C is t-flasque, it is local. In other words, we have the expected property that the abelian £2-
premotivic category Shy (<2, A) is compatible with ¢.

5.1.11. Consider an abelian &-premotivic category & and an admissible topology t.

Fix a base scheme S. A morphism p: C — D of complexes on @75 is called a t-fibration if its
kernel is a t-flasque complex and if for any &-scheme X/S, any ¢ € 7 and any integer n € Z, the
map of abelian groups

Hom g, (Mg(X){i},C") — Hom g, (Ms(X){i}, D™)
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is surjective.

For any object A of &5, we let S™A (resp. D™A) be the complex with only one non trivial
term (resp. two non trivial terms) equal to A in degree n (resp. in degree n and n + 1, with the
identity as only non trivial differential). We define the class of cofibrations as the smallest class
of morphisms of C(«Zs) which :

(1) contains the map S" "' Mg(X){i} — D"Mg(X){i} for any P-scheme X/S, any i € T,
and any integer n;
(2) is stable by pushout, transfinite composition and retract.

A complex C is said to be cofibrant if the canonical map 0 — C'is a cofibration. For instance, for
any -scheme X/S and any i € 7, the complex Mg(X){i}[n] is cofibrant.

Let Gs be the essentially small family made of premotives Mg(X){i} for a H-scheme X/S
and a twist ¢ € 7, and Hg be the family of complexes of the form Cone(Mg(X){i} — Ms(X){i})
for any t-hypercover X — X and any twist ¢ € 7. By the very definition, as &7 is compatible
with ¢ (definition 5.1.9), (Gs, Hs) is a descent structure on 7 in the sense of [CDO09, def. 2.2].
Moreover, it is weakly flat in the sense of [CDO09, par. 3.1]. Thus the following proposition is a
particular case of [CD09, theorem 2.5, proposition 3.2, and corollary 5.5] :

PROPOSITION 5.1.12. Let & be an abelian 22-premotivic category, which we assume to be
compatible with an admissible topology t. Then for any scheme S, the category C(ls) with the
preceding definition of fibrations and cofibrations, with quasi-isomorphisms as weak equivalences
is a proper symmetric monoidal model category.

5.1.13. We will call this model structure on C(Zs) the t-descent model category structure (over
S). Note that, for any #-scheme X/S and any twist ¢ € 7, the complex Mg(X){i} concentrated
in degree 0 is cofibrant by definition, as well as any of its suspensions and twists. They form a
family of generators for the triangulated category D(Ag).
Observe also that the fibrant objects for the ¢-descent model category structure are exactly the
t-flasque complexes in @75. Moreover, essentially by definition, a complex of &5 is local if and
only if it is ¢-flasque (see [CD09, 2.5]).

5.1.14. Consider again the notations and hypothesis of 5.1.11.
Consider a morphism of schemes f : T — S. Then the functor

f*:C(ets) = C(op)

sends Gg in Gr, and Hg in Hr because the topology ¢ is admissible. This means it satisfies
descent according to the definition of [CD09, 2.4]. Applying theorem 2.14 of op. cit., the functor
f* preserves cofibrations and trivial cofibrations, i.e. the pair of functors (f*, f.) is a Quillen
adjunction with respect to the ¢t-descent model category structures.

Assume that f is a #Z-morphism. Then, similarly, the functor

fﬁ : C(,QfT) — C(ds)

sends Gg (resp. Hg) in Gr (resp. Hr) so that it f; also satisfies descent in the sense of op. cit.
Therefore, it preserves cofibrations and trivial cofibrations, and the pair of adjoint functors (fy, f*)
is a Quillen adjunction for the ¢-descent model category structures.

In other words, we have obtained the following result.

COROLLARY 5.1.15. Let o/ be an abelian &2-premotivic category compatible with an admis-
sible topology t. The P-fibred category C(&/) with the t-descent model category structure defined
in 5.1.12 is a symmetric monoidal P-fibred model category. Moreover, it is stable, proper and
combinatorial.

5.1.16. Recall the following consequences of this corollary (see also 1.3.24 for the general
theory). Consider a morphism f : T — S of schemes. Then the pair of adjoint functors (f*, f.)
admits total left/right derived functors

Lf* : D(ﬂfs) = D(JZ%T) : Rf*
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More precisely, f. (resp. f*) preserves t-local (resp. cofibrant) complexes. For any complex K
on s, Rf«(K) = fu(K') (resp. Lf*(K) = f*(K")) where K’ — K (resp. K — K") is a t-local
(resp. cofibrant) resolution of K .52

When f is a &Z-morphism, the functor f* is even exact and thus preserves quasi-isomorphisms.
This implies that Lf* = f*. The functor f; admits a total left derived functor

Lfy : D(o#r) 2 D(s) : Rf”

defined by the formula Lf;(K) = fy(K") for a complex K on o/ and a cofibrant resolution
K" K.

Note also that the tensor product (resp. internal Hom) of C(«7s) admits a total left derived
functor (resp. total right derived functor). For any complexes K and L on /g, this derived
functors are defined by the formula:

K®§L:KI/ ®S L//
RHomgs(K,L) = Homg(K",L")

where K — K" and L — L” are cofibrant resolutions and L’ — L is a t-local resolution.
It is now easy to check that these functors define a triangulated &2-premotivic category D(<7),
which is 7-generated according to 5.1.13.

DEFINITION 5.1.17. Let o be an abelian &2-premotivic category compatible with an admis-
sible topology t.

The triangulated &-premotivic category D(«) defined above is called the derived &2 -premotivic
category associated with /.53

The geometric section of a &?-scheme X/S in the category D(&) is the complex concentrated
in degree 0 equal to the object Mg(X). The triangulated Z-fibred category is T-generated and
well generated in the sense of 1.3.16. Recall this means that D(7s) is equal to the localizing®*
subcategory generated by the family

(5.1.17.1) {Ms(X){i}; X/S P-scheme,i € 7}.

EXAMPLE 5.1.18. Given any admissible topology ¢, the abelian &7-premotivic category Shy (£, A)
introduced in example 5.1.4 is compatible with ¢ (¢f. 5.1.10) and defines the derived &-premotivic
category D(Shy (£, A)).

Remark also that the abelian &Z-premotivic category PSh(Z2, A) introduced in example 5.1.1 is
compatible with the coarse topology and gives the derived &2-premotivic category D(PSh(Z2, A)).

REMARK 5.1.19. Recall from 5.0.27 there exists a canonical dg-structure on C(«s). Then we
can define a derived dg-structure by defining for any complexes K and L of /s, the complex of
morphisms:

RHom, (K, L) = Hom}, (Q(K), R(L))
where R and @) are respectively some fibrant and cofibrant (functorial) resolutions for the ¢-descent
model structure. The homotopy category associated with this new dg-structure on C(Zs) is the
derived category D(#Zs). Moreover, for any morphism (resp. Z?-morphism) of schemes f, the
pair (Lf*,Rf.) (resp. (Lfs, f*)) is a dg-adjunction. The same is true for the pair of bifunctors
(®L, RHomg).

5.1.20. Consider an abelian £-premotivic category &/ compatible with a topology ¢. Accord-
ing to section 3.1.b, the 2-functor D(7) can be extended to the category of .#-diagrams: to any
diagram of schemes 2" : I — . indexed by a small category I, we can associate a symmetric
monoidal closed triangulated category D(«/)(Z ,I) which coincides with D(&/)(X) when I = e,
Z = X for a scheme X.

62Recall also that fibrant/cofibrant resolutions can be made functorially, because our model categories are
cofibrantely generated, so that the left or right derived functors are in fact defined at the level of complexes.
63Indeed remark that D(«/) does not depend on the topology t.

64, c. triangulated and stable by sums.
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Let us be more specific. The fibred category # admits an extension to .#-diagrams: a section
of & over a diagram of schemes 2" : [ — ., indexed by a small category I, is the following data:
(1) A family (A4;)ies such that A; is an object of &, .
(2) A family (ay)ueri(r) such that for any arrow w : i — jin I, a, : u*(A4;) — A; is a
morphism in &7, and this family of morphisms satisfies a cocyle condition (see paragraph
3.1.1).
Then, D(&) (%, 1) is the derived category of the abelian category &/ (£, I). In particular, objects
of D(&/) (X, I) are complexes of sections of &7 over (27, I) (or, what amount to the same thing,
families of complexes (K;);c; with transition maps (a,) as above, relative to the fibred category
Recall that a morphism of .-diagrams ¢ : (2", 1) — (#/,J) is given by a functor f: I — J
and a natural transformation ¢ : 2~ — % o f. We say that ¢ is a &-morphism if for any i € I,
@i+ Zi = W3y is a P-morphism. For any morphism (resp. &-morphism) ¢, we have defined in
3.1.3 adjunctions of (abelian) categories:

A (Y, T) =2 A (L) o
resp. @y : A (X, 1) =2 A (¥, J): "
which extends the adjunctions we had on trivial diagrams.
According to Proposition 3.1.11, these respective adjunctions admits left/right derived func-
tors as follows:
(5.1.20.1) Lo : D(&)(%,J) 2 D(Z)(Z,1) : Rp.
(5.1.20.2) resp. Ly : D() (2, 1) = D(A)(¥,J) : Lp" = ¢*
Again, these adjunctions coincide on trivial diagrams with the map we already had.
Note also that the symmetric closed monoidal structure on C(</(2°,I)) can be derived and
induces a symmetric monoidal structure on D(<7)(Z", I) (see Proposition 3.1.24).°
Recall from 3.2.5 and 3.2.7 that, given a topology ' (not necessarily admissible) over ., we
say that D(&) satisfies ¢'-descent if for any ¢’-hypercover p : 2" — X (here 2" is considered as a
-diagram), the functor
(5.1.20.3) Lp* : D(«)(X) —» D()(Z)
is fully faithful (see Corollary 3.2.7).

PROPOSITION 5.1.21. Consider the notations and hypothesis introduced above. Let t' be an

admissible topology on .. Then the following conditions are equivalent:
(i) D(&) satisfies t'-descent.

(ii) o/ satisfies cohomological t'-descent.

PrROOF. We prove (i) implies (ii). Consider a t'-hypercover p : 2" — X in &2/S. This is
a &-morphism. Thus, by the fully faithfulness of (5.1.20.3), the counit map Lpsp* — 1 is an
isomorphism. By applying the latter to the unit object 1x of D(%7x), we thus obtain that

Mx(%) — ]lX

is an isomorphism in D(&/x ). If 7 : X — S is the structural &Z-morphism, by applying the functor
L7y to this isomorphism, we obtain that

Ms(2) = Ms(X)

is an isomorphism in D(Zs) and this concludes.

Reciprocally, to prove (i), we can restrict to ¢-hypercovers p : 2~ — X which are -
morphisms because ¢’ is admissible. Because Rp* = p* admits a left adjoint Lpy, we have to
prove that the counit

Lpspp™ — 1

65In fact, D(«) is then a monoidal Zq--fibred category over the category of .#-diagrams (remark 3.1.21).
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is an isomorphism. This is a natural transformation between triangulated functors which commutes
with small sums. Thus, according to (5.1.17.1), we have only to check this is an isomorphism
when evaluated at a complex of the form Mx(Y){i} for a &-scheme Y/X and a twist i € 7.
But the resulting morphism is then Mx (2 xx Y){i} = Mx(Y){i} and we can conclude because
Z xxY =Y is at'-hypercover in £2/S (again because t' is admissible). O

5.1.22. . Consider the situation of 5.1.20 Let S be a scheme. An interesting particular case
is given for constant ./-diagrams over S; for a small category I, we let Is be the constant .-
diagram I — . i — S,u — lg. Then the adjunctions (5.1.20.1) for this kind of diagrams define
a Grothendieck derivator

I— D()(Ig).

Recall that, if f : I — e is the canonical functor to the terminal category and p = fx : Ix — X
the corresponding morphism of .-diagrams, for any I-diagram K, = (K;);es of complexes over
s, we get right derived limits and left derived colimits:

R, (K.) = Rlim K;.
iel
Loy (K,) = Llim K;.
iel
5.1.23. The associated derived &-premotivic category is functorial in the following sense.
Consider an adjunction
A 2B
of abelian &-premotivic categories. Let 7 (resp. 7') be the set of twists of & (resp. £), and
recall that ¢ induces a morphisms of monoid 7 — 7' still denoted by . Consider two topologies
t and ¢’ such that ¢’ is finer than t. Suppose &/ (resp. %) is compatible with ¢ (resp. ¢') and let
(GE , HZ) (resp. (GZ,HZ)) be the descent structure on /s (resp. Hg) defined in 5.1.11.
For any scheme S, consider the evident extensions

ps : C(s) = C(%s) : s
of the above adjoint functors to complexes. Recall that for any &?-scheme X/S and any twist
i€, ps(Ms(X,){i}) = Ms(X, B){p(i)} by definition. Thus, s sends G& to GZ. Because '
is finer than ¢, it sends also H& to HZ. In other words, it satifies descent in the sense of [CD09,
par. 2.4] so that the pair (pg,1g) is a Quillen adjunction with respect to the respective t-descent
and ¢'-descent model structure on C(«7s) and C(%Bs).

Considering the derived functors, it is now easy to check we have obtained a &-premotivic
adjunction%®

Ly :D(«) 2 D(Z%) : Ry.

EXAMPLE 5.1.24. Let ¢ be an admissible topology. Consider an abelian &2-premotivic category
o/ compatible with t. Then the morphism of abelian &?-premotivic categories (5.1.2.1) induces a
morphism of triangulated &?-premotivic categories:

(5.1.24.1) Ly* : D(PSh(Z,Z)) 2 D(«) : Ry.

Similarly, the morphism (5.1.4.1) induces a morphism of triangulated Z-premotivic categories
(5.1.24.2) ay : D(PSh(Z2,A)) 2 D(Sh (£, A)) : Ray ..

Note that af = Laj on objects, because the functor a] is exact.

66Remark also that this adjunction extends on .”-diagrams considering the situation described in 5.1.20: for
any diagram X : [ — ., we get an adjunction

Lox : D(/)(X) = D(#)(X) : Ribx

and this defines a morphism of triangulated monoidal &..¢-fibred categories over the .#-diagrams (cf. Proposition
3.1.32).
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ExAMPLE 5.1.25. Consider an admissible topology t. Let ¢ : A — A’ be a morphism of rings.
For any scheme S, it induces a pair of adjoint functors:

(5.1.25.1) ¢ Shy(Ps, \) S Shy(Ps, ) : o,

such that ¢* (resp. ¢.) is induced by the obvious extension (resp. restriction) of scalars functor.
By definition, for any &?-scheme X/S, the functor ¢* sends the representable sheaf of A-modules
AL (X) to the representable sheaf of A’-modules A%(X). Thus (¢*,¢,) defines an adjunction of
abelian Z-premotivic categories. Applying the results of Paragraph 5.1.23, one deduces a -
premotivic adjunction:

Ly* : D(Shy(£,A)) S D(Shy (2, A)) : Reps.
The functor @, is exact so that Ry, = @,. Similarly when A’/A is flat, Lp* = p*.
The following result can be used to check the compatibility to a given admissible topology:

PROPOSITION 5.1.26. Let t be an admissible topology. Consider a morphism of abelian &-
premotivic categories

oA =B
such that:
(a) For any scheme S, 1g is exact.
(b) The morphism ¢ induces an isomorphism of the underlying set of twists of &/ and A.

According to the last property, we identify the set of twists of &/ and % to a monoid T in such a
way that ¢ acts on T by the identity.
Assume that <7 is compatible with t. Then the following conditions are equivalent:

(i) B is compatible with t.
(ii) B satisfies cohomological t-descent,

PROOF. The fact (i) implies (i) is clear from the definition and we prove the converse using
the following lemma, :

LEMMA 5.1.27. Consider a morphism of &2-premotivic abelian categories
p: A 2B

satisfying conditions (a) and (b) of the above proposition and a base scheme S.

Given a simplicial &-scheme X over S, a twist i € T and a complex C' over Bg, we denote
by

ex,i,c : Home(gg) (Ms(X, B){i}, C) = Home () (Ms (X, o/ ){i},9s(0))

the adjunction isomorphism obtained for the adjoint pair (pg,¢s).
Then there exists a unique isomorphism 6/2(,1‘70 making the following diagram commutative:

€x

Homcg,) (Ms(X, 8){i},C) "% > Home (s (Ms (X, ) {i}, s(C))

l | l

. €x,i,C .
Homy (g, (Ms (X, Z){i}, C') — "= Homy () (Ms (X, &) {i}, s(C)).
Assume moreover that $ satisfies cohomological t-descent.
Then there exists an isomorphism eg'(’i’c making the following diagram commutative:

’
EX,

Homg () (Mg (X, B){i}, O) — = Homp uzg) (Ms(X, )i}, s (C))
(5.1.27.1) iy CJ/ J/wﬁ ¢
f/;\/*,z‘,c

Homp g, (Ms (X, 8){i},C) ——— Homp) (Ms (X, #){i}, ¥s(C)),

where ﬂ—féi,c and W?i’c are induced by the obvious localization functors.
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The existence and unicity of isomorphism EIX,Z‘,C follows from the fact that the functors ¢g
and 15 are additive. Indeed, this implies that the isomorphism ey ; ¢ is compatible with chain
homotopies.

Consider the injective model structure on C(#Zs) and C(%s) (see for example [CDO09, 1.2
for the definition). We first treat the case when C' is fibrant for this model structure on C(As).
Because the premotive Mg (X, %){i} is cofibrant for the injective model structure, we obtain that
the canonical map 77}?,1'70 is an isomorphism. This implies there exists a unique map €% ; ~ making
diagram (5.1.27.1) commutative. On the other hand, the isomorphism E/X,z‘,c obtained previously
is obviously functorial in X. Thus, because & satisfies t-descent, we obtain that ¥g(C) is t-
flasque. Because 7 is compatible with ¢, this implies ¥g(C) is t-local, and because Mg(X, B){i}
is cofibrant for the t-descent model structure on C(<7s), this implies W%yi_c is an isomorphism.
Thus finally, e’/{m)c is an isomorphism as required. /

To treat the general case, we consider a fibrant resolution C' — D for the injective model
structure on C(%gs). Because 1)g is exact, it preserves isomorphisms. Using the previous case, We
define 6//’(6,2‘,() by the following commutative diagram:

"
€x,i,C

Homp 4y (Ms(X, B){i}, C) Homp gy (Ms(.)(, ){i}, ws(C))

Ni lw

Hompg,) (Ms(X, B){i}, D) — " Hompy,,) (Ms(X, ){i}, s(D)).

The required property for 6:@,2‘,0 then follows easily and the lemma is proved.

To finish the proof that (i) implies (i), we note the lemma immediately implies, under (ii),
that the following two conditions are equivalent :
e (C is t-flasque (resp. local) in C(As);
e s(C) is t-flasque (resp. local) in C(s).
This concludes. ]

5.1.c. Constructible premotivic complezes.

DEFINITION 5.1.28. Let &/ be an abelian £2-premotivic category compatible with an ad-
missible topology t. We will say that ¢ is bounded in </ if for any scheme S, there exists an
essentially small family N of bounded complexes which are direct factors of finite sums of objects
of type Mg(X){i} in each degree, such that, for any complex C of 75, the following conditions
are equivalent.

(i) C is t-flasque.
(ii) For any H in N}, the abelian group Hom g () (H, C') vanishes.

In this case, we say the family N is a bounded generating family for t-hypercoverings in <.

ExXAMPLE 5.1.29. (1) Assume & contains the open immersions so that the Zariski topol-
ogy is admissible. Let MVg to be the family of complexes of the form

As(UNV) E25 Ag(U) @ Ag(V) 255 Ag(X)

for any open cover X = UUV, where i,j,k,l denotes the obvious open immersions. It fol-
lows then from [BG73] that M Vg is a bounded generating family of Zariski hypercovers
in Shz., (Z£/S, A).

(2) Assume & contains the étale morphisms so that the Nisnevich topology is admissible.
We let BGg be the family of complexes of the form

As(W) L= Ag(U) @ As(V) 2505 Ag(X)
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for a Nisnevich distinguished square in . (¢f. 2.1.11)

W v
TR
U—>X.
Then, by applying 3.3.2, we see that BGg is a bounded generating family for Nisnevich
hypercovers in Shyis(Z2/S, A).
(3) Assume that &2 = .7t is the class of morphisms of finite type in .. We let PCDHg
be the family of complexes of the form

As(T) 2755 As(2) @ As(Y) =5 Ag(X)
for a cdh-distinguished square in . (¢f. 2.1.11)

75y

o)

7% X.
Then, by virtue of 3.3.8, CDHg = BGg U PCDHg is a bounded generating family for
cdh-hypercovers in Sheqn (#71/S, A).

(4) The étale topology is not bounded in She(Sm,A) for an arbitray ring A. However, if
A = Q, it is bounded: by virtue of Theorem 3.3.23, a bounded generating family for
étale hypercovers in Shg (Sm, Q)¢ is the union of the class BGg and that of complexes
of the form Qg(Y)e — Qg(X) for any Galois cover Y — X of group G.

(5) As in the case of étale topology, the qfh-topology is not bounded in general, but it is so
with rational coefficients. Let PQF Hg be the family of complexes of the form

Qs(T)e £ Qs(2) @ Qs(YV)e “5 Qg(X)

for a gfh-distinguished square of group G in . (¢f. 3.3.15)

Ty
oA
7> X.
Then, by virtue of Theorem 3.3.25, QF Hg = PQFHg U BGg is a bounded generating
family for qfh-hypercovers in Shym (Y /8, Q).
(6) Similarly, by Theorem 3.3.30, Hg = CDHg UQF Hg is a bounded generating family for
h-hypercovers in Shy, (.#7%/5, Q).

PROPOSITION 5.1.30. Let &7 be an abelian &2-premotivic category compatible with an admis-
sible topology t. We make the following assumptions:

(a) t is bounded in <o ;
(b) for any P-morphism X — S and any n € 7, the functor Homg, (Ms(X){n},—) pre-
serves filtered colimits.

Then t-local complezes are stable by filtering colimits.

PRrOOF. Let N is a bounded generating family for ¢-hypercovers in /. Then a complex C
of @5 is t-flasque if and only if for any H € N{, the abelian group Hom g (o) (H, C) is trivial.
Hence it is sufficient to prove that the functor

C HOmK(WS)(H, O)
preserves filtering colimits of complexes. This will follow from the fact that the functor
C— Homc(ds)(H, C)

preserves filtering colimits. As H a is bounded complex that is degreewise compact, this latter
property is obvious. O
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5.1.31. Consider an abelian &-premotivic category ¢ compatible with an admissible topology
t, with generating set of twists 7. Assume that ¢ is bounded in & and consider a bounded
generating family .4 for t-hypercovers in @s.

Let M(Z2/S, /) be the full subcategory of 7 spanned by direct factors of finite sums of
premotives of shape Mg(X){i} for a Z-scheme X/S and a twist ¢ € 7. This category is additive
and we can associate with it its category of complexes up to chain homotopy. We get an obvious
triangulated functor
(5.1.31.1) K" (M(2/S, 7)) — D(os).

Then the previous functor induces a triangulated functor
K*(M(2/8,4)) /NL — D(s)

where the left hand side stands for the Verdier quotient of K?(M(22/S, <)) by the thick subcat-
egory generated by NE.

The category K°(M(2/S, o)) /N& may not be pseudo-abelian while the aim of the previous
functor is. Thus we can consider its pseudo-abelian envelope and the induced functor

(5.1.31.2) (K”(M(QZ/S, m)//\/g)“ — D(s).

According to Definition 1.4.9, the image of this functor is the subcategory of T-constructible
premotives of the triangulated &-premotivic category D(Zs). Then the following proposition is
a corollary of [CD09, theorem 6.2] :

PRrROPOSITION 5.1.32. Consider the hypothesis and notations above.
If of is finitely T-presented then D(&/) is compactly T-generated. Moreover, the functor
(5.1.31.2) is fully faithful.

Let us denote by D.(«7) the subcategory of D(«7) made of 7-constructible premotives in the
sense of Definition 1.4.9. Taking into account Porposition 1.4.11, the previous proposition admits
the following corollary:

COROLLARY 5.1.33. Consider the situation of 5.1.31, and assume that <f is finitely T-presented.
For any premotive M in D(s), the following conditions are equivalent:
(i) M is compact.
(i) M is T-constructible.
Moreover, the functor (5.1.31.2) induces an equivalence of categories:

(K" (m(2/s, M))/Ng)“ — D ().

EXAMPLE 5.1.34. According to example 5.1.29, we get the following examples:
(1) Let A(Sm/S) = M(Sm/S, /) for & = Shyis(Sm/S,A). We obtain a fully faithful
functor b
(Kb (A(Sm/S)) /BGS) — D (Shyis(Sm/S,A)).
which is essentially surjective on compact objects.
(2) Let A(#11/S) = M(Sm/S, o) for & = Shean (#7"/S,A). We obtain a fully faithful
functor

(Kb (A(#71/S))/BGs U CDHS)h =D (Shcdh(yft /S, A) )

which is essentially surjective on compact objects.
(3) Let Q¢t(Sm/S) = M(Sm/S, o) for o = She(Sm/S, Q). We obtain a fully faithful
functor h
(K" (Qa(5m/9)) /BGs) = D (Sha(sm/5,Q)).
which is essentially surjective on compact objects.

5.1.35. Consider an abelian &2-premotivic category /. We introduce the following property
of of:
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(C) Consider a projective system (Sy)aeca of schemes in . with affine transition maps such
that S = @aeA Sq belongs to .. For any index ay € A, any object A,, in o7 , and

ag?
any twist n € 7, the canonical map

lig Hom, (1s,{n}, Aa) — Homy(1s{n}, A)
a€A/ag
is an isomorphism where A, (resp. A) is the pullback of A,, along the canonical map
Sa = Sag (resp. S — Sq,).

PRrROPOSITION 5.1.36. Consider an abelian &2-premotivic category of compatible with an ad-
missible topology t and satisfying the assumption (C) above.
Then the derived premotivic category D(&) is T-continuous.

PROOF. We use Proposition 4.3.6 applied to the ¢-descent model structure on C(efr) for
T=SorT=2_5,. (see Paragraph 5.1.13). Recall from Paragraph 5.1.11 that this model structure
is associated with a descent structure. Thus according to [CDO09, 2.3], there exist an explicit
generating set I (resp. J) for cofibrations (resp. trivial cofibrations). Moreover, the source or
target of any map in I U J is a complex C satisfying the following assumption:

(rep) for any integer i € Z, C? is a sum of premotives of the form My (X){n} where X/T is a
Z-scheme and n € 7.

Thus, to check the assumption of 4.3.6 for C(«7), we fix a projective system (Sq)aca satisfying
the assumptions of property (C) above; we have to prove that for any index oy € A and any
complexes C,, and E,, such that C,, satisfies (rep), the natural map:

lim  Homc (s, )(Cas Ea) = Home(ws) (C, E)
a€A/ag
is bijective.

Given the definition of morphisms in a category of complexes, it is sufficient to check this
when the Hom groups are computed as morphisms of Z-graded objects. Thus it is sufficient to
treat the case where C,, and E,, are concentrated in degree 0. Thus, as C,, satisfies property
(rep), we are exactly reduced to assumption (C) on 7. O

ExXAMPLE 5.1.37. (1) Assume £ is contained in the class of morphisms of finite type.
Then the abelian &7-premotivic category PSh(Z2,A) of example 5.1.1 satisfies as-
sumption (C). Indeed, property (C) when A is a representable presheaf follows from the
assumption on &: Z-schemes over some base S always are of finite presentation over
S — S is noetherian according to our general assumption 5.0. Then the case of a gen-
eral presheaf A follows because A is an inductive limit of representable presheaf and the
global sections functor commutes with inductive limit of presheaves.
(2) Let .#/* be the class of morphisms of finite type and let ¢ be one of the following
topologies: Nis, ét, cdh, gfh, h.
Then the generalized abelian premotivic category Shy (y ft, A) of example 5.1.4 satisfies
assumption (C).
Indeed, according to the preceding example, we have only to prove that for any
morphism f : X — 5, the functor

f*: PSh(#L", A) — PSh(7L", A)

preserves the property of being a t-sheaf.

If f is a morphism of finite type, the functor f* admits as a left adjoint the functor
f#, which preserves t-covers. Thus the assertion is clear in that case.

In the general case, we use the fact that X/S is a projective limit of a projective
system (X, )aca where X, is an S-scheme affine and of finite type over S. To check that
for a t-sheaf F over S, the presheaf f*(F) is a t-sheaf, we fix a t-cover (W;);cr of X in
,5’)’;"‘. As X is noetherian, we can assume [ is finite. Moreover, there exists an index
ag € A such that for the t-cover (W;);er can be lifted to X4,. Then, using property (C)
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of PSh(.#/t, A) applied to F' and (X,), we reduce to check that f*(F) is a t-sheaf for
« > «ap. This follows from the first case treated.

(3) Let Sm be the class of smooth morphisms and ¢ be one of the topologies: Nis, ét.
As we will see in Example 6.1.1, there exists a canonical enlargement of abelian premotivic
categories (see (6.1.1.1)):

py : Shy(Sm, A) = Shy (F71A) : p*.

As the functor py is fully faithful and commutes with f* for any morphism of schemes
f, we deduce from the preceding point that the abelian premotivic category Shy(Sm, A)
satisfies the above condition (C).

As an application of the previous proposition, we thus obtain that the derived pre-
motivic category D(Shy(Sm, A)) is 7-continuous.

5.2. The A'-derived premotivic category.
5.2.a. Localization of triangulated premotivic categories.

5.2.1. Let & be an abelian &-premotivic category compatible with an admissible topology ¢
and D(«7) be the associated derived &2-premotivic category.

Suppose given an essentially small family of morphisms # in C(&) which is stable by the
operations f*, f; (in other words, # is a sub-Z-fibred category of C(</)). Remark that the
localizing subcategory T of D(%7) generated by the cones of arrows in # is again stable by these
operations. Moreover, as for any Z-morphism f : X — S we have f;f* = Mgs(X) ®s (—), the
category T is stable by tensor product with a geometric section.

We will say that a complex K over &g is # -local if for any object T' of T and any integer
n € Z, Homp ) (T, K[n]) = 0. A morphism of complexes p : C' — D over /s is a # -equivalence
if for any # -local complex K over g, the induced map

HomD(%s)(D, K) — HOIHD(dS)(C, K)
is bijective.
A morphism of complexes over &g is called a # -fibration if it is a t-fibration with a % -local
kernel. A complex over &g will be called # -fibrant if it is t-local and # -local.

As consequence of [CDO09, 4.3, 4.11 and 5.6], we obtain :

PROPOSITION 5.2.2. Let &7 be an abelian & -premotivic category compatible with an admissible
topology t and W be an essentially small family of morphisms in C(&/) stable by f* and fy.

Then the category C(s) is a proper closed symmetric monoidal category with the # -fibrations
as fibrations, the cofibrations as defined in 5.1.11, and the # -equivalences as weak equivalences.

The homotopy category associated with this model category will be denoted by D(.dg)["//sfl].
It can be described as the Verdier quotient D(<7s)/Ts.

In fact, the # -local model category on C(&s) is nothing else than the left Bousfield localization
of the t-local model category structure. As a consequence, we obtain an adjunction of triangulated
categories:

(5.2.2.1) Ts : D(els) 2= D(os) [ #5 '] : Os

such that Og is fully faithful with essential image the % -local complexes. In fact, the model
structure gives a functorial # -fibrant resolution 1 — Ry

Ry : C(s) — C(es),

which induces Og.

Note that the triangulated category D(</s)[#4 '] is generated by the complexes concentrated in
degree 0 of the form Mg(X){i} — or, equivalently, the #-local complexes Ry (Mg(X){i}) — for a
P-scheme X and a twist i € 7.

REMARK 5.2.3. Another very useful property is that % -equivalences are stable by filtering
colimits; see [CD09, prop. 3.8].
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5.2.4. Recall from 5.1.14 that for any morphism (resp. &-morphism) f : T — S, the functor
f* (vesp. fy) satisfies descent; as it also preserves #/, it follows from [CD09, 4.9] that the
adjunction

f*:C(ds) = Clarr) : fs
(vesp. fz: C(es) — C(ar) : f7)

is a Quillen adjunction with respect to the #'-local model structures. This gives the following
corollary.

COROLLARY 5.2.5. The &-fibred category C(<f) with the # -local model structure on its fibers
defined above is a monoidal P-fibred model category, which is moreover stable, proper and combi-
natorial.

We will denote by D(7)[# ~!] the triangulated £-premotivic category whose fiber over a
scheme S is the homotopy category of the #s-local model category C(«/). The adjunction
(5.2.2.1) readily defines an adjuntion of triangulated &?-premotivic categories

(5.2.5.1) 7m:D() 2 D(F) ¥ : 0.

The P-fibred categories D(«/) and D(&/)[# ~!] are both 7-generated (and this adjunction is
compatible with 7-twists in a strong sense).

REMARK 5.2.6. For any scheme S, the category D(o/s)[#4 '] is well generated and has a
canonical dg-structure (see also 5.1.19).

5.2.7. With the notations above, let us put .7 = D(&)[# ~!] to clarify the following notations.
As in 5.1.20, the fibred category .7 has a canonical extension to .-diagrams 2 : [ — .7.

If we define #4 as the class of morphisms (f;)ier in C(&/ (2", 1)) such that for any object i,
fi is a #-equivalence, then 7 (X) is the triangulated category D(e7 (27, 1))[#,'].

Again, this triangulated category is symmetric monoidal closed and for any morphism (resp.
P-morphism) ¢ : (Z7,1) = (#,J), we get (derived) adjunctions as in 5.1.20:

(5.2.7.1) Lo*: 7(#,J) = T(Z,1): Ry,
(5.2.7.2) (resp. Ly : T(Z',1) = T(¥,J) : Lo* = ¢")
In fact, .7 is then a complete monoidal Z.,,-fibred category over the category of diagrams of

schemes and the adjunction (5.2.5.1) extends to an adjunction of complete monoidal Z,,-fibred
categories.

EXAMPLE 5.2.8. Suppose we are under the hypothesis of example 5.1.24.2.

Let #; s denote the family of maps which are of the form Ag(X) — Ag(X) for a t-hypercover
X — X in &2/S. Then ¥, is obviously stable by f* and f;.

Recall now that a complex of ¢-sheaves on Z2/S is local if and only if its ¢-hypercohomology
and its hypercohomology computed in the coarse topology agree (cf. 5.1.10).

This readily implies the adjunction considered in example 5.1.24.2

ay : D(PSh(Z2,A)) 2 D(Shy(Z2,A)) : Ray ..
induces an equivalence of triangulated &2-premotivic categories
D(PSh(2, A))[#; "] = D(Shy(2, A)).

Recall Ray , is fully faithful and identifies D(Sh (S, A)) with the full subcategory of D(PSh(S, A))
made by t-local complexes.

5.2.9. A triangulated &-premotivic category (7, M) such that there exists:

(1) an abelian &-premotivic category &7 compatible with an admissible topology tg on Sm.
(2) an essentially small family % of morphisms in C(4/) stable by f* and f;
(3) an adjunction of triangulated £-premotivic categories D(&)[# ~1| ~ T
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will be called for short a derived &-premotivic category. According to convention 5.0(d) and from
the above construction, .7 is 7-generated for some set of twists 7. 67

Let us denote simply by Mg(X) the geometric sections of 7. In this case, using the morphisms
(5.1.24.1) and (5.2.5.1), we get a canonical morphism of triangulated &?-premotivic categories:

(5.2.9.1) ¢* : D(PSh(P,Z)) = T : ..

By definition, for any premotive M, any scheme X and any integer n € Z, we get a canonical
identification:

Given any simplicial scheme X', we put Mg(X) = ¢* (ZS(X)), so that we also obtain:
(5293) Homy(s) (Ms(X), M[TLD =H" ( Tot™ F(X, R"}’* (M)))

PROPOSITION 5.2.10. Consider the above notations and t an admissible topology. The follow-
ing conditions are equivalent.
(i) For any t-hypercover X — X in & /S, the induced map Ms(X) — Mg(X) is an isomor-

phism in T (S).

(i) For any t-hypercover p : X — X in P/S, the induced functor Lp* : 7(X) — T (X) is
Sully faithful.

(") T satisfies t-descent.

(ii) There exists an essentially unique map @i : D(Shy(2/S,Z)) — T(S) making the fol-
lowing diagram essentially commutative:

*

©

D(PSh(2/S,Z)) —>— 7(8)

‘“\L /
D(Shi(2/5.2))
(i) For any complex C € C(PSh(Z2/S,Z)) such that a;(C) =0, o*(C) = 0.
(i) For any map f : C — D in C(PSh(L/S,Z)) such that a.(f) is an isomorphism, o*(f)
18 an 1somorphism.
(i1i) There exists an essentially unique map g : 7 (S) — D(Sh(/S,Z)) making the fol-
lowing diagram essentially commutative:

D(PSh(2/8,Z)) <—— 7(S)
ROt'T
D(Sh(£/5,2))
(i1’ ) For any premotive M in T (S), the complex p.(M) is local.
(i@’ ) For any premotive M in 7 (S), any &-scheme X/S and any integer n € Z,
Hom 7 (5) (Ms(X), M[n]) = H}' (X, . (M)).

When these conditions are fulfilled for any scheme S, the functors appearing in (i) and (i) induce
a morphism of triangulated Z2-premotivic categories:

PROOF. The equivalence between conditions (7), (i') and (") is clear (we proceed as in the
proof of 5.1.21). The equivalences (i7) < (#i') < (i¢") and (i#i) < (iii") follows from example 5.2.8
and the definition of a localization. The equivalence (i) < (#") follows again from loc. cit. The
equivalences (i) < (i) < (i#") follows finally from (5.2.9.2), (5.2.9.3), and the characterisation
of a local complex of sheaves (¢f. 5.1.10). O

Ptx

67We will formulate in some remarks below universal properties of some derived Z-premotivic categories.
When doing so, we will restrict to morphisms of derived &?-premotivic categories which can be written as

Ly : D(4)[#, ] — D(e)[#5 1]

for a morphism ¢ : 2/ — o of abelian &-premotivic categories compatible with suitable topologies. More natural
universal properties could be obtained if one considers the framework of dg-categories or triangulated derivator.
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REMARK 5.2.11. The preceding proposition express the fact that the category D(Shy (2, Z))
is the universal derived &-premotivic category satisfying t-descent.

5.2.12. We end this section by making explicit two particular cases of the descent property
for derived &-premotivic categories.

Consider a derived &2-premotivic category .7 with geometric sections M. Considering any
diagram X : I — £/S of P-schemes over S, with projection p : X — S, we can associate a
premotive in 7

Ms(X) = Lpﬁ(]ls) = LliﬂMs(Xi).
iel
In particular, when I is the category e — e, we associate to every S-morphism f : Y — X of
P-schemes over S a canonical®® bivariant premotive

Ms(X L v).

When f is an immersion, we will also write Mg(Y/X) for this premotive. Note that in any case,
there is a canonical distinguished triangle in .7 (S):

Ms(X) 5 Ms(v) 75 Mo(X L5 v) 2 Me(XO[1).

This triangle is functorial in the arrow f — with respect to commutative squares.
Given a commutative square of &-schemes over S

’
B+

Y
(5.2.12.1) gi J,f
A—=sX

we will say that the image square in .7 (S)

is homotopy cartesian® if the premotive associated with diagram 5.2.12.1 is zero.

ProrosITION 5.2.13. Consider a derived P-premotivic category 7. We assume that &
contains the étale morphisms (resp. P = Ft). Then, with the above definitions, the following
conditions are equivalent:

(i) T satisfies Nisnevich (resp. proper cdh) descent.
(ii) For any scheme S and any Nisnevich (resp. proper cdh) distinguished square Q of S-
schemes, the square Mg(Q) is homotopy cartesian in 7 (S).
(iii) For any Nisnevich (resp. proper cdh) distinguished square of shape (5.2.12.1), the canon-
ical map Mg(Y/B) Y9, Mg(X/A) is an isomorphism.
Moreover, under these conditions, to any Nisnevich (resp. proper cdh) distinguished square Q of
shape (5.2.12.1), we associate a map

Do+ Ms(X) ™ Mg(X/A) L2 Mo (v/B) 25 Ms(v)[1]

which defines a distinguished triangle in 7 (S):

(%)

Ms(B) =% My(Y) @ Ms(4) L2

Mg(X) 2 Mg(V)[1].

681 fact, if 7 = D(&)[# 1] for an abelian Z-premotivic category «/, then we can define Mg(X — Y) as

the cone of the morphism of complexes (concentrated in degree 0) Mg (X) f—*> Ms(Y).

691 7 = D(&)[# ~1], this amount to say that the diagram obtained of complexes by applying the functor
Mg (—) is homotopy cartesian in the # -local model category C(<).
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PROOF. The equivalence of (i) and (ii) follows from the theorem of Morel-Voevodsky 3.3.2
(resp. the theorem of Voevodsky 3.3.8). To prove the equivalence of (ii) and (iii), we assume
T = D(&)[#~1]. Then, the homotopy colimit of a square of shape 5.2.12.1 is given by the
complex

Cone(Cone(Mg(B) — Mg(Y)) — Cone(Mg(A) — Mgs(X))).

This readily proves the needed equivalence, together with the remaining assertion. O

REMARK 5.2.14. In the first of the respective cases of the proposition, condition (ii) is what
we usually called the Brown-Gersten property (BG) for 7, whereas condition (iii) can be called
the excision property. In the second respective case, condition (ii) will be called the proper cdh
property for the generalized premotivic category 7. We say also that 7 satisfies the (cdh) property
if it satisfies condition (ii) with respect to any cdh distinguished square Q.

5.2.b. The homotopy relation.

5.2.15. Let &/ be an abelian &-premotivic category compatible with an admissible topology
t.

We consider #a:1 to be the family of morphisms Mg(AL){i} — Mg(X){i} for a F-scheme
X/S and an twist ¢ in 7. The family #a: is obviously stable by f* and f;.

DEFINITION 5.2.16. Let &/ be an abelian &Z-premotivic category compatible with an admis-
sible topology ¢. With the notation above, we define DZJZ (/) = D(/)[# ;'] and refer to it as the
(effective) P-premotivic A'-derived category with coefficients in o7

By definition, the category Dzﬁ;(ﬂ) satisfies the homotopy property (Htp) (see 2.1.3). Ac-
cording to the general facts about localization of derived premotivic categories, the triangulated
premotivic category Dzﬁi (&) is T-generated.

EXAMPLE 5.2.17. We can divide our examples into two types:
1) Assume & = Sm:

Consider the admissible topology ¢t = Nis. Following F. Morel, we define the (effective) A'-
derived category over S to be Dzﬁ; (Shyis(Sm /S, A)). Indeed we get a triangulated premotivic
category (see also the construction of [Ayo07b]):

(5.2.17.1) DI\ =D (Shxis(Sm, A)).

We shall also write its fibres

(5.2.17.2) DS, A) =D () = D (Shyis(Sm/S, A))
for a scheme S. For A = Z, we shall often write simply

(5.2.17.3) DY := DY (Shyis(Sm, Z)) .

Another interesting case is when ¢t = ét; we get a triangulated premotivic category of effective

étale premotives:
D (Shet (Sm, A)).

In each of these cases, we denote by A%(X) the premotive associated with a smooth S-scheme
X.
2) Assume & = .77t

Consider the admissible topology ¢ = h (resp. t = qfh). In [Voe96], Voevodsky has introduced
the category of h-motives (resp. qfh-motives). In our formalism, one defines the category of
effective h-motives (resp. effective h-motives) over S with coefficients in A as:

DM (S,A) = D, (Shy, (#7 /8, A))
resp. DM (S, A) = DS (Shom (#7/5, A)) .

In other words, this is the Al-derived category of h-sheaves (resp. qfh-sheaves) of A-modules.
Moreover, these categories for various schemes S are the fibers of a generalized premotivic
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triangulated category. What we have added to the construction of Voevodsky is the functors of
the generalized premotivic structure. ‘
We will denote simply by A% (X) the corresponding premotive associated with X in DM (S, A).
Another interesting case is obtained when t = cdh. We get an A'-derived generalized pre-
motivic category Dzﬁi (Shcdh (5” ft, A)) whose premotives are simply denoted by A‘gdh(X ) for any
finite type S-scheme X.

5.2.18. Let C be a complex with coefficients in o7s. According to the general case, we say that
C is Al-local if for any Z-scheme X/S and any (i,n) € 7 x Z, the map induced by the canonical
projection
Homp o) (Ms (X ){i}[n], C) = Hompuy)(Ms(Ax){i}[n],C)
is an isomorphism. The adjunction (5.2.2.1) defines a morphism of triangulated &?-premotivic
categories
D(«/) = DY (o)

such that for any scheme S, ng (#s) is identified with the full subcategory of D(Zs) made of
Al-local complexes.

Fibrant objects for the model category structure on C(&/) appearing in Proposition 5.2.2
relatively to #a1, simply called A'-fibrant objects, are the t-flasque and A'-local complexes.

We say a morphism f : C' — D of complexes of @75 is an A'-equivalence if it becomes an
isomorphism in Dzﬁf(%s). Considering moreover two morphisms f,g : C — D of complexes of
/g, we say they are Al-homotopic if there exists a morphism of complexes

H:Mg(AY)®sC — D
such that H o (so ® 1¢) = f and H o (s1 ® 1¢) = g, where sg and s; are respectively induced
by the zero and the unit section of AL/S. When f and g are A'-homotopic, they are equal as
morphisms of DAl(Q/S)- We say the morphism p : C — D is a strong A'-equivalence if there
exists a morphism ¢ : D — C such that the morphisms p o ¢ and g o p are Al-homotopic to the

identity. A complex C is Al-contractible if the map C' — 0 is a strong A'-equivalence.
As an example, for any integer n € N, and any &?-scheme X/S, the map

pxt Ms(A%) — Ms(X)

induced by the canonical projection is a strong Al-equivalence with inverse the zero section s , :
Ms(X) — Ms(A})

5.2.19. The category Di{fl(sz/) is functorial in &7.

Let ¢ : & = % : 1 be an adjunction of abelian &-premotivic categories. Consider two
topologies t and ¢’ such that ¢’ is finer than ¢. Suppose & (resp. %) is compatible with ¢ (resp.
).

For any scheme S, consider the evident extensions ¢g : C(Zs) = C(HBs) : s of the above
adjoint functors to complexes. We easily check that the functor g preserves Al-local complexes.
Thus, applying 5.1.23, the pair (pg,%s) is a Quillen adjunction for the respective Al-localized
model structure on C(&Zs) and C(Ag); see [CDO9, 3.11]. Considering the derived functors, it is
now easy to check we have obtained an adjunction

Lo : DY (o) = DY (%) : Ry
of triangulated &?-premotivic categories.

EXAMPLE 5.2.20. Consider the notations of 5.2.17. In the case where & = Sm, we get from
the adjunction of (5.1.24.2) the following adjunction of triangulated premotivic categories

al, DAlA = DY (Shei (Sm, A)) : Rag, .

EXAMPLE 5.2.21. Let .7 be a derived &?-premotivic category as in 5.2.9. If 7 satisfies the
property (Htp), then the canonical morphism (5.2.9.1) induces a morphism

D (PSh(2,2)) = 7.
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If moreover J satisfies t-descent for an admissible topology ¢, we further obtain as in 5.2.10 a
morphism

DY (Shi(2,2Z)) = .

Particularly interesting cases are given by ng (resp. ng (Shean (-#7*,Z))) which is the univer-
sal derived premotivic category (resp. generalized premotivic category), i.e. initial premotivic
category satisfying Nisnevich descent (resp. cdh descent) and the homotopy property.

5.2.22. As in Example 5.1.25, let ¢ be an admissible topology and ¢ : A — A’ be an extension
of rings. Then, from the -premotivic adjunction (5.1.25.1) and according to Paragraph 5.2.19,
we get an adjunction of triangulated &7-premotivic categories:
Lo, : D (Shy(2,A)) = DY (Shy(2,1)) : Re..
Consider also complexes C' and D of t-sheaves of A-modules over #5. Then there exists a canonical
morphism of A’-modules:
(5.2.22.1) HomDZjl(Sht(%yA))(C, D) @a N — Homps (g1, (25 00)) (Le*(0), Le*(D))

There are two notable cases where this map is an isomorphism:

PROPOSITION 5.2.23. Consider the above assumptions. Then the map (5.2.22.1) is an iso-
morphism in the two following cases:
(1) If N is a free A-module and C is compact;
(2) If N is a free A-module of finite rank.

PROOF. Note that in any case, the functor ¢, admits a right adjoint ¢'.”
We can assume that A’ = I.A for a set I. In this case, we get for any sheaf F' of A-modules:
0" (F)=F @z A = LF.
Moreover, for any &-scheme X/S, we get:
0 (AS(X)) = AG(X) = LAG(X).

In particular, the functor ¢, : C(Shi(Hs,A’)) — C(Shi(Ps,A)) satisfies descent in the sense
of [CDO09, 2.4] and preserves the family #x1. Thus it is a left Quillen functor with respect to
the A'-local model structures. In particular, because it is also a right Quillen functor, we get:
Ry, = ¢« = Ly,. In particular, we get in Dzﬁ;(Sht(t@s,A)):

R Le* (D) = Lo, Lp" (D) = L(p.¢")(D) = 1.D.
Thus the Proposition follows as the functor Hom(C, —) commutes with direct sums if C' is compact
and with finite direct sums in any case. O
We remark the following useful property.
PROPOSITION 5.2.24. Consider a morphism
O A 2R o

of abelian P-premotivic categories such that of (resp. B) is compatible with an admissible topology
t (resp. t'). Assume t' is finer than t.

Let S be a base scheme. Assume that ¢, : /s — PBs commutes with colimits’*. Then
0y 1 C(s) — C(ABs) respects Al-equivalences.

In other words, the right derived functor Rep, : Dzﬁ;(%’s) — ng (4s) satisfies the relation
Ry, = ¢..

701t is defined by the formula:
¢ (F) = Homa (N, F)
equipped with its canonical structure of sheaf of A’-modules.
"1This amounts to ask that p« is exact and commutes with direct sums.
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PROOF. In this proof, we write ¢, for ¢.s. We first prove that ¢. preserves strong Al-
equivalences (see 5.2.18).

Consider two maps u,v : K — L in C(%g). To give an A'-homotopy H : Mg(AL, B)@sK —
L between u and v is equivalent by adjunction to give a map H' : K — Homg,(Ms(AL, %), L)
which fits into the following commutative diagram:

H'

L<—H0mggs(Ms(A}g7%),L) -

-
S0 S1

L

where sg and s; are the respective zero and unit section of Aé /S.

Because Ms(AL, B) = ¢5(Ms(AL, <)), we get a canonical isomorphism (see paragraph
1.2.9)

@« (Homgp, (Ms(AL, B), L)) ~ Homg,(Ms(AL, o), . (L)).

Thus, applying ¢. to the previous commutative diagram and using this identification, we obtain
that ¢.(u) is Al-homotopic to ¢, (v).

As a consequence, for any &-scheme X over S, and any %-twist ¢, the map

e (Ms(Ak, B){i}) = o (Ms(X, B){i})

induced by the canonical projection is a strong A'-equivalence, thus an A'-equivalence.

The functor @, : Bs — g commutes with colimits. Thus it admits a right adjoint that we
will denote by ¢'. Consider the injective model structure on C(Ag) and C(%s) (see [CDO9, 2.1]).
Because ¢, is exact, it is a left Quillen functor for these model structures. Thus, the right derived

functor R¢' is well defined. From the result we just get, we see that R¢' preserves Al-local
objects, and this readily implies L, = ¢, preserves A'l-equivalences. O

5.2.25. To relate the category DZﬁ;(S) with the homotopy category of schemes of Morel and
Voevodsky [MV99], we have to consider the category of simplicial Nisnevich sheaves of sets
denoted by A°P Sh(Sm/S). Considering the free abelian sheaf functor, we obtain an adjunction
of categories

A°? Sh(Sm/S) = C(Sh(Sm/S,Z)).
If we consider Blander’s projective Al-model structure [Bla03] on the category A% Sh(Sm/S),
we can easily see that this is a Quillen pair, so that we obtain a &-premotivic adjunction of simple
Z-premotivic categories
N:s =D : K.
Note that the functor N sends cofiber sequences in .7°(S) to distinguished triangles in D;ﬁ; ().
5.2.c. Explicit A'-resolution.

5.2.26. Consider an abelian &2-premotivic category &7 compatible with an admissible topology
t.
Consider the canonically split exact sequence

0—1g 2% Mg(AL) = U =0

where the map s : 1g — Mg(AY) is induced by the zero section of A'. The section corresponding
to 1 in A' defines another map

S1 ¢ ]]-S — Ms(Als)
which does not factor through sg, so that we get canonically a non trivial map u : 1g — U. This
defines for any complex C' of «/s a map, called the evaluation at 1,

Hom(U,C) = 1g ®5 Hom(U,C) *25 U @ Hom(U, C) < C.
We define the complex RX%(C) to be
Rgf (C) = Cone(Hom(U,C) — C).
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We have by construction a map
ro 1 C — RU(O).
(1)

This defines a morphism of functors from the identity functor to R,;. For an integer n > 1, we
define by induction a complex

RYH(€) = RO(RTN(©)),
and a map

1
"R((C) RY)(C) — R,

We finaly define a complex Ra1(C) by the formula
Ra1(C) =lim RY)(C).

We have a functorial map

C = Rar(O).

LEMMA 5.2.27. With the above hypothesis and notations, the map C — Ra1(C) is an Al-
equivalence.

PROOF. For any closed symmetric monoidal category 4 and any objects A, B, C' and [ in €,
we have

Hom(I ® Hom(B,C), Hom(A,C)) = Hom(Hom(B,C), Hom(I, Hom(A,C)))
= Hom(Hom(B,C), Hom(I @ A,C)).

Hence any map I ® A — B induces a map I ® Hom(B,C) — Hom(A,C) for any object C. If
we apply this to ¢ = C(&s) and I = Mg(A'), we see immediately that the functor Hom(—,C)
preserves strong A'-homotopy equivalences. In particular, for any complex C, the map C —
Hom(Mg(AL),C) is a strong A'-homotopy equivalence. This implies that Hom(U, C) — 0 is an
Al-equivalence, so that the map r¢ is an Al-equivalence as well. As A'-equivalences are stable
by filtering colimits, this implies our result. O

PrOPOSITION 5.2.28. Consider the above notations and hypothesis, and assume that t is
bounded in o .

For any t-flasque complex C of <7, the complex Ra1(C) is t-flasque and A'-local. Moreover,
the morphism C — Ra1(C) is an Al-equivalence. If furthermore C' is t-flasque, so is Ra1(C).

PROOF. The last assertion is a particular case of Lemma 5.2.27. The functor Rfif preserves

t-flasque complexes. By virtue of 5.1.30, the functor Ra1 has the same gentle property. It thus
remains to prove that the functor Ra: sends t-flasque complexes on Al-local ones. We shall use
that the derived category D(&7s) is compactly generated; see 5.1.30.

Let C be a t-flasque complex of «75. To prove R1(C) is Al-local, we are reduced to prove
that the map

Ra1(C) = Hom(Ms(Ak), Ra:(C))

is a quasi-isomorphism, or, equivalently, that the complex Hom(U, Ra1(C)) is acyclic. As U is a
direct factor of Mg(AL, o), for any &-scheme X over S and any i in I, the object Zg(X; % ){i}®g
U is compact. This implies that the canonical map

limg Hom (U, R (C)) — Hom(U, Rax(C))

is an isomorphism of complexes. As filtering colimits preserve quasi-isomorphisms, the complex
Hom(U, Ra1(C)) (resp. Ra:1(C)) can be considered as the homotopy colimit of the complexes
Hom(U, RXLI) (©)) (resp. RXLI (). In particular, for any compact object K of D(/s), the canonical
morphisms

liy Hom(K, Hom (U, Ry} (C))) — Hom (K, Hom(U, Rax(C)))

limy Hom (K, Ry (C)) — Hom(K, Ra1 (C))



5. FIBRED DERIVED CATEGORIES 139

are bijective.
By construction, we have distinguished triangles
Hom(U, R{)(C)) — RY)(C) — RV (C) — Hom(U, R{Y (O))[1].
This implies that the evaluation at 1 morphism
evy : Hom(U, Ra1(C)) — Ra1(C)
induces the zero map
Homp(u) (K, Hom(U, Ra1(C))) — Homp () (K, Ra1(C))
for any compact object K of D(«Z). Hence the induced map
a = Hom(U, evy) : Hom(U, Hom(U, Ra1(C))) — Hom(U, Ra1(C))
has the same property: for any compact object K, the map
Homp (o) (K, Hom(U, Hom(U, Ra1(C)))) — Homp ) (K, Hom(U, Ra1(C)))
is zero.
The multiplication map A' x A — A! induces a map
p:U®sU —U
such that the composition of
w2 Hom(U, Ra1(C)) — Hom(U ®g U, Ra1(C)) = Hom(U, Hom(U, Ra1(C)))
with a is the identity of Hom (U, Ra1(C)). As D(«/s) is compactly generated, this implies that
Hom(U, Ra1(C)) = 0 in the derived category D(s). O
REMARK 5.2.29. Consider a t-flasque resolution functor (i.e. a fibrant resolution for the ¢-local

model structure) R; : C(#/s) — C(s), 1 — R;. As a corollary of the proposition, the composite
functor Ra: o R; is a resolution functor by t-local and A'-local complexes.

EXAMPLE 5.2.30. Consider an admissible topology t and the &2-premotivic A!-derived cate-
gory D = Dzﬁi (Sh¢ (22, A)). Suppose that ¢ is bounded for abelian t-sheaves (for example, this is
the case for the Zariski and the Nisnevich topologies, see 5.1.29).

Let C be a complex of abelian t-sheaves on /5. If C is A'-local, then

Homp(s)(As(X), 0) = HY (X;O)
(this is true without any condition on ).
Consider a t-local resolution C; of C'in C (Sh,(£/S,A)). Then we get the following formula:
HOHlD(S) (Afg(X),C’[n]) =H" (F(X, Rax (Ot)))
COROLLARY 5.2.31. Consider a morphism of abelian &2-premotivic categories
A 2B
Suppose there are admissible topologies t and t', with t' finer than t, such that the following

conditions are verified.

(i) o is compatible with t and % is compatible with t'.
(i) # and D(B) are compactly T-generated.
(iii) For any scheme S, the functor vg : Bs — s preserves filtering colimits.

Then, v : C(Bs) — C(s) preserves A'-equivalences between t'-flasque objects. If moreover g
is exact, the functor g preserves A'-equivalences.

PrOOF. We already know that 1g is a right Quillen functor, so that it preserves local objects
and A'-fibrant objects. This implies also that 1)y preserves A'-equivalences between A'-fibrant
objects (this is Ken Brown’s lemma [Hov99, 1.1.12]). Let D be a t’-flasque complex of %Bg. Then
Pg(D) is a t-flasque complex of o7s. It follows from Proposition 5.2.28 that Ra1(D) is Al-local
and that D — Ra1(D) is an Al-equivalence. Lemma 5.2.27 implies the map

Ys(D) — Ra1(vs(D)) = ¢s(Rar (D))
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is a an Al-equivalence. This implies the first assertion.
The last assertion is a direct consequence of the first one. O

5.2.32. Consider the usual cosimplicial scheme A® defined by
A" = Spec (Z[to, ..., tn]/(t1 + -+t — 1)) A"
(see [MV99]). For any scheme S, we get a cosimplicial object of <75, namely Mg(AY%). Given any
complex C of o7, we define its associated Suslin singular complex as
(5.2.32.1) C*(C) = Tot® Hom(Mg(AY),C),
where Hom(Mg(A%),C) is considered as a bicomplex by the Dold-Kan correspondence. The
canonical map Mg(A%) — 1g induces a map
C — C*(0).
LEMMA 5.2.33. For any complex C' of <@g, the map
C*(C) — Hom(Ms(Ag), C*(C)) = C*(Hom(Ms(Aj), C))

is a chain homotopy equivalence.

PROOF. The composite morphism
(sop x Id). : Mg(A' x A%L) — Ms(A' x AY),

where sq is the map induced by the zero section, and p is the map induced by the obvious projection
of A! on its base, is chain homotopic to the identity. Indeed, the homotopy relation is given by

the formula .

sn= Y (-1)".(1@s i) : Ms(A x ATH) — Mg(A' x A%)
i=0
where 1 is the identity of Mg(A}), and ¢; is induced by the map AZH — A x A% which sends
the j-th vertex vjn41 to either 0 X v;,, if 5 <4, or to 1 x vj_1, otherwise. This implies the
lemma. U
LEMMA 5.2.34. For any t-flasque complex C' of /s, we have a canonical isomorphism

C*(C) ~ LliﬂRHom(Ms(Ag), )

This is a variation on the Dold-Kan correspondence. As a direct consequence, we get:
LEMMA 5.2.35. For any complex C of os, the map C — C*(C) is an A'-equivalence.

PROPOSITION 5.2.36. If t is bounded in <7, then, for any t-flasque complex C of s, C*(C)
is Al-local.

ProoOF. Using the first premotivic adjunction of example 5.2.21 and the fact that D(</) is
compactly generated (5.1.30), we can reduce the proposition to the case where s is the category
of presheaves of abelian groups over 42/, in which case this is well known. O

5.2.d. Constructible A'-local premotives.

5.2.37. Consider an abelian &2-premotivic category &7 compatible with an admissible topology
t. Assume that ¢ is bounded in & (see Definition 5.1.28) and consider a bounded generating family
N for t-hypercovers in <.
Let TAls be the family of complexes of C(4Z) of shape
Ms(AX){i} — Ms(X){i}

for a P-scheme X over S and a twist ¢ € I. Then the functor (5.1.31.1) obviously induces the
following functor

(5.2.37.1) (Kb(M(ﬁ/sz o)) [N U TAlS)h — DY (o),
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where the category on the left is the pseudo-abelian category associated to the Verdier quotient
of K (M(@/S, M)) by the thick subcategory generated by NE U TAls. Applying Thomason’s
localization theorem [Nee01], we get from Proposition 5.1.32 the following result:

PrOPOSITION 5.2.38. Consider the previous hypothesis and notations and assume that <f is
finitely T-presented.
Then ng(ﬁf) is compactly T-generated. Moreover, the functor (5.2.37.1) is fully faithful.

Let us denote by Dzﬁi () the subcategory of Diﬁf («7) made of T-constructible premotives in
the sense of Definition 1.4.9. Taking into account Proposition 1.4.11, we deduce from the above
proposition the following corollary:

COROLLARY 5.2.39. Under the assumptions of 5.2.38, for any premotive M in Dzﬁi (s), the
following conditions are equivalent:
(i) M is compact;
(i) M is T-constructible.

Moreover, the functor (5.2.37.1) induces an equivalence of categories:
h €
(K" (M(2/5, ) INEUTAL) = DL ().
EXAMPLE 5.2.40. With the notations of 5.1.34, we get the following equivalences of categories:
h
(K" (A(Sm/9)) /(BGs UTay)) — DEL(S, A).

b .
(Kb (A(#71/5)) JCDHs U Tas ) DY, (Shcdh( 2NN )
This statement is the analog of the embedding theorem [VSFO0O0, chap. 5, 3.2.6].

PROPOSITION 5.2.41. Assume & = .71t is the class of finite type (resp. separated and of
finite type) morphisms.

Let o7 be an abelian generalized premotivic category compatible with an admissible topology t
and satisfying the property (C) of Paragraph 5.1.35.

Then the triangulated generalized premotivic category ng (&) is T-continuous.

PRrROOF. The proof relies on the following lemma:

LEMMA 5.2.42. Under the assumptions of the preceding proposition, for any morphism of
schemes f: T — S, the functor
Lf* : D(ﬂs) — D(JZ{T)
preserves Al-local complexes.

When f is a morphism of finite type (resp. separated of finite type), the functor Lf* admits
Lf; as a left adjoint and the lemma is clear. In the general case, one can write f as a projective
limit of a projective system of morphisms of scheme (f, : To, = S)aca such that f, is affine of
finite type. Recall from Proposition 5.1.36, D() is 7-continuous. Thus, to check that for an
Al-local complexe C' in D(<7s), the complex Lf*(C) is Al-local, we thus are reduced to prove
that Lf(C) is Al-local which follows from the first treated case. The lemma is proven.

Given the full embedding ng(;z% ) — D(«7) whose image is made of A!-local complexes, the
proposition now directly follows from the previous lemma and the fact D() is 7-continuous. O

EXAMPLE 5.2.43. Taking into account the second point of Example 5.1.37, the previous propo-
sition can be applied to the category Shy (77!, Z) where t = Nis, ét, cdh, qfh, h.

REMARK 5.2.44. The previous proposition will be extended to the (non generalized) premotivic
case in Corollary 6.1.12.

5.3. The stable A'-derived premotivic category.



5.3.a. Modules. Let & be an abelian &-premotivic category with generating set of twists 7.

A cartesian commutative monoid R of & is a cartesian section of the fibred category </ over .
such that for any scheme .S, Rg has a commutative monoid structure in s and for any morphism
of schemes f : T — S, the structural transition maps ¢; : f*(Rg) — Ry are isomorphisms of
monoids.

Let us fix a cartesian commutative monoid R of <.

Consider a base scheme S. We denote by Rg- mod the category of modules in the monoidal
category /s over the monoid Rg. For any &-scheme X/S and any twist i € 7, we put

Rs(X){i} = Rg ®s Mg(X){i}

endowed with its canonical Rg-module structure. The category Rg- mod is a Grothendieck abelian
category such that the forgetful functor Ug : Rg- mod — 75 is exact and conservative. A family
of generators for Rg-mod is given by the modules Rg(X){i} for a &-scheme X/S and a twist
i € 7. As Ag is commutative, Rg- mod has a unique symmetric monoidal structure such that the
free Rg-module functor is symmetric monoidal. We denote by ®pg this tensor product. Note that
Rs(X)®r Rs(Y) = Rs(X XgY). Finally the categories of modules Rg-mod form a symmetric
monoidal Z-fibred category, such that the following proposition holds (see 7.2.10).

PROPOSITION 5.3.1. Let &7 be a T-generated abelian &2-premotivic category and R be a carte-
sian commutative monoid of < .

Then the category R-mod equipped with the structures introduced above is a T-generated abelian
P -premotivic category.

Moreover, we have an adjunction of abelian P -premotivic categories:

(5.3.1.1) R®(—):o @ R-mod:U.

REMARK 5.3.2. With the hypothesis of the preceding proposition, for any morphism of schemes
f: T — S, the exchange transformation f*Ug — Urf* is an isomorphism by construction of
R-mod (7.2.10).

PROPOSITION 5.3.3. Let &7 be a T-generated abelian &2-premotivic category compatible with an
admissible topology t. Consider a cartesian commutative monoid R of o/ such that for any scheme
S, tensoring quasi-isomorphisms between cofibrant complexes by Rg gives quasi-isomorphisms (e.g.
Rg might be cofibrant (as a complex concentrated in degree zero), or flat). Then the abelian -
premotivic category R-mod is compatible with t.

PROOF. In view of Proposition 5.1.26, we have only to show that R-mod satisfies coho-
mological t-descent. Consider a t-hypercover p : X — X in &/S. We prove that the map
ps : Rg(X) = Rg(X) is a quasi-isomorphism in C(Rg-mod). The functor Ug is conservative, and
Us(p«) is equal to the map:

Rs ®g MS(X) — Rg ®g Ms(X)
But this is a quasi-isomorphism in C(<Zs) by assumption on Rg. O

REMARK 5.3.4. According to Lemma 5.1.27, for any simplicial &#?-scheme X over S, any twist
i € 7 and any Rg-module C, we get canonical isomorphisms:

(5341) HomK(Rs- mod) (RS(X){Z}a C) = HOInK(&fs) (MS(X){Z}a C)
(5.3.4.2) Homp (rg-mod) (Rs(X){i}, C) ~ Homp () (Ms(X){i}, C).

5.3.b. Symmetric sequences. Let o/ be an abelian category.
Let G be a group. An action of G on an object A € @5 is a morphism of groups G —

Auty(A), g — 7;4. We say that A is a G-object of &/. A G-equivariant morphism A L B of
G-objects of «/ is a morphism f in &/ such that 72 o f = f o~

If E is any object of &7, we put GX E = @gEG FE considered as a G-object via the permutation
isomorphisms of the summands.

If H is a subgroup of GG, and F is an H-object, G x F has two actions of H : the first one,
say 7, is obtained via the inclusion H C G, and the second one denoted by ~/, is obtained using
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the structural action of H on E. We define G x iy E as the coequalizer of the family of morphisms
(Yo — 7. )oecm, and consider it equipped with its induced action of G.

DEFINITION 5.3.5. Let & be an abelian category.
A symmetric sequence of &7 is a sequence (A, )nen such that for each n € N, A, is a &,,-
object of &7. A morphism of symmetric sequences of 7 is a collection of &,,-equivariant morphism

(fn P A, = Bn)neN-
We let o7© be the category of symmetric sequences of .

It is straightforward to check .&7€ is abelian. For any integer n € N, we define the n-th
evaluation functor as follows:

evn : S = ot [ A, — A,

Any object A of &/ can be considered as the trivial symmetric sequence (A4,0,...). The functor
i0: A= (A,0,...) is obviously left adjoint to evy and we obtain an adjunction

5.3.5.1 io: o = : evy.
( ) 0 0

Remark 7 is also right adjoint to evg. Thus ¢y preserves every limits and colimits.
For any integer n € N and any symmetric sequence A, of <7, we put

Ap_n Im>n
otherwise.

Gm Xs

(5.3.5.2) (A{—n))m = { 0 mn

This define an endofunctor on &/©, and we have A,{-n}{—-m} = A.{—n — m} (through a
canonical isomorphism). Remark finally that for any integer n € N, the functor

in:d — 7S A (ig(A){—n}
is left adjoint to ev,.

REMARK 5.3.6. Let G be the category of finite sets with bijective maps as morphisms. Then
the category of symmetric sequences is canonically equivalent to the category of functors & — <.
This presentation is useful to define a tensor product on 7.

DEFINITION 5.3.7. Let &/ be a symmetric closed monoidal abelian category.
Given two functors A,, B, : & — &, we put:

EQRSF:6 —» «
N = @y_puoEP)FQ).

If 1., is the unit object of the monoidal category &, the category 27 is then a symmetric
closed monoidal category with unit object ig(Lsy).

5.3.8. Let A be an object of /. Then the n-th tensor power A®" of A is endowed with a
canonical action of the group &,, through the structural permutation isomorphism of the symmetric
structure on /. Thus the sequence Sym(A) = (A%"),en is a symmetric sequence.

Moreover, the isomorphism A®" @ A®™ — A®T™ i5 S, x &,,-equivariant. Thus it induces
a morphism g : Sym(A4) ®° Sym(A) — Sym(A) of symmetric sequences. We also consider the
obvious morphism 7 : ig(1.) = ig(A®%) — Sym(A). One can check easily that Sym(A) equipped
with the multiplication x and the unit 7 is a commutative monoid in the monoidal category /.

DEFINITION 5.3.9. Let &/ be an abelian symmetric monoidal category. The commutative
monoid Sym(A) of .27 defined above will be called the symmetric monoid generated by A.

REMARK 5.3.10. One can describe Sym(A) by a universal property: given a commutative
monoid R in &/, to give a morphism of commutative monoids Sym(A) — R is equivalent to give
a morphism A — R; in /.



144

5.3.11. Consider an abelian &-premotivic category <.

Consider a base scheme S. According to the previous paragraph, the category «/§ is an
abelian category, endowed with a symmetric tensor product ®g. For any &7-scheme X/S and any
integer n € N, using (5.3.5.2), we put

Mg (X, /) {—n} =io(Ms(X,o)){—n}.

It is immediate that the class of symmetric sequences of the form Mg (X,.o7®){—n} for a smooth
S-scheme X and an integer n > 0 is a generating family for the abelian category 42756 which is
therefore a Grothendieck abelian category. It is clear that for any £?-scheme X and Y over S,

Ms(X, /) {—n} @ Ms(Y, o/ ®){-n} = Ms(X x5 Y, o/°){-n}.
Given a morphism (resp. Z?-morphism) of schemes f : T' — S and a symmetric sequence
A, of dlg, we put fE(A) = (f*An)nen (resp. fﬁG(A*) = (fgAn)nen). This defines a functor
f& - AE — AP (resp. fﬂ‘G : AR — /§) which is obviously right exact. Thus the functor f&
admits a right adjoint which we denote by f. When f is in &, we check easily the functor f
is left adjoint to f§.
From criterion 1.1.42 and Lemma 1.2.13, we check easily the following proposition:

PRrROPOSITION 5.3.12. Consider the previous hypothesis and notations.

The association S .;2%56 together with the structures introduced above defines an N X 7-
generated abelian P -premotivic category.

Moreover, the different adjunctions of the form (5.3.5.1) over each fibers over a scheme S
define an adjunction of &-premotivic categories:

(5.3.12.1) iog: o = A% :evy
Indeed, i is trivially compatible with twists.

PrOPOSITION 5.3.13. Let o be an abelian P-premotivic category, and t be an admissible
topology. If of is compatible with t then o/© is compatible with t.

PRrROOF. This is based on the following lemma (see [CD09, 7.5, 7.6]):

LEMMA 5.3.14. For any complex C of s, any complex E of #/§ and any integer n > 0,
there are canonical isomorphisms:

(5.3.14.1) Homg e (i0o(C){—n}, E) = Homk(us) (C, En)
(5.3.14.2) Homp ) (io(C){—n}, E) ~ Homp o) (C, Ey)

If o7 is compatible with ¢, this implies that E is local (resp. t-flasque) if and only if for any
n >0, E, is local (resp. t-flasque). This concludes. O

5.3.c. Symmetric Tate spectra.

5.3.15. Consider an abelian &?-premotivic category o7 .

For any scheme S, the unit point of Gy, s defines a split monomorphism of &7-premotives
1s — Mg(Gp,s). We denote by 1g{1} the cokernel of this monomorphism and call it the
suspended Tate S-premotive with coefficients in .«7. The collection of these objects for any scheme
S is a cartesian section of &7 denoted by 1{1}. For any integer n > 0, we denote by 1{n} its
n-the tensor power.

With the notations of 5.3.9, we define the symmetric Tate spectrum over S as the symmetric
sequence 1g{*} = Sym(1s{1}) in #§. The corresponding collection defines a cartesian commu-
tative monoid of the fibred category &€, called the absolute Tate spectrum.

DEFINITION 5.3.16. Consider an abelian &-premotivic category <.
We denote by Sp(«) the abelian &7-premotivic category of modules over 1{x} in the category
2/®. The objects of Sp(«7) are called the abelian (symmetric) Tate spectra.”

"2As we will almost never consider non symmetric spectra, we will cancel the word ”symmetric” in our
terminology.
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The category Sp(«) is (N x 7)-generated. Composing the adjunctions (5.3.1.1) and (5.3.12.1),
we get an adjuntion

(5.3.16.1) %% of = Sp(ad): Q%

of abelian &-premotivic categories.
Let us explicit the definition. An abelian Tate spectrum (F, o) is the data of :

(1) for any n € N, an object E,, of &5 endowed with an action of &,
(2) for any n € N, a morphism o, : B, {1} = E, 11 in @5

such that the composite map

is 6,, X &,,-equivariant with respect to the canonical action of &,, on 1g{n} and the structural
action of &,, on E,,. By definition, evy(F) = Ey. Recall that evy is exact.

Given an object A of #Zg, the abelian Tate spectrum X°° A is defined such that (3°°A4),, = A{n}
with the action of &,, given by its action on 1g{n} by permutations of the factors.

Be careful we consider the category Sp(«/s) as N-twisted by negative twists. For any abelian
Tate spectrum E,, (E.{—n})m = 6, Xe,, ., Em—_n for n>m.

5.3.17. Consider a morphism
p: A = B
of abelian Z-premotivic categories. Then as ¢(1“{1}) = 1%{1}, ¢ can be extended to abelian
Tate spectra in such a way that the following diagram commutes:

o —" =B

Sp(+/) Sp(#).

Sp(e)

(Of course the obvious diagram for the corresponding right adjoints also commutes.)

DEFINITION 5.3.18. For any scheme S, a complex of abelian Tate spectra over S will be called
simply a Tate spectrum over S.

A Tate spectrum E is a bigraded object. In the notation E]", the index m corresponds to the
(cochain) complex structure and the index n to the symmetric sequence structure.
From propositions 5.3.3 and 5.3.13, we get the following:

PROPOSITION 5.3.19. Let &7 be an abelian &2-premotivic category compatible with an admis-
sible topology t. Then Sp(«) is compatible with t.

Note also that remark 5.3.4 and Lemma 5.3.14 implies that for any simplicial £-scheme X
over S, any integer n € N, and any Tate spectrum F, we have canonical isomorphisms:

(53191) HomK(Sp(dS))(EOOMs(X, ﬂ){*ﬂ}, E) ~ HOHIK(Q{S)(EOOMs(X, ﬂ), En)
(5.3.19.2) HomD(Sp(dS))(EOOMs(X, d){—n}, E) >~ HomD(g{s) (EOOM_S'(X7 M), En)

According to the proposition, the category C(Sp(Zs)) of Tate spectra over S has a t-descent model
structure. The previous isomorphisms allow to describe this structure as follows:

(1) For any simplicial &?-scheme X over S, and any integer n > 0, the Tate spectrum
Y Mg (X, o/ ){—n} is cofibrant.

(2) A Tate spectrum E over S is fibrant if and only if for any integer n > 0, the complex E,,
over @s is local (i.e. t-flasque).

(3) Let f : E — F be a morphism of Tate spectra over S. Then f is a fibration (resp.
quasi-isomorphism) if and only if for any integer n > 0, the morphism f,, : E, — F,, of
complexes over s is a fibration (resp. quasi-isomorphism).

Note that properties (2) and (3) follows from (5.3.4.1) and (5.3.14.1).
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5.3.20. We can also introduce the A'-localization of this model structure. The corresponding
homotopy category is the Al-derived £-premotivic category DZﬁI(Sp(d )) introduced in 5.2.16.
The isomorphism (5.3.19.2) gives the following assertion: From the above, a Tate spectrum FE is
Al-local if and only if for any integer n > 0, E,, is Al-local.

(1) A Tate spectrum E over S is Al-local if and only if for any integer n > 0, the complex
E,, over o/ is A'-local.

(2) Let f : E — F be a morphism of Tate spectra over S. Then f is a Al-local fibration (resp.
weak Al-equivalence) if and only if for any integer n > 0, the morphism f, : E, — F,
of complexes over .75 is a Al-local fibration (resp. weak Al-equivalence).

As a consequence, the isomorphism (5.3.19.2) induces an isomorphism

(5.3.20.1) HomDZyl(Sp(dS))(EOOMS(X,;zf’){fn},E) o~ HomDfol(ds)(EooMS(X,ﬁ%),En).
Similarly, the adjunction (5.3.16.1) induces an adjunction of triangulated &-premotivic categories
(5.3.20.2) LY> : DY (o) = DS (Sp(«7)) : RQ™.

5.3.d. Symmetric Tate S2-spectra.

5.3.21. The final step is to localize further the category DZﬁI(Sp(%)). The aim is to relate
the positive twists on Dzﬁi («7) obtained by tensoring with 1g{1} and the negative twists on
ng (Sp(«”)) induced by the consideration of symmetric sequences.

Let X be a £-scheme over S. From the definition of ¥°°, there is a canonical morphism of
abelian Tate spectra:

[EOO (]].5{1})] {—1} — Eoo]].s.
Tensoring this map by X Mg(X, o7){—n} for any &-scheme X over S and any integer n € N,
we obtain a family of morphisms of Tate spectra concentrated in cohomological degree 0:
(2% (Ms (X, @ ){1})][{—n — 1} = S®°Mg(X, #){-n}.
We denote by # this family and put #o a1 = #o U #a:. Obviously, #n a1 is stable by the
operations f* and fy.

DEFINITION 5.3.22. Let &7 be an abelian &-premotivic category compatible with an admissi-
ble topology t. With the notations introduced above, we define the stable A'-derived &2 -premotivic
category with coefficients in o/ as the derived &-premotivic category

Dai(e) := D(Sp(&))[# p1]

defined in Corollary 5.2.5.
5.3.23. According to this definition, we get the following identification:

Dax(e) = D (Sp())[#, ).
Using the left Bousfield localization of the A!-local model structure on C(Sp(«)), we thus obtain
a canonical adjunction of triangulated £-fibred premotivic categories

DI (Sp(#7)) = DI (Sp())[#4; ]

which allows to describe Da1(@7s) as the full subcategory of Dig(Sp(sz%S)) made of Tate spectra

which are #q-local in Dzﬁf (Sp(#%s)). Recall a Tate spectrum F is a sequence of complexes (Ey, )neN
over s together with suspension maps in C(o7s)

on:1s{l} @ B, = Epta.

From this, we deduce a canonical morphism 1g{1} @ E, — E,; in ng («7) whose adjoint
morphism we denote by

(5.3.23.1) Up : By — RHomel(ds)(]IS{l}7En+1)

According to (5.3.20.1), the condition that E is #q-local in DZ@(Sp(%)) is equivalent to ask that
for any integer n > 0, the map (5.3.23.1) is an isomorphism in DZ@(Sp(szf)).
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Considering the adjunction (5.3.20.2), we obtain finally an adjunction of triangulated £-fibred
categories:

(5.3.23.2) %> : DY (o) = DY (Sp()) 2 Dar(e7) : Q.
Note that tautologically, the Tate spectrum X>°(1g{1}) has a tensor inverse given by the spectrum
(2°1g){—1} in Da1(e%). Thus, we have obtained from the abelian premotivic category < a
triangulated premotivic category Da1(e/s) which satisfies the properties:

e the homotopy property (Htp);

e the stability property (Stab);

e the t-descent property.

As we will see in the followings, the construction satisfies a universality property that the reader
can already guess.

DEFINITION 5.3.24. Consider the assumptions of definition 5.3.22.
For any scheme .S, we say that a Tate spectrum FE over S is a Tate 2-spectrum if the following
conditions are fulfilled:
(a) For any integer n > 0, E,, is t-flasque and Al-local.
(b) For any integer n > 0, the adjoint of the structural suspension map

E, — Homc(,ds)(ﬂs{l},En+1)
is a quasi-isomorphism.

In particular, a Tate Q-spectrum is #g-local in DeAﬁi(Sp(,;a/S)). In fact, it is also % a1-local
in the category D(Sp(«Zs)) so that the category Da1(«) is also equivalent to the full subcategory
of D(Sp(«Zs)) spanned by Tate Q-spectra.

Fibrant objects of the #4 a1-local model category on C(Sp(47)) obtained in definition 5.3.22
are exactly the Tate Q-spectra.

PROPOSITION 5.3.25. Consider the above notations. Let S be a base scheme.
(1) If the endofunctor

D (ets) — DU (o), C s RHomD;fl(ds)(]lS{l}’ C)

is conservative, then the functor QF is conservative.
2) If the Tate twist E — FE(1) s fully faithful in D As), then X is fully faithful.
A s
3) If the Tate twist E +— E(1) induces an auto-equivalence o D ), then (X2°,0Q%) are
A AL
adjoint equivalences of categories.

REMARK 5.3.26. Similar statements can be obtained for the derived categories rather than
the Al-derived categories. We left their formulation to the reader.

PRrROOF. Consider point (1). We have to prove that for any #q-local Tate spectrum E in
D?{(Sp(ds)), if RO>®(E) =0, then E = 0. But RQ>®(F) = Q*(E) = Ey (see 5.3.20). Because
for any integer n > 0, the map (5.3.23.1) is an A'-equivalence, we deduce that for any integer
n € Z, the complex E,, is (weakly) Al-acyclic. According to (5.3.20.1), this implies E = 0 —
because Da1(27s) is N-generated.

Consider point (2). We want to prove that for any complex C over &, the counit map
C — ROQ>®LYX>(C) is an isomorphism. It is enough to treat the case where C is cofibrant.

Considering the left adjoint LY of (5.3.20.2), we first prove that LX*°(C) is #g-local.
Because C' is cofibrant, this Tate spectrum is equal in degree n to the complex C{n} (with its
natural action of &,,). Moreover, the suspension map is given by the isomorphism (in the monoidal
category C(2s))

on 1g{1} ®¢ C{n} — C{n + 1}.

In particular, the corresponding map in Dzﬁi (s)
ol 1g{1} @5 C{n} — C{n +1}.
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is canonically isomorphic to
15{1} ®% C{n} =25 15{1} % C{n}.

Thus, because the Tate twist is fully faithful in ng (es), the adjoint map to o/, is an Al-
equivalence. In other words, LY (C) is #qg-local. But then, as C is cofibrant, C' = Q*°X>*°(C) =
ROQ>LX>(C), and this concludes.

Point (3) is then a consequence of (1) and (2). O

REMARK 5.3.27. (1) The construction of the triangulated category Da1(«?) can also be
obtained using the more general construction of [CDO09, §7] — see also [Hov01, 7.11] and
[Ayo0T7b, chap. 4] for even more general accounts. Here, we exploit the simplification
arising from the fact that we invert a complex concentrated in degree 0: this allowed us
to describe Da1(e7) simply as a Verdier quotient of the derived category of an abelian
category. However, we can also consider the category of symmetric spectra in C(o7s)
with respect to one of the complexes 1g(1)[2] or 1g(1) and this leads to the equivalent
categories; see [Hov01, 8.3].

(2) Point (3) of Proposition 5.3.25 is a particular case of [Hov01, 8.1].

5.3.28. Consider a morphism of abelian &-premotivic categories
p: I =B
such that & (resp. %) is compatible with a system of topology ¢ (resp. t'). Suppose t’ is finer
than ¢. According to 5.3.17, we obtain an adjunction of abelian &2-premotivic categories
¢ : C(Sp(#/)) = C(Sp(#)) : ¢.
The pair (pg,ts) is a Quillen adjunction for the stable model structures (apply again [CDO09,
prop. 3.11]). Thus we obtain a morphism of triangulated Z-premotivic categories:
L(p : DAI(JZ{) = DA1<¢%> : R’(/J
REMARK 5.3.29. Under the light of Proposition 5.3.25, the category D 1(2) might be consid-
ered as the universal derived &-premotivic category 7 with a morphism D(«7) — &, and such

that .7 satisfies the homotopy and the stability property. This can be made precise in the setting
of algebraic derivators or of dg-categories (or any other kind of stable co-categories).

PROPOSITION 5.3.30. Let t and t' be two admissible topologies, with t' finer than t. Then
Da:1(Shy (22, A)) is canonically equivalent to the the full subcategory of Da1(Shy (£, A)) spanned
by the objects which satisfy t'-descent.

PRrROOF. It is sufficient to prove this proposition in the case where ¢ is the coarse topology.
We deduce from [Ayo07b, 4.4.42] that, for any scheme S in ., we have

Das (Sh (25, A)) = D (PSh(2/8,A)) 71,
with # = W U War U #q, where #; is the set of maps of shape
L% Ms(X){n}i] — X% Mg(X){n}[i],

for any t’-hypercover X — X and any integers n < 0 and ¢. The assertion is then a particular
case of the description of the homotopy category of a left Bousfield localization. O

ExAMPLE 5.3.31. We have the stable versions of the &2-premotivic categories introduced in
example 5.2.17:
1) Consider the admissible topology t = Nis. Following F. Morel, we define the stable Al-derived
premotivic category as (see also the construction of [Ayo07b]):

Dasa = Da1(Shis(Sm, A))  and  Dyiy = Dar (Shyis (777, A)),
as well as the generalized stable A'-derived premotivic category™

(5.3.31.1) Da1p == Dar (Shyis (771, A)) .

"3We will see in Example 6.1.10 that the generalized version contains the usual one as a full subcategory.
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Given a scheme S, we shall also write:
(5.3.31.2) DA1(S,A) :=Da1a(S) and Dai(S,A) := Da1p(5).
In the case when t = ét, we get the triangulated premotivic categories of étale premotives:
Da1(Shet(Sm,A))  and  Das (She (771, A)).

In each of these cases, we denote by °*°A%(X) the premotive associated with a smooth S-scheme
X.
From the adjunction (5.1.24.2), we get an adjunction of triangulated premotivic categories:

Qgt - DAI’A = DAl (Shet(Sm,A)) : ROét.

2) Assume & = ./t

Consider the .#7t-admissible topology ¢t = h (resp. t = qfh). In [Voe96], Voevodsky has
introduced the category of effective h-motives (resp. gfh-motives). According to the theory pre-
sented above, one can extends this definition to the stable setting: one defines the category of
stable h-motives (resp. qfh-motives) over S with coefficients in A as:

DM, (S, A) :=Da1 (Shy (#77/S, 7)) .
resp. DM, g, (S, A) := D a1 (Sham (£77/5, A)) .

In other words, this is the stable Al-derived category of h-sheaves (resp. qfh-sheaves) of A-
modules. Moreover, we get the generalized triangulated premotivic category of h-motives (resp.
qfh-motives) with coeflicients in A over .7

DM,, 5 = Dax (Sha (7%, 7)) .
resp. DM g, 5 := Da: (Shqm (th,A)) .

For an S-scheme of finite type X, we will denote by ¥ A% (X) (resp EOOAC;H](X)) the corresponding
premotive associated with X in DM,(S,A). Note that the h-sheafification functor induces a
premotivic adjunction (see Paragraph 5.3.28):

(5.3.31.3) DM, g, o = DM, .

These generalized premotivic categories are too big to be reasonable (in particular for the local-
ization property — see Remark 2.3.4). Therefore, we introduce the triangulated category DM, (S, A)
as the localizing subcategory of DM, (S, A) generated by objects of shape X°°A%(X)(p)[g] for any
smooth S-scheme of finite type X and any integers p and ¢. The fibred category DMy o (resp.
DMgm,a) defined above is premotivic. We call it the premotivic category of h-motives (resp.
qfh-motives). The family of inclusions

(5.3.31.4) DM, (S,A) — DM,(S, A)

indexed by a scheme S defines a premotivic morphism (the existence of right adjoints is ensured
by the Brown representability theorem).

REMARK 5.3.32. When A = Q, we will show that the categories DMy g and DMy q are
equivalent and satisfy the axioms of a motivic category. In fact, they are equivalent to the category
of Beilinson motives. See Theorem 16.1.2 for all these results.

PRrROPOSITION 5.3.33. Consider the notations of the second point in the above example. Then
the premotivic category DM o satisfies t-descent.

PrOOF. This is true for DM, , by construction, which implies formally the assertion for
DM a. O

REMARK 5.3.34. According to Proposition 5.2.10 and Remark 5.3.29, for any admissible topol-
ogy t, Da1(Shy (£, Z)) is the universal derived &-premotivic category satisfying ¢-descent as well
as the homotopy and stability properties.
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A crucial example for us: the stable A'-derived premotivic category Da: is the universal
derived premotivic category satisfying the properties of homotopy, of stability and of Nisnevich
descent.

5.3.35. We assume & = Sm.
Let She(Sm) be the category of pointed Nisnevich sheaves of sets. Consider the pointed version
of the adjunction of &-premotivic categories

N : AP She(Sm) 2 C(Shyis(Sm, Z)) : K

constructed in 5.2.25.

If we consider on the left hand side the Al-model category defined by Blander [Bla03],
(Ng, Kg) is a Quillen adjunction for any scheme S.

We consider (G,,,1) as a constant pointed simplicial sheaf. The construction of symmetric
G,.-spectra respectively to the model category A°P She(Sm) can now be carried out following
[Jar00] or [Ayo07b] and yields a symmetric monoidal model category whose homotopy category
is the stable homotopy category of Morel and Voevodsky SH(S).

Using the functoriality statements [Hov01, th. 8.3 and 8.4], we finally obtain a &?-premotivic
adjunction

(5.3.35.1) N:SH= Dy K.

The functor K is the analog of the Eilenberg-Mac Lane functor in algebraic topology; in
fact, this adjunction is actually induced by the Eilenberg-MacLane functor (see [Ayo07b, chap.
4]). In particular, as the rational model category of topological (symmetric) S'-spectra is Quillen
equivalent to the model category of complexes of Q-vector spaces, we have a natural equivalence
of premotivic categories

(5.3.35.2) SHq = Da1 q

(where SHq(.S) denotes the Verdier quotient of SH(S) by the localizing subcategory generated by
compact torsion objects).

5.3.36. We can extend the considerations of Example 5.1.25 and Paragraph 5.2.22 on changing
coefficients in categories of sheaves.

Let t be an admissible topology and ¢ : A — A’ be an extension of rings. Using the -
premotivic adjunction (5.1.25.1) and according to Paragraph 5.3.28, we get an adjunction of
triangulated &Z-premotivic categories:

L(p* : DAl (Sht(gZ,A)) = DAl (Sht(gZ,A/)) : RQD*
Givew two Tate spectra C' and D of t-sheaves of A-modules over Hg, we get a canonical morphism
of A’-modules:
(53361) HomDAl(Sht(gaS’A)) (C, D) (SN AN — HomDAl(Sht(g&A/)) (L()O*(CY)7 LQD*(D))
Then the stable version of Proposition 5.2.23 holds (the proof is the same):
PROPOSITION 5.3.37. Consider the above assumptions. Then the map (5.3.36.1) is an iso-
morphism in the two following cases:
(1) If N is a free A-module and C is compact;
(2) If N is a free A-module of finite rank.

5.3.e. Constructible premotivic spectra.

LEMMA 5.3.38. Let o7 be an abelian &2-premotivic category compatible with a topology t and
such that the category A'-derived category Dzﬁi (o) satisfies Nisnevich descent.

Then, for any scheme S, the non trival cyclic permutation (123) of order 3 acts as the identity
on the premotive 15{1}%3 in D, (ofs).

Proor. Using example 5.2.21, it is sufficient to prove this in D1 4 (), which is well known;
see for example [Ayo07b, 4.5.65]. O
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ProprosITION 5.3.39. Consider the hypothesis of the previous lemma and assume that the
triangulated premotivic category Dzﬁi () is compactly T-generated.

Then, for any scheme S, any couple of integers (i,a), any compact object C of Dzﬁf(,;zfs) and
any Tate spectrum E in /s, we have a canonical isomorphism

Homp, (o) (LE(C){a}, Ei]) ~ lim HOmDe_ﬁi(%s)(C{a +r}, Ecfi]).
r>>0 A

PROOF. Given the previous lemma, this is a direct consequence of [Ayo07b, theorems 4.3.61
and 4.3.79]. O

COROLLARY 5.3.40. Under the assumptions of the preceding proposition, the triangulated cat-
egory Da1(s) is compactly (Z X T)-generated where the factor Z corresponds to the Tate twist.

More precisely, if Dzﬁic(ds) denotes the category of compact objects in ng(.;zfs), then the
category of compact objects’ in Da1(s) is canonically equivalent to the pseudo-abelian completion
of the category obtained as the 2-colimit of the following diagram:

€ ®]l 1 € e ®]l 1 e
DL (ats) L D (ots) — - — DY () L D () — -
5.3.41. Let o/ be an abelian &-premotivic category compatible with an admissible topology

t. Assume that:

e The topology ¢ is bounded in &7 (Definition 5.1.28).
e The abelian &-premotivic category 7 is finitely T-presented.

We will denote by A4¢ a bounded generating family for ¢-hypercovers in .
Recall from Proposition 5.2.38 that the category of compact objects of the triangulated cate-
gory Dzﬁ; (#s) is canonically equivalent to the triangulated monoidal category:

(Kb(ZS(Sm/S; o))/ (N§U «%g))h

Let us denote by Da1 g, (475) the category obtained from the monoidal category on the left hand
side of the above functor by formally inverting the Tate twist Z& (1). Because Da1(7) satisfies
the stability property by construction, we readily obtains a canonical monoidal functor

(5.3.41.1) Datgm(#s) = Dai(s).
Then applying Proposition 5.2.38, the above corollary and Proposition 1.4.11, we deduce:

COROLLARY 5.3.42. Consider the above hypothesis and notations.
Then the triangulated premotivic category Dai(e?) is compactly (Z x T)-generated. For any
premotive M in Dai(els) the following conditions are equivalent:

(i) M is compact;
(i1) M is (Z x T)-constructible.
Moreover, the functor (5.3.41.1) is fully faithful and has for essential image the compact (i.e.
T-constructible) objects of Da1(s).
EXAMPLE 5.3.43. From the considerations of Example 5.2.40, we obtain that for any scheme
S, the compact objects of the category Da1(S,A) (resp. Da: (Shcdh(fft/s, A) )) is obtained

from the monoidal triangulated category
K (A(Sm/S)) (resp. K° (A(FT1/9)))
by the following steps:

e one mods out by the triangulated subcategories TAls and BGg (resp. CDHg) correspond-

ing to the A'-homotopy property and the Brown-Gersten triangles (resp. cdh-triangles),
e one takes the pseudo-abelian envelope,
e one formally inverts the Tate twist.



PROPOSITION 5.3.44. Assume &2 = .7t is the class of finite type (resp. separated and of
finite type) morphisms.

Let o7 be an abelian generalized premotivic category compatible with an admissible topology t
such that:

o o satisfies property (C) of Paragraph 5.1.35.
e The Al-derived category Dzﬁ; () is compactly T-generated and satisfies Nisnevich de-
scent.

Then the stable Al-derived premotivic category Da1(o7) is (Z x T)-continuous.

ProOOF. This is an immediate corollary of Proposition 5.2.41 combined with Proposition
5.3.39. 0

EXAMPLE 5.3.45. According to the previous proposition and the second point of Example
5.1.37, the generalized triangulated premotivic category D1, is continuous. We also refer the
reader to Corollary 6.1.12 for an extension of this result to the non generalized case.

6. Localization and the universal derived example

6.0. In this section, . is an adequate category of S-schemes as in 2.0. In sections 6.2 and
6.3, we assume in addition that the schemes in .# are finite dimensional.

We will apply the definitions of the preceding section to the admissible class made of morphisms
of finite type (resp. smooth morphisms of finite type) in .#, denoted by ./t (resp. Sm).

Recall the general convention of section 1.4:

e premotivic means Sm-premotivic.
o generalized premotivic means . ¥*-premotivic.

6.1. Generalized derived premotivic categories.

EXAMPLE 6.1.1. Let t be a . f*-admissible topology. For a scheme S, we denote by Sh, (th/S, A)
the category of sheaves of abelian groups on .#7*/S for the topology ts. For an S-scheme of finite
type X, we let AI‘S(X ) be the free t-sheaf of A-modules represented by X. Recall Sh, (5” It A) is
a generalized abelian premotivic category (see 5.1.4).

Let p : Sm/S — #7t/S be the obvious inclusion functor and let us denote by tg the initial
topology on Sm/S such that p is continuous. Then it induces (c¢f. [SGA4, IV, 4.10]) a sequence
of adjoint functors

Pt
—

Shy(Sm/S, A) <—p—— Sh, (.#7t/5, A)
—

and we checked easily that this induces an enlargement of abelian premotivic categories:
(6.1.1.1) py : Shy(Sm, A) = Shy (L7 A) : p*.

REMARK 6.1.2. Note that for any scheme S, the abelian category Sh;(Sm/S,A) can be de-
scribed as the Gabriel quotient of the abelian category Shy (Y t/8, A) with respect to the sheaves
F over .#/t/S such that p*(F) = 0.

An example of such a sheaf in the case where ¢ = Nis and dim(S) > 0 is the Nisnevich sheaf
As(Z) on #7t/S represented by a nowhere dense closed subscheme Z of S is zero when restricted

to Sm/S.

6.1.3. Consider an abelian premotivic category &/ compatible with an admissible topology ¢
on Sm and a generalized abelian premotivic category .o/ compatible with an admissible topology
t' on .. We denote by M (resp. M) the geometric sections of &7 (resp. o). We assume that ¢’
restricted to Sm is finer that ¢, and consider an adjunction of abelian premotivic categories:

py: A= A pt
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Let S be a scheme in .. The functors py and p* induce a derived adjunction (see 5.2.19):
Lp; : DI (o5) = DY (a5) : Rp*
(where o7 is considered as an Sm-fibred category).

PROPOSITION 6.1.4. Consider the previous hypothesis, and fix a scheme S. Assume further-
more that we have the following properties.
(i) The functor py : s — s is fully faithful.
(ii) The functor p* : os — s commutes with small colimits.
Then, the following conditions hold :
(a) The induced functor
p*: C(s) — C(s)
preserves Al-equivalences.
(b) The A'-derived functor Lpy : ng(dg) — qu(gs) is fully faithful.

PRrROOF. Point (a) follows from Proposition 5.2.24. To prove (b), we have to prove that the
unit map
M — p*Lpy(M)
is an isomorphism for any object M of ng (7s). For this purpose, we may assume that M is
cofibrant, so that we have
M =~ p*py(M) ~ p*Lps (M)
(where the first isomorphism holds already in C(7s)). O

COROLLARY 6.1.5. Consider the hypothesis of the previous proposition. Then the family of
adjunctions Lpy : Dzﬁi(%s) — ng(gg) : Rp* indexed by a scheme S induces an enlargement of
triangulated premotivic categories

Lp; : DYl (o) =2 DY (&) : Rp".

EXAMPLE 6.1.6. Considering the situation of 6.1.1, we will be particularly interested in the
case of the Nisnevich topology. We denote by DZ"C{ A the generalized A'-derived premotivic cat-
egory associated with Sh (5’ f t,A) (see also Example 5.3.31). The preceding corollary gives a
canonical enlargement:

(6.1.6.1) D, =D&

6.1.7. Consider again the hypothesis of 6.1.3. We denote simply by M (resp. M) the geometric
sections of the premotivic triangulated category Dai(2?) (resp. Dai(.e7)).

Recall from 5.3.15 that we have defined 1g{1} (resp. 14{1}) as the cokernel of the canonical
map lg — Mg(Gy,,s) (resp. 1g — Ms(Gy,g)). Thus, it is obvious that we get a canonical
identification py(1s{1}) = Lg{1}. Therefore, the enlargement p; can be extended canonically to
an enlargement

pg 2 Sp(#) = Sp() : p*
of abelian premotivic categories in such a way that for any scheme S, the following diagram

commutes:

ps
s

E§l lEfj
Sp(es) ——> Sp(s).

According to Proposition 5.3.13, Sp(«7) (resp. Sp(/)) is compatible with ¢ (resp. t’), and we
obtain an adjoint pair of functors (5.3.28):

Lpy : Dai(e7s) = Da(2) : Rp*.
From the preceding commutative square, we get the identification:

(6.1.7.1) Lpyo X =% oLpy
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As in the non effective case, we get the following result:

PROPOSITION 6.1.8. Keep the assumptions of Proposition 6.1.4, and suppose furthermore that
both Dzﬁ;(ﬂ) and Dzﬁi (&) are compactly T-generated. Then the derived functor Lpg : D ar(os) —
Dai(s) is fully faithful.

PROOF. We have to prove that for any Tate spectrum E of D p1(2Zs), the adjunction morphism
E - Lp*Rpy(E)

is an isomorphism. According to Proposition 1.3.20, the functor Lp* admits a right adjoint. Thus,
applying Lemma 1.1.43, it is sufficient to consider the case where E = Mg(X){i}[n] for a smooth
S-scheme X, and a couple (n,i) € Z x T.
Moreover, it is sufficient to prove that for another smooth S-scheme Y and an integer j € Z,
the induced morphism
Hom (X% Mg (Y){j}, £ Mg (X){i}[n]) — Hom(E>Ms(Y){j}, 5= Ms(X){i}[n])

is an isomorphism. Using the identification (6.1.7.1), propositions 5.3.39 and 6.1.4 allows to
conclude. O

COROLLARY 6.1.9. If the assumptions of Proposition 6.1.8 hold for any scheme S in ., then
we obtain an enlargement of triangulated premotivic categories
Lpﬁ : DAl(JZf) = DAl(ﬂ) : Rp*.

ExaMPLE 6.1.10. Considering again the situation of 6.1.1, in the case of the Nisnevich topol-
ogy. We denote by Da1 o the generalized stable Al-derived premotivic category associated with
Sh (,5” ft, A). The preceding corollary gives a canonical enlargement:

(6.1.10.1) Lpﬁ ZDAI’A (jDAl’A ZRp*
which is compatible with the enlargement (6.1.6.1) in the sense that the following diagram is
essentially commutative:

eff eff
DAl,A DAl,A

|

Data —=Da1a

COROLLARY 6.1.11. Consider a Grothendieck topology t on our category of schemes .. Let
S be a scheme in ./, and M an object of Da1 A(S). Then M satisfies t-descent in Da1 o(S) if
and only if Lpy(M) satisfies t-descent in Da1 A (S).

PrOOF. Let f: 2 — S be a diagram of S-schemes of finite type. Define
HY(Z,M(p)) = Homp , , (s)(Aa, Lf*(M)(p)lq))
HY(2,M(p)) = Homp,, ,(s)(A g, Lf* Lpg(M)(p)la])
for any integers p and g. The full faithfulness of Lp; ensures that the comparison map
HY (2, M(p)) — H* (2, M(p))

is always bijective. This proposition follows then from the fact that M (resp. Lpy(M)) satisfies
t-descent if and only if, for any integers p and ¢, for any S-scheme of finite type X, and any
t-hypercover Z~ — X, the induced map

HY (X, M(p)) — H' (2, M(p)) (resp. H*(X, M(p)) — H*(Z",M(p)))
is bijective. O
We end-up this section with another interesting application of the preceding results.

COROLLARY 6.1.12. Consider the hypothesis and assumptions of Proposition 6.1.4. We sup-
pose furthermore that the generalized abelian premotivic category o satisfies condition (C) of
Paragraph 5.1.35.
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(1) Then the triangulated premotivic category ng () is T-continuous.

ssume furhtermore tha 1 an () are compactly T-generated. en the
2) A ht that D (/) and DS (o tl ted. Then th
triangulated premotivic category Dai(e?) is T-continuous.

PROOF. According to Proposition 5.2.41, the category Dzﬁi (&) is T-continuous. According

to Corollary 6.1.5, the functor Lpy : Dzﬁ:(%) — ng(g) : Rp* is fully faithful and commutes
with Lf*. Thus Point (1) follows.

In the assumption of Point (2), we deduce from Proposition 5.3.44 that Da1(e/) is (Z x 7)-
continuous. Thus it is sufficient to apply Corollary 6.1.9 as in the effective case to get the assertion
of Point (2). O

EXAMPLE 6.1.13. According to the second point of Example 5.1.37, we can apply this corollary
to the enlargement
Shyis (Sm, A) — Shyis (71, A) .

Thus, we deduce that the triangulated premotivic categories Dzﬁi A and D a1 both are continuous.
6.2. The fundamental example. Recall the following theorem of Ayoub [Ayo07b]:

THEOREM 6.2.1. The triangulated premotivic categories szf A and Dax o satisfy the localiza-
tion property.

COROLLARY 6.2.2. (1) The premotivic category Dax p is a motivic category.
(2) It is compactly generated by the Tate twist.
(8) Suppose that T is a derived premotivic category (see 5.2.9) which is a motivic category.
Then there exists a canonical morphism of derived premotivic categories:
DAI’Z — 7.

PROOF. The first assertion follows from the previous theorem and Remark 2.4.47. The second
one follows from Corollary 5.3.42. The last one follows from Proposition 3.3.5 and Example
5.3.34. 0

REMARK 6.2.3. Thus, Theorem 2.4.50 can be applied to Da1 . In particular, for any sepa-
rated morphism of finite type f : T — S, there exists a pair of adjoint functors

f! : DAl,A(T) = DAl,A(S) : f!
as in the theorem loc. cit. so that we have removed the quasi-projective assumption in [Ayo07a].

6.2.4. Because the cdh topology is finer than the Nisnevich topology, we get an adjunction of
generalized premotivic categories:

atan 1 Dar .y = Dar (Shean (7%, A)) : Racan
COROLLARY 6.2.5. For any scheme S, the composite functor
Da:(S,A) = Dar(S,A) =2 Dax (Shean (-#71/S, A))

is fully faithful.
Moreover, it induces an enlargement of premotivic categories:
(6.2.5.1) Da1a 2 Das (Shean (#7F, A))

REMARK 6.2.6. This corollary is a generalisation in our derived setting of the main theorem
of [VoelOc]. Note that if dim(S) > 0, there is no hope that the above composite functor is
essentially surjective because as soon as Z is a nowhere dense closed subscheme of S, the premotive
ME™(Z, A) does not belong to its image (cf. remark 6.1.2).

PROOF. According to Corollary 6.2.2 and Proposition 3.3.10, any Tate spectrum F of D a1 (S, A)
satisfies cdh-descent in the derived premotivic category D a1 A, and this implies the first assertion
by 5.3.30 and 6.1.11. The second one then follows from the fact the forgetful functor

Dar (Shean (#7%/S,A)) = Dai(S, A).

commutes with direct sums (its left adjoint preserves compact objects). O
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6.3. Nearly Nisnevich sheaves.

6.3.1. In all this section, we fix an abelian premotivic category .27 and we consider the canonical
premotivic adjunction (5.1.2.1) associated with <.
We assume &7 satisfies the following properties.
(i) &/ is compatible with Nisnevich topology, so that we have from (5.1.2.1) a premotivic
adjunction:

(6.3.1.1) ~* : Shynis (Sm, Z) 2 o : ..

(ii) &7 is finitely presented (i.e. the functors Hom g, (Mg(X), —) preserve filtered colimits
and form a conservative family, Def. 1.3.11).
(iii) For any scheme S, and for any open immersion U — X of smooth S-schemes, the map
Mg(U) — Mg(X) is a monomorphism.
(iv) For any scheme S, the functor v, : @75 — Shynis(Sm/S, Z) is exact.
Note that the functor 7, : &g — Shyis(Sm/S,Z) is exact and conservative. As it also preserves
filtered colimits, this functor preserves in fact small colimits.
Observe also that, according to these assumption, the abelian premotivic category of Tate
spectra Sp(«7) is compatible with Nisnevich topology, N-generated. Moreover, we get a canonical
premotivic adjunction

(6.3.1.2) ~* : Sp(Shyis(Sm, Z)) = Sp() : 7
such that ~, is conservative and preserves small colimits.

In the following, we show how one can deduce properties of the premotivic triangulated cate-
gories DZ‘C{ (/) and Da1(«/) from the good properties of sz{ z and Da1 7.

6.3.a. Support property (effective case).

PROPOSITION 6.3.2. For any scheme S, the functor v, : C(as) — C(Shyis(Sm/S,Z)) pre-
serves and detects A'-equivalences.

PRrOOF. It follows immediately from Corollary 5.2.31 that v, preserves A'-equivalences. The
fact it detects them can be rephrased by saying that the induced functor

v : Dl (t5) = DY ,(9)
is conservative. This is obviously true once we noticed that its left adjoint is essentially surjective

on generators. O

COROLLARY 6.3.3. The right derived functor
Ry, =7 : Dl (5) = DY ,(9)
s conservative.

PROPOSITION 6.3.4. Let f : S — S be a finite morphism of schemes. Then the induced
functor
f* : C(;Zfsf) — C(%g)

preserves colimits and Al -equivalences.

PROOF. We first prove f, preserves colimits. We know the functors 7, preserve colimits and
are conservative. As we have the identification ~y, f. = f.7s, it is sufficient to prove the property
for o = Shyis(Sm,Z). Let X be a smooth S-scheme. It is sufficient to prove that, for any point
x of X, if X" denotes the henselianization of X at x, the functor

Shyis(Sm/S', Z) — b F s f(F) (X)) = F(S" xg X

commutes to colimits. Moreover the scheme S’ x g X is finite over X", so that we have S’ x g X! =
I1,Y;, where the Y;’s are a finite family of henselian local schemes over S’ x g X". Hence we have
to check that the functor F' — @, F'(Y;) preserves colimits. As colimits commute to sums, it is
thus sufficient to prove that the functors F' — F(Y;) commute to colimits. This follows from the
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fact that the local henselian schemes Y; are points of the topos of sheaves over the small Nisnevich
site of X.

We are left to prove that the functor f, : C(<Zs) — C(o7s) respects Al-equivalences. For this,
we shall study the behaviour of f, with respect to the A'-resolution functor constructed in 5.2.26.
Note that f, commutes to limits because it has a left adjoint. In particular, we know that f, is
exact. Moreover, one checks easily that f*Rxll) = f*RXll) . As f, commutes to colimits, this gives
the formula f,Ra1 = Ra1 fi. Let C be a complex of Nisnevich sheaves of abelian groups on Sm/S’.
Choose a quasi-isomorphism C' — C’ with C’ a Nis-flasque complex. Applying Proposition 5.2.28,
we know that Ra1(C’) is Al-fibrant and that we get a canonical A'-equivalence

f(C) = f(C) = f(Rar(C)) = Ras (f(C")).
Hence we are reduced to prove that f, preserves Al'-equivalences between Al-fibrant objects.

But such A'-equivalences are quasi-isomorphisms, so that we can conclude using the exactness of
I O
.

PROPOSITION 6.3.5. For any open immersion of schemes j : U — S, the exchange transfor-
mation jyv« — V«Ji s an isomorphism of functors.

PrOOF. Let X be a scheme, and F a Nisnevich sheaf of abelian groups on Sm/X. Define
the category %r as follows. The objects are the couples (Y,s), where Y is a smooth scheme
over X, and s is a section of F over Y. The arrows (Y,s) — (Y’,s’) are the morphisms f €
Homgpy, (sm/x,2)(Zx(Y),Zx(Y")) such that f*(s’) = s. We have a canonical functor

(o i CKF — ShNis(Sm/X, Z)

defined by ¢r(Y,s) = Zx(Y), and one checks easily that the canonical map

limpp = lim  Zx(Y)—= F

Cr (Y,s)e€r
is an isomorphism in Shyis(Sm/X, Z) (this is essentially a reformulation of the Yoneda lemma).

Consider now an object F' in the category «7;. We get two categories €, () and €, (;,(r))-
There is a functor
1) 7 ()

which is defined by the formula i(Y, s) = (Y, jy(s)). To explain our notations, let us say that we see
s as a morphism from Mg (U, <) to F, so that jy(s) is a morphism from Mg(Y, o) = jyMg(U, <)
to jy(F'). This functor ¢ has right adjoint

i G Gy (F)) > Cra(r)

defined by i'(Y,s) = (Yu,sv), where Yy = Y xg U, and sy is the section of ~.(F) over Yu
that corresponds to the section j*(s) of j*jyv«(F') over Yy under the canonical isomorphism
Y (F) =~ j*jsv«(F) (here, we use strongly the fact the functor j; is fully faithful). The existence
of a right adjoint implies 7 is cofinal. This latter property is sufficient for the canonical morphism

g oo om0 = 1M @s ) = (e (F))
C,,(F) CK’vx(ju(F))

to be an isomorphism. But the functor ¢, (j,(r)) ¢ is exactly the composition of the functor jy
with ¢, (py. As the functor j; commutes to colimits, we have
im @, Gy 0= m jgoy py =g I o, () > Js (7 (F)).
Coa(r) Cra(r) Cora(r)
Hence we obtain a canonical isomorphism jy(v«(F)) =~ v (jg(F)). It is easily seen that the
corresponding map v (F) — j* (v (s (F))) = v(j*jg(F)) is the image by . of the unit map
F — j*j3(F). This shows the isomorphism we have constructed is the exchange morphism. O

COROLLARY 6.3.6. For any open immersion of schemes j : U — S, the functor jy : @y — s
is exact. Moreover, the induced functor

Ji : Gy ) — C(s)
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preserves A'-equivalences.

PRrROOF. Using the fact . is exact and conservative, and propositions 6.3.2 and 6.3.5, it is
sufficient to prove this corollary when &7 = Shyis(Sm, Z). It is straightforward to prove exactness
using Nisnevich points. The fact jy preserves Al-equivalences follows from the exactness property
and from the obvious fact it preserves strong A'-equivalences. O

COROLLARY 6.3.7. Let j : U — S be an open immersion of schemes. For any object M of
Dzﬁi (o) the exchange morphism

(63.7.1) Lji (R, (M) — Ry (L (M)
is an isomorphism in ng(S, Z).
6.3.b. Support property (stable case).

6.3.8. Recall from 5.3.17 that the premotivic adjunction (v*, ) induces a canonical adjunction
of abelian premotivic categories that we denote by:

* : Sp(Shyis(Sm, Z)) = Sp(s) : Fa
PROPOSITION 6.3.9. For any scheme S, the functor induced functor
3.+ C (Sp(s)) = C (Sp(Shwis(Sm/S, Z)))
preserves and detects stable A'-equivalences.

Proor. Using the equivalence between symmetric Tate spectra and non symmetric Tate
spectra, we are reduced to prove this for complexes of non symmetric Tate spectra. Consider a
non symmetric Tate spectrum (Fj,)nen with suspension maps o, : E,{1} — E,11. The non
symmetric Tate spectrum 7, (FE) is equal to v.(FE,) in degree n € Z, and the suspension map is
given by the composite:

15{1} ®5 7-(En) = 77" (As{1}) @5 En) = w(Ea{1}) 2% B,

Thus, propositions 6.3.2 and 5.3.40 allows to conclude. O

COROLLARY 6.3.10. The right derived functor
Ry =7, : Das(#s) = Dar z(5)
1§ conservative.

PROPOSITION 6.3.11. Let j: U — X be an open immersion of schemes. For any object M of
Dai(ey), the exchange morphism

Ljs (R« (M)) — Ry (Ljs (M)
is an isomorphism in Da1 z(X).

PrOOF. From Corollary 6.3.6 and the &-base change formula for the open immersion j, one
deduces easily that j preserves stable A'-equivalences of (non symmetric) Tate spectra. Moreover,
Proposition 6.3.5 shows that jsv. = 7.js at the level of Tate spectra. This concludes. O

COROLLARY 6.3.12. The triangulated premotivic category Da1(f) satisfies the support prop-
erty.

PRrROOF. According to corollary 6.3.10, the functor Ry, is conservative. Thus, by virtue of
the preceding proposition, to prove the support property in the case of Da1(.«?) it is sufficient to
prove it in the case where & = Shyis(Sm, Z). This follows from theorems 6.2.1 and 2.4.50. O
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6.3.c. Localization for smooth schemes.

LEMMA 6.3.13. Let i : Z — S be a closed immersion which admits a smooth retraction
p:S — Z. Then the exchange transformation

Ly*Ri, — Ri, Ly™*
is an isomorphism in ng(;zfg) (resp. Dai(s)).

PrOOF. We first remark that for any object C' of C(</z) (resp. C(Sp(#7z))) the canonical
sequence

72 (3)"(C) = p*(C) = i (C)
is a cofiber sequence in D;{jlc (s) (resp. Dai(e)s)). Indeed, we can check this after applying the
exact conservative functor .. The sequence we obtain is canonically isomorphic through exchange
transformations to
313 " (7 C) = p* (7 C) = i.3"p* (7.0)

using Corollary 6.3.7, the commutation of 7, with j*, p* and 4, (recall it is the right adjoint of
a premotivic adjunction) and the relation pi = 1. But this last sequence is a cofiber sequence in
DZ"F{’Z(S) (resp. Da1 z(S)) because it satisfies the localization property (see 6.2.1).

Using exchange transformations, we obtain a morphism of distinguished triangles in DM;ﬁ (S)
V3P (C) —= 7P (C) —7"i.(C) —7"jyj"p" (C)[1]
| I V(v i) I
Jjei*p* (77 C) —p* (7" C) —in(v*C) — jzg"p* (v C)[1]
The first two vertical arrows are isomorphisms as v* is the left adjoint of a premotivic adjunction;
thus the morphism Ex(v*,4,) is also an isomorphism. 0

PROPOSITION 6.3.14. Leti: Z — S be a closed immersion. If i admits a smooth retraction,
then Dzﬁi(d) satisfies (Loc;).

PRrOOF. This follows from Proposition 2.3.19 and the preceding lemma. O

COROLLARY 6.3.15. Let S be a scheme. Then the premotivic category Dgﬁi () (resp. Dar())
satisfies localization with respect to any closed immersion between smooth S-schemes.

PROOF. Let i : Z — X be closed immersion between smooth S-schemes. We want to prove
that ng(sz/) (resp. Dai(#)) satisfies localization with respect to i. According to 2.3.18, it is
sufficient to prove that for any smooth S-scheme S, the canonical map

Ms(X/X 7Xz) — i*Mz(Xz)

is an isomorphism where we use the notation of loc. cit. and M(., /) denotes the geometric
sections of Dzﬁi () (resp. Da1(?)). But the premotivic triangulated category category Da:(«)
(resp. ng(@/ )) satisfies the Nisnevich separation property and the Sm-base change property.
Thus, we can argue locally in S for the Nisnevich topology. Thus, the statement is reduced to the

preceding proposition as i admits locally for the Nisnevich topology a smooth retraction (see for
example [Dég07, 4.5.11]). O

7. Basic homotopy commutative algebra

7.1. Rings.

DEFINITION 7.1.1. A symmetric monoidal model category ¥ satisfies the monoid aziom if, for
any trivial cofibration A — B and any object X, the smallest class of maps of ¥ which contains
the map X ® A — X ® B and is stable by pushouts and transfinite compositions is contained in
the class of weak equivalences.
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7.1.2. Let ¥ be a symmetric monoidal category. We denote by Mon(¥') the category of
monoids in ¥. If ¥ has small colimits, the forgetful functor

U:Mon(V)—7V

has a left adjoint
F:¥ — Mon(V).

THEOREM 7.1.3. Let ¥ a symmetric monoidal combinatorial model category which satisfies the
monoid aziom. The category of monoids Mon (V) is endowed with the structure of a combinatorial
model category whose weak equivalences (resp. fibrations) are the morphisms of commutative
monoids which are weak equivalences (resp. fibrations) in ¥. In particular, the forgetful functor
U : Mon(¥) — ¥ is a right Quillen functor. Moreover, if the unit object of ¥ is cofibrant, then
any cofibrant object of Mon(¥') is cofibrant as an object of V.

PRrROOF. This is very a particular case of the third assertion of [SS00, Theorem 4.1] (the fact
that Mon(¥') is combinatorial whenever ¥ is so comes for instance from [Bek00, Proposition
2.3]). O

DEFINITION 7.1.4. A symmetric monoidal model category ¥ is strongly Q-linear if the un-
derlying category of ¥ is additive and Q-linear (i.e. all the objects of ¥ are uniquely divisible).

REMARK 7.1.5. If ¥ is a strongly Q-linear stable model category, then it is Q-linear in the
sense of 3.2.14.

LEMMA 7.1.6. Let ¥ be a strongly Q-linear model category, G a finite group, and u: £ — F
an equivariant morphism of representations of G in V. Then, if u is a cofibration in ¥, so is the
induced map Eq — Fg (where the subscript G denotes the coinvariants under the action of the
group G).

PROOF. The map Eg — Fg is easily seen to be a direct factor (retract) of the cofibration
E— F. O

7.1.7. If ¥ is a symmetric monoidal category, we denote by Comm(?") the category of com-
mutative monoids in #. If ¥ has small colimits, the forgetful functor

U: Comm(V)— YV

has a left adjoint
F:¥ — Comm(Y).

THEOREM 7.1.8. Let ¥ a symmetric monoidal combinatorial model category. Assume that
¥ is left proper and tractable, satisfies the monoid axiom, and is strongly Q-linear. Then the
category of commutative monoids Comm(¥') is endowed with the structure of a combinatorial
model category whose weak equivalences (resp. fibrations) are the morphisms of commutative
monoids which are weak equivalences (resp. fibrations) in ¥ . In particular, the forgetful functor
U: Comm(¥) — ¥ is a right Quillen functor.

If moreover the unit object of ¥ is cofibrant, then any cofibrant object of Comm(¥') is cofibrant
as an object of V.

PROOF. The preceding lemma implies immediately that ¥ is freely powered in the sense of
[Lurl2, Definition 4.3.17], so that the existence of this model category structure follows from a
general result of Lurie [Lur12, Proposition 4.3.21]. The second assertion is then true by definition.
The last assertion is proved by a careful analysis of pushouts by free maps in Comm(¥") as follows.
For two cofibrations u: A — B and v : C' — D in ¥, write u A v for the map

UuNv: ARQ Dllyoc BC — B D

(which is a cofibration by definition of monoidal model categories). By iterating this construction,
we get, for a cofibration u: A — B in ¥, a cofibration

A (u) =u A Au:O"(u) — B,

n times
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Note that the symmetric group &,, acts naturally on B®™ and (0" (u). We define
Sym™(B) = (B®*")s, and Sym"(B,A) =0"(u)s
By virtue of Lemma 7.1.6, we get a cofibration of ¥:
o™ (u) : Sym™(B, A) — Sym"(B).

Consider now the free map F(u) : F(A) — F(B) can be filtered by F(A)-modules as follows.
Define Dy = F(A). As A = Sym' (B, A), we have a natural morphism F(A)®Sym* (B, A) — F(A).
The objects D,, are then defined by induction with the pushouts below.

n n *

1ry@on ()
_—

F(A) ® Sym™(B, A) F(A) ® Sym™(B)

| |

Dn—l Dn

We get natural maps D,, — F(B) which induce an isomorphism

liy D,, ~ F(B)

n>0
in such a way that the morphism F'(u) correspond to the canonical map

F(A) = Dy — lim D,
n>0

Hence, if F'(A) is cofibrant, all the maps D,,_1 — D,, are cofibrations, so that the map F(A) —
F(B) is a cofibration in ¥. In the particular case where A is the initial object of ¥, we see that
for any cofibrant object B of ¥, the free commutative monoid F(B) is cofibrant as an object of
¥ (because the initial object of Comm(¥') is the unit object of ¥'). This also implies that, if u is
a cofibration between cofibrant objects, the map F(u) is a cofibration in ¥

This description of F'(u) also allows to compute the pushouts of F(u) in Comm(¥) in ¥ as
follows. Consider a pushout

Fa) 2L p(B)

]

R—(Fp—S§

in Comm(¥'). For n > 0, define R,, by the pushouts of ¥
F(A)—— D,
R——R,

We then have an isomorphism
ligl R,~S.
n>0

In particular, if u is a cofibration between cofibrant objects, the morphism of commutative monoids
v : R — S'is then a cofibration in #. As the forgetful functor U preserves filtered colimits, conclude
easily from there (with the small object argument [Hov99, Theorem 2.1.14]) that any cofibration
of Comm/(¥) is a cofibration of ¥'. Using again that the unit object of ¥ is cofibrant in ¥ (i.e. that
the initial object of Comm(¥) is cofibrant in ¥) this proves the last assertion of the theorem. O

COROLLARY 7.1.9. Let ¥ a symmetric monoidal combinatorial model category. Assume that
¥V is left proper and tractable, satisfies the monoid axiom, and is strongly Q-linear. Consider a
small set H of maps of ¥, and denote by Ly ¥ the left Bousfield localization of ¥ by H; see
[Bar10, Theorem 4.7]. Define the class of H-equivalences in Ho(¥') to be the class of maps which
become invertible in Ho(Ly ). If H-equivalences are stable by (derived) tensor product in Ho(¥'),
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then Ly is a symmetric monoidal combinatorial model category (which is again left proper and
tractable, satisfies the monoid aziom, and is strongly Q-linear).

In particular, under these assumtions, there exists a morphism of commutative monoids 1 — R
in ¥ which is a weak equivalence of Ly, with R a cofibrant and fibrant object of Ly .

PROOF. The first assertion is a triviality. The last assertion follows immediately: the map
1 — R is simply obtained as a fibrant replacement of 1 in the model category Comm(Lg¥)
obtained from Theorem 7.1.8 applied to Ly ¥'. O

7.1.10. Consider now a category ., as well as a closed symmetric monoidal bifibred category
M over .. We shall also assume that the fibers of .# admit limits and colimits.

Then the categories Mon(.# (X)) (resp. Comm(.#(X))) define a bifibred category over .
as follows. Given a morphism f: X — Y, the functor

ffrH(Y)— H(X)

is symmetric monoidal, so that it preserves monoids (resp. commutative monoids) as well as
morphisms between them. It thus induces a functor
1101 " Mon(#(Y)) — Mon(# (X))
(7.1.10.1) (resp. f*: Comm (M (Y)) — Comm(# (X)) ).

As f*: #(Y) — #(X) is symmetric monoidal, its right adjoint f, is lax monoidal: there is a
natural morphism

(7.1.10.2) ly = fu(lx) = fu [*(1y),
and, for any objects A and B of .#(X), there is a natural morphism
(7.1.10.3) f(A) @y f«(B) = f.(A®x B)

which corresponds by adjunction to the map
[ (f(A) @y fu(B)) = f* fi(A) @ f* f«(B) = A® B.

Hence the functor f, preserves also monoids (resp. commutative monoids) as well as morphisms
between them, so that we get a functor

fo: Mon( (X)) — Mon(A#(Y))

(7.1.10.4) (resp. fs: Comm(.M (X)) — Comm(#(Y))).

By construction, the functor f* of (7.1.10.1) is a left adjoint ot the functor f, of (7.1.10.4). These
constructions extend to morphisms of .-diagrams in a similar way.

ProproOSITION 7.1.11. Let # be a symmetric monoidal combinatorial fibred model category
over /. Assume that, for any object X of 7, the model category M (X) satisfies the monoid
azxiom (resp. is left proper and tractable, satisfies the monoid aziom, and is strongly Q-linear).

(a) For any object X of .7, the category Mon(#)(X) (resp. Comm(4)(X)) of monoids
(resp. of commutative monoids) in M (X) is a combinatorial model category structure
whose weak equivalences (resp. fibrations) are the morphisms of commutative monoids
which are weak equivalences (resp. fibrations) in A (X). This turns Mon(4) (resp.
Comm(.A#)) into a combinatorial fibred model category over ..

(b) For any morphism of /-diagrams ¢ : (Z',I1) — (Y, J), the adjunction

O Mon( M) (%, J) = Mon(M)( X, 1) : p.
(resp. @™ : Comm( M) (Y ,J) = Comm( M) (X, 1) : ps)

is a Quillen adjunction (where the categories of monoids Mon(#)(Z ,I) (resp. of
commutative monoids Comm(.#)(Z ,1)) are endowed with the injective model category
structure obtained from Proposition 3.1.7 applied to Mon(#) (resp. to Comm/(A&)).
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(d) If moreover, for any object X of &, the unit 1x is cofibrant in M (X), then, for mor-
phism of #-diagrams ¢ : (Z,1) — (Y, J), the square

Ho(Mon())(# , J) —£ = Ho(Mon(.4))(2, T)
(7.1.11.1) Ul lU
Ho(.)(#, J) Ho(.2)(2,1)

L™

1s essentially commutative. Similarly, in the respective case, the square
Ho(Comm/(4)) (%, J) e, Ho(Comm/(4))(Z, 1)
(7.1.11.2) UJ/ iU
Ho(.#) (%, J) Ho(.#)(Z 1)

Lp*

s essentially commutative.

PROOF. Assertion (a) is an immediate consequence of Theorem 7.1.3 (resp. of Theorem
7.1.8), and assertion (b) is a particular case of Proposition 3.1.11 (beware that the injective model
category structure on Comm(.#)(2Z ,I) does not necessarily coincide with the model category
structure given by Theorem 7.1.3 (resp. of Theorem 7.1.8) applied to the injective model structure
on (2 ,I)). For assertion (d), we see by the second assertion of Proposition 3.1.6 that it is
sufficient to prove it when ¢ : X — Y is simply a morphism of .. In this case, by construction of
the total left derived functor of a left Quillen functor, this follows from the fact that ¢* commutes
with the forgetful functor and from the fact that, by virtue of the last assertion of Theorem
7.1.3 (resp. of Theorem 7.1.8), the forgetful functor U preserves weak equivalences and cofibrant
objects. O

REMARK 7.1.12. The main application of the preceding corollary will come from assertion
(d): it says that, given a monoid (resp. a commutative monoid) R in .Z(Y) and a morphism
f: X =Y, the image of R by the functor

Lf* : Ho(.#)(Y) — Ho(.#)(X)

is canonically endowed with a structure of monoid (resp. of commutative monoid) in the strongest
sense possible. Under the assumptions of assertion (¢) of Proposition 7.1.11, we shall often make
the abuse of saying that Lf*(R) is a monoid (resp. a commutative monoid) in .#(X) without
refereeing explicitely to the model category structure on Mon(.#)(X) (resp. on Comm(.#)(X)).
Similarly, for any monoid (resp. commutative monoid) R in .#(X), Rf.(R) will be canonically
endowed with a structure of a monoid (resp. a commutative monoid) in .#(Y). In particular, for
any monoid (resp. commutative monoid) R in .# (YY), the adjunction map

R— Rf.Lf(R)

is a morphism of monoids (i.e. is a map in the homotopy category Ho(Mon(.#))(X) (resp.
Ho(Comm/(.#))(X))), and, for any monoid (resp. commutative monoid) R in .#(X), the adjunc-
tion map

Lf*Rf.(R) = R
is a morphism of monoids (i.e. is a map in the homotopy category Ho(Mon(.#))(Y) (resp.
Ho(Comm/(#))(Y))).

REMARK 7.1.13. In order to get a good homotopy theory of commutative monoids wihout
the strongly Q-linear assumption, we should replace commutative monoids by E..-algebras (i.e.
objects endowed with a structure of commutative monoid up to a bunch of coherent homotopies).
More generally, we should prove the analog of Theorem 7.1.3 and of Theorem 7.1.8 by replacing
Mon(¥) by the category of algebras of some ‘well behaved’ operad, and then get as a consequence
the analog of Proposition 7.1.11. All this is a consequence of the general constructions and results
of [Spi01, BMO03, BMO09].
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However, in the case we are interested in the homotopy theory of commutative monoids in
some category of spectra ¥/, it seems that some version of Shipley’s positive stable model structure
(¢f. [Shi04, Proposition 3.1]) would provide a good model category for commutative monoids,
which, by Lurie’s strictification theorem [Lurl2, Theorem 4.4.4.7], would be equivalent to the
homotopy theory of E.-algebras in #". This kind of technics is available in the context of stable
homotopy theory of schemes, which provides a good setting to speak of motivic commutative ring
spectra; see [Hor1l0, GG11]. Therefore, Theorem 7.1.8 and Proposition 7.1.11 are in fact true in
SH for genuine commutative monoids without any Q-linearity assumption.

7.2. Modules.

7.2.1. Given a monoid R in a symmetric monoidal category ¥, we shall write R- mod (%) for
the category of (left) R-modules. The forgetful functor

U:Rmod(¥)— 7V
is a left adjoint to the free R-module functor
R®(—):¥ — R-mod(¥).

If ¥ has enough small colimits, and if R is a commutative monoid, the category R-mod(¥) is
endowed with a unique symmetric monoidal structure such that the functor R ® (—) is naturally
symmetric monoidal. We shall denote by ®pg the tensor product of R- mod(¥).

THEOREM 7.2.2. Let ¥ be a combinatorial symmetric model category which satisfies the
monoid axiom.

(i) For any monoid R in ¥, the category of right (resp. left) R-modules is a combinatorial
model category with weak equivalences (resp. fibrations) the morphisms of R-modules
which are weak equivalences (resp. fibrations) in V.

(ii) For any commutative monoid R in ¥, the model category of R-modules given by (i) is a
combinatorial symmetric monoidal model category which satisfies the monoid axiom.

PROOF. Assertions (i) and (ii) are particular cases of the first two assertions of [SS00, The-
orem 4.1]. O

DEFINITION 7.2.3. A symmetric monoidal model category ¥ is perfect if it has the following
properties.
(a) ¥ is combinatorial and tractable (3.1.27);
(b) ¥ satisfies the monoid axiom;
(¢) For any weak equivalence of monoids R — S, the functor M +— S ®@p M is a left Quillen
equivalence from the category of left R-modules to the category of left S-modules.
(d) weak equivalences are stable by small sums in ¥

REMARK 7.2.4. If ¥ is a perfect symmetric monoidal model category, then, for any com-
mutative monoid R, the symmetric monoidal model category of R-modules in ¥ given by The-
orem 7.2.2 (ii) is also perfect: condition (c) is quite obvious, and condition (d) comes from the
fact that the forgetful functor U : R-mod — ¥ commutes with small sums, while it preserves and
detects weak equivalences. Note that condition (d) implies that the functor U : Ho(R-mod) —
Ho(7') preserves small sums.

REMARK 7.2.5. If ¥ is a stable symmetric monoidal model category which satisfies the monoid
axiom, then for any monoid R of ¥, the model category of (left) R-modules given by Theorem
7.2.2 is stable as well: the suspension functor of Ho(R- mod) is given by the derived tensor product
by the R-bimodule R[1], which is clearly invertible with inverse R[—1].

In this work, a basic example of perfect model categories are those coming from stable Al-
derived premotivic categories (cf Def. 5.3.22):

PROPOSITION 7.2.6. Let t be an admissible topology. Then, for any scheme S in .#, the
symmetric monoidal model structure on C(Sp(Shy(£/S,Z))) underlying the triangulated category
Da1(Sh(22/S,2Z)) is perfect.
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PrOOF. The generating family of Sh,(£2/S,Z) is flat in the sense of [CDO09, 3.1], so that, by
virtue of [CDO09, prop. 7.22 and cor. 7.24], the assumptions of Proposition 7.2.9 are fulfilled. O

PROPOSITION 7.2.7. Let ¥ be a stable perfect symmetric monoidal model category. Assume
furthermore that Ho(¥') admits a small family G of compact generators (as a triangulated category).
For any monoid R in ¥, the triangulated category Ho(R-mod(¥)) admits the set {RRVE | E € G}
as a family of compact generators.

PRrROOF. We have a derived adjunction
R®" (=) : Ho(¥) = Ho(R-mod(¥)) : U .

As the functor U preserves small sums the functor R ®¥ (—) preserves compact objects. But U is
also conservative, so that {R®@Y E | E € G} is a family of compact generators of Ho(R-mod(7)).
O

REMARK 7.2.8. If ¥ is a combinatorial symmetric model category which satisfies the monoid
axiom, then there are two ways to derive the tensor product. The first one consists to derive the
left Quillen bifunctor (—) ® (—), which gives the usual derived tensor product

(=) @ (=) : Ho(¥) x Ho(¥#) — Ho(¥).

Remember that, by construction, A ®¥ B = A’ ® B’, where A’ and B’ are cofibrant replacements
of A and B respectively. On the other hand, the monoid axiom gives that, for any object A of ¥,
the functor A ® (—) preserves weak equivalences between cofibrant objects, which implies that it
has also a total left derived functor

A" (=) : Ho(¥) — Ho(¥).

Despite the fact we have adopted very similar (not to say identical) notations for these two derived
functor, there is no reason they would coincide in general: by construction, the second one is defined
by A®Y B = A® B’, where B’ is some cofibrant replacement of B. However, they coincide quite
often in practice (e.g. for simplicial sets, for the good reason that all of them are cofibrant, or for
symmetric S'-spectra, or for complexes of quasi-coherent Ox-modules over a quasi-compact and
quasi-separated scheme X).

PROPOSITION 7.2.9. Let ¥ be a stable combinatorial symmetric monoidal model category
which satisfies the monoid axiom. Assume furthermore that, for any cofibrant object A of ¥, the
functor A® (=) preserve weak equivalences (in other words, that the two ways to derive the tensor
product explained in Remark 7.2.8 coincide), and that weak equivalences are stable by small sums
in V. Then the symmetric monoidal model category V is perfect.

PROOF. We just have to check condition (c¢) of Definition 7.2.3. Consider a weak equivalence
of monoids R — S. We then get a derived adjunction

S @% (=) : Ho(R-mod(7)) = Ho(S-mod(¥)) : U,

where S ®% (—) is the left derived functor of the functor M +— S ®r M. We have to prove that,
for any left R-module M, the map
M — S@EM
is an isomorphism in Ho(¥"). As this is a morphism of triangulated functors which commutes
with sums, and as Ho(R-mod(?)) is well generated in the sense of Neeman [Nee01] (as the
localization of a stable combinatorial model category), it is sufficient to check this when M runs
over a small family of generators of Ho(R-mod(¥')). Let us chose is a small family of generators
G of Ho(¥). As the forgetful functor from Ho(R-mod(¥")) to Ho(¥') is conservative, we see that
{R®Y E | E € G} is a small generating family of Ho(R-mod(7)). We are thus reduced to prove
that the map
RE - Se@% (ReYFE)~ SV E

is an isomorphism for any object E in G. For this, we can assume that E is cofibrant, and this
follows then from the fact that the functor (—)® E preserves weak equivalences by assumption. O
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7.2.10. Let . be a category endowed with an admissible class of morphisms &2, and .Z a
symmetric monoidal Z-fibred category. Consider a monoid R in the symmetric monoidal category
M (1y,.7) (ie. asection of the fibred category Mon(.#) over .#). In other words, R consists of
the data of a monoid Ry for each object X of ., and of a morphism of monoids as : f*(Ry) — Rx
for each map f: X — Y in ., subject to coherence relations; see 3.1.2.

For an object X of ., we shall write R-mod(X) for the category of (left) Rx-modules in
M(X), ie.

R-mod(X) = Rx-mod(#Z(X)).
This defines a fibred category R-mod over . as follows.
For a morphism f : X — Y, the inverse image functor

(7.2.10.1) f*: R-mod(Y) — R-mod(X)
is defined by
(7.2.10.2) M — Rx Qf*(Ry) f*<M)

(where, on the right hand side, f* stands for the inverse image functor in .#). The functor
(7.2.10.1) has a right adjoint
(

7.2.10.3) fx« i R-mod(X) — R-mod(Y)

which is simply the functor induced by f. : #(X) — #(Y) (as the latter sends Rx-modules to
f+«(Rx)-modules, which are themselves Ry-modules via the map ay).

If the map f is a &-morphism, then, for any Rx-module M, the object fy(M) has a natural
structure of Ry-module: using the map ay, M has a natural structure of f*(Ry )-module

f"(Ry)@ex M — M,
and applying f;, we get by the Z7-projection formula (1.1.26) a morphism
Ry ® fy(M) ~ fy(f*(Ry) © M) — f;(M)

which defines a natural Ry-module structure on fy(M). For a &-morphism f : X — Y, we define
a functor

(7.2.10.4) fy: R-mod(X) — R-mod(Y)

as the functor induced by f; : #(X) — 4 (Y). Note that the functor (7.2.10.4) is a left adjoint
to the functor (7.2.10.1) whenever the map ay : f*(Ry) — Rx is an isomorphism in .Z(X).

We shall say that R is a cartesian monoid in 4 over . if R is a monoid of .# (14, %) such
that all the structural maps f*(Ry) — Rx are isomorphisms (i.e. if R is a cartesian section of
the fibred category Mon(.#) over %)

If R is a cartesian monoid in .#Z over ., then R-mod is a &-fibred category over .%: to see
this, it remains to prove that, for any pullback square of .

x 2. x

1

Y ——=Y
h

in which f is a &-morphism, and for any Rx-module M, the base change map
fig7 (M) = b* fy(M)

is an isomorphism, which follows immediately from the analogous formula for ..

Similarly, we see that whenever R is a commutative monoid of .#Z(1%,.) (i.e. Rx is a
commutative monoid in .#(X) for all X in .%), then R-mod is a symmetric monoidal &-fibred
category.
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PRrROPOSITION 7.2.11. Let A be a combinatorial symmetric monoidal &P -fibred model category
over . which satisfies the monoid axiom, and R a monoid in M (1.»,.7) (resp. a cartesian monoid
in M over ). Then 7.2.2 (i) applied termwise turns R-mod into a combinatorial fibred model
category (resp. a combinatorial P-fibred model category).

If moreover R is commutative, then R-mod is a combinatorial symmetric monoidal fibred
model category (resp. a combinatorial symmetric monoidal &-fibred model category).

PrOOF. Choose, for each object X of ., two small sets of maps Ix and Jx which generate
the class of cofibrations and the class of trivial cofibrations in .# (X) respectively. Then Rx ® x Ix
and Rx ®x Jx generate the class of cofibrations and the class of trivial cofibrations in R- mod(X)
respectively. For amap f: X — Y in ., we see from formula (7.2.10.2) that the functor (7.2.10.1)
sends these generating cofibrations and trivial cofibrations to cofibrations and trivial cofibrations
respectively, from which we deduce that the functor (7.2.10.1) is a left Quillen functor. In the
respective case, if f is a Z-morphism, then we deduce similarly from the projection formula
(1.1.26) in .# that the functor (7.2.10.4) sends generating cofibrations and trivial cofibrations
to cofibrations and trivial cofibrations respectively. The last assertion follows easily by applying
7.2.2 (ii) termwise. O

DEFINITION 7.2.12. Let .# be a symmetric monoidal £-fibred model category over .. A
homotopy cartesian monoid R in .# will be a homotopy cartesian section of Mon(.#).

PROPOSITION 7.2.13. Let A4 be a perfect symmetric monoidal &2-fibred model category over
<, and consider a homotopy cartesian monoid R in # over /.
Then Ho(R-mod) is a &-fibred category over ., and

R&Y (—) : Ho(.#) — Ho(R-mod)

is a morphism of P-fibred categories. In the case where R is commutative, Ho(R-mod) is even a
symmetric monoidal P -fibred category.
Moreover, for any weak equivalence between homotopy cartesian monoids R — S over .7, the
Quillen morphism
S®g (=) : R-mod — S-mod
induces an equivalence of &-fibred categories over .
S @k (-) : Ho(R-mod) — Ho(S-mod).

PROOF. It is sufficient to prove these assertions by restricting everything over ./S, where S
runs over all the objects of .. In particular, we may (and shall) assume that .# has a terminal
object S. As .# is perfect, it follows from condition (c) of Definition 7.2.3 that we can replace
R by any of its cofibrant resolution. In particular, we may assume that Rg is a cofibrant object
of Mon(.#)(S). We can thus define a termwise cofibrant cartesian monoid R’ as the family of
monoids f*(Rg), where f : X — S runs over all the objects of . ~ . /S. There is a canonical
morphism of homotopy cartesian monoids R’ — R which is a termwise weak equivalence. We thus
get, by condition (c) of Definition 7.2.3, an equivalence of fibred categories

R®% (—) : Ho(R'-mod) — Ho(R-mod).

We can thus replace R by R/, which just means that we can assume that R is cartesian and
termwise cofibrant. The first assertion follows then easily from Proposition 7.2.11. In the case
where R is commutative, we prove that Ho(R- mod) is a &-fibred symmetric monoidal category
as follows. Let f : X — Y a morphism of .. We would like to prove that, for any object M in
Ho(R-mod)(X) and any object N in Ho(R-mod)(Y"), the canonical map

(7.2.13.1) Lf;(M ®F f*(N)) = Lfy(M) @ N

is an isomorphism. By adjunction, this is equivalent to prove that, for any objects N and FE in
Ho(R-mod)(Y), the map

(7.2.13.2) f"RHomg(N,E) - RHomg(f*(N), f*(E))
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is an isomorphism in Ho(R- mod)(X) (where RHom g stands for the internal Hom of Ho(R- mod)).
But the forgetful functors

U : Ho(R-mod)(X) — Ho(.#)(X)
are conservative, commute with f* for any &-morphism f, and commute with internal Hom: by
adjunction, this follows immediately from the fact that the functors

R®Y (=) : Ho(.#)(X) — Ho(R-mod)(X) ~ Ho(R'- mod)(X)

are symmetric monoidal and define a morphism of &-fibred categories (and thus, in particular,
commute with fy for any &?-morphism f). Hence, to prove that (7.2.13.2) is an isomorphism, it
is sufficient to prove that its analog in Ho(.#) is so, which follows immediately from the fact that
the analog of (7.2.13.1) is an isomorphism in Ho(.#') by assumption.

For the last assertion, we are also reduced to the case where R and S are cartesian and termwise
cofibrant, in which case this follows easily again from condition (c¢) of Definition 7.2.3. O

PROPOSITION 7.2.14. Let .4 be a combinatorial symmetric monoidal model category over .
which satisfies the monoid axiom. Then, for any cartesian monoid R in .# over . we have a
Quillen morphism

R® (=) : # — R-mod .
If, for any object X of .7, the unit object 1x is cofibrant in 4 (X) and the monoid Rx is cofibrant
in Mon(#)(X), then the forgetful functors also define a Quillen morphism

U:R-mod — A .

PROOF. The first assertion is obvious. For the second one, note that, for any object X of .,
the monoid Rx is also cofibrant as an object of .#(X); see Theorem 7.1.3. This implies that the
forgetful functor

U: Rx-mod — . (X)
is a left Quillen functor: by the small object argument and by definition of the model category
structure of Theorem 7.2.2 (i), this follows from the trivial fact that the endofunctor

Rx®(—): M(X)— #(X)
is a left Quillen functor itself whenever Ry is cofibrant in .# (X). O

REMARK 7.2.15. The results of the preceding proposition (as well as their proofs) are also
true in terms of & .+-fibred categories (3.1.21) over the category of ./ S-diagrams for any object
S of . (whence over all .-diagrams whenever .# has a terminal object).

7.2.16. Consider now a noetherian scheme S of finite dimension. We choose a full subcategory
of the category of separated noetherian S-schemes of finite dimension which is stable by finite
limits, contains separated S-schemes of finite type, and such that, for any étale S-morphism
Y = X, if X isin /S, sois Y. We denote by .#/S this chosen category of S-schemes.

We also fix an admissible class & of morphisms of .//S which contains the class of étale
morphisms.

DEFINITION 7.2.17. A property P of Ho(.#Z), for .# a stable combinatorial &?-fibred model
category over ./S, is homotopy linear if the following implications are true.

(a) If v : A — A’ is a Quillen equivalence (i.e. a Quillen morphism which is termwise a
Quillen equivalence) between stable combinatorial &-fibred model category over ./S,
then .# has property P is and only if .#’ has property P.

(b) If 4 is a stable combinatorial symmetric monoidal &?-model category which satisfies the
monoid axiom, and such that the unit 1x of .Z(X) is cofibrant, then, for any cartesian
and termwise cofibrant monoid R in .# over /S, R-mod has property P.

PROPOSITION 7.2.18. The following properties are homotopy linear: A'-homotopy invariance,
Pl-stability, the localization property, the property of proper transversality, separability, semi-
separability, t-descent (for a given Grothendieck topology t on .7 /S ).
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PROOF. Property (a) of the definition above is obvious. Property (b) comes from the fact
that the forgetful functors
U : Ho(R-mod) — Ho(#)
are conservative and commute with all the operations: Lf* and R f, for any morphism f, as well
as Lfy for any &-morphism (by Proposition 7.2.14). Hence any property formulated in terms of
equations involving only these operations is homotopy linear. O






Part 3

Motivic complexes and relative cycles



In this entire part, we adopt the special convention that smooth means smooth separated of
finite type. This concerns also the framework of premotivic categories: we assume the admissible
class Sm is made of smooth separated morphisms of finite type.

This assumption is required by the use of the theory of finite correspondences (see more
precisely Example 9.1.4).

8. Relative cycles

8.0. In this entire section, . is the category of noetherian schemes; any scheme is assumed
to be noetherian. We fix a subring A C Q which will be the ring of coefficients of the algebraic
cycles considered in the following section.

8.1. Definitions.
8.1.a. Category of cycles.

8.1.1. Let X be a scheme. As usual, an element of the underlying set of X will be called a
point and a morphism Spec (k) — X where k is a field will be called a geometric point. We often
identify a point x € X with the corresponding geometric point Spec (k) — X. However, the
explicit expression ”the point Spec (k) — X" always refers to a geometric point.

As our schemes are assumed to be noetherian, any immersion f : X — Y is quasi-compact. Thus,
according to [EGA1, 9.5.10], the schematic closure X of X in Y exists which gives a unique
factorization of f

xXLx5Ly
such that i is a closed immersion and j is an open immersion with dense image’®. Note that
when Y is reduced, X coincide with the topological closure of X in Y with its induced reduced
subscheme structure. In this case, we simply call Y the closure of Y in X.

DEFINITION 8.1.2. A A-cycle is a couple (X, «) such that X is a scheme and « is a A-linear
combination of points of X. A generic point of (X, «) is a point which appears in the A-linear
combination a with a non zero coefficient. The support Supp(«a) of « is the closure of the generic
points of a.

A morphism of A-cycles (Y,5) — (X,«a) is a morphism of scheme f : ¥ — X such that
f(Supp(B)) C Supp(e). We say this morphism is pseudo-dominant if for any generic point y of
(Y, B), f(y) is a generic point of (X, «).

When considering such a pair (X, «), we will denote it simply by « and refer to X as the
domain of a. We also use the notation a C X to mean the domain of the cycle « is the scheme
X.

The category of A-cycle is functorial in A with respect to morphisms of integral rings. In what
follows, cycles are assumed to have coefficients in A unless explicitly stated.

8.1.3. Given a property (P) of morphisms of schemes, we will say that a morphism f: f — «

of cycles satisfies property (P) if the induced morphism f |§3§g§g; satisfies property (P).

DEFINITION 8.1.4. Let X be a scheme. We denote by X (9 the set of generic points of X. We
define as usual the cycle associated with X as the cycle with domain X :

(X)= > 1g(0x.)a
e X (©)
The integer 1g(Ox ), length of an artinian local ring, is called the geometric multiplicity of x in
X.

When no confusion is possible, we usually omit the delimiters in the notation (X). As an
example, we say that « is a cycle over X to mean the existence of a structural morphism of cycles
a— (X).

"4Recall the scheme X is characterized by the property of being the smallest sub-scheme of Y with the existence
of such a factorization.
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8.1.5. When Z is a closed subscheme of a scheme X, we denote by (Z)x the cycle (Z)
considered as a cycle with domain X.
Consider a cycle a with domain X. Let (Z;);c; be the family of the reduced closure of generic
points of . Then we can write o uniquely as a = ), ; n;.(Z;) x. We call this writing the standard
form of « for short.

DEFINITION 8.1.6. Let o = >
morphism.

For any ¢ € I, put y; = f(z;). Then f induces an extension field x(z;)/r(y;) between the
residue fields. We let d; be the degree of this extension field in case it is finite and 0 otherwise.

We define the pushforward of a by f as the cycle with domain Y

fola) = nid;. f ().

i€l

serMi-T; be a cycle with domain X and f : X — Y be any

Thus, when f is an immersion, f.(a) is the same cycle as a but seen as a cycle with domain
X. Remark also that we obtain the following equality

(8.1.6.1) £((X)) = (X)y

where X is the schematic closure of X in Y (indeed X is a dense open subscheme in X). When
f is clear, we sometimes abusively put: (X)y := f.((X)).
By transitivity of degrees, we obviously have f.g. = (fg). for a composable pair of morphisms

(f. 9)-

DEFINITION 8.1.7. Let a =}, n;.x; be a cycle over a scheme S with domain f : X — S
and U C S be an open subscheme. Let I' = {i € I | f(z;) € U}. We define the restriction of o
over U as the cycle a|y = ) _,c ni.w; with domain X xg U considered as a cycle over U.

If @ =3 ,c;ni.(Zi)x, then obviously aly =
obvious lemma for convenience :

ierMi{Zi x5 U)x,,. We state the following

LEMMA 8.1.8. Let S be a scheme, U C S an open subscheme and X be an S-scheme. Let
7 : Xy — X be the obvious open immersion.

(i) For any cycle (Xy,d'), (j*(o/))|U =d.
(ii) Assume U = S. For any cycle (X, a) pseudo-dominant over S, j.(a |r) = a.

8.1.b. Hilbert cycles.

8.1.9. Recall that a finite dimensional scheme X is equidimensional — we will say absolutely
equidimensional — if its irreducible components have all the same dimension.

We will say that a flat morphism f : X — S is equidimensional if it is of finite type and for
any connected component X’ of X, there exists an integer e € N such that for any generic point
n in X', the fiber f~1[f(n)] is absolutely equidimensional of dimension e.

DEFINITION 8.1.10. Let S be a scheme.
Let a be a cycle over S with domain X. We say that « is a Hilbert cycle over S if there exists
a finite family (Z;);cr of closed subschemes of X which are flat equidimensional over S and a finite

family (n;);er € A! such that
o = Z nl<Zl>X

EXAMPLE 8.1.11. Any cycle over a field k is a Hilbert cycle over Spec (k). Let S be the
spectrum of a discrete valuation ring. A cycle a = ), ; n;.2; over S is a Hilbert cycle if and only
if each point x; lies over the generic points of S. Indeed, an integral S-scheme is flat if and only
if it is dominant.

The following lemma follows almost directly from a result of [SV0O0b]:
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LEMMA 8.1.12. Let f : 8" — S be a morphism of schemes and X be an S-scheme of finite
type. Put X' = X xg 5.

Let (Z;)icr be a finite family of closed subschemes of X such that each Z; is flat equidimen-
sional over S. We assume the following relation:

(8.1.12.1) > nilZi)x =0
il
Then we the following equality holds:
an<Zz Xg S/>X/ =0.
il
PROOF. When we assume that for any index ¢ € I, Z;/S is equidimensional of dimension e,
this lemma is exactly [SV00b, Prop. 3.2.2]. We show how to reduce to that case.

Up to adding more members to the family (Z;), we can always assume that Z; is connected.
Then, because Z;/S is equidimensional by assumption, there exists an integer e; such that for any

point x € ZZ-(O), the fiber f~1[f(z)] is absolutely equidimensional of dimension e;. In particular
the transcendence degree d, of the residual extension k. /k(,) satisfies the relation: d, = e;.
For any integer e € N, we define the following subset of I:

L={icl|Vzez" d, =e}.

Thus (I¢)een is a partition of I.
One can rewrite the assumption (8.1.12.1) as follows: for any point « € X,

> nilg(0z,.) =0.
iel|zez”
In particular, given any integer e € N, we deduce that the family (Z;);e;, still satisfies the relation
(8.1.12.1). As any member of this family is equidimensional of dimension e, we can apply [SV0O0Db,
Prop. 3.2.2] to (Z;)icr,. This concludes. O

8.1.13. Cousider a Hilbert S-cycle @« C X and a morphism of schemes f : S’ — S. Put
X' =X xg5'. We choose a finite family (Z;);c; of flat equidimensional S-schemes and a finite

family (n;)ie; € AT such that a = > _ic1 Mi-{Zi)x. The previous lemma says exactly that the cycle
Z ’I’LZ<Z1 Xs S/>X’
iel

depends only on « and not on the chosen families.

DEFINITION 8.1.14. Adopting the preceding notations and hypothesis, we define the pullback
cycle of « along the morphism f : S’ — S as the cycle with domain X’

a@’jg Sl = an<ZZ Xg S/>X/.
el

In this setting the following lemma is obvious :

LEMMA 8.1.15. Let a be a Hilbert cycle over S, and S” — S’ — S be morphisms of schemes.
Then (a ®% S') @% S" = a @ S".

We will use another important computation from [SVO0O0b] (it is a particular case of loc. cit.,
3.6.1).

PROPOSITION 8.1.16. Let R be a discrete valuation ring with residue field k.
Let o C X be a Hilbert cycle over Spec (R) and f : X — Y a morphism over Spec (R). We denote
by ' X' = Y’ the pullback of f over Spec (k).

Suppose that the support of « is proper with respect to f.

Then f.(a) is a Hilbert cycle over R and the following equality of cycles holds in X':

flla®y k) = fu(a) @% k.
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DEFINITION 8.1.17. Let p : S — S be a birational morphism. Let C' be the minimal closed
subset of S such that p induces an isomorphism (S — S xg C) — (S — C).

Consider a = ), n;.(Z;) x a cycle over S written in standard form.

We define the strict transform Z; of the closed subscheme Z; in X along p as the schematic
closure of (Z; — Z; xs C) xg Sin X xgS. We define the strict transform of « along p as the cycle
over S

a= Zni'<2i>X><55"

i€l

As in [SV00Db], we remark that a corollary of the platification theorem of Gruson-Raynaud is
the following :

LEMMA 8.1.18. Let S be a reduced scheme and o be a pseudo-dominant cycle over S.
Then there exists a dominant blow-up p : S — S such that the strict transform & of a along
p is a Hilbert cycle over S.

We conclude this part by recalling an elementary lemma about cycles and Galois descent
which will be used extensively in the next sections :

LEMMA 8.1.19. Let L/K be an extension of fields and X be a K-scheme. We put X =
X Xk Spec (L) and consider the faithfully flat morphism f: X — X.
Denote by Cycl(X) (resp. Cycl(XL)) the cycles with domain X (resp. Xr,).
(1) The morphism f* : Cycl(X) — Cycl(X1), 8+ B &% L is a monomorphism.
(2) Suppose L/K is finite. For any K-cycle 8 € Cycl(X),
F.(B & L) = (L K].5.
(8) Suppose L/K is finite normal with Galois group G.
The cycles in the image of f* are invariant under the action of G. For any cycle
B € Cycl(X1)Y, there exists a unique cycle B € Cycl(X) such that

Br @% L=I[L:K].8
where [L : K]; is the inseparable degree of L/K.

8.1.c. Specialization. The aim of this section is to give conditions on cycles so that one can
define a relative tensor product on them.

DEFINITION 8.1.20. Consider two cycles a = >, nj.s; and 3= >, ;m;.z;. Let S be the
support of a.

A morphism g3 Iy o of cycles is said to be pre-special if it is of finite type and for any j € J,
there exists ¢ € I such that f(z;) = s; and n;|m; in A. We define the reduction of 5/« as the

cycle over S
_ m;
JEJ f(xj)=s;

ExaMPLE 8.1.21. Let S be a scheme and « a Hilbert S-cycle. Then the canonical morphism
of cycles a — (S) is pre-special. If S is the spectrum of a discrete valuation ring, an S-cycle « is
pre-special if and only if it is a Hilbert S-cycle.

DEFINITION 8.1.22. Let « be a cycle.

A point (vesp. trait) of o will be a morphism Spec (k) = a (resp. Spec (R) = «) such that k
is a field (resp. R is a discrete valuation ring). We simply say that z (resp. 7) is dominant if the
image of the generic point in the domain of « is a generic point of a.

Let x : Spec (ko) — « be a point. An extension of z will be a point y on « of the form Spec (k) —
Spec (ko) = a.
A fat point of o will be morphisms

Spec (k) = Spec (R) = «
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such that 7 is a dominant trait and the image of s is the closed point of Spec (R).
Given a point  : Spec (k) — «, a fat point over z is a factorization of x through a dominant trait
as above.

In the situation of the last definition, we denote simply by (R, k) a fat point over x, without
indicating in the notation the morphisms s and 7.

REMARK 8.1.23. With our choice of terminology, a point of « is in general an extension of a
specialization of a generic point of a. As a further example, a dominant point of « is an extension
of a generic point of .

LEMMA 8.1.24. For any cycle a and any non dominant point = : Spec (ko) — «, there exists
an extension y : Spec (k) = a of  and a fat point (R, k) over y.

PROOF. Replacing « by its support S, we can assume o = (S). Let s be the image of x in S,
Kk its residue field. We can assume S is reduced, irreducible by taking one irreducible component
containing s, and local with closed point s. Let S = Spec(A), K = Frac(A). According to
[EGA2, 7.1.7], there exists a discrete valuation ring R such that A C R C K, and R/A is an
extension of local rings. Then any composite extension k/k of ko and the residue field of R over
K gives the desired fat point (R, k). O

DEFINITION 8.1.25. Let 8 — « be a pre-special morphism of cycles. Consider S the support of
o and X the domain of 8. Let By = 3, ; m;.(Z;) x be the reduction of 8/« written in standard
form.

(1) Let Spec(K) — « be a dominant point. We define the following cycle over Spec (K)
with domain Xx = X xg Spec (K) :

Bi =Y m;.(Z; xs Spec (K))x,.
jeJ
(2) Let Spec (R) = S be a dominant trait, & be the fraction field of R and j : Xx — Xg be
the canonical open immersion. We define the following cycle over R with domain Xp :

Br = j«(BK)-
According to example 8.1.11, B is a Hilbert cycle over R.

(3) Let = : Spec (k) — « be a point on « and (R, k) be a fat point over z.
We define the specialization of 5 along the fat point (R, k) as the cycle

Brk = Br @y k
using the above notation and definition 8.1.14. It is a cycle over Spec (k) with domain
X=X Xg Spec (k’)

REMARK 8.1.26. Let 8 C X be an S-cycle, x : Spec (K) — S be a dominant point and U be
an open neighborhood of = in S.
Then if 8 is pre-special over S, |y is pre-special over U and B = (B|v) k-
If 7 : Spec(R) — S (resp. (R,k)) is a trait (resp. fat point) with generic point z, we also get
Br = (Blu)r (resp. Brx = (Blv)R.k)-

8.1.27. Let S be a reduced scheme, and 8 = >
any index i € I, let k; be the residue field of x;.

Consider a dominant point x : Spec (K) — S. Let n be its image in S and F be the residue
field of n. We put I' = {i € I | f(z;) = n} where f : X — S is the structural morphism. With
these notations, we get

se1 Mi-T; be an S-cycle with domain X. For

Bk = Z n;.(Spec (ki ®F K)) x4,

iel’
and for a dominant trait Spec (R) — S with generic point z,
(8.1.27.1) Br =Y _ni.(Spec (ki ®p K))xp,

iel’
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where Spec (k; ® K) is seen as a subscheme of X (resp. Xg).
Consider a fat point (R,k) with generic point 2 and write 3 = >, ; n;.(Z;)x in standard
form (i.e. Z; is the closure of {z;} in X). Then according to (8.1.6.1), we obtain™

Brk = Z n;. (Z; ik X r Spec (k)>Xk
iel’
where Z; k = Z; X g Spec (K) is considered as a subscheme of Xy and the schematic closure is
taken in Xg.
Considering the description of the schematic closure for the generic fiber of an R-scheme (cf.
[EGAA4, 2.8.5]), we obtain the following way to compute g . By definition, R is an F-algebra.
For i € I, let A; be the image of the canonical morphism

Ki®FR—>Hi®FK.
It is an R-algebra without R-torsion. Moreover, the factorization
Spec (k; @ K) — Spec (A;) — Spec (k; ®F R)

defines Spec (A;) as the schematic closure of the left hand side in the right hand side (¢f. [EGA4,
2.8.5]). In particular, we get an immersion Spec (4; ®g k) — X} and the nice formula :

Brk = Z n;. (Spec (A; ®r k)) x, -
iel’
DEFINITION 8.1.28. Consider a morphism of cycles f : 5 — « and a point z : Spec (ko) — a.
We say that f is special at x if it is pre-special and for any extension y : Spec (k) — a of x, for
any fat points (R, k) and (R', k) over y, the equality S = Sr/x holds in Xj. Equivalently, we
say that 8/« is special at x.
We say that f is special (or that /3 is special over «) if it is special at every point of «.

REMARK 8.1.29. (1) Trivially, f is special at every dominant point of a.

(2) Given an extension y of x, it is equivalent for f to be special at x or at y (use Lemma
8.1.19(1)). Thus, in the case where oo = (S), we can restrict our attention to the points
s€eS.

(3) According to 8.1.26, the property that /S is special at s € S depends only on an open
neighbourhood U of s in S. More precisely, the following conditions are equivalent :

(i) B is special at s over S.
(ii) Blv is special at s over U.
ExAMPLE 8.1.30. Let S be a scheme and 5 be a Hilbert cycle over S. We have already seen
that 8 — (S) is pre-special. The next lemma shows this morphism is in fact special.

LEMMA 8.1.31. Let S be a scheme and 3 be a Hilbert cycle over S. Consider a point x :
Spec (k) — S and a fat point (R, k) over x.

Then BR,k =7 (X%v k.

PROOF. According to the preceding definition and Lemma 8.1.15 it is sufficient to prove
Br=7p ®?; R. As the two sides of this equation are unchanged when replacing § by the reduction
Bo of B/S, we can assume that S is reduced. By additivity, we are reduced to the case where
B = (X) is the fundamental cycle associated with a flat S-scheme X. According to 8.1.6.1,
Br = <X7K> X" Applying now [EGA4, 2.8.5], X is the unique closed subscheme Z of X such
that Z is flat over Spec (R) and Z x g Spec (K) = Xg. Thus, as Xp is flat over Spec (R), we get
X = X and this concludes. O

LEMMA 8.1.32. Let p: S — S be a birational morphism and consider a commutative diagram
/ S
Spec (k) — Spec (R) \LP
\ S

"5This shows that our definition coincide with the one given in [SVO0Ob] (p. 23, paragraph preceding 3.1.3)
in the case where a = (S), S reduced.
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such that (R, k) is a fat point of S and S.

Consider a pre-special cycle 8 over S and B its strict transform along p. Then, j is pre-special
and Br.i = Br.k-

ProoF. Using 8.1.26, we reduce to the case where p is an isomorphism which is trivial. O

LEMMA 8.1.33. Let S be a reduced scheme, x : Spec (ko) — S be a point and « be a pre-special
cycle over S. Let p: S — S be a dominant blow-up such that the strict transform & of o along p
is a Hilbert cycle over S. Then the following conditions are equivalent :

(i) « is special at x.
(ii) for every points x1,xs : Spec (k) — S such that pox; = poxy and pox, is an extension
of x, 6¢®b§x1 :d®gx2.

PROOF. The case where x is a dominant point follows from the definitions and the fact p is
an isomorphism at the generic point. We thus assume x is non dominant.

(1) = (i1) : Applying Lemma 8.1.24 to z;, i = 1,2, we can find an extension z} : Spec (k;) — S of
x; and a fat point (R;, k;) over x}. Taking a composite extension L of k1 and ko over k, we can
further assume L = k1 = ko and po x) = pox). Then for i = 1,2, we get

~ 8.1.15 - 8.1.31 - 8.1.32
(Oz @% 371‘) ®bk L=—ua ®% T; === QR, L == QR L,

and this concludes according to 8.1.19(1).

(#4) = (4) : Consider an extension y : Spec (k) — « over x and two fat point (Ry, k), (Rz, k) over

y. Fix i € {1,2}. As p is proper birational, the trait Spec (R;) on S can be extended (uniquely)

to S. Let z; : Spec (k) — Spec (R;) — S be the induced point. Then the following computation

allows to conclude :

8.1.32 ~ 8.1.31 ~
QR | == QR ) == a® 7; O

8.1.d. Pullback.

8.1.34. In this part, we construct a pullback which extends the pullback defined by Suslin
et Voevodsky in [SV0OD, 3.3.1] to the case of morphism of cycles. Consider the situation of a
diagram of cycles

8 X
e |
o — > [~

where the diagram on the right is the domain of the one on the left. Let n be exponential
characteristic of Supp(a/).

The pullback of 3, considered as an a-cycle, over o’ will be a A[1/n]-cycle denoted by S®4 .
It will fits into the following commutative diagram of cycles

B Ry —=f3 X xg8 —X
-
o ——« S —— S

where the right commutative square is again the support of the left one.

It will be defined under an assumption on 8/« and is therefore non symmetric’®. This assump-
tion will imply that S/« is pre-special, and the first property of 8 ®, o is that it is pre-special
over o'.

We define this product in three steps in which the following properties”” will be a guideline :

(P1) Let Sy be the support of a and Sy be the reduction of 8/« as an Sy-cycle. Consider the
canonical factorization o/ — Sy — «.
Then, f ®q & = By ®g, .

"63ee further 8.2.3 for this question.
77All these properties except (P3) will be particular cases of the associativity of the pullback.
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(P2) Consider a commutative diagram

Spec (E) — Spec (R") — Spec (R)
y () ¢

o o

such that (R, E) (resp. (R', E)) is a fat point on « (resp. ).
Then, (8 ®a &' )r/,p = Br,E-
Assume o = a = (5" — S).

(P3) If B is a Hilbert cycle over S, f ®¢ S’ = ®g S’

(P4) Consider a factorization S" — U 2, S such that Jj is an open immersion. Then f®g5" =
Blu ®u 5.

(P5) Consider a factorization S’ — S £ S such that p is a birational morphism. Then
BesS =posS.

LEMMA 8.1.35. Consider the hypothesis of 8.1.34 in the case where o' = Spec (k) is a point x
of a.

We suppose that f is special at x.

Then the pre-special A[1/n]-cycle B Q4 k exists and is uniquely determined by property (P2)
above. We also put By := B ®q k.

The properties (P1) to (P5) are fulfilled and in addition :
(P6) For any extension fields L/k, B = Bk ®Z L.

PROOF. According to Lemma 8.1.24 there always exists a fat point (R, E) over an extension
of z. Thus the unicity statement follows from 8.1.19(1).

For the existence, we first consider the case where a = (S) is a reduced scheme. Applying
Lemma 8.1.18, there exists a blow-up p : S — S such that the strict transform B of 8 along p is a
Hilbert cycle over S.

As p is surjective, the fiber Sj, is a non empty algebraic k-scheme. Thus, it admits a closed
point given by a finite extension k{ of k. Let k’/k be a normal closure of k{/k and G be its Galois
group. As /S is special at « by hypothesis, Lemma 8.1.33 implies that B ®%~ k' is G-invariant.
Thus, applying Lemma 8.1.19, there exists a unique cycle 8, C X with coefficients in A[1/n] such
that B @} k' = B &% k',

We prove (P2). Given a diagram () with o/ = Spec (k), we first remark that (8x)r. g =
B ®bk E. As p is proper birational, the dominant trait Spec (R) — S lifts to a dominant trait
Spec (R) — S. Let E'/k be a composite extension of k'/k and E/k. With these notations, we get
the following computation :

Br.p @y B2 G p @y B2 f o B2 (B % k) @ B = f, @), F,
5 5

so that we can conclude by applying 8.1.19(1).

In the general case, we consider he support S of @ abd 3p/S the reduction of 5/a. According
to (P1), we are led to put By := (8o)r with the help of the preceding case. Considering the
definition of specialization along fat points, we easily check this cycle satisfies property (P2).

Finally, property (P6) (resp. (P3), (P5)) follows from the unicity statement applying lemmas
8.1.24, 8.1.19(1) (resp. and moreover Lemma 8.1.31, 8.1.32). O

REMARK 8.1.36. In the case where z is a dominant point, the cycle Si defined in the previous
proposition agrees with the one defined in 8.1.25(1).

LEMMA 8.1.37. Consider the hypothesis of 8.1.34 in the case where o = Spec (O) is a trait
of a. Let K be the fraction field of O and x the corresponding point on .

We suppose that f is special at x.

Then the pre-special A[1/n]-cycle B ®4 O exists and is uniquely defined by the property (8 ®q
0) ®bo K = Bi with the notations of the preceding lemma. We also put Bo := B Q4 O.
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The properties (P1) to (P5) are fulfilled and in addition :
(P6’) For any extension O']O of discrete valuation rings, Bor = Bo @Y% O'.

PrOOF. Remark that, with the notation of definition 8.1.7, 8o ®"O K = Bolspec(k)- For the
first statement, we simply apply Lemma 8.1.8 and put 8o = j.«(Bk) where j : Xx — Xo is the
canonical open immersion.

Then properties (P1), (P3), (P4), (P5) and (P6’) of the case considered in this lemma follows
easily from the uniqueness statement and the corresponding properties in the preceding lemma
(applying again 8.1.8).

It remains to prove (P2). According to (P1), we reduce to the case a = (S) for a reduced

scheme S. We choose a birational morphism p : S — S such that the proper transform ﬁ~ is a
Hilbert S-cycles. Consider a diagram of the form (*) in this case. According to property (P3), we
can assume R’ = O.
Remark the trait Spec (R) — S admits an extension Spec (R) — S as p is proper. The point z
admits an extension K’/K which lifts to a point 2’ : Spec (K’) — S — again Sk is a non empty
algebraic scheme. The discrete valuation corresponding to O C K extends to a discrete valuation
on K’ as K'/K is finite. Let O’ C K’ be the corresponding valuation ring. The corresponding trait
Spec (O') — S thus admits a lifting to S corresponding to the point 2’ as p is proper. Considering
a composite extension E'/K of K'/K and E/K, we have obtained a commutative diagram

Spec (E’) — Spec (O') — Spec (R)
I v
Spec (0") S

which lifts our original diagram (x). Let x; (resp. 22) be the point Spec (E) — S corresponding
to the the composite through the upper way (resp. lower way) in the preceding diagram.
Then, fr.E ®bE E' = B,,. Moreover, we get

P5)+(P6')  ~ P3) ~
(B®s O)o.s @y B 22 (805 0) ab, B/ D (55 01 o, B L2 5,

By hypothesis, 8/« is special at Spec (K’) — S. Thus Lemma 8.1.33 concludes. O

THEOREM 8.1.38. Consider the hypothesis of 8.1.34.

Assume f is special at the generic points of .

Then the pre-special A[1/n]-cycle B ®q4 o exists and is uniquely determined by property (P2).
It satisfies all the properties (P1) to (P5).

PROOF. According to Lemma 8.1.24, for any point s of S’ with residue field &, there exists
an extension E/k and a fat point (R, E) (resp. (R, E)) of a (resp. o') over Spec (E) — « (resp.
Spec (E) — o). The uniqueness statement follows by applying Lemma 8.1.19(1).

For the existence, we write o/ = >, ;n;.(Z;)s in standard form.

For any ¢ € I, let K; be the function field of Z; and consider the canonical morphism
Spec (K;) — a. Let Sk, C Xk, be the A[1/n]-cycle defined in lemma 8.1.35. Let j; : Xg, — X'
be the canonical immersion and put :

(8.1.38.1) B@ad =Y niju(Bx,).
il

Then properties (P1), (P3), (P4) and (P5) are direct consequences of this definition and of
the corresponding properties of Lemma 8.1.35.

We check property (P2). Given a diagram of the form (%), there exists a unique ¢ € I such that
Spec (R’) dominates Z;. Thus we get for this choice of ¢ € I that (8 ®q &' )r/ g = (ji*(ﬁKi))R, B
Let K’ be the fraction field of R’ and consider the open immersion 5’ : Xg» — Xg. The followiyng
computation then concludes :

. . . 1.26. 1. 8.1.37(P2
(G (Bx)) o = I (e (Brc ) 1) @y B=2(Brer) €y E 2B & B

R.E-
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DEFINITION 8.1.39. In the situation of the previous theorem, we call the A[1/n]-cycle 8 ®, o
the pullback of 3/a by «'.

8.1.40. By construction, the cycle 8 ®, « is bilinear with respect to addition of cycles in the
following sense:

(P7) Consider the hypothesis of 8.1.34. Let o}, a4 be cycles with domain S’ such that o =

of + ob. If B/« is special at the generic points of ay and as, then the following cycles
are equal in X xg S”:

B ®@a () +a5) =B Ra ) + B Q4 a.

(P7’) Consider the hypothesis of 8.1.34. Let 31, B2 be cycles with domain X such that § =
B1 + Ba. If 51 and By are special over « at the generic points of o/, then S/« is special
at the generic points of o’ and the following cycles are equal in X x g S’:

(B1+ B2) ®a @' =1 ®a & + P2 Rq .

In the theorem above, we can assume that X (resp. S, S’) is the support of 3 (resp. «a, o).
Thus the support of 3 ®, ' is included in X xgS’. More precisely:

LEMMA 8.1.41. Consider the hypothesis of 8.1.34 and assume that X (resp. S, S') is the
support of B (resp. a, o). Then, if B/« is special at the generic points of o/, we obtain:

(i) Let (X x58")©) be the generic points of X xg S'. Then, we can write

B Ry = Z My.T

ZE(XXsS')(O)

(ii) For any generic point x of X xg S', if my # 0, the image of x in S’ is a generic point
s and the multiplicity of s’ in o' divides m, in A[l/n].

PROOF. Point (ii) is just a traduction that 8 ®, o’ is pre-special over o’. For point (i), we
reduce easily to the case where « is the scheme S and S is reduced. We can also assume that o’
is the spectrum of a field k. It is sufficient to check point (i) after an extension of k. Thus we
can apply Lemma 8.1.18 to reduce to that case where (5 is a Hilbert cycle over S. This case is
obvious. (]

DEFINITION 8.1.42. In the situation of the previous lemma, we put
mV (236 @4 o) :=my € A[1/n]
and we call them the Suslin-Voevodsky multiplicities (in the operation of pullback).

REMARK 8.1.43. Consider the notations of the previous lemma:

(1) Assume that « is the spectrum of a field k. Then the product 8 ®; o’ is always defined
and agrees with the classical exterior product (according to (P3)).

(2) According to the previous lemma, the irreducible components of X xg S’ which does
not dominate an irreducible component of S’ have multiplicity 0: they correspond to the
”non proper components” with respect to the operation 8 ®, o'.

(3) Assume o/ — a = (8" 5 8), g = > icr Mi-ri. Let y be a generic point of X x5 S’ lying
over a generic point s’ of S’. Let S, be the irreductible component of S’ corresponding
to s’. Consider any irreductible component Sy of S which contains p(s’) and let 5y =
>, ni.x; where the sums runs over the indexes ¢ such that x; lies over Sy. Then, according
to (8.1.38.1),

mY (y; B @s (S7)) = mY (y; Bo ®s, (Sh))-

This is a key property of the Suslin-Voevodsky multiplicities which explains why we have
to consider the property that 8/« is special at s’ (see 8.3.25 for a refined statement).



LEMMA 8.1.44. Consider a morphism of cycles o — a and a pre-special morphism f :  — «
which is special at the generic points of a. Consider a commutative square

’
x

Spec (k') — o«
v |
Spec (k) —=
such that k and k' are fields. Then the following conditions are equivalent :
(i) [ is special at x.
(i) B Ry — o is special at ’.

Proor. This follows easily from Lemma 8.1.24 and property (P2). O

COROLLARY 8.1.45. Let f : f — « be a special morphism.
Then for any morphism o — o, B ®, o/ — o is special.

DEFINITION 8.1.46. Let f : 8 — « be a morphism of cycles and x : Spec (k) — « be a point.
We say that f is A-universal at «x if it is special at x and the cycle 5 ®, k has coefficients in A.

In the situation of this definition, let s be the image of x in the support of «, and ks be its
residue field. Then according to (P6), 8 = S.. ®ZS k. Thus f is A-universal at x if and only if it
is A-universal at s. Furthermore, the following lemma follows easily :

LEMMA 8.1.47. Let f: 8 — « be a morphism of cycles. The following conditions are equiva-
lent :

(i) For any point s € &, f is A-universal at s.
(i) For any point x : Spec (k) — «, f is A-universal at x.
(iii) For any morphism of cycles &' — a, B ®q & has coefficients in A.

DEFINITION 8.1.48. We say that a morphism of cycles f is A-universal if it satisfies the
equivalent properties of the preceding lemma.

Of course, A-universal morphisms are stable by base change. These definitions will be applied
similarly to morphisms of schemes by considering the associated morphism of cycles.

EXAMPLE 8.1.49. According to property (P3) of the pullback, a flat equidimensional morphism
of schemes is A-universal.

8.2. Intersection theoretic properties.
8.2.a. Commutativity.

LEMMA 8.2.1. Consider morphisms of cycles with support in the left diagram

| |
C f
yﬁi Ti>5

such that 8/ is pre-special and v/ is pseudo-dominant.

Assume
o= ansl, b= ij.xj, v = Zpl.tl
icl jeJ leH
and denote by ks, (resp. Ky, Ky, ) the residue field of s; (resp. xj, t;) in S (resp. X, T). Consid-
ering (i,7,1) € I x J x H such that f(z;) = g(t;) = s;, we denote by v;; : Spec (kg O, ki) —
X xg T the canonical immersion.
Then the following assertions hold :
(i) B is special at the generic points of .
(i) The cycle B Q4 v has coefficients in A.
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(iii) The following equality of cycles holds
e
B®ay =) —Lpivju((Spec (i, ®r,, r2)))

il
where the sum runs over (i, §,1) € I x J x H such that f(x;) = g(t;) = si.

PROOF. Assertion (i) is in fact the first point of 8.1.29. Assertion (ii) follows from assertion
(iil), which is a consequence of the defining formula (8.1.38.1) and remark 8.1.36. O

COROLLARY 8.2.2. Let g : T — S be a flat morphism and = ZjEJ m;.(Z;)x be a pre-special
S-cycle written in standard form.
Then /S is pre-special at the generic points of T and

ﬁ ®s <T> = ZmJ<ZJ X5 T>
jeJ
The pullback 8 ®, 7, at it is defined only when 8/« is special, is in general non symmetric in
8 and . However the previous lemma implies it is symmetric whenever it makes sense :

COROLLARY 8.2.3. Consider pre-special morphisms of cycles 8 — « and v — «.
Then B (resp. ) is special at the generic points of v (resp. ) and the following equality
holds: B ®q v =7 Rq B.

8.2.b. Associativity.

PROPOSITION 8.2.4. Consider morphism of cycles 3 EN a, o’ = o — « such that f is special
at the generic points of o' and of o/'. Let n be the exponential characteristic of o.
Then the following assertions hold:
(i) The relative cycle (8 ®q ') /a’ is special at the generic points of o’.
(i) The cycle (B ®q ') ®os & has coefficients in A[1/n].
(111) (B QR ) Ro & =B Ry .

PROOF. Assertion (i) is a corollary of Lemma 8.1.44. Assertion (ii) is in fact a corollary of
assertion (iii), which in turn follows easily from the uniqueness statement in theorem 8.1.38. [

LEMMA 8.2.5. Let v EN i) «a be two pre-special morphisms of cycles with domains Y —
X — S. Consider a fat point (R, k) over a such that v/ is special at the generic points of Br .
Then v/« is pre-special and the following equality of cycles holds in Yy:

YRk =Y ®p (BR.K)-

PrOOF. The first statement is obvious.

We first prove: yg =y ®3 Br.
Remark that Sr — S is pseudo-dominant. Thus /0 is special at the generic points of S and the
right hand side of the preceding equality is well defined. Moreover, according to Lemma 8.2.1, we
can restrict to the case where o = s, f = x and v = y, with multiplicity 1. Let kg, rz, £y be the
corresponding respective residue fields, and K be the fraction field of R.
Then, according to (8.1.27.1), vr = (ky Qw, K)yv,, and g = (kg @y, K)x,. But Lemma 8.2.1
implies that v ®g fr = (ky @, (Kz @k, K))x,. Thus the associativity of the tensor product of
fields allows to conclude.

From this equality and Proposition 8.2.4, we deduce that:

YR @pr Brk = (Y @ BR) @pr BrE =Y @p BRI

Thus, the equality we have to prove can be written vg ®33 k = vr ®p, (Br ®3% k) and we are
reduced to the case o = Spec (R).

In this case, we can assume 3 = (X) with X integral. Let us consider a blow-up X £ X such
that the proper transform 7 of v along p is a Hilbert cycle over X (8.1.18). We easily get (from
(P3) and 8.1.15) that

i =5 ®x (Xk)-
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Let Y (resp. Y) be the support of  (resp. 7), ¢ : Y — Y the canonical projection. We consider
the cartesian square obtained by pullback along Spec (k) — Spec (R):

Y/k L Yk:

e

Xp —2s X,

As Xj, C X (resp. Yy CY) is purely of codimension 1, the proper morphism pj, (resp. gi) is still

( )

birational. As a consequence, qi.(%) = 7. Let y be a point in Yk 0~ Yk(0 which lies above a point

x in X,io) ~ X,(co) Then, according to (P5) and using the notations of 8.1.42, we get
m*Y (y; 7 @ (Xi)) = m™ (y; 7 ©x (X))
This readily implies gx.(7 @ (Xi)) =7 @x (Xj) and allows us to conclude. O

As a corollary of this lemma using the uniqueness statement in Theorem 8.1.38, we obtained :

COROLLARY 8.2.6. Let y NG i) a be pre-special morphisms of cycles.

Let x : Spec (k) — « be a point. If B/« is special (resp. A-universal) at x and v/B is special
(resp. A-universal) at the generic points of By, then v/« is special at x.

Let o/ — « be any morphism of cycles with domain S’ — S and n be the exponential charac-
teristic of o. Then, whenever it is well defined, the following equality of A[1/n]-cycles holds:

Y®s (B®ad) =7®aa
A consequence of the transitivity formulas is the associativity of the pullback :

COROLLARY 8.2.7. Suppose given the following morphisms of cycles

o g gl
\ e f \ /g
) o
such that f and g are pre-specials.
Then, whenever it is well defined, the following equality of cycles hold:
Y @0 (B®s a) = (7®s B) @5 a

PrROOF. Indeed, by the transitivity formulas 8.2.4 and 8.2.6, both members of the equation
are equal to (7 ®, 3) ®p (8 ®s ). O

8.2.c. Projection formulas.

ProrosiTION 8.2.8. Consider morphisms of cycles with support in the left diagram

3 X
c |
O/Hi S’L>S

such that 8/a is special at the generic points of .
Consider a factorization 8" 2> T — S.
Then B/« is special at the generic points of g.(a) and the following equality of cycles holds in
X Xg T:
B ®a g*(o/) = (1x X5 9)+(8 ®a O/)'

PROOF. The first assuption is obvious. By linearity, we can assume S’ is integral and o’ is
the generic point s of S’ with multiplicity 1. Let L (resp. E) be the residue field of s (resp. g(s)).

Consider the pullback square X, P oX g  where ¢ and j are the natural immersions.

v o Vi
XXSsle-XXST
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Let d be the degree of L/F if it is finite and 0 otherwise. We are reduced to prove the equality
9x+(4+(BL)) = d.ix(BE). Using the functoriality of pushforward and property (P6), it is sufficient
to prove the equality go. (8 ®% L) = d.Bg. If d = 0, the morphism go induces an infinite extension
of fields on any point of X, which concludes. If L/FE is finite, go is finite flat and Sg ®33 L is the
usual pullback by go. Then the needed equality follows easily (see [Ful98, 1.7.4]). O

LEMMA 8.2.9. Let B — « be a pre-special morphism of cycles with domain X 5 S, Let (R, k)
a fat point over a and X Ly 5 Sbea factorization of p. Let fi be the pullback of f over
Spec (k).

Suppose that the support of 8 is proper with respect to f. Then f.(B) is pre-special over o
and the equality of cycles (f*(b’))R = [ex(Brk) holds in Y.

PROOF. As usual, considering the support S of «, we reduce to the case where a = (S). Let
K be the fraction field of R. As Spec (K) maps to a generic point of S, we can assume S is
integral. Let F be its function field. We can assume by linearity that g is a point z in X with
multiplicity 1.

Let L (resp. E) be the residue field of  (resp. y = f(x)). Let d be the degree of L/F if it is
finite and 0 otherwise. Consider the following pullback square

Spec (L @ K) Il x xg Spec(R) = Xg
foy 4 VIR
Spec (E @p K) —Y xg Spec (R) = Yg.
According to the formula (8.1.27.1), we obtain:
fre(Br) = freJs((L ®F K)) = is for (L ®F K))
=i fou (F(E @ K)) = is(d(E @5 K)) = (£.(9)n

We are finally reduced to the case S = Spec (R) and f is a Hilbert cycle over Spec (R). Note
that f.(5) is still a Hilbert cycle over Spec (R). As Brir = ®3?, k, the result follows now from
Proposition 8.1.16. O

COROLLARY 8.2.10. Consider morphisms of cycles with support in the left diagram

3 X
R
o —a S ——= 8

such that 8/ is special at the generic points of o (resp. A-universal).

Consider a factorization X Ly s of p.
Suppose that the support of B is proper with respect to f. Then f.(8)/« is special at the
generic points of o (resp. A-universal) and the following equality of cycles holds in X xg S :

(f XS 15/)*(5 ®O¢ O/) = (f*(ﬂ)) ®a Ol/.
8.3. Geometric properties.
8.3.1. We introduce a notation which will come often in the next section. Let S be a scheme
and o = ) ;. ;ni.(Z;)x an S-cycle written in standard form.

Let s be a point of S and Spec (k) 2 S be a geometric point of S with k separably closed.
Let S’ be one of the following local schemes: the localization of S at s, the Hensel localization of
S at s, the strict localization of S at 5.

We then define the cycle with coefficients in A and domain X xg S’ as:

alg = Zni<Zi Xs S ) xxgs-
icl

REMARK 8.3.2. The canonical morphism S’ — S is flat. In particular, a/S is special at the
generic points of 5" and we easily get: alss = a®g S’.
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8.3.a. Constructibility.

DEFINITION 8.3.3. Let S be a scheme and s € S a point. We say that a pre-special S-cycle «
is emphtrivial at s if it is special at s and a ®g s = 0.

Naturally, we say that « is trivial if it is zero. Thus « is trivial if and only if it is trivial at
the generic points of S.

Recall from [EGA4, 1.9.6] that an ind-constructible subset of a noetherian scheme X is a
union of locally closed subset of X.

LEMMA 8.3.4. Let S be a noetherian scheme, and /S be a pre-special cycle. Then the set
T ={seS|a/S is special (resp. trivial, A-universal) at s}
is ind-constructible in S.

PROOF. Let s be a point of T', and Z be its closure in S with its reduced subscheme structure.
Put ay = a®g Z, defined because « is special at the generic point of Z. Given any point ¢ of Z,
we know that «/S is special at t if and only if az/Z is special at ¢ (¢f. 8.1.44). But there exists
a dense open subset Us of Z such that az|y, is a Hilbert cycle over Uz. Thus, «/S is special
at each point of Us and Us; C T. This concludes and the same argument proves the respective
statements. (]

8.3.5. Let I be a left filtering category and (S;);c; be a projective system of noetherian
schemes with affine transition morphisms. We let .S be the projective limit of (S;) and we assume
the followings:

(1) S is noetherian.
(2) There exists an index i € I such that the canonical projection S 2% S; is dominant.
In this case, there exists an index j/i such that for any k/j, the map py induces an isomorphism
SO S,(CO) on the generic points (¢f. [EGAA4, 8.4.1]). Thus, replacing I by I/j, we can assume
that this property is satisfied for all index ¢ € I. As a consequence, the following properties are
consequences of the previous ones:
(3) Forany i € I, p; : S — S; is pseudo-dominant and p; induces an isomorphism S(© —
S
P
(4) For any arrow j — ¢ of I, pj; : S; — S; is pseudo-dominant and p;; induces an isomor-
phism S](O) — Si(o).

PrOPOSITION 8.3.6. Consider the notations and hypothesis above. Assume we are given a
projective system of cycles («;)ier such that a; is a pre-special cycle over S; and for any j — 1,
aj = q; @, Sj. Put a = a; ®g, S for an indexi € 1.7
The following conditions are equivalent:
(i) /S is special (resp. A-universal).

(ii) There exists i € I such that «;/S; is special (resp. A-universal).

(11i) There exists i € I such that for all j/i, o;/S; is special (resp. A-universal).

Let s be point of S and s; its image in S;. Then the following conditions are equivalent:
(i) a/S is special (resp. A-universal) at s.

(ii) There exists i € I such that «;/S; is special (resp. A-universal) at s;.

(1ii) There exists i € I such that for all j/i, o;/S; is special (resp. A-universal) at s;.

PRrROOF. Let P be one of the respective properties: “special”, “trivial”, “A-universal”. Using
the fact that being P at s is an ind-constructible property (from Lemma 8.3.4), it is sufficient to
apply [EGAA4, th. 8.3.2] to the following family of sets:

F; = {s; € S; | «; satisfies P at s;}, F ={s€ S| « satisfies P at s}.

"8The pullback is well defined because of point (3) and (4) of the hypothesis above.
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To get the two sets of equivalent conditions of the statement from op. cit. we have to prove the
following relations:

(1) : ¥(j — i) € FI(I),p;;' (F;) C F}
(2): F = Uerp; 1(F).

We consider the case where P is the property “special”. For relation (1), we apply 8.1.44 which
implies the stronger relation p;zl(Fl) = F}. For relation (2), another application of 8.1.44 gives in
fact the stronger relation F' = p; 1(FZ) for any i € I.

Consider a point s; € S and put s; = p;;(s;). Assume «; is special at s;. Then, applying 8.2.4
and (P3), we get:

(8.3.6.1) a; ®s; 8; = (v ®s, 54) ®bﬁ(5i) K(s5).
Similarly, given s € S;, s; = p;(s), and assuming «; is special at s;, we get:
(8.3.6.2) a®g s =(a; Rg, S;) ®E€(s,1) K(s).

We consider now the case where P is the property “trivial”. Then relation (1) follows from
(8.3.6.1). Relation (2) follows from (8.3.6.1) and 8.1.19(1).

We finally consider the case P is the property “A-universal”. Relation (1) in this case is again
a consequence of (8.3.6.1). According to (8.3.6.2), we get the inclusion U;e;f; *(F;) € F. We
have to prove the reciprocal inclusion.
Consider a point s € S with residue field k such that «/S is A-universal at s. For any i € I, we
put s; = p;(s) and denote by k; its residue field. It is sufficient to find an index ¢ € I such that
a; ®s, s; has coefficients in A. Thus we are reduced to the following lemma:

LEMMA 8.3.7. Let (k;)icror be an ind-field and put: k = lim, ., Fi.
Consider a family (B;)icr such that B; is a ki-cycle of finite type with coefficients in Q and for
any j/i, B = B ®?€ k;. We put 8= §; ®?€i k.

If for an index i € I, B; ®zi k has coefficients in A, then there exists j/i such that f; has
coefficients in A.

We can assume that for any j/4, §; has positive coefficients. Let X; (resp. X) be the support
of 3; (resp. ). We obtain a pro-scheme (X});,; such that X = Jm,_ X;. The transition maps
of (X;),/; are dominant. Thus, by enlarging i, we can assume that for any j/i, the induced map
mo(X;) — mo(X;) is a bijection. Thus we can consider each element of m(X) separately and
assume that all the X; are integrals: for any j/i, 5; = n;.(X,) for a positive element n; € Q.
Arguing generically, we can further assume X; = Spec (L;) for a field extension of finite type L;
of k;. By assumption now, for any j/i, L, Q, k; is an Artinian ring whose reduction is the field
L;. Moreover, n; = n;.1g(L; g, k;) and we know that n := n;.1g(L; @, k) belongs to A.

Let p be a prime not invertible in A such that v,(n;) < 0 where v, denotes the p-adic valuation
on Q. It is sufficient to find an index j/i such that v,(n;) > 0. Let L = (L; ®k, k)req- Remark
that L = @ie Jov L;. Tt is a field extension of finite type of k. Consider elements ay, ..., a,
algebraically independant over k such that L is a finite extension of k(ay, ..., a,). By enlarging i,
we can assume that aq, ..., a,, belongs to L;. Thus L, is a finite extension of k;(a1, ..., a,): replacing
k; by ki(a1,...,a,), we can assume that L;/k; is finite.

Let L’ be the subextension of L over k generated by the p-th roots of elements of k. As L/k is
finite, L' /k is finite, generated by elements by, ...,b,. € L. consider an index j/i such that by, ..., b,
belongs to L;. It follows that v,(lg(L; Qx, k;)) = vp(1g(L; ®k, k)). Thus v,(n,;) = vp(n) > 0 and
we are done. O

COROLLARY 8.3.8. Let S be a scheme and « be a pre-special S-cycle.
Let 5 be a geometric point of S, with image s in S, and S’ be the strict localization of S at 3.
Then the following conditions are equivalent:
(i) «/S is special at s.
(i’) /S is special at 5.
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(ii) (a|s/)/S’ is special at § (notation of 8.3.1).

(i1i) There exists an étale neighbourhood V of 5 in S such that (« ®s V') /V is special at §.

PRrROOF. The equivalence of (i) and (i) follows trivially from definition (¢f. 8.1.29). Recall
from 8.3.1 that alss = a ®g S’. Thus (i) = (ii) is easy (see 8.1.44). Moreover, (ii) = (7ii) is
a consequence of the previous proposition applied to the pro-scheme of étale neighbourhood of 5.
Finally, (i73) = (i) follows from Lemma 8.1.44. O

ProrosITION 8.3.9. Consider the notations and hypothesis of 8.3.5. Assume that S and S;
are reduced for any i € I.

Suppose given a projective system (X;)icr of Si-schemes of finite type such that for any j/i,
X, =X xg, S;. Welet X be the projective limit of (X;).

Then for any pre-special (resp. special, A-universal) S-cycle o C X, there exists i € I and a
pre-special (resp. special, A-universal) S;-cycle a; C X; such that a = a; ®g, S.7°

PRrOOF. Using Proposition 8.3.6, we are reduced to consider the first of the respective cases
of the proposition. Write a = ) g n,.(Z,)x in standard form.
Consider € ©. As X is noetherian, there exists an index ¢ € I and a closed subscheme Z,.; C X;
such that Z, = Z,.; xg, . Moreover, replacing Z,; by the reduced closure of the image of the

canonical map Z, E)% Z,i, we can assume that the map (*) is dominant. For any j € I/i, we

put Z,; = Z,; xs, Sj. The limit of the pro-scheme (Z, ;) cr/io» is the integral scheme Z,. Thus,
applying [EGA4, 8.2.2], we see that by enlarging i, we can assume that for any j € I/i, Z, ; is
irreducible (but not necessarily reduced).

We repeat this construction for every r € ©, enlarging ¢ at each step. Fix now an element j € I/i.
The scheme Z, ; may not be reduced. However, its reduction Z;yj is an integral scheme such that
Z{A’j Xs; S = Z,. We put

a; = Z n(Zy ;) x;
re®

Let 2, j be the generic point of Z;. j»and s, ; be its image in S;. It is a generic point and corresponds
uniquely to a generic point s, of S according to the point (3) of the hypothesis 8.3.5. Thus «;/S;
is pre-special. Moreover, we get from the above that k(2 ;) ®x(s, ;) £(sr) = k(2,) where z, is the
generic point of Z,.. Thus the relation a; ®s, S = a follows from lemma 8.2.1. (]

8.3.b. Samuel multiplicities.

8.3.10. We give some recall on Samuel multiplicities, following as a general reference [Bou93,
VIIL.§7].
Let A be a noetherian local ring with maximal ideal m. Let M # 0 be a A-module of finite type
and q C m an ideal of A such that M/qM has finite length. Let d be the dimension of the support
of M. Recall from loc. cit. that Samuel multiplicity of M at q is defined as the integer:

) d! n
g = Jim (Gieao1/a" )

n

In the case M = A, we simply put eq(A) := e (A) and e(A) := e (A).

We will use the following properties of these multiplicities that we recall for the convenience
of the reader; let A be a local noetherian ring with maximal ideal m:

Let @ be the generic points p of Spec (A) such that dim(A/pA) = dim A. Then according to

proposition 3 of loc. cit.:
(81) eq(A) =D 1g(Ap)-eq(A/p).
ped
Let B be a local flat A-algebra such that B/mB has finite length over B. Then according to
proposition 4 of loc. cit.:
ems (B)

(82) o(4)

=lgz(B/mB).

"9This pullback is defined in any case because of point (3) of the hypothesis above.
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Let B be a local flat A-algebra such that mB is the maximal ideal of B. Let ¢ C A be an ideal
such that A/qA has finite length. Then according to the corollary of proposition 4 in loc. cit.:

(83) eqs (B) = e A).

Assume A is integral with fraction field K. Let B be a finite local A-algebra such that B D A.
Let kp/ka be the extension of the residue fields of B/A. Then, according to proposition 5 and
point b) of the corollary of proposition 4 in loc. cit.,

emB(B) . dlmK(B Ra K)
e(4) kB : kal
DEFINITION 8.3.11. (i) Let S = Spec (A) be a local scheme, s = m the closed point of S.
Let Z be an S-scheme of finite type with special fiber Z,. For any generic point z of Zj,

denoting by B the local ring of Z at z, we define the Samuel multiplicity of Z at z over S as the
rational integer:

(54)

emp (B)
e(4)
In the case where Z is integral, we define the Samuel specialization of the S-cycle (Z) at s as
the cycle with rational coefficients and domain Z,:

(Z) @3 s = Z m®(z,2/8).z.

zEZ‘gD>

m®(z,2/8) =

Consider an S-cycle of finite type o = >, ., n;.(Z;) x written in standard form. We define the
Samuel specialization of the S-cycle . at s as the cycle with domain Xj:

a®ds= ZnMZﬁ ®3% s.
il
(ii) Let S be a scheme. For any point s of S, we let S be the localized scheme of S at s.
Let f: Z — S be an S-scheme of finite type, and z a point of Z which is generic in its fiber.
Put s = f(z). We define the Samuel multiplicity of Z/S at z as the integer
m‘s(z, Z/S) = mS(Z, Z X5 S(S)/S(S)>
Consider an S-cycle of finite type a with domain X and a point s of S. We define the Samuel
specialization of the S-cycle a at s as the cycle with rational coefficients:
a®3s = (als,)) ®§<s) 5

LEMMA 8.3.12. Let S be a scheme, and p : Z' — Z an S-morphism which is a birational
universal homeomorphism. Then for any point s € S,

(Z)e§s=(Z2)®5s
in (ng)red = (Zs)red~
PROOF. By hypothesis, p induces an isomorphism Z/(?) ~ Z(©) between the generic points.
Given any irreducible component 7" of Z’ corresponding to the irreducible component T of Z, we
get by hypothesis:
T'eq ~ Treq (as schemes), lg (Oz 1) =1g (Oz1).
Thus, we easily concludes from the definition. O

8.3.13. Let Z L5 S be a morphism of finite type and a z a point of Z, s = f(z). Assume z is
a generic point of Z;. We introduce the following condition:

.| For any irreducible component T' of Z,),
D(z,2/5): { T, =0 or dim(T) = dim(Z,)).

REMARK 8.3.14. This condition is in particular satisfied if Z(,) is absolutely equidimensional
(and a fortiori if Z is absolutely equidimensional).
An immediate translation of (S1) gives:
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LEMMA 8.3.15. Let S be a local scheme with closed point s and Z be an S-scheme of finite
type such that Zs is irreducible with generic point z.
If the condition D(z,Z/S) is satisfied, then (Z) @5 s =mS(z,Z/9).z.

We get directly from (S§2) the following lemma:

LEMMA 8.3.16. Let S be a scheme, s be a point of S, and a = Y, n;.(Z;)x be an S-cycle
in standard form such that Z; is a flat S-scheme of finite type.
Then a is a Hilbert S-cycle and o @3 s = a @ s.

With the notations of 8.3.1, we get from (S3):

LEMMA 8.3.17. Let S be a scheme, s a point of S with residue field k and o an S-cycle of
finite type.

(i) Let " be the Hensel localization of S at s. Then, a ®F s = (a|s/) @3 s.

(ii) Let k a separable closure corresponding and 5 the corresponding geometric point of S. Let
S(s) be the strict localization of S at 5. Then,

b 7. —
(a ®g 8) Ok k= (a|5(§)) ®§(§) s
Let us recall from [EGA4, 13.3.2] the following definition:

DEFINITION 8.3.18. Let f : X — S be a morphism of finite type between noetherian schemes,
and z a point of X.

We say f is equidimensional at z if there exists an open neighbourhood U of z in X and a
quasi-finite pseudo-dominant S-morphism U — Ads for d € N. The integer d is independant of
the choice of U: it is called the relative dimension of f at x.

We say f is equidimensional if it is equidimensional at every point of X.

REMARK 8.3.19. A quasi-finite morphism is equidimensional if and only if it is pseudo-
dominant. According to [EGA4, 12.1.1.5], this definition agrees with the convention stated in
paragraph 8.1.9 in the case of flat morphisms.

Note that a direct translation of (S4) gives:

LEMMA 8.3.20. Let S = Spec (A) be an integral local scheme with closed point s and fraction
field K. Let Z be a finite equidimensional S-scheme and z a generic point of Zs. Let B be the
local ring of Z at z.

Then,
dimg (B®a K)

k() : K(s)]

8.3.21. Recall that a scheme S is said to be unibranch (resp. geometrically unibranch) at a
point s € S if the henselisation (resp. strict henselisation) of the local ring Og  is irreducible (see
[EGAA4, 6.15.1, 18.8.16]). The scheme S is said to be unibranch (resp. geometrically unibranch)
if it is so at any point s € S.

The following result is the key point of this subsection.

m®(z,2/8) =

PROPOSITION 8.3.22. Consider a cartesian square

A i Z
A7
s %5
and a point 8" of S’, s = g(s'). Let k (resp. k') be the residue field of s (resp. s'). We assume
the following conditions:
(1) S (resp. S') is geometrically unibranch at s (resp. s').
(2) [ and f' are equidimensional of dimension n.
(8) For any generic point z of Zs (resp. z' of Zs ) the condition D(z, Z/S) (resp. D(z',Z']S"))
s satisfied.
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Then, the following equality holds in Zg :
(Z')@§ ¢ = (Z) ®5 ) &} K.
PRrROOF. According to Lemma 8.3.15, we have to prove the equality:

(8.3.22.1) > mS(,72'/8) .2 = > mS(2,2/S).(Spec (k(2) @k k) z,, -
z’EZ(,(,n zeZ.go)
As f is equidimensional of dimension n, we can assume according to 8.3.18 that there exists

a quasi-finite pseudo-dominant S-morphism p : Z — A%. For any generic point z of Zs, t = p(z)
is the generic point of A?. Thus applying (S3), we get:

m®(z,2/8) = m®(z, Z/A%).

Consider the S” morphism p’ : Z" — A%, obtained by base change. It is quasi-finite. As Z’/S’
is equidimensional of dimension n, p’ must be pseudo-dominant. For any generic point 2z’ of Z,
t' = p'(2’) is the generic point of A", and as in the preceding paragraph, we get
m®(¢',2']S") =mS (<, Z'JA%).
Moreover, the residue field x; of t (resp. ky of ') is k(t1,...,tn) (resp. K'(t1,...,tn)) and
this implies Spec (k(z) ®y, k) is homeomorphic to Spec (k(z) ®j k') and has the same geometric
multiplicities. Putting this and the two preceding relations in (8.3.22.1), we get reduced to the

case n = 0 — indeed, according to [EGA4, 14.4.1.1], A% (resp. A¥,) is geometrically unibranch
at t (resp. t').

Assume now n = 0, so that f and f’ are quasi-finite pseudo-dominant.

Let k be a separable closure of k and k' a separable closure of a composite of k and k’. It
is sufficient to prove relation (8.3.22.1) after extension to k' (Lemma 8.1.19). Thus according to
8.3.17 and hypothesis (3), we can assume S and S’ are integral strictly local schemes.

For any z € Zgo), the extension k(z)/k is totally inseparable. Moreover, z corresponds to a

) and we have to prove for any z € Z§°):

mS (2, 2']S") =mS (2, 2/8).1g(k(2) @i k).

Let S = Spec(A), K 