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ABSTRACT. We define a theory of étale motives over a noetherian scheme. This
provides a system of categories of complexes of motivic sheaves with integral coeffi-
cients which is closed under the six operations of Grothendieck. The rational part
of these categories coincides with the triangulated categories of Beilinson motives
(and is thus strongly related to algebraic K-theory). We extend the rigity theorem
of Suslin and Voevodsky over a general base scheme. This can be reformulated by
saying that torsion étale motives essentially coincide with the usual complexes of
torsion étale sheaves (at least if we restrict ourselves to torsion prime to the residue
characteristics). As a consequence, we obtain the expected results of absolute purity,
of finiteness, and of Grothendieck duality for étale motives with integral coefficients,
by putting together their counterparts for Beilinson motives and for torsion étale
sheaves. Following Thomason’s insights, this also provides a conceptual and conve-
nient construction of the `-adic realization of motives, as the homotopy `-completion
functor.
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INTRODUCTION

The aim of this article is to study various candidates for triangulated categories of
étale motives. Already over a field, Voevodsky’s triangulated category DM(k) comes
with its étale counterpart DMét(k) (see [VSF00]). They coincide with Q-coefficients,
which means, for instance, that DMét(k,Q) can be used to understand algebraic K-
theory up to torsion. On the other hand, as far as torsion coefficients are involved,
the category DMét(k) is much closer to the topological world. Indeed, the rigidity the-
orem of Suslin and Voevodsky [SV96] means that for any positive integer n, prime to
the characteristic of k, DMét(k,Z/nZ) is equivalent to the derived category of Z/nZ-
linear Galois modules. Over general base schemes, one expects to obtain the same
pattern, and this is indeed what happens. We will use this repeatedly to prove prop-
erties of étale motives with integral coefficients: reduce to the case of rational coef-
ficients, and then to the case of torsion coefficients (the latter being well understood
since it belongs to the well established realm of étale cohomology). Then, there is
the problem of the construction of such categories of étale motives with integral co-
efficients. There are several directions to do so.

One can consider the étale version of Morel and Voevodsky homotopy theory of
schemes to produce and understand the triangulated category DA1,ét(X ,Z), obtained
from complexes of sheaves of abelian groups on the smooth-étale site of X , by the
usual A1-localisation and P1-stabilisation procedures. This is the right way, but not
the easiest: this direction is studied by J. Ayoub in [Ayo], but with a little drawback:
on has to work either with Q-schemes, either with Z[1/2]-coefficients. Although this
restriction on 2-torsion should vanish once Morel’s rigidty theorem (which is part
of his program to prove the Friedlander-Milnor conjecture) will be established, this
means that this is not an easy path.

Then, there are two other possibilities, which are the subject of this article. One
can do as above, but taking the theory of étale sheaves with transfers, which de-
fines a triangulated category DMét(X ,Z). Or one can define another candidate, the
category DMh(X ,Z), obtained from h-sheaves (we recall that the h-topology is the
Grothenciedk topology on the category of noetherian schemes generated by étale
coverings as well as by surjective proper maps). The category DMh(X ,Q) is known
to coincide with all the various notions of Q-linear mixed motives which have the
expected properties (mainly: expected relation with the graded piece of algebraic
K-theory with respect to the γ-filtration, good behavior with respect to the six opera-
tions of Grothendieck). Up to a little variation, the first construction of triangulated
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categories of motives considered by Voevodsky was essentially the effective version
of DMh(X ,Z); see [Voe96]. The category DMét(X ,Q) has the disadvantage (for us)
that we do not understand it enough, unless X is geometrically unibranch: in this
case, we know that DMét(X ,Q) and DMh(X ,Q) coincide. In this article, we will see
that DMét(X ,R) and DMh(X ,R) always coincide in the case of a ring of coefficients
R of positive characteristic. We will also see that, if R is of characteristic n > 0
and if n is prime to the residue characteristics of X , then DMét(X ,R) is canonically
equivalent to the (unbounded) derived category D(X ét,R) of the category of sheaves
of R-modules on the small étale site of X . This can be seen as generalisation of the
rigidity theorem of Suslin and Voevodsky over a general base. From there, we will be
able to see that the categories DMh(X ,R) are well behaved with any coefficients, in
the sense that the six operations act on them and preserve constructible objects; with
mild assumptions on the base schemes, we will also obtain the existence of dualizing
objects. This way of seeing torsion étale sheaves as motives gives a convenient way
to produce `-adic realisation functors, for any prime ` (odd or not).

As for the contents of this article, we will use the language we are the most famil-
iar with: the one of [CD12]. A little recollection is given in the Appendix, in which
one can find some complements about the notion of absolute purity and about the
effect of the Artin-Schreier exact sequence in étale A1-homotopy theory.

The first part of this paper consists to formulate classical results of étale cohomol-
ogy (such as the proper base change theorem, the smooth base change theorem, or
cohomological descent) in terms of unbounded complexes. We also wanted to avoid
any finiteness assumption about cohomological dimension, so that we have gathered
what is needed to survive without such an hypothesis. These classical results are
then used to study the triangulated categories DMét(X ,R) for coefficients rings of
positive characteristic, the crux being reached with the first version of the rigidity
theorem: the comparison between DMét(X ,R) and D(X ét,R). Beside classical prop-
erties of étale cohomology, the main point here is that, with this constraint on the
coefficients, we prove the localization property for DMét(X ,R) (which means that, if
Z ⊂ X is a closed subscheme with open complement U , then DMét(X ,R) is obtained
from DMét(U ,R) and DMét(Z,R) by an adequate gluing procedure). This is a non
trivial result (we do not know if this is true with rational coefficients). The second
half of the paper is devoted to the study of the triangulated categories of h-motives
DMh(X ,R). We study at first the case of torsion coefficients, and see that we then
get an equivalence with DMét(X ,R) (the main argument for this being the proper
descent theorem in étale cohomology extended to unbounded complexes, together
with the relative rigidity theorem proved earlier). A significant part of our effort is
then put in the yoga of reducing the proofs of properties of DMh(X ,Z) to the case of
Q-coefficients and of Z/nZ-coefficients, so that we can gather what is known about
Q-linear mixed motives and classical torsion étale sheaves: we prove that the six op-
erations preserve constructible objects in DMh(X ,Z) (for quasi-excellent noetherian
schemes of finite dimension) and that there exists a dualizing motive in DMh(X ,Z)
whenever X is separated and of finite type over a regular scheme S, itself of finite
type over an excellent noetherian scheme of dimension ≤ 2. Finally, we describe `-
adic completion in terms of Bousfield localizations, in order to define suitable `-adic
realization functors.



4 DENIS-CHARLES CISINSKI AND FRÉDÉRIC DÉGLISE

CONVENTIONS

We will often fix a sub-category Sch of schemes and assume all the schemes are
in Sch. Such an explicit category Sch will be fixed at the head of each section. When
dealing with constructible objects (see below), we will also consider the subcategory
Schc of Sch whose objects are the schemes in Sch which are moreover quasi-excellent
and whose morphisms are the morphisms of finite presentation.

Unless stated otherwise, the word “smooth” (“étale”) means smooth (étale) and
separated of finite type. We will consider the following classes of morphisms in Sch:

• Ét for the class of étale morphisms,
• Sm for the class of smooth morphisms,
• S f t for the class of morphisms of finite type.

Given a base scheme S, we let X ét (resp. SmS , S f t
S ) be the sub-category of Sch made

by S-schemes whose structural morphism is in Ét (resp. Sm, S f t).

Given any adjunction (F,G) of categories, we will denote generically by

ad(F,G) : 1→GF resp. ad′(F,G) : FG → 1

the respective unit and counit of the adjunction.

The letter R will often denote a ring of coefficients for the sheaves we consider.

1. UNBOUNDED DERIVED CATEGORIES OF ÉTALE SHEAVES

In this section we give a reminder of the properties of étale cohomology, as devel-
opped by Grothendieck and Artin in [AGV73]. There is nothing new, except some
little complements about unbounded derived categories of étale sheaves.

1.1. Cohomological dimension.

1.1.1. Let X be a scheme. We denote by X ét the topos of sheaves on the small étale
site of X . Given a ring R, we write Sh(X ét,R) for the category of sheaves of R-
modules on X ét. We will denote by D(X ét,R) the unbounded derived category of the
abelian category Sh(X ét,R). Given an étale scheme U over X , we will write R(U)
for the sheaf representing evaluation at U , (i.e. the étale sheaf associated to the
presheaf R〈HomX (−,U)〉).
Definition 1.1.2. A scheme X is of finite étale cohomological dimension there exists
en integer n such that H i

ét(X ,F) = 0 for any sheaf of abelian groups F over X ét and
any integer i > n.

Let ` be a prime number.
A scheme X is of finite `-cohomological dimension if there exists en integer n such

that H i
ét(X ,F) = 0 for any sheaf of Z/`Z-modules F over X ét and any integer i > n.

We denote by cd`(X ) the smallest integer n with the property above.
A field k is of finite `-cohomological dimension if Spec(k) has this property.

Theorem 1.1.3 (Gabber). Let X be a strictly local noetherian scheme of dimension
d > 0, and ` a prime which is disinct of the residue characteristic of X . Then, for any
open subscheme U ⊂ X , we have cd`(U)≤ 2d−1.

For a proof, see [ILO12, Exposé XVIII].
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Lemma 1.1.4. Let X be a noetherian scheme of Krull dimension d. Then, for any
sheaf of Q-vector spaces F over X ét, we have H i

ét(X ,F)= 0 for i > d.

Proof. Nisnevich cohomology and étale cohomology with coefficients in étale sheaves
of Q-vector spaces coincide, and Nisnevich cohomological dimension is bounded by
the Krull dimension, which proves this assertion. �

Theorem 1.1.5 (Gabber). Let S be a strictly local noetherian scheme and X an S-
scheme of finite type. Then X is of finite étale cohomological dimension.

Proof. An easy Mayer-Vietoris argument shows that it is sufficient to prove the the-
orem in the case where X is affine. For a point x ∈ X with image s ∈ S, we write d(x)
for the degree of transcendence of the residue field κ(x) over κ(s). Note that, for any
prime ` which is invertible in κ(x), we have cd`(κ(x)) ≤ d(x)+ cd`(κ(s)); see [AGV73,
Exposé X, Théorème 2.1]. Therefore, by virtue of Gabber’s theorem 1.1.3, we have
cd`(κ(x))≤ d(x)+2dim(S)−1. Let us define

N =max{1,dim(X ),supx∈X (2dim(S)−1+d(x)+2codim(x))} .

We will prove that H i
ét(X ,F) = 0 for any sheaf F over X ét and any i > N. As X

is quasi-compact and quasi-separated, the functors H i
ét(X ,−) commute with filtered

colimits; see [AGV73, Exposé VII, Proposition 3.3]. Therefore, we may assume that F
is constructible; see [AGV73, Exposé IX, Corollaire 2.7.2]. We have an exact sequence
of the form

0→ T → F → C → 0
where T is torsion and C is without torsion (in particular, C is flat over Z). Therefore,
we may assume that F = T or F = C. We also have a short exact sequence

0→ C → C⊗Q→ C⊗Q/Z→ 0

from which we deduce that

H i
ét(X ,C⊗Q/Z)' lim−−→n

H i
ét(X ,C⊗Z/nZ)

for all i. Lemma 1.1.4 thus shows that it is sufficient to consider the case where F is
the form T or C⊗Z/nZ. But, as T is torsion and constructible, it is a Z/nZ-module
for some integer n ≥ 1. We are reduced to the case where F is a constructible sheaf
of Z/nZ-modules for some integer n ≥ 1. We can find a finite filtration

0= F0 ⊂ F1 ⊂ . . .⊂ Fk = F

such that F j+1/F j is a Z/` jZ-module for any j, with ` j a prime number: this follows
from the fact such a filtration exists in the category of finite abelian groups, using
[AGV73, Exposé IX, Proposition 2.14]. Therefore, we may assume that n = ` is a
prime number.

We will prove that, for any sheaf of Z/`Z-modules F over X ét, we have H i
ét(X ,F)=

0 for i > N. Let Z = Spec(Z/`Z)× X and U = X − Z. We have a closed immersion
i : Z → X and its open complement j : U → X , which gives a long exact sequence

H i
ét(Z, i!(F))→ H i

ét(X ,F)→ H i
ét(U , j∗(F))→ H i+1

ét (Z, i!(F)) .

By virtue of [AGV73, Exposé X, Théorème 5.1], we have H i
ét(X , i!(F)) = 0 for i > 1.

On the other hand, we have

H i
ét(U , j∗(F))= 0 for any integer i ≤ supx∈U (cd`(k(x))+2codim(x))

(see [ILO12, Exposé XVIII, Lemma 2.2]). �



6 DENIS-CHARLES CISINSKI AND FRÉDÉRIC DÉGLISE

Remark 1.1.6. Gabber also proved the Affine Lefschetz Theorem: if X is an excel-
lent strictly local scheme of dimension d, for any open subscheme U ⊂ X , we have
cd`(U)≤ d; see [ILO12, Exposé XV, Corollaire 1.2.2]. In the case of excellent schemes
of characteristic zero, this had been proved by Artin, using Hironaka’s resolution of
singularities; see [AGV73, Exposé XIX, Corollaire 6.3]. The case of a scheme of finite
type over an excellent scheme of dimension ≤ 1 was also known (this follows easily
from [AGV73, Exposé X, Proposition 3.2]).

Lemma 1.1.7. Let A be an abelian Grothendieck category. We also consider a right
exact functor

F : A →Z-Mod ,

and we denote by

RF : D(A )→D(Z-Mod)

its total right derived functor. We suppose that the functor

A →Z-Mod , A 7→RnF(A)

commutes with small filtered colimits for any integer n ≥ 0.
Then, the following conditions are equivalent.

(i) The functor

C(A )→Z-Mod , K 7→ H0RF(K)

commutes with small filtered colimits.
(ii) The functor RF commutes with small sums.

(iii) The functor RF commutes with countable sums.
(iv) For any degreewise F-acyclic complexe K , the natural map F(K) → RF(K) is

an isomorphism in D(Z-Mod).

Moreover, the four conditions above are verified whenever the functor F is of finite
cohomological dimension.

Proof. It is clear that (i)⇒(ii)⇒(iii). It is also easy to see that property (iv) implies
property (i). Indeed, our assumption on F implies that the class of F-acyclic objects
is closed under filtered colimits, which implies that the class of degreewise F-acyclic
complexes has the same property. On the other hand, property (iv) implies that the
functor RF may constructed using resolutions by degreewise F-acyclic complexes,
from which property (i) follows immediately.

Let us show that condition (iii) implies condition (iv). Consider a sequence of
morphisms of complexes of A :

K0 → K1 →···→ Kn → Kn+1 → . . . , n ≥ 0 .

We then have a map

1−d :
⊕

n
Kn →⊕

Kn ,

where d is the morphism induced by the maps Kn → Kn+1. The cone of 1− d (the
cokernel of 1−d, respectively) is the homotopy colimit (the colimit, respectively) of
the diagram {Kn}. Moreover, as filtered colimits are exact in A , the canonical map

L lim−−→n
Kn → lim−−→n

K
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is an isomorphism in D(A ). As a consequence, it follows from condition (iii) that, if
K belongs to C(A ), we have a natural long exact sequence of shape

· · ·→⊕
n

H iRF(Kn) 1−d→ ⊕
n

H iRF(Kn)→ H iRF(lim−−→n
Kn)→···

It is easy to deduce from this that, assuming condition (iii), the natural map

lim−−→n
H0RF(Kn)→ H0RF(lim−−→n

Kn)

is always invertible.
For an integer n, let us write σ≥n(K) for the ‘troncation bête’, defined as σ≥n(K)i =

K i if i ≥ n and σ≥n(K)i = 0 otherwise. We can then write

lim−−→n
σ≥m(K)' K .

Suppose furthermore that the complex K is degreewise F-acyclic. Then σ≥n(K) has
the same property and has moreover the good taste of being bounded below. There-
fore, the map

F(σ≥n(K))→RF(σ≥n(K))
is an isomorphism for any integer n. As both the functors H0F and H0RF commutes
with lim−−→n

, we conclude that property (iv) is verified.
The fact that property (iv) is true whenever F is of finite cohomological dimension

is well known (it is already in the book of Cartan and Eilenberg in the case where A

is a category of modules over some ring, and a general argument may be found for
instance in [SV00a, Lemma 0.4.1]). �

1.1.8. Given a topos T and a ring R, we will write Sh(T,R) for the category of R-
modules in T (or, equivalently, the category of sheaves of R-modules over T). If G

is a generating family of T, the category C(Sh(X ,R)) is endowed with the projective
model category structure with respect to G (see [CD09, Example 2.3, Theorem 2.5,
Corollary 5.5]): the weak equivalences are the quasi-isomorphisms, while the fibrant
objects are the complexes of sheaves of R-modules K such that, for any object U in
G , the natural map

Hn(Γ(U ,K))→ Hn(U ,K)
is an isomorphism for any integer n (where Hn(U ,K) denotes the hypercohomology
groups of U with coefficients in K). The fibrations (trivial fibrations) are the mor-
phisms of shape p : K → L with the following properties:

(i) for any object U in G , the map p :Γ(U ,K)→Γ(U ,L) is degreewise surjective;
(ii) the kernel of p is fibrant (the complex Γ(U ,ker(p)) is acyclic for any U in G ,

respectively).
Moreover, for any object U in G , the object R(U) (the free sheaf of R-modules gener-
ated by U), seen as a complex concentrated in degree zero, is cofibrant. We will write
D(T,R) for the (unbounded) derived category of Sh(T,R).

If a topos T is canonically constructed as the category of sheaves on a Grothendieck
site, the class of representable sheaves is a generating family of T, and, unless we
explicitely specify another choice, the projective model structures on the categories
of sheaves of R-modules over T will be considered with respect this generating fam-
ily. For instance, for a scheme X , we will always understand the topos X ét as the
category of sheaves over the small étale site of X , so that its canonical generating
family is given by the collection of all étale schemes of finite presentation over X .
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Proposition 1.1.9. Consider a topos T and a ring R. We suppose that T is endowed
with a generating family G such that any U ∈ G is is coherent and of finite cohomo-
logical dimension for R-linear coefficients. Then, for any U ∈G , the functor

C(Sh(T,R))→ R-Mod , K 7→HomD(T,R)(R(U),K)= H0(U ,K)

preserves small filtered colimits.
In particular, the family {R(U) |U ∈ G } form a family of compact generators of the

triangulated category D(T,R).

Proof. This is a direct consequence of Lemma 1.1.7. �

Lemma 1.1.10. Let T be a topos and U a coherent object of T. For any sheaf of
abelian groups F over T, the natural map

H i(U ,F)⊗Q→ H i(U ,F ⊗Q)

is invertible for any integer i. In particular, tensoring with Q preserves Γ(U ,−)-acyclic
sheaves over T. If moreover U is of finite cohomological dimension with rational
coefficients, then, for any complex of sheaves of abelian groups K over T, the canonical
map

H i(U ,K)⊗Q→ H i(U ,K ⊗Q)
is bijective for any integer i.

Proof. The first assertion immediately follows from the fact that the functor H i(U ,−)
preserves filtering colimits of sheaves. The second assertion is an immediate conse-
quence of the first. Finally, the last assertion is a direct consequence of Lemma
1.1.7. �

Proposition 1.1.11. Let X be a noetherian scheme of finite dimension. For any
complex of étale sheaves of Q-vector spaces K , the natural map

H i
ét(X ,K)⊗Q→ H i

ét(X ,K ⊗Q)

is bijective for any integer i.

Proof. By virtue of Lemma 1.1.4, this obviously is a particular case of the preceding
lemma. �

The following lemma is the main tool to extend results about unbounded com-
plexes of sheaves which are known under a global finite cohomological dimension hy-
pothesis to contexts where finite cohomological dimension is only assumed pointwise
(in the topos theoretic sense). This will be used to extend to unbounded complexes
of étale sheaves the smooth base change formula as well as the proper cohomolog-
ical descent theorem. We will freely use the language and the results of [AGV73,
Exposé VII] about coherent topoi and filtering limits of these.

Lemma 1.1.12. Consider a ring of coefficients R and an essentially small cofiltering
category I as well as a fibred topos S → I. For each index i we consider a given
generating family Gi of the topos Si. We write T = lim←−−I

S for the limit topos, and
πi : T → Si for the canonical projections. We then have a canonical generating family
G of T, which consists of objects of the form π∗

i (X i), where X i is an element of the
class Gi. Given a map f : i → j in I and a sheaf F j over S j, we will write Fi for the
sheaf over Si obtained by applying the pullback functor f ∗ : S j → Si to F j. We will
assume that the following properties are satisfied:
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(i) For each index i, any object in Gi is coherent (in particular, the topos Si is
coherent).

(ii) For any map f : i → j in I, the corresponding pullback functor f ∗ : S j →
Si sends any object in G j to an object isomorphic to an element of Gi (in
particular, the morphism of topoi Si → S j is coherent).

(iii) For any map f : i → j in I, the pullback functor f ∗ : S j → Si has a left adjoint
f] : Si → S j which sends any object in Gi to an object isomorphic to an element
of G j.

(iv) Any object in G , has finite cohomological dimension with respect to sheaf
cohomology of R-modules.

Then, for any index i0, the pullback functor π∗
i0

: C(Sh(Si0 ,R)) → C(Sh(T,R)) pre-
serves the fibrations of the projective model structures. Moreover, for any object Ui0 of
Gi0 , and for any complex K i0 of Sh(Si0 ,R), if U = π∗

i0
(Ui0 ) and K = π∗

i0
(K i0 ), then the

canonical map

(1.1.12.a) lim−−→
i→i0

Hn(Ui,K i)→ Hn(U ,K)

is bijective for any integer n.

Proof. Note that formula (1.1.12.a) is known to hold whenever K i0 is concentrated
in degree zero and n = 0; see [AGV73, Exposé VII, Corollaire 8.5.7]. This shows that
condition (i) of 1.1.8 is preserved by the functor π∗

i0
. Therefore, in order to prove that

the functor π∗
i0

preserves fibrations, it is sufficient to prove that it preserves fibrant
objects. Let K i0 be a fibrant object of C(Sh(Si0 ,R)). We have to prove that the natural
map

(1.1.12.b) Hn(Γ(U ,K))→ Hn(U ,K)

is an isomorphism for any object U in G . For any map f : i → j in I, condition (iii)
above implies that the functor f ∗ preserves fibrations as well as trivial fibrations
(whence it preserves fibrant objects as well). Possibly up to the replacement of i0 by
some other index above it, we may assume that U is the pullback of an object Ui0

in Gi0 . Formula (1.1.12.a) in the case of complexes concentrated in degree zero then
gives us a canonical isomorphism

(1.1.12.c) Hn(Γ(U ,K))' lim−−→
i→i0

Hn(Γ(Ui,K i)) .

As K i is fibrant for any map i → i0, we thus get a natural identification

(1.1.12.d) Hn(Γ(U ,K))' lim−−→
i→i0

Hn(Ui,K i) .

In other words, we must prove that the natural map (1.1.12.a) is invertible for any
(fibrant) unbounded complex of sheaves K i0 and any object Ui0 in Gi0 .

For this purpose, we will work with the injective model category structure on
C(Sh(Si0 ,R)) (see [CD09, 2.1]), whose weak equivalences are the quasi-isomorphisms,
and whose cofibrations are the monomorphisms: as any object of a model category
has a fibrant resolution, it is sufficient to prove that (1.1.12.a) is invertible when-
ever K i0 is fibrant for the injective model structure. In this case, the complex K i0

is degreewise an injective object of Sh(Si0 ,R). This implies that its image by the
functor π∗

i0
is a complex of Γ(U ,−)-acyclic sheaves; see [AGV73, Exposé VII, Lemme
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8.7.2]. Therefore, using Lemma 1.1.7 and assumption (iv), the map (1.1.12.b) is in-
vertible for such a complex K , from which we immediately deduce that (1.1.12.a) is
invertible. �

Remark 1.1.13. With the same assumptions as in the preceding lemma, in the case
R =Q, for any complex of sheaves of abelian groups K i0 over Si0 and any object Ui0

in Gi0 , the natural maps

lim−−→
i→i0

Hn(Ui,K i)⊗Q→ Hn(U ,K ⊗Q)

are isomorphims. Indeed, we know from Lemma 1.1.10 that tensoring with Q pre-
serves Γ(U ,−)-acyclic sheaves of abelian groups over T for any object U in G . There-
fore, as we may assume that K i0 is fibrant for the injective model structure, which
implies, by [AGV73, Exposé VII, Lemme 8.7.2], that K is degreewise Γ(U ,−)-acyclic,
the complex K ⊗Q has the same property. As the functors Γ(V ,−) commute with
(−)⊗Q for any coherent sheaf of sets V , we conclude as in the proof of the preceding
lemma.

Theorem 1.1.14. Consider a cartesian square of locally noetherian schemes

X ′ h //

f ′

��

X

f
��

S′ g // S

with the following properties.
(a) The scheme S′ is the limit of a projective system of étale quasi-compact and

quasi-separated schemes over S, with affine transition morphisms.
(b) The morphism f is of finite type.

Then, for any object K of D(X ét,Z), the base change map

g∗R f∗(K)→R f ′∗ h∗(K)

is an isomorphism in D(S′
ét,Z).

Proof. Let us first prove the theorem under the additional assumption that the
scheme S′ is strictly local. By virtue of Theorem 1.1.5, any scheme of finite type
over S′ is of finite étale cohomological dimension. If S′ = lim←−−i

Si, where {Si} is a
projective system of étale S-schemes with affine transition maps, then the topos S′

ét
is canonically equivalent to the projective limit of topoi lim←−−i

Si,ét; see [AGV73, Ex-
posé VII, Theorem 5.7]. Similarly, if we write X i = Si ×S X , we have X ′ ' lim←−−i

X i

and X ′ ' lim←−−i
X i,ét. Note that, for any étale map u : T ′ → T, the pullback functor

u∗ : Tét → T ′
ét has a left adjoint (because the category T ′

ét is naturally equivalent to
the category Tét/T ′, where T ′ is seen as a sheaf over Tét), and that any map between
étale schemes is itself étale, from which one deduces that condition (iii) of Lemma
1.1.12 is satisfied for both projective systems {Si} and {X i}. As the other assumptions
of this lemma are also verified, we see that the functors g∗ and h∗ preserve finite
limits, weak equivalences, as well as fibrations of the projective model structures.
On the other hand, the functors f∗ and f ′∗ are always right Quillen functors for the
projective model structures. We deduce from this that we have natural isomorphism
as the level of total right derived functors:

R(g∗ f∗)'Rg∗R f∗ = g∗R f∗ and R( f ′∗ h∗)'R f ′∗Rh∗ =R f ′∗ h∗ .
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As the natural map g∗ f∗(F) → f ′∗ h∗(F) is an isomorphism for any sheaf F over X ét
(one checks this by first replacing S′ by each of the Si ’s and X ′ by the X i ’s, and then
proceed to the limit), this proves that, under our additional assumptions, the natural
transformation g∗R f∗ →R f ′∗ h∗ is invertible.

The general case can now be proven as follows. It is sufficient to prove that, for
any geometric point ξ′ of S′, if S′′ denotes the spectrum of the strict henselisation of
the local ring OS′,ξ′ , and if g′ : S′′ → S′ is the natural map, then the morphism

g′∗ g∗R f∗(K)→ g′∗R f ′∗ h∗(K)

is invertible for any object K of D(X ét,Z). We then have the following pullback
squares

X ′′ h′
//

f ′′

��

X ′ h //

f ′

��

X

f
��

S′′ g′
// S′ g // S .

Therefore, applying twice the first part of this proof, we obtain two canonical isomor-
phisms

g′∗R f ′∗ h∗(K)→R f ′′∗ h′∗ h∗(K) and g′∗ g∗R f∗(K)→R f ′′∗ h′∗ h∗(K) .

As we have a commutative triangle

g′∗ g∗R f∗(K) //

'
((QQQQQQQQQQQQ g′∗R f ′∗ h∗(K)

'
vvmmmmmmmmmmmm

R f ′′∗ h′∗ h∗(K) ,

this shows that the map g∗R f∗(K)→R f ′∗ h∗(K) is invertible. �

Corollary 1.1.15. Let f : X → S be a morphism of finite type between locally noether-
ian schemes. The induced derived direct image functor

R f∗ : D(X ét,Z)→D(Sét,Z)

preserves small sums.

Proof. By virtue of the preceding theorem, we may assume that S is strictly local.
We then know from Theorem 1.1.5 and Proposition 1.1.9, that both D(Sét,Z) and
D(X ét,Z) are compactly generated triangulated categories (with canonical families
of compact generators given by sheaves of shape Z(U) for U étale over the base), and
that the functor f ∗ : D(Sét,Z) → D(X ét,Z) preserves compact objects. This immedi-
ately implies that its right adjoint of R f∗ commutes with small sums. �

1.2. Proper base change isomorphism.

Theorem 1.2.1. Consider a cartesian square of schemes

X ′ h //

f ′

��

X

f
��

S′ g // S
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with f proper. Then, for any ring R of positive characteristic, and for any object K of
D(X ét,R), the canonical map

g∗R f∗(K)→R f ′∗ h∗(K)

is an isomorphism in D(S′
ét,R).

Corollary 1.2.2. Let f : X → S be a proper morphism of schemes, and let ξ be a
geometric point of S. Let us denote by Xξ the fiber of X over ξ. Then, for any ring R
of positive characteristic, and for any object K of D(X ét,R), the natural map

R f∗(K)ξ→RΓ(Xξ,K |Xξ
)

is an isomorphism in the derived category of the category of R-modules.

Let us see that Corollary 1.2.2 implies Theorem 1.2.1.
In order to prove that the map g∗R f∗(K)→R f ′∗ h∗(K) is invertible, it is sufficient

to prove that, for any geometric point ξ′ of S′, if we write ξ= g(ξ′), the induced map

(g∗R f∗(K))ξ′ =R f∗(K)ξ→R f ′∗(h∗(K))ξ′

is an isomorphism. If Xξ and X ′
ξ′ denote the fiber of X over ξ and of X ′ over ξ′

respectively, as the commutative square of Theorem 1.2.1 is cartesian, the natural
map X ′

ξ′ → Xξ is an isomorphism. Moreover, applying twice Corollary 1.2.2 gives
canonical isomorphisms

R f∗(K)ξ 'RΓ(Xξ,K |Xξ
) and R f ′∗(h∗(K))ξ′ 'RΓ(X ′

ξ′ ,h
∗(K)|X ′

ξ′
) .

As the square
R f∗(K)ξ //

o
��

R f ′∗(h∗(K))ξ′

o
��

RΓ(Xξ,K |Xξ
) ∼ // RΓ(X ′

ξ′ ,h
∗(K)|X ′

ξ′
)

commutes, this proves the theorem.

Proof of Corollary 1.2.2. By virtue of [AGV73, Exposé XII, Corollaire 5.2], we al-
ready know this corollary is true whenever K is actually a sheaf of R-modules over
X ét, from which we easily deduce that this is an isomorphism for K a bounded com-
plex of sheaves of R-modules. Note that Xξ is of finite cohomological dimension (by
Theorem 1.1.5, although this is here much more elementary, as this readily follows
from [AGV73, Exposé X, 4.3 and 5.2]). Moreover, as the fiber functor

Sh(Sét,R)→ R-Mod , F 7→ Fξ

is exact, the functor K 7→ R f∗(K)ξ is the total right derived functor of the left exact
functor F 7→ f∗(F)ξ ' Γ(Xξ,F|Xξ

), which is thus of finite cohomological dimension;
see [AGV73, Exposé XII, 5.2 and 5.3]. Therefore, by virtue of Lemma 1.1.7, the map
H i(R f∗(K)ξ) → H i

ét(Xξ,K |Xξ
) is a natural transformation between functors which

preserve small filtering colimits of complexes of sheaves. As any complex is a filtered
colimit of bounded complexes, this ends the proof. �

Corollary 1.2.3. For any proper morphism f : X → S, and for any ring R of positive
characteristic, the functor

R f∗ : D(X ét,R)→D(Sét,R)
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has a right adjoint
f ! : D(Sét,R)→D(X ét,R) .

Proof. By virtue of the Brown representability theorem, it is sufficient to prove that
R f∗ preserves small sums. For this purpose, it is sufficient to prove that, for any
geometric point ξ of S, the functor R f∗(−)ξ : D(X ét,R) → D(R-Mod) preserves small
sums. This readily follows from Corollaries 1.2.2 and 1.1.15. �

1.3. Smooth base change isomorphism and homotopy invariance.

Theorem 1.3.1. Consider the cartesian square of locally noetherian schemes below,
with g a smooth morphism, and f of finite type.

X ′ h //

f ′

��

X

f
��

S′ g // S

Consider a ring R of positive characteristic which is prime to the residue characteris-
tics of S. Then, for any object K of D(X ét,R), the map

g∗R f∗(K)→R f ′∗ h∗(K)

is an isomorphism in D(S′
ét,R).

Proof. The smallest triangulated full subcategory of D(X ét,R) which is closed under
small sums, and which contains sheaves of R-modules over X ét, is the whole category
D(X ét,R). Therefore, by virtue of Corollary 1.1.15, it is sufficient to prove that, for
any sheaf of R-modules F over X ét, the map

g∗R f∗(F)→R f ′∗ h∗(F)

is an isomorphism. This follows from [AGV73, Exposé XVI, Corollaire 1.2]. �

Theorem 1.3.2. Let S be a locally noetherian scheme and p : V → S be a vector bun-
dle. Consider a ring R of positive characteristic which is prime to the residue charac-
teristics of S. Then the pullback functor p∗ : D(Sét,R)→D(Vét,R) is fully faithful.

Proof. The property that p∗ is fully faithful is local over S for the Zariski topology,
so that may assume that V = An

S , and even that n = 1. We have to check that, for
any complex K of sheaves of R-modules over Sét, the unit map K → Rp∗p∗(K) is
an isomorphism in D(Sét,R). By Corollary 1.1.15, the functor Rp∗ preserves small
sums, so that we may assume that K is concentrated in degree zero (by the same
argument as in the preceding proof). This follows then from [AGV73, Exposé XV,
Corollaire 2.2]. �

2. THE PREMOTIVIC ÉTALE CATEGORY

In this section, R can be any ring, while the schemes will be noetherian. Unless
stated otherwise, given any base scheme S, S-schemes are assumed to be separated
and of finite type.

The category of separated smooth S-schemes of finite type SmS , endowed with the
étale topology, is called the smooth-étale site. We denote by Shét(S,R) the category of
sheaves of R-modules on this site (this has to be distinguished from the category of
sheaves on the small site; see 1.1.1).
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2.1. Étale sheaves with transfers.

2.1.1. We recall here the theory of finite correspondences and of sheaves with trans-
fers introduced by Suslin and Voevodsky [SV00b]. The precise definitions and con-
ventions can be found in [CD12, section 9].

Let us fix a sub-ring Λ of Q as the ring of coefficients of all cycles considered in
this paragraph. Given any S-scheme X , we denote by

c0(X /S)Λ

the abelian group of cycles α in X with coefficients in Λ such that α is finite and Λ-
universal over S (ie the support of α is finite over S and α/S satisfies the definition
[CD12, 9.1.1]).

Given any S-schemes X and Y , we put

cS (X ,Y )Λ := c0(X ×S Y /X )Λ

and call its elements the finite S-correspondences from X to Y (cf. [CD12, 9.1.2]).
These correspondences can be composed and we denote by Smcor

Λ,S the category
whose objects are smooth S-schemes and morphisms are finite S-correspondences
(see [CD12, 9.1.8] for P the class of smooth separated morphisms of finite type).

We can define a functor

(2.1.1.a) γS : SmS →Smcor
Λ,S

which is the identity on objects and associates to an S-morphism its graph seen as a
finite S-correspondence [CD12, 9.1.8.1].

When the coefficients are not indicated in the notation, it is understood thatΛ=Z.
This will always be the case in the rest of this section.

Definition 2.1.2. (see [CD12, 10.1.1 and 10.2.1]) An R-presheaf with transfers over
S is an additive presheaf of R-modules on Smcor

S . We denote by PShtr(S,R) the
corresponding category.

An étale R-sheaf with transfers over S is an R-presheaf with transfers F such that
F◦γS is a sheaf for the étale topology. We denote by Shtr

ét(S,R) the corresponding full
subcategory of PShtr(S,R).

Thus, by definition, we have an obvious functor:

(2.1.2.a) γ∗ : Shtr
ét(S,R)→Shét(S,R),F 7→ F ◦γ.

2.1.3. Given any S-scheme X , we let R tr
S (X ) be the following R-presheaf with trans-

fers:

Y 7→ cS (Y , X )⊗Z R.

Proposition 2.1.4. The presheaf R tr
S (X ) is an étale R-sheaf with transfers.

Proof. In the case where R = Z this is [CD12, Proposition 10.2.4]. For the general
case, we observe that for any smooth S-scheme Y , cS (Y , X ) is a free abelian group.
Indeed, it is a sub-Z-module of the free Z-module of cycles in Y ×S X . Thus, we have

(2.1.4.a) Tor1
Z(cS (Y , X ) ,R)= 0 ,

and the general case follows from the case R =Z. �
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2.1.5. Let Y• be a simplicial S-scheme. If we apply R tr
S pointwise, we obtain a sim-

plicial object of the additive category Shtr
ét(S,R). We denote by R tr

S (Y•) the complex
associated with this simplicial object. This is obviously functorial in Y•.

The following proposition is the main technical point of this section.

Proposition 2.1.6. Let p : Y• → X be an étale hypercover of X in the category of
S-schemes. Then the induced map

p∗ : γ∗R tr
S (Y•)→ γ∗R tr

S (X )

is a quasi-isomorphism of complexes of étale R-sheaves.

Proof. The general case follows from the case R = Z – using the argument (2.1.4.a).
In the proof, a geometric point will mean a point with coefficients in an algebraically
closed field – not only separably closed1. We will use the abelian group c0(Z/S)
defined for any S-scheme Z in 2.1.1. Remember that it is covariantly functorial
in Z; see [CD12, 9.1.1].

First step. We reduce to the case where S is strictly local and to prove that the
canonical map of complexes of Z-modules

(2.1.6.a) p∗ : c0(Y•/S)→ c0(X /S)

is a quasi-isomorphism.
Indeed, to check that p∗ is an isomorphism, it is sufficient to look at fibers over

a point of the smooth-étale site. Such a point corresponds to a smooth S-scheme T
with a geometric point t̄ ; we have to show that the map of complexes of abelian
groups:

lim−−→
V∈Vt̄(T)

cS (V ,Y•)→ lim−−→
V∈Vt̄(T)

cS (V , X )

is an isomorphism.
Let T0 be the strict local scheme of T at t̄. By virtue of [CD12, 8.3.9], for any

smooth S-scheme W , the canonical map:

lim−−→
V∈Vt̄(T)

cS (V ,W)→ c0(Z×S T0/T0)= cT0 (T0,W ×S T0) .

is an isomorphism. This concludes the first step as we may replace S by T0 as well
as p by p×S T0.

Second step. We reduce to prove that (2.1.6.a) is a quasi-isomorphism in the case
where X is connected and finite over S.

Let Z be the set of closed subschemes Z of X which are finite over S, ordered by
inclusion. Given such a Z, we consider the canonical immersion i : Z → X and the
pullback square:

Z×S Y•
pZ //

k
��

Z

i
��

Y•
p // X .

1In the proof, we will only use the fact that any surjective family of geometric points on a scheme X
gives a conservative family of points of the small étale site of X ; see [AGV73, VIII, 3.5].
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We thus obtain a commutative diagram:

c0(Z×X Y•/S)

��

pZ∗ // c0(Z/S)

��
c0(Y•/S)

p∗ // c0(X /S).

In this diagram, the vertical maps are injective and we can check that p∗ is the
colimit of the morphism pZ∗ as Z runs over Z . In fact, taking any cycle α in c0(Yn/S),
its support T is finite over S ; as pn : Yn → X is separated, Z = pn(T) is a closed
subscheme of X which is finite over S. Obviously, α belongs to c0(Z×X Yn/S).

Because Z is a filtering ordered set, it is sufficient to consider the case where p
is pZ and X is Z. Because c0(Z/S) is additive with respect to Z, we can assume in
addition that Z is connected, which finishes the reduction of the second step.

Final step. Now, S is strictly local and X is finite and connected over S. In particular,
X is a strictly local scheme. Let x and s be the closed points of X and S, respectively.
Under these assumptions, we have the following lemma (whose proof is given below).

Lemma 2.1.7. For any S-scheme U and any étale S-morphism f : U → X , the canon-
ical morphism:

ϕU : Z〈HomX (X ,U)〉⊗ c0(X /S) −→ c0(U /S)
(i : X →U)⊗β 7−→ i∗(β)

is an isomorphism.

Thus, according to the lemma above, the map (2.1.6.a) is isomorphic to:

p∗ : Z〈HomX (X ,Y•)〉⊗ c0(X /S)→Z〈HomX (X , X )〉⊗ c0(X /S).

As p is an étale hypercovering and X is a strictly local scheme, the simplicial set
HomX (X ,Y•) is contractible. This readily implies that p∗ is a chain homotopy equiv-
alence, which achieves the proof of the proposition. �

Proof of Lemma 2.1.7. We construct an inverse ψU to ϕU . Because c0(−/S) is ad-
ditive, the (free) abelian group c0(U /S) is generated by cycles α whose support is
connected. Thus it is enough to define ψU on cycles α ∈ c0(U /S) whose support T is
connected.

By definition, T is finite over S. As f is separated, f (T) is closed in X and the
induced map T → f (T) is finite. In particular, the closed point x of X belongs to
f (T): we fix a point t ∈ T such that f (t) = x. Then the residual extension κ(t)/κ(x) is
finite. This implies κ(t)' κ(x) as κ(x) is algebraically closed (according to convention
at the beginning of the proof). In particular, t is a κ(x)-section of the special fiber
Ux of U at x. As U /Z is étale, this section can be extended uniquely to a section
i : X →U of U /X . Then i(X ) is a connected component, meeting T at least at t. This
implies T ⊂ i(X ) as T is connected. Thus α ∈ c0(U /S) corresponds to an element αi
in c0(i(X )/S) ' c0(X /S). We put ψU (α) = i⊗αi. The map ψU is obviously an inverse
to ϕU , and this concludes the proof of the lemma. �

Remark 2.1.8. This proposition fills out a gap in the theory of motivic complexes of
Voevodsky which was left open in [VSF00, chap. 5, sec. 3.3]: Voevodsky restricted to
the case of a field of finite cohomological dimension.

Note also the following corollary of lemma 2.1.7:
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Corollary 2.1.9. Let X be a scheme and V an étale X -scheme. Let RX (V ) be the étale
R-sheaf on SmX represented by V . Then the map

RX (V )→ R tr
X (V )

induced by the graph functor is an isomorphism.

Proof. As in the proof above, it is sufficient to treat the case R = Z. Moreover, by
looking at the toposic fibers of the above map, and by using the arguments of the
first step of the proof, we are reduced to check that the map

Z〈HomX (X ,V )〉→ c0(V /X )

is an isomorphism when X is strictly local with algebraically closed residue field.
Then, this follows from the preceding lemma, and from the fact that, when X is
connected, we have c0(X /X )=Z; see [CD12, Lemma 10.2.6]. �

In [CD12, Proposition 10.3.3], we proved the preceding proposition in the partic-
ular case of a Čech hypercovering – i.e. the coskeleton of an étale cover. With the
extension obtained in the above proposition, we can apply [CD12, Prop. 9.3.9] and
get the following.

Proposition 2.1.10. The category of étale sheaves with transfers has the following
properties.

(1) The forgetful functor

O tr
ét : Shtr

ét(S,R)→PShtr(S,R)

admits an exact left adjoint atr
ét such that the following diagram commutes,

where aét denotes the usual sheafification functor.

PShtr(S,R)

γ̂∗
��

atr
ét // Shtr

ét(S,R)

γ∗
��

PSh(S,R)
aét // Shét(S,R)

(2) The category Shtr
ét(S,R) is a Grothendieck abelian category generated by the

sheaves of shape R tr
S (X ), for any smooth S-scheme X .

(3) The functor γ∗ is conservative and commutes with every small limits and
colimits.

2.1.11. We deduce immediately from that proposition that the functor γ∗ admits a
left adjoint γ∗.

As in [CD12, Corollary 10.3.11], we get the following corollary of the above propo-
sition – see Section A.1 for explanation on premotivic categories which where defined
in [CD09]:

Corollary 2.1.12. The category Shtr
ét(−,R) has a canonical structure of an abelian

premotivic category. Moreover, the adjunction:

(2.1.12.a) γ∗ : Shét(−,R)�Shtr
ét(−,R) : γ∗

is an adjunction of abelian premotivic categories.
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2.1.13. Remember that the category of (Nisnevich) sheaves with transfers Shtr
Nis(S,R)

is defined as the category of presheaves with transfers F over S such that F ◦γ is a
sheaf; see [CD12, 10.4.1]. Then Shtr

Nis(−,R) is a fibred category which is an abelian
premotivic category according to loc. cit.

We will denote by τ the comparison functor between the Nisnevich and the étale
topology on the site SmS . Thus, we denote by τ∗ : Shtr

ét(S,R) → Shtr
Nis(S,R) the ob-

vious fully faithful functor. Then the functor atr
ét : PShtr(S,R) → Shtr

ét(S,R) obviously
induces a right adjoint τ∗ to the functor τ∗. Moreover, this defines an adjunction of
premotivic abelian categories:

(2.1.13.a) τ∗ : Shtr
Nis(−,R)�Shtr

ét(−,R) : τ∗.

2.2. Derived categories.

2.2.1. In [CD12, Section 5], we established a theory to study derived categories such
as D(Shtr

ét(S,R)). This category has to satisfy the technical conditions of [CD12, Def-
initions 5.1.3 and 5.1.9]. Let us make explicit this definition in our particular case.

Definition 2.2.2. Let K be a complex of étale R-sheaves with transfers.

(1) The complex K is said to be local with respect to the étale topology if, for any
smooth S-scheme X and any integer n ∈Z, the canonical morphism

HomK(Shtr
ét(S,R))(R

tr
S (X )[n],K)→HomD(Shtr

ét(S,R))(R
tr
S (X )[n],K)

is an isomorphism.
(2) The complex K is said to be étale-flasque if for any étale hypercover Y• → X

in SmS and any integer n ∈Z, the canonical morphism

HomK(Shtr
ét(S,R))(R

tr
S (X )[n],K)→HomK(Shtr

ét(S,R))(R
tr
S (Y•)[n],K)

is an isomorphism.

Proposition 2.2.3. A complex of étale sheaves with transfers is étale-flasque if and
only if it is local with respect to the étale topology. Moreover, for any complex of étale
R-sheaves with transfers K over S, any smooth S-scheme X , and any integer n ∈ Z,
we have a natural identification:

HomD(Shtr
ét(X ,R))(R

tr
S (X ),K[n])= Hn

ét(X ,K).

Proof. Note that the analogous statement is known to be true for complexes of étale
sheaves without transfers (see for instance [CD09]). Therefore, the first assertion of
the proposition follows from the second one, which we will now prove. Let S be a
base scheme.

We consider the projective model category structure on the category C(Shét(S,R)),
that is the analog of the model structure defined in 1.1.8: the weak equivalences
are the quasi-isomorphisms, while the fibrations are the morphisms of complexes
whose restriction to each of the small sites X ét is a fibration in the sense of 1.1.8
for any smooth S-scheme X . On the other hand, as the category Shtr

ét(S,R) is an
abelian Grothendieck category, the category C(Shtr

ét(S,R)) is endowed with the injec-
tive model category structure; see [CD09, 2.1]. By virtue of [CD09, 2.14], Proposition
2.1.6 and the last assertion of Proposition 2.1.10 imply that the functor

γ∗ : C(Shét(S,R))→C(Shtr
ét(S,R))
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is a left Quillen functor. As its right adjoint γ∗ preserves weak equivalences, we thus
get an adjunction

Lγ∗ : D(Shét(S,R))�D(Shtr
ét(S,R)) : γ∗ .

Note that, for any smooth S-scheme X , we have a natural isomorphism

Lγ∗RS(X )' Rtr
S (X )

because RS(X ) is cofibrant. Therefore, for any smooth S-scheme X and for any com-
plex of étale sheaves with transfers K , we have the following identifications (compare
with [VSF00, chap. 5, 3.1.9]):

HomD(Shtr
ét(X ,R))(R

tr
S (X ),K[n])'HomD(Shtr

ét(X ,R))(Lγ
∗(RS(X )),K[n])

'HomD(Shét(X ,R))(RS(X ),γ∗(K)[n])

= Hn
ét(X ,K) .

This proves the second assertion of the proposition, and thus achieves its proof. �

2.2.4. Propositions 2.1.6 and 2.2.3 assert precisely that the premotivic abelian cate-
gory Shtr

ét(−,R) is compatible with the étale topology in the sense of [CD12, Definition
5.1.9].

We can therefore apply the general machinery of loc. cit. to the abelian premotivic
category Shtr

ét(−,R). In particular, we get triangulated premotivic categories (again,
see Section A.1 for basic definitions on premotivic categories):

• [CD12, Definition 5.1.17]: The associated derived category: D(Shtr
ét(−,R))

whose fiber over a scheme S is D(Shtr
ét(S,R)).

• [CD12, Definition 5.2.16]: The associated effective A1-derived category:

DMeff
ét (−,R) :=Deff

A1 (Shtr
ét(−,R))

whose fiber over a scheme S is the A1-localization of the derived category
D(Shtr

ét(S,R)).
We will call it the category of effective étale motives.

• [CD12, Definition 5.3.22]: The associated (stable) A1-derived category:

DMét(−,R)=DA1 (Shtr
ét(−,R))

whose fiber over a scheme S is obtained from De f f
A1 (Shtr

ét(S,R)) by ⊗-inverting
the Tate object R tr

S (1) := R̃ tr
S (P1

S ,∞)[−2] (in the sense of model categories).
We will call it the category of étale motives.

By construction, these categories are related by the following morphisms of premo-
tivic triangulated categories:

(2.2.4.a) D(Shtr
ét(S,R))

πA1−−→DMeff
ét (S,R) Σ∞

−−→DMét(S,R).

Recall that the right adjoint to the functor πA1 is fully faithful with essential image
made by the A1-local complexes, in the sense of the next definition.

Definition 2.2.5. Let K be a complex of R-sheaves with transfers over a scheme S.
For any smooth S-scheme X and any integer n ∈ Z, we simply denote by Hn

ét(X ,K)
the cohomology of K seen as a complex of R-sheaves over X ét.

We say that K is A1-local if for any smooth S-scheme X and any integer n ∈Z, the
map induced by the canonical projection

Hn
ét(X ,K)→ Hn

ét(A
1
X ,K)
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is an isomorphism.

2.2.6. According to [CD12, 5.1.23, 5.2.19, 5.3.28], the adjunction of abelian premo-
tivic categories (2.1.12.a) can be derived, and it induces, over a scheme S, a commu-
tative diagram:

D(Shét(S,R))

Lγ∗

��

// Deff
A1 (Shét(S,R))

��

// DA1 (Shét(S,R))

��
D(Shtr

ét(S,R)) // DMeff
ét (S,R) // DMét(S,R)

(2.2.6.a)

Note that all the vertical maps are obtained by deriving (on the left) the functor γ∗.
We will simply denote these maps by Lγ∗. By definition, they admit a right adjoint
that we denote by Rγ∗. In fact, we will often write Rγ∗ = γ∗ because of the following
simple result.

Proposition 2.2.7. The exact functor γ∗ : C(Shtr
ét(S,R))→C(Shét(S,R)) preserves A1-

equivalences.

Proof. This follows from [CD12, Proposition 5.2.24]. �

2.2.8. Applying again [CD12, 5.1.23, 5.2.19, 5.3.28] to the adjunction (2.1.13.a), we
get a commutative diagram of left derived functors:

D(Shtr
Nis(S,R))

Lτ∗

��

// DMeff (S,R)

��

// DM(S,R)

��
D(Shtr

ét(S,R)) // DMeff
ét (S,R) // DMét(S,R)

(2.2.8.a)

where DMeff (S,R) (resp. DM(S,R)) stands for the effective category (resp. stable
category) of Nisnevich motives as defined in [CD12, Definition 11.1.1].

The following proposition is a generalization of [VSF00, chap. 5, 4.1.12].

Proposition 2.2.9. Assume R is a Q-algebra. Then the adjunction (2.1.13.a) is an
equivalence of categories. In particular, all the vertical maps of the diagram (2.2.8.a)
are equivalences of categories.

Proof. We first prove that the right adjoint τ∗ of (2.1.13.a) is exact. Using the analog
of Proposition 2.2.3 for the Nisnevich topology, one reduces to show that for any
étale R-sheaf with transfers F over S and any local henselian scheme X over S,
the cohomology group H1

ét(X ,F) vanishes. But, as F is rational, this last group is
isomorphic to H1

Nis(X ,F) – this is well known, see for example [CD12, 10.5.9] – and
this group is zero.

Note also τ∗ obviously commutes with direct sums. Thus it commutes with arbi-
trary colimits.

Obviously τ∗ is essentially surjective. It remains only to prove it is fully faithful.
Thus, we have to prove that for any Nisnevich R-sheaf with transfers over S, the
adjunction map

Fét = τ∗τ∗(F)→ F
is an isomorphism. As τ∗τ∗ commutes with colimits, it is sufficient to prove this for
F = Rtr

S (X ) when X is an arbitrary smooth S-scheme. This is precisely Proposition
2.1.4. �
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2.3. A weak localization property.

Lemma 2.3.1. Let f : Y → X be a finite morphism. Then the functor

f∗ : C(Shtr
ét(Y ,R))→C(Shtr

ét(X ,R))

preserves colimits and A1-equivalences.

Proof. We first check that f∗ preserves colimits. By definition, γ∗ f∗ = f∗γ∗. Ac-
cording to point (3) of Proposition 2.1.10, we thus are reduced to prove the func-
tor f∗ : Sh(Y ,R) → Sh(X ,R) commutes with colimits. This is well known – boiling
down to the fact a finite scheme over a strictly local scheme is a sum of strictly local
schemes. The remaining assertion now follows from [CD12, Prop. 5.2.24]. �

Proposition 2.3.2. Let f : Y → X be a finite morphism. Then the functor

f∗ =R f∗ : DMeff
ét (Y ,R)→DMeff

ét (X ,R)

preserves small sums, and thus, has a right adjoint f !.

Proof. The fact that the functor f∗ preserves small sums follows formally from the
preceding lemma and from the fact that A1-equivalences are closed under filtered
colimits; see [CD09, Proposition 4.6]. The existence of the right adjoint f ! follows
from the Brown representability theorem2. �

2.3.3. Let i : Z → S be a closed immersion and j : U → S the complementary open
immersion.

Let K be a complex of étale sheaves with transfers over S. Note that the composite
of the obvious adjunction maps

(2.3.3.a) j] j∗(K)→ K → i∗ i∗(K)

is always 0. We will say that this sequence is homotopy exact in DMeff
ét (S,R) if for

any cofibrant resolution K ′ → K of K the canonical map

Cone
(
j] j∗(K ′)→ K ′)→ i∗ i∗(K ′)

is an A1-equivalence.
Note that given a smooth S-scheme X , K = R tr

S (X ) is cofibrant by definition and
the cone appearing above is quasi-isomorphic to the cokernel of the map

R tr
S (X − XZ)

j∗−→ R tr
S (X ),

which we will denote by R tr
S (X /X − XZ). Here, we put XZ = X ×S Z.

We recall the following proposition from [CD12, Cor. 2.3.17]:

Proposition 2.3.4. Consider the notations above. The following conditions are equiv-
alent:

(i) The functor i∗ is fully faithful and the pair of functors (i∗, j∗) is conservative
for the premotivic category DMeff

ét (−,R).
(ii) For any complex K , the sequence (2.3.3.a) is homotopy exact in DMeff

ét (S,R).

2One can see the existence of a right adjoint of R f∗ in a slightly more constructive way as follows.
Lemma 2.3.1 implies that the functor f ! already exists at the level of étale sheaves with transfers. One
can see easily from the same lemma that f∗ is a left Quillen functor with respect to the A1-localizations
of the injective model category structures, which ensures the existence of f ! at the level of the homotopy
categories, namely as the total right derived functor of its analog at the level of sheaves.
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(iii) The functor i∗ commutes with twists and for any smooth S-scheme X , the
canonical map

R tr
S (X /X − XZ)→ i∗(R tr

Z (XZ))

is an isomorphism in DMeff
ét (S,R).

Moreover, when these conditions are fulfilled, for any complex K , the exchange trans-
formation:

(2.3.4.a) (i∗(RZ))⊗K → i∗ i∗(K)

is an isomorphism.

The equivalent conditions of the above proposition are called the localization prop-
erty with respect to i for the premotivic triangulated category DMeff

ét (−,R); see A.1.11.

Proposition 2.3.5. Let i : Z → S be a closed immersion which admits a smooth
retraction p : S → Z. Then DMeff

ét (−,R) satisfies the localization property with respect
to i.

The proof of this proposition is the same than the analogous fact for the Nisnevich
topology – see [CD12, Prop. 6.3.14]. As this statement plays an important role in the
sequel of these notes, we will recall the essential steps of the proof. One of the main
ingredients of the proof uses the following result, proved in [Ayo07, 4.5.44]:

Theorem 2.3.6. The premotivic category De f f
A1 (Shét(−,R)) satisfies localization (with

respect to any closed immersion).

Lemma 2.3.7. For any open immersion j : U → S, the exchange transformation

L j]γ∗ → γ∗L j]

is an isomorphism in De f f
A1 (Shét(S,R)).

Proof. We first prove that, for any étale sheaf with transfers F over U , the map

j]γ∗(F)→ γ∗ j](F)

is an isomorphism of étale sheaves. Indeed, both in the case of étale sheaves or of
étale sheaves with transfers, the sheaf j](F) is obtained as the sheaf associated with
the presheaf

V 7→
{

F(V ) if V is supported over U (i.e. if V ×S U 'V ),
0 otherwise.

In particular, the functors j] are exact, and they preserve A1-equivalences because
of the projection formula A⊗ j](B) ' j]( j∗(A)⊗B) (for any sheaves A and B). Using
Proposition 2.2.7, this implies the lemma. �

Lemma 2.3.8. let i : Z → S be a closed immersion which admits a smooth retraction.
Then the exchange transformation:

Lγ∗ i∗ → i∗Lγ∗

is an isomorphism in DMeff
ét (S,R).
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Proof. Let p : S → Z be a smooth morphism such that pi = 1Z , and denote by j : U →
S the complement of i in S. For any object M in DMeff

ét (Z,R), we have a natural
homotopy cofiber sequence of shape

(2.3.8.a) L j] j∗p∗M → p∗M → i∗M

(note that i∗M = i∗ i∗p∗M because pi = 1Z). Indeed, as the functor γ∗ is conser-
vative, it is sufficient to check this after applying γ∗. As the functor γ∗ commutes
with L j] (by the previous lemma) as well as with the functors j∗, p∗ and i∗ (because
its left adjoint Lγ∗ commutes with the functors L j], Lp] and Li∗), it is sufficient to
see that the analogue of (2.3.8.a) is an homotopy cofiber sequence for any object M
of De f f

A1 (Shét(Z,R)). But this latter property is a particular case of the localization
property with respect to the closed immersions, which is known to hold by Theo-
rem 2.3.6. The characterization of the functor i∗ by the homotopy cofiber sequence
(2.3.8.a) implies the lemma because the functor Lγ∗ is known to commute with the
functors L j], j∗ and p∗. �

Proof of Proposition 2.3.5. Now, the proposition can easily be deduced from the above
lemma and from Theorem 2.3.6, using the fact that the functor γ∗ is conservative;
see the proof of [CD12, Prop. 6.3.14] for more details. �

3. THE EMBEDDING THEOREM

3.1. Locally constant sheaves and transfers.

3.1.1. Let X be a scheme.
Recall that we denote by Sh(X ét,R) the category of R-sheaves over the small étale

site X ét. On the other hand, we also have the category Shét(X ,R) of R-sheaves over
the smooth-étale site SmX ,ét – made by smooth X -schemes. The obvious inclusion of
sites ρ : X ét →SmX ,ét gives an adjunction of categories:

(3.1.1.a) ρ] : Sh(X ét,R)�Shét(X ,R) : ρ∗

where ρ∗(F)= F ◦ρ. The following lemma is well known (see [AGV73, VII, 4.0, 4.1]):

Lemma 3.1.2. With the above notations, the following properties hold:
(1) the functor ρ∗ commutes with arbitrary limits and colimits;
(2) the functor ρ] is exact and fully faithful;
(3) the functor ρ] is monoidal and commutes with operations f ∗ for any mor-

phism of schemes f , and with f], when f is étale.

Note that point (3) can be rephrased by saying that (3.1.1.a) is an adjunction of
étale-premotivic abelian categories (Definition A.1.7).

By definition, ρ] sends the R-sheaf on X ét represented by an étale X -scheme V to
the R-sheaf represented by V on SmX . We will denote by RX (V ) both the sheaves on
the small étale and on the smooth-étale site of X – the confusion here is harmless.

3.1.3. Let us denote by D(X ét,R) the derived category of Sh(X ét,R). As both func-
tors ρ],ρ∗ are exact, they can be derived trivially. In particular, we get a derived
adjunction:

(3.1.3.a) ρ] : D(X ét,R)�D(Shét(X ,R)) : ρ∗

in which the functor ρ] is still fully faithful.
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Proposition 3.1.4. The composite functor

Sh(X ét,R)
ρ]−→Shét(X ,R)

γ∗−→Shtr
ét(X ,R)

is exact and fully faithful.

Proof. As ρ] is fully faithful and γ∗ is exact and conservative, it is sufficient to prove
that, for any R-sheaf F on X ét, the map induced by adjunction:

ρ](F)→ γ∗γ∗ρ](F)

is an isomorphism of étale sheaves. Moreover, all the involved functors commute
with colimits (applying in particular 2.1.10). Thus, it is sufficient to prove this in the
case where F = RX (V ) is representable by an étale X -scheme V . Then, the result is
just a reformulation of Corollary 2.1.9. �

Corollary 3.1.5. The functor

Lγ∗ρ] = γ∗ρ] : D(X ét,R)→D(Shtr
ét(X ,R))

is fully faithful.

3.1.6. We have a composite functor

(3.1.6.a) ρ! : D(X ét,R)→D(Shtr
ét(X ,R))→DMeff

ét (X ,R)

Proposition 3.1.7. Assume that the ring R is of positive characteristic n and that
the residue characteristics of X are prime to n. Then the composed functor (3.1.6.a) is
fully faithful.

Proof. Recall that the functor πA1 : D(Shtr
ét(X ,R) → DMeff

ét (X ,R) has a fully faithful
right adjoint whose essential image consists of A1-local objects (see Definition 2.2.5).
Therefore, by virtue of Proposition 2.2.3 and of Corollary 3.1.5, it is sufficient to prove
that, for any complex K in D(X ét,R), and for any étale X -scheme V , the map

H i
ét(V ,K)→ H i

ét(A
1 ×V ,K)

is bijective for all i, which is Theorem 1.3.2. �

3.2. Etale motivic Tate twist. Recall from [AGV73, IX, 3.2] that, for any scheme
X such that n is invertible in OX , the group scheme µn,X of nth roots of unity fits in
the Kummer short exact sequence in Shét(S,Z):

(3.2.0.a) 0→µn →Gm,X →Gm,X → 0.

This induces a canonical isomorphism in the derived category:

(3.2.0.b) Gm,X [−1]⊗L Z/nZ'µn,X .

3.2.1. For any scheme S and any ring R, the Tate motive RS(1) is defined in DMeff
ét (S,R)

as the cokernel of the split monomorphism R tr
S (S)[−1] → R tr

S (Gm,S)[−1] induced by
the unit section.

As Gm,S has a natural structure of étale sheaf with transfers, there is a canonical
map

Ztr
S (Gm,S)→Gm,S

which factor through ZS(1)[1]. This gives a natural morphism in DMeff (S,R):

(3.2.1.a) RS(1)[1]→Gm,S ⊗L R .
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In the case where R is of positive characteristic n, with n invertible in OS , the iso-
morphism (3.2.0.b) identifies the map (3.2.1.a) shifted by [−1] with a morphism of
shape

(3.2.1.b) RS(1)→µn,S ⊗Z/nZ R ,

where the locally constant étale sheaf µn,S is considered as a sheaf with transfers
(according to proposition 3.1.7). Note also that µn,S⊗L

Z/nZ R 'µn,S⊗Z/nZ R because µn
is a locally free sheaf of Z/nZ-modules.

Proposition 3.2.2. The morphism (3.2.1.a) is an isomorphism in DMeff
ét (S,R) when-

ever S is regular.

Proof. The case where R = Z follows immediately from [CD12, Theorem ??]. We
conclude in general by applying the derived functor (−)⊗L R. �

Proposition 3.2.3. If the ring R is of positive characteristic n, with n invertible in
OS , then the morphism (3.2.1.b) is an isomorphism in DMeff

ét (S,R).

Proof. By virtue of the preceding proposition, this is true for S regular, and thus in
the case where S =SpecZ[1/n]. Now, consider a morphism of schemes f : X → S, with
S regular (e.g. S = SpecZ[1/n]). The natural map L f ∗(RS(1)) → RX (1) is obviously
an isomorphism, and, as the étale sheaf µn is locally constant, the canonical map
L f ∗(µn,S ⊗Z/nZ R) → µn,X ⊗Z/nZ R is invertible as well, from which we deduce the
general case. �

Corollary 3.2.4. For any scheme X , if n is invertible in OX , we have a canonical
identification:

HomDMeff
ét (X ,Z/nZ)((Z/nZ)X , (Z/nZ)X (1)[i])= H i−1

ét (X ,µn) .

Proof. This is an immediate consequence of Propositions 3.1.7 and 3.2.3. �

Corollary 3.2.5. If the ring R is of positive characteristic n, with n prime to the
residue characteristics of X , then the Tate twist RX (1) is ⊗-invertible in DMeff

ét (X ,R).
Therefore, the infinite suspension functor (2.2.4.a)

Σ∞ : DMeff
ét (X ,R)→DMét(X ,R)

is then an equivalence of categories.

Proof. The sheaf µn,X is locally constant: there exists an étale cover f : Y → X such
that f ∗(µn,X ) = (Z/nZ)Y . This implies that the sheaf µn,X ⊗R is ⊗-invertible in the
derived category D(X ét,R). As the canonical functor D(X ét,R)→DMeff

ét (X ,R) is sym-
metric monoidal, this implies that µn,X ⊗R is ⊗-invertible in DMeff

ét (X ,R). The first
assertion follows then from Proposition 3.2.3. The second follows from the first by
the general properties of the stabilization of model categories; see [Hov01]. �

4. TORSION ÉTALE MOTIVES

4.0.6. In this section, we fix a ring R of positive characteristic n. Our category of
underlying schemes Sch will be the category of all noetherian schemes. We will
denote by Sch[1/n] the category of Z[1/n]-schemes.
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The aim of this section is to show that the premotivic triangulated category of
R-linear étale motives DMeff

ét (−,R) defined previously satisfies the Grothendieck 6
functors formalism as well as the absolute purity property (see respectively Defi-
nitions A.1.10 and A.2.9). Then we deduce the extension of the Suslin-Voevodsky
rigidity theorem [VSF00, chap. 5, 3.3.3] to arbitrary bases.

To simplify notations, we will cancel the letters L and R in front of the derived
functors used in this section. Note also that we will show in Proposition 4.1.1 that

Σ∞ : DMeff
ét (−,R)→DMét(−,R)

is an equivalence of categories. Thus we will use the simpler notation DMét(−,R)
from section 4.2 on.

4.1. Stability and orientation. We first show that in Corollary 3.2.5 one can drop
the restriction on the characteristic of the schemes we consider:

Proposition 4.1.1. If R is of positive characteristic, for any scheme S the Tate mo-
tive RS(1) in ⊗-invertible and the natural map RS(1)[1] → Gm,S ⊗L R (3.2.1.a) is an
isomorphism in DMeff

ét (S,R).

Proof. Let n > 0 be the characteristic of R. As the change of scalars functor

DMeff
ét (S,Z/nZ)→DMeff

ét (S,R) , M 7→ R⊗L
Z/nZ M

is symmetric monoidal, it is sufficient to prove this for R = Z/nZ. By a simple devis-
sage, we may assume that n = pα is some power of a prime number p. Let S[1/p] be
the product S×Spec(Z[1/p]), and let j : S[1/p]→ S be the canonical open immersion.
By virtue of Proposition A.3.4, the functor

j∗ : DMeff
ét (S,R)→DMeff

ét (S[1/p],R)

is an equivalence of triangulated monoidal categories. Therefore, we may also as-
sume that n is invertible in OS . We are thus reduced to Corollary 3.2.5. �

Corollary 4.1.2. If R is a ring of positive characteristic, then, for any scheme S the
infinite suspension functor

Σ∞ : DMeff
ét (S,R)→DMét(S,R)

is an equivalence of categories.

4.1.3. If R is of positive characteristic, as a direct consequence of the Proposition
4.1.1, we have, for any scheme S, a functorial morphism of abelian groups

cét
1 : Pic(S)=HomD(Shtr

ét(S,Z)(ZS ,Gm,S[1])→HomDMeff (S,R)(RS ,RS(1)[2])

which is simply induced by the canonical morphism Gm,S → Gm,S ⊗L R and the iso-
morphism RS(1)[1]'Gm,S ⊗L R.

Definition 4.1.4. We call the map cét
1 the étale motivic Chern class.

We will consider this map as the canonical orientation of the triangulated premo-
tivic category DMeff

ét (−,R).
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4.2. Purity (smooth projective case).

4.2.1. We need to simplify some of our notations which will often appear below.
Given any morphism f and any smooth morphism p, we will consider the follow-
ing unit and counit maps of the relevant adjunctions in DMét(−,R):

(4.2.1.a) 1
α f−−→ f∗ f ∗, f ∗ f∗

α′
f−−→ 1,

1
βp−−→ p∗p], p]p∗ β′p−−→ 1.

Remark 4.2.2. Consider a cartesian square of schemes:

Y

g
��

q //

∆

X

f
��

T
p // S

such that p is smooth. According to Property (5) of Definition A.1.1, applied to
DMét(−,R), we associate to the square ∆ the base change isomorphism

Ex(∆∗
] ) : q]g∗ → f ∗p].

In what follows, the square ∆ will be clear and we will put simply: Ex∗
]

:= Ex(∆∗
]
)−1.

Recall also that we associate to the square ∆ another exchange transformation as
the following composite (see [CD12, 1.1.15]):

(4.2.2.a) Ex]∗ : p]g∗
α f−−→ f∗ f ∗p]g∗

Ex∗
]−−−→ f∗q]g∗g∗

α′
g−−→ f∗q].

4.2.3. Proposition 4.1.1, and the existence of the map cét
1 defined in 4.1.4, show that

the category DMét(S,R) satisfies all the assumptions of [Dég07, §2.1]. Thus, the
results of this article can be applied to that latter category. In particular, according
to Prop. 4.3 of op. cit., we get:

Proposition 4.2.4. Assume that the ring R is of positive characteristic. Let f : X → S
be a smooth morphism of pure dimension d and s : S → X be a section of f . Then,
using the notation of 2.3.3, there exists a canonical isomorphism in DMét(S,R):

p′f ,s : R tr
S (X /X −S)→ RS(d)[2d].

In particular, for any motive K in DMét(S,R), we get a canonical isomorphism:

p f ,s :

{
f]s∗(K)= f]s∗(s∗ f ∗(K)⊗RS) ∼−−→ K ⊗ f]s∗(RS)

= K ⊗R tr
S (X /X −S)

p′
f ,s−−→ K(d)[2d]

which is natural in K . The first isomorphism uses the projection formulas respec-
tively for the smooth morphism f (see point (5) of Definition A.1.1) and for the im-
mersion s (i.e. the isomorphism (2.3.4.a)).

4.2.5. Assume now that f : X → S is smooth and projective of dimension d. We
consider the following diagram:

X
δ // X ×S X

f ′

��

f ′′ //

Θ

X

f
��

X f // S
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where Θ is the obvious cartesian square and δ is the diagonal embedding.
As in [CD12, 2.4.39], we introduce the following natural transformation:

(4.2.5.a) p f : f] = f] f ′′∗δ∗
Ex]∗−−−→ f∗ f ′]δ∗

p f ′ ,δ−−−→ f∗(d)[2d]

with the notation of Remark 4.2.2 with respect to the square Θ.

Theorem 4.2.6. Under the above assumptions, the map p f is an isomorphism.

Proof. In this proof, we put τ(K) = K(d)[2d]. Note that according to the basic prop-
erties of a premotivic category, we get the following identification of funtors for
DMét(−,R):

(4.2.6.a) f ∗τ= τ f ∗, f]τ= τ f].

Moreover, we can define a natural exchange transformation:

(4.2.6.b) Exτ : τ f∗
α f−−→ f∗ f ∗τ f∗ = f∗τ f ∗ f∗

α′
f−−→ f∗τ

with the notations of Paragraph 4.2.1. Using the fact τ is an equivalence of categories
according to Proposition 4.1.1, we deduce easily from the identification (4.2.6.a) that
τ f is an isomorphism.

The key point of the proof is the following lemma inspired by a proof of J. Ayoub
(see the proof of [Ayo07, 1.7.14, 1.7.15]):

Lemma 4.2.7. To check that p f is an isomorphism, it is sufficient to prove that the
natural transformation

p f . f ∗ : f] f ∗ → f∗τ f ∗

is an isomorphism.

To prove the lemma we construct a right inverse φ1 and a left inverse φ2 to the
morphism p f as the following composite maps:

φ1 : f∗τ
α f−−→ f∗ f ∗ f∗τ

Ex−1
τ−−−→ f∗ f ∗τ f∗ = f∗τ f ∗ f∗

(p f . f ∗ f∗)−1

−−−−−−−−→ f] f ∗ f∗
α′

f−−→ f]

φ2 : f∗τ
β f−−→ f∗τ f ∗ f]

(p f . f ∗ f])−1

−−−−−−−−→ f] f ∗ f]
β′f−−→ f].

Let us check that p f ◦φ1 = 1. To prove this relation, we prove that the following
diagram is commutative:

f∗τ
α f // f∗ f ∗ f∗τ

Ex−1
τ // f∗τ f ∗ f∗

(p f f ∗ f∗)−1
// f] f ∗ f∗

α′
f //

(1)

f]
p f // f∗τ

f∗τ f ∗ f∗
(p f f ∗ f∗)−1

//

(2)

f] f ∗ f∗
p f f ∗ f∗ // f∗τ f f∗

α′
f // f∗τ

f∗ f ∗ f∗τ
Ex−1

τ //

(3)

f∗τ f ∗ f∗ α′
f

// f∗τ

f∗τ
α f // f∗ f ∗ f∗τ α′

f
// f∗τ.

The commutativity of (1) and (2) is obvious and the commutativity of (3) follows
from Formula (4.2.6.b) defining Exτ. Then the result follows from the usual formula
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between the unit and counit of an adjunction. The relation φ2◦p f = 1 is proved using
the same kind of computations.

The end of the proof now relies on the following lemma which follows from [Dég07,
Theorem 5.23], which can be applied, according to Paragraph 4.2.3:

Lemma 4.2.8. Let f : X → S be smooth projective of dimension d as above, and
δ : X → X ×S X the diagonal embedding. Then the following holds:

• The étale motive R tr
S (X ) is strongly dualizable in DMét(S,R).

• Consider the morphism µ defined by the following composition:

R tr
S (X )⊗S R tr

S (X )= R tr
S (X ×S X ) π−→ R tr

S (X ×S X /X ×S X −δ(X ))
p′

f ′ ,δ−−−→ R tr
S (X )(d)[2d]

f∗−→ RS(d)[2d].
(4.2.8.a)

where π is the canonical map and p′f ′,δ is the purity isomorphism of Proposi-
tion 4.2.4. Then µ induces by adjunction an isomorphism of endofunctors of
DMét(S,R): (

R tr
S (X )⊗S −) dX /S−−−−→Hom(R tr

S (X ),−(d)[2d]).

To finish the proof, we now check that the map

f] f ∗
p f f ∗−−−→ f∗τ f ∗ = f∗ f ∗τ

is an isomorphism. Recall that according to the smooth projection formula for the
premotivic category DMét, we get an identification of functors:

f] f ∗ = (R tr
S (X )⊗−).

Thus the right adjoint f∗ f ∗ is identified with Hom(R tr
S (X ),−). According to the above

theorem, it is sufficient to prove that the map p f f ∗ above coincide through these
identifications with the isomorphism dX /S above.

According to the above definition of µ, the natural transformation of functors (µ⊗
−) can be described as the following composite:

f] f ∗ f] f ∗
Ex∗

]−−−→ f] f ′] f ′′∗ f ∗ = g]g∗ αδ−−→g]δ∗δ∗g∗

= f] f ′]δ∗ f ∗
p f ′ ,δ−−−→ f]τ f ∗ = f] f ∗τ

β′f−−→ τ.

where g = f ◦ f ′′ = f ◦ f ′ is the projection X ×S X → S. Indeed the base change map
Ex∗

]
associated to the square Θ corresponds to the first identification in (4.2.8.a) and

the adjunction map αδ corresponds to the canonical map π.
Thus, we have to prove the preceding composite map is equal to the following one,

obtained by adjunction from p f :

f] f ∗ f] f ∗ = f] f ∗ f] f ′′∗δ∗ f ∗
Ex]∗−−−→ f] f ∗ f∗ f ′]δ∗ f ∗

p f ′ ,δ−−−→ f] f ∗ f∗τ f ∗ = f] f ∗ f∗ f ∗τ
α′

f−−→ f] f ∗τ
β′f−−→ τ
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On can check after some easy cancellation that this amounts to prove the commuta-
tivity of the following diagram:

f ∗ f]

Ex∗
]

��

f ∗ f] f ′′∗δ∗
Ex]∗ // f ∗ f∗ f ′′

]
δ∗

α′
f
��

f ′
]
f ′′∗ αδ // f ′

]
δ∗δ∗ f ′′∗ f ′

]
δ∗.

Using formula (4.2.2.a), we can divide this diagram into the following pieces:

f ∗ f]

Ex∗
]

��

f ∗ f] f ′′∗δ∗
α f //

Ex∗
]

��

f ∗ f∗ f ∗ f] f ′′∗δ∗
Ex∗

] // f ∗ f∗ f ′
]
f ′′∗ f ′′∗δ∗

α′
f ′′ //

α′
f
��

f ∗ f∗ f ′′
]
δ∗

α′
f
��

f ′
]
f ′′∗ f ′

]
f ′′∗ f ′′∗δ∗

α f

33gggggggggggggggggggggggg
f ′
]
f ′′∗ f ′′∗δ∗

α′
f ′′ // f ′

]
δ∗

f ′
]
f ′′∗ αδ //

(∗)

f ′
]
δ∗.

Every part of this diagram is obviously commutative except for part (∗). As f ′′δ= 1,
the axioms of a 2-functors (for f ∗ and f∗ say) implies that the unit map

f ′] f ′′∗
α f ′′δ−−−→ f ′] f ′′∗( f ′′δ)∗( f ′′δ)∗

is the canonical identification that we get using 1∗ = 1 and 1∗ = 1. We can consider
the following diagram:

f ′
]
f ′′∗

α f ′′δ f ′
]
f ′′∗( f ′′δ)∗( f ′′δ)∗ f ′

]
f ′′∗ f ′′∗δ∗

α′
f ′′

��

f ′
]
f ′′∗

α f ′′ // f ′
]
f ′′∗ f ′′

]
f ′′∗ αδ //

α′
f ′′
��

f ′
]
f ′′∗( f ′′δ)∗( f ′′δ)∗

α′
f ′′
��

f ′
]
f ′′∗ f ′

]
f ′′∗ αδ // f ′

]
δ∗δ∗ f ′′∗ f ′

]
δ∗

for which each part is obviously commutative. This concludes. �

This theorem will be generalized later on (see Corollary 4.3.2, point (3)). The
important fact for the time being is the following corollary:

Corollary 4.2.9. Under the hypothesis of Remark 4.2.2, if we assume that p is pro-
jective and smooth, the morphism Ex]∗ : p]g∗ → f∗q] is an isomorphism.

In fact, putting τ(K) = K(d)[2d] where d is the dimension of p, one checks easily
that the following diagram is commutative:

p]g∗

pp

��

Ex]∗ // f∗q]

pq

��
p∗τg∗ p∗g∗τ

Exτoo f∗q∗τ
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where we use formula (4.2.6.b) for the isomorphism Exτ.

4.3. Localization.

Theorem 4.3.1. For any ring of positive characteristic R, the triangulated premotivic
category DMét(−,R) satisfies the localization property (see Definition A.1.12).

Proof. We will prove that condition (iii) of Proposition 2.3.4 is satisfied. Note that
according to Proposition 4.1.1, i∗ commutes with twists.3 Thus it remains to prove
that for any smooth S-scheme X , the canonical morphism

εX /S : R tr
S (X /X − XZ)→ i∗R tr

Z (XZ)

is an isomorphism in DMét(S,R) (recall that i∗ =Ri∗ according to Lemma 2.3.1).
Let us first consider the case where X is étale. Then according to Corollary 2.1.9,

the sequence of sheaves with transfers

(4.3.1.a) 0→ Rtr
S (X − XZ)

j∗−→ Rtr
S (X ) i∗−→ i∗Rtr

Z (XZ)→ 0

is isomorphic after applying the functor γ∗ to the sequence

0→ RS(X − XZ)
j∗−→ RS(X ) i∗−→ i∗RZ(XZ)→ 0.

This sequence of sheaves is obviously exact (we can easily check this on the fibres).
As γ∗ is conservative and exact, the sequence (4.3.1.a) is exact. Thus the canonical
map:

R tr
S (X /X − XZ) := coker( j∗)→ i∗Rtr

Z (XZ)

is an isomorphism in Shtr
ét(X ,R) and a fortiori in DMét(S,R).

We now turn to the general case. For any open cover X =U ∪V , we easily get the
usual Mayer-Vietoris short exact sequence in Shtr

ét(S,R):

0→ Rtr
S (U ∩V )→ R tr

S (U)⊕Rtr
S (V )→ Rtr

S (X )→ 0 .

Thus the assertion is local on X for the Zariski topology. In particular, as X /S is
smooth, we can assume there exists an étale map X → An

S . Therefore, by compos-
ing with any open immersion An

S → Pn
S , we get an étale S-morphism f : X → Pn

S .
Consider the following cartesian square:

Pn
Z

q
��

k // Pn
S
p
��

Z
i // S,

where p is the canonical projection. If we consider the notations of Paragraph 4.2.1
and Remark 4.2.2 relative to this square, then the following diagram

p]
p](αk)

// p]k∗k∗

Ex]∗
��

p]
αi // i∗ i∗p]

Ex∗
] // i∗q]k∗

is commutative – this can be easily checked using Formula (4.2.2.a).

3Essentially because it is true for its left adjoint i∗. This fact was already remarked at the beginning
of the proof of Theorem 4.2.6.
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If we apply the preceding commutative diagram to the object R tr
S (X /X − XZ), we

get the following commutative diagram in DMét(S,R):

p]Rtr
Pn

S
(X /X − XZ)

p](εX /Pn
S

)
// p]k∗Rtr

Pn
Z
(XZ)

Ex]∗
��

Rtr
S (X /X − XZ)

εX /S // i∗q]Rtr
Z (XZ) i∗q]Rtr

Pn
Z
(XZ)

The conclusion follows from the case treated above and from Corollary 4.2.9. �

As the premotivic triangulated category DMét(−,R) satisfies the stability property
(Proposition 4.1.1) and the weak purity property (Theorem 4.2.6) the previous result
allows to apply Theorem A.1.13 to DMét(−,R):

Corollary 4.3.2. For any ring R of positive characteristic, the triangulated premo-
tivic category DMét(−,R) satisfies Grothendieck’s 6 functors formalism (Definition
A.1.10).

4.4. Compatibility with direct image.

4.4.1. According to Example A.1.3, the categories D(X ét,R) are the fibers of an Ét-
premotivic triangulated category over Sch.

Note that the derived tensor product ⊗L is essentially characterized by the prop-
erty that for any étale X -schemes U and V , RX (U)⊗LRX (V )= RX (U×X V ) in D(X ét,R).

Similarly, for any étale morphism p : V → X , the operation Lp] is characterized
by the property that for any étale V -scheme W , Lp](RV (W))= RX (W).

4.4.2. In what follows, we will drop the letters L and R in front of derived functors
to simplify notations.

Due to the properties of the functors involved in the construction of

ρ! : D(−ét,R)→DMeff
ét (−,R)

we get the following compatibility properties:
(1) ρ! is monoidal.
(2) For any morphism f : Y → X of schemes, there exists a canonical isomor-

phism:
Ex( f ∗,ρ!) : f ∗ρ! → ρ! f ∗.

(3) For any étale morphism p : V → X , there exists a canonical isomorpism:

ρ! p]→ p]ρ!.

Assume that R is of positive characteristic n, and consider now a proper morphism
f : Y → X between schemes whose residue characteristics are prime to n. Then, we
can form the following natural transformation:

Ex(ρ!, f∗) : ρ! f∗
α f−−→ f∗ f ∗ρ! f∗

Ex( f ∗,ρ!)−−−−−−→ f∗ρ! f ∗ f∗
α′

f−−→ f∗ρ!.

Proposition 4.4.3. Using the assumptions and notations above, the map

Ex(ρ!, f∗) : ρ! f∗(K)→ f∗ρ!(K)

is an isomorphism for any object K of D(Yét,R).
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Proof. Recall the triangulated category DMét(X ,R) = DMeff
ét (X ,R) is generated by

objects of the form R tr
X (W) = p](1W ) where p : W → X is a smooth morphism. Thus,

we have to prove that for any integer n ∈Z, the induced map:

(4.4.3.a) HomDMeff
ét (X ,R)(p](RW )[n],ρ! f∗(K))→HomDMeff

ét (X ,R)(p](RW )[n], f∗ρ!(K)).

Consider the following cartesian square:

W ′

g
��

q // Y

f
��

W
p // X

Then we get canonical isomorphisms

Ex∗∗ : p∗ f∗ → g∗q∗

both in D(−ét,R) and in the premotivic triangulated category DMét(−,R), by the
proper base change theorem – see Theorem 1.2.1 and respectively Corollary 4.3.2,
Definition A.1.10(4).

On the other hand, the following diagram is commutative:

p∗ρ! f∗
Ex(p∗,ρ!)

��

Ex(ρ!, f∗) // p∗ f∗ρ!

Ex∗∗
��

ρ! p∗ f∗
Ex∗∗
��

g∗q∗ρ!

Ex(q∗,ρ!)
��

ρ! g∗q∗ Ex(ρ!,g∗) // g∗ρ!q∗

Thus, using the adjunction (p], p∗) and replacing K by g∗(K)[−n], we reduce to prove
that the map (4.4.3.a) is an isomorphism for any complex K when p = 1X and n = 0.
We have to prove that the map

Ex(ρ!, f∗)∗ : HomDMeff
ét (X ,R)(RX ,ρ! f∗(K))→HomDMeff

ét (X ,R)(RX , f∗ρ!(K))

is an isomorphism.
But using the fact ρ!(RX )= RX , Proposition 3.1.7, as well as the adjunction ( f ∗, f∗),

the source and target of this map can be identified to H0
ét(Y ,K) and this concludes.

For the cautious reader, let us say more precisely that this follows from the commu-
tativity of the following diagram:

Hom(RX , f∗(K))

ρ!

��

ad j. // Hom( f ∗(RX ),K)

ρ!

��
Hom(ρ!(RX ),ρ! f∗(K)) Hom(ρ! f ∗(RX ),ρ!(K))

Ex( f ∗,ρ!)∗ // Hom( f ∗ρ!(RX ),ρ!(K))

ad j.
��

Hom(ρ!(RX ),ρ! f∗(K))
Ex(ρ!, f∗)∗ // Hom(ρ!(RX ), f∗ρ!(K)).

�
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4.5. The rigidity theorem.

4.5.1. Given a scheme X , we denote by Db
c (X ét,R) the full subcategory of D(X ét,R)

which consists of complexes of étale sheaves with bounded constructible cohomology.

Lemma 4.5.2. Using the notations above, for any scheme X , the category Db
c (X ét,R)

is the smallest triangulated thick subcategory of D(X ét,R) generated by objects of the
form RX (V )=Lp](RV ) for p : V → X an étale morphism.

As an obvious corollary, we obtain that Db
c (X ét,R) is stable by the operations f ∗,

for any morphism f , by the operation L f] whenever f is étale, as well as by the
operation ⊗L.

Recall from [CD12, Definition 1.4.9] the following definition, taken from Ayoub’s
Astérisques:

Definition 4.5.3. We define the category of constructible étale motives DMét,c(X ,R)
as the thick triangulated subcategory of DMét(X ,R) generated by objects of the form
RX (Y )(n) for any smooth X -scheme Y and any integer n ∈Z.

We then have the following result (see [Ayo07, lemma 2.2.23] or [CD12, Proposi-
tion 4.2.13]), which uses Theorem 4.3.1:

Proposition 4.5.4. If R is of positive characteristic, the category DMét,c(X ,R) is
the thick triangulated subcategory of DMét(X ,R) generated by objects of the form
f∗(RY )(n) for any projective morphism f : Y → X and any integer n ∈Z.

The following theorem is a generalization of the rigidity theorem of Suslin and
Voevodsky ([Voe96, 4.1.9] or [VSF00, chap. 5, 3.3.3]) when the base is of positive
dimension:

Theorem 4.5.5. Assume that R is a ring of positive characteristic n, and consider a
noetherian Z[1/n]-scheme X . Then the functor

ρ! : D(X ét,R)→DMeff
ét (X ,R)'DMét(X ,R)

is an equivalence of symmetric monoidal triangulated categories, whose quasi-inverse
is induced by the restriction functor on the small étale site. This equivalence of cate-
gories restricts to an equivalence at the level of constructible objects:

Db
c (X ét,R)'DMét,c(X ,R) .

Proof. The fully faithfulness of the functor ρ! has been established in Proposition
3.1.7. According to Lemma 4.5.2, and points (1), (3), of Paragraph 4.4.2, we get
that ρ!(Db

c (X ét,R)) ⊂ DMét,c(X ,R). On the other hand, using the fact that the direct
image functors by proper morphisms preserve constructible coefficients (see [AGV73,
Exposé XIV, 1.1]), together with Propositions 4.4.3 and 4.5.4, we get the converse
inclusion. Furthermore, we know from Proposition 3.1.7 that the functor

ρ! : D(X ét,R)→DMeff
ét (X ,R)

is fully faithful, and it is easy to see that it has a right adjoint

ρ∗ : DMeff
ét (X ,R)→D(X ét,R)

defined by the restriction to the small étale site of X : ρ∗(K) = K |X ét . To prove that
ρ! is an equivalence of categories, it is sufficient to prove that, for any object K of
DMeff

ét (X ,R), the co-unit map
ρ!ρ

∗(K)→ K
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is an isomorphism. For this, it is sufficient to prove that, for any smooth X -scheme
V and any integer n, the map

HomDMeff
ét (X ,R)(RX (V ),ρ!ρ

∗(K)[n])→HomDMeff
ét (X ,R)(RX (V ),K[n])

is invertible. But we already know that Db
c (X ét,R) ' DMét,c(X ,R), so that RX (V ) '

ρ!(C) for some complex C in Db
c (X ét,R). Therefore, it is sufficient to prove that the

map
ρ∗ρ!ρ

∗(K)→ ρ∗(K)

is invertible, which follows easily from the fact that the functor ρ! is full faithful. �

We can extend these results in the case of p-torsion coefficients as follows:

Corollary 4.5.6. Assume that R is of characteristic pr for a prime p and an integer
r ≥ 1. Let X be any noetherian scheme, and X [1/p] = X ×Spec(Z[1/p]). Then there is
a canonical equivalence of categories

DMét(X ,R)'D(X [1/p]ét,R) .

Proof. This follows from Theorem 4.5.5 and from Proposition A.3.4. �

Corollary 4.5.7. Under the assumptions of Theorem 4.5.5, for any complex of étale
sheaves with transfers of R-modules C over X , the following conditions are equiva-
lent:

(i) the complex C is A1-local;
(ii) for any integer n, the étale sheaf Hn(C) (seen as a complex concentrated in

degree zero) is A1-local;
(iii) the map ρ!ρ

∗C → C is a quasi-isomorphism of complexes of étale sheaves;
(iv) for any integer n, the map ρ!ρ

∗Hn(C)→ Hn(C) is invertible.

Proof. The equivalence between conditions (i) and (iii) follows immediately from The-
orem 4.5.5, from which we deduce the equivalence between conditions (ii) and (iv).
The equivalence between conditions (iii) and (iv) comes from the fact that both ρ!
and ρ∗ are exact functors. �

4.6. Absolute purity with torsion coefficients.

Theorem 4.6.1. For any ring of positive characteristic, the triangulated premotivic
category DMét(−,R) satisfies the absolute purity property (Definition A.2.9).

This means in particular that for any closed immersion i : Z → S between regular
schemes, one has a canonical isomorphism in DMét(S,R):

ηX (Z) : RZ → i!(RS)(c)[2c].

Proof. For any closed immersion i : Z → S, we define a complex of R-modules using
the dg-enrichement of DMét(S,R):

RΓZ(X )=RHom(i∗(RZ),RS).

This complex is contravariant in (X , Z) – see A.2.1 for morphisms of closed pairs.
We have to prove that whenever S and R are regular, the maps induced by the
deformation diagram (A.2.7.a),

RΓZ(X )
d∗

1←−−RΓA1
Z
(DZ X )

d∗
0−−→RΓZ(NZ X )
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are quasi-isomorphism. We may assume that R = Z/nZ for some natural number
n > 0. By a simple devissage, we may as well assume that n is a power of some prime
p. By virtue of Corolary 4.5.6, we see that all this is a reformulation of the analogous
property in the setting of classical étale cohomology, with coefficients prime to the
residue characteristics. We conclude with Gabber’s absolute purity theorem (see
[Fuj02]). �

5. h-MOTIVES AND `-ADIC REALISATION

In this section, we fix a ring Λ such that Z ⊂Λ ⊂ Q and consider a Λ-algebra R.
We let Sch be the category of noetherian schemes.

In addition, for any base scheme S in Sch, we let S f t
S be the category of S-schemes

of finite type.

5.1. h-motives.

5.1.1. Recall that Voevodsky has defined the h-topology on the category of noetherian
schemes as the topology whose covers are the universal topological epimorphisms;
see [Voe96, 3.1.2]. Given a noetherian scheme S as well as a ring R, we will denote
by Shh(S,R) the category of h-sheaves of R-modules on the category S f t

S . Given any
S-scheme X of finite type, we will denote by Rh

S(X ) the free h-scheaf or R-modules
represented by X . As proved in [CD12, Ex. 5.1.4], the Sch-fibered category Shh(−,R)
is an abelian S f t-premotivic category in the sense of Definition A.1.1.

The following definition, although using the theory of [CD12] for the existence of
derived functors, follows the original idea of Voevodsky in [Voe96]:

Definition 5.1.2. Using the notations above, we define the S f t-premotivic big cat-
egory of effective h-motives (resp. of h-motives) with R-linear coefficients

DMeff
h (−,R) (resp. DMh(−,R) )

as the A1-derived category (resp. stable A1-derived category) associated with the
Sch-fibred category Shh(−,R).

In other words, the triangulated monoidal category DMeff
h (S,R) is the A1-localisation

of the derived category D(Shh(S,R)) ; this is precisely the original definition of Vo-
evodsky [Voe96, sec. 4]. This category is completely analogous to the case of the étale
topology (2.2.4). Similarly, the category DMh(S,R) is obtained from DMeff

h (S,R) by
⊗-inverting the Tate h-motive in the sense of model categories. We get functors as in
(2.2.4.a):

(5.1.2.a) D(Shh(S,R))
πA1−−→DMeff

h (S,R) Σ∞
−−→DMh(S,R).

Note however that the category DMeff
h (S,R) (DMh(S,R)) is generated by objects of

the form Rh
S(X ) (Σ∞Rh

S(X )(n) ) for any S-scheme of finite type X (for any S-scheme
of finite type X and any integer n ∈,Z, respectively). These categories are too big
to satisfy the 6 functors formalism (the drawback is about the localization property
with respect to closed immersion, which means that there is no good theory of sup-
port).

This is why we introduce the following definition (following [CD12, Ex. 5.3.31]).

Definition 5.1.3. The category of effective h-motives (resp. of h-motives)

DMeff
h (X ,R) (resp. DMh(X ,R))
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is the smallest full subcategory of DMeff
h (S,R) (resp. of DMh(X ,R)) closed under ar-

bitrary small sums and containing the objects of the form Rh
S(X ) (resp. Σ∞Rh

S(X )(n))
for X /S smooth (resp. for X /S smooth and n ∈Z).

The category of constructible effective (resp. of constructible) h-motives

DMeff
h,c(X ,R) (resp. DMh,c(X ,R))

is the thick triangulated subcategory of DMeff
h (S,R) (resp. DMh(X ,R)) generated by

objects of the form Rh
S(X )(resp. Σ∞Rh

S(X )(n)) for X /S smooth (resp. for X /S smooth
and n ∈Z).

We will sometimes simplify the notations and write R(X )=Σ∞Rh
S(X ), as an object

of DMh(X ,R) (for a smooth S-scheme X ).

It is obvious that the subcategory DMh(−,R) is stable by the operations f ∗ for any
morphism f , by the operation f] for any smooth morphism f , and by the operation
⊗L. The Brown representability theorem implies that the inclusion functor ν] admits
a right adjoint ν∗, so that DMh(−,R) is in fact a premotivic triangulated category, and
we get an enlargement of premotivic triangulated category:

(5.1.3.a) ν] : DMh(X ,R)�DMh(S,R) : ν∗

– see [CD12, Ex. 5.3.31(2)]. More precisely, for any morphism of schemes f : X → Y ,
the functor

L f ∗ : DMh(Y ,R)→DMh(X ,R)

admits a right adjoint
R f∗ : DMh(X ,R)→DMh(Y ,R)

defined by the formula
R f∗(M)= ν∗(R f∗(ν](M))) .

Similarly, the (derived) internal Hom of DMh(X ,R) is defined by the formula

RHomR(M, N)= ν∗(RHomR(ν](M),ν](N))) .

We will sometimes write RHomR(M, N) = RHom(M, N) when the coefficients are
understood from the context. Also, when it is clear that we work with derived func-
tors only, it might happen that we drop the thick letters L and R from the notations.
The unit object of the monoidal category DMh(X ,R) will witten 1X or RX , depending
on the emphasis we want to put on the coefficients.

Remark 5.1.4. The category DMeff
h (X ,Z) is nothing else than the category introduced

by Voevodsky in [Voe96] under the notation DM(S). The fact these categories must
be some version of étale motives is clearly envisionned in loc. cit.

5.2. h-descent for torsion étale sheaves.

5.2.1. Given any noetherian scheme S and any ring R, proceeding as in 3.1.1, there
is an exact fully faithful embedding of the category Sh(Sét,R) in the category of étale
sheaves of R-modules over the big étale site of S-schemes of finite type. Composing
this embedding with the h-sheafification functor leads to an exact functor

(5.2.1.a) α∗ : Sh(Sét,R)→Shh(S,R) , F 7→α∗(F)= Fh.

This functor has a right adjoint

(5.2.1.b) α∗ : Shh(S,R)→Sh(Sét,R) .
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which defined by α∗(F)= F|Sét . The functor (5.2.1.a) induces a functor

(5.2.1.c) α∗ : D(Sét,R)→D(Shh(S,R)) .

which has a right adjoint

(5.2.1.d) Rα∗ : D(Shh(S,R))→D(Sét,R) .

Lemma 5.2.2. For any ring R and any noetherian scheme S, the derived restriction
functor (5.2.1.d) preserves small sums.

Proof. Let us prove first the lemma in the case where S is of finite Krull dimension
as well as of finite étale cohomological dimension. Then any S-scheme of finite type
has the same property. Moreover, by virtue of a theorem of Goodwillie and Lich-
tenbaum [GL01], any S-scheme of finite type has finite h-cohomological dimension
as well. For a complex C of h-sheaves of R-modules over S, the sheaf cohomology
H i(Rα∗(C)) is the étale sheaf associated to the presheaf

V 7→ H i
h(V ,C) .

It follows from Proposition 1.1.9 that the functors H i
h(V ,−) preserve small sums,

which implies that the functor Rα∗ has the same property.
We now can deal with the general case as follows. Let ξ be a geometric point of S,

and write u : Sξ→ S for the canonical map from the strict henselization of S at ξ. We
then have pullback functors

u∗ : D(Sét,R)→D(Sξ,ét,R) and u∗ : D(Shh(S,R))→D(Shh(Sξ,R)) .

The family of functors u∗ form a conservative family of functors which commutes
with sums (when ξ runs over all geometric points of S). Therefore, it is sufficient to
prove that the functor u∗Rα∗ commutes with sums. Let V be an affine étale scheme
over Sξ. There exists a projective system of étale S-chemes {Vi} with affine transition
maps such that V = lim←−−i

Vi. Note that Sξ is of finite étale cohomological dimension
(see Gabber’s Theorem 1.1.5), so that, by virtue of Lemma 1.1.12, for any complex of
sheaves of R-modules K over Sét, one has

lim−−→
i

Hn
ét(Vi,K)' Hn

ét(V ,u∗(K)) .

Similarly, applying Lemma 1.1.12 to the h-sites, for any complex of h-sheaves of R-
modules L over S, we have

lim−−→
i

Hn
h (Vi,L)' Hn

h (V ,u∗(L)) .

Note that, for any étale map w : W → S, the natural map w∗Rα∗(C) → Rα∗w∗(C) is
invertible. Therefore, for any complex of h-sheaves of R-modules C over S, we have
natural isomorphisms

Hn
ét(V ,u∗Rα∗(C))' lim−−→

i
Hn

ét(Vi,Rα∗(C))

' lim−−→
i

Hn
h (Vi,C))

' Hn
h (V ,u∗(C))

' Hn
ét(V ,Rα∗u∗(C)) .

In other words, the natural map u∗Rα∗ → Rα∗u∗ is invertible, and as we already
know that the functor Rα∗ commutes with small sums over Sξ, this achieves the
proof of the lemma. �
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Proposition 5.2.3. Let R be a ring of positive characteristic, and S be a noetherian
scheme. The functor (5.2.1.c) is fully faithful. In other words, for any complex C of
sheaves of R-modules over Sét, and for any morphism of finite type f : X → S, the
natural map

H i
ét(X , f ∗C)→ H i

h(X ,α∗C)
is invertible for any integer i.

Proof. We must prove that, for any complex of sheaves of R-modules C over Sét, the
natural map

C →Rα∗Lα∗(C)
is invertible in D(Shh(S,R)). The functor Rα∗ preserves small sums (Lemma 5.2.2).
Therefore, it is sufficient restrict ourselves to the case of bounded complexes. Then,
by virtue of [AGV73, Exposé Vbis, 3.3.3], it is sufficient to prove that any h-cover
is a morphism of universal cohomological 1-descent (with respect to the fibred cat-
egory of étale sheaves of R-modules). The h-topology is the minimal Grothendieck
topology generated by open coverings as well as by coverings of shape {p : Y → X }
with p proper and surjective; see [Voe96, 1.3.9] in the context of excellent schemes,
and [Ryd10, 8.4] in general. We know that the class of morphisms of universal co-
homological 1-descent form a pretopology on the category of schemes; see [AGV73,
Exposé Vbis, 3.3.2]. To conclude the proof, it is thus sufficient to note that any étale
surjective morphism (any proper surjective morphism, respectively) is a morphism
of universal cohomological 1-descent; see [AGV73, Exposé Vbis, 4.3.5 & 4.3.2]. �

5.3. Basic change of coefficients.

5.3.1. Let R′ be an R-algebra and S be a base scheme. We associate to R′/R the
classical adjunction:

(5.3.1.a) ρ∗ : Shh(S,R)�Shh(S,R′) : ρ∗
such that ρ∗(F) is the h-sheaf associated with the presheaf X 7→ F(X )⊗R R′. The
functor ρ∗ is faithful, exact and commutes with arbitrary diret sums. Note also the
formula:

(5.3.1.b) ρ∗ρ∗(F)= F ⊗R R′

where R′ is seen as the constant h-sheaf associated with the R-module R′.
Note that the adjunction(5.3.1.a) is an adjunction of S f t-premotivic abelian cat-

egories. As such, it can be derived and induces a S f t-premotivic adjunction:

Lρ∗ : DMh(−,R)�DMh(−,R′) : Rρ∗
which restricts, according to Definition 5.1.3, to a premotivic adjunction

(5.3.1.c) Lρ∗ : DMh(−,R)�DMh(−,R′) : Rρ∗.

Recall that the stable category of h-motives over S is a localization of the derived
category of symmetric Tate spectra of h-sheaves over S.4 Here we will simply denote
this category by Sph(S,R) and call its object spectra. The adjuntion (5.3.1.a) can be
extended to an adjunction of S f t-premotivic abelian categories:

(5.3.1.d) ρ∗ : Sph(−,R)�Sph(−,R′) : ρ∗.

4See [CD12], Definition 5.3.16 for symmetric Tate spectra and Definition 5.3.22 for the stable A1-
derived category.
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Again, ρ∗ is faithful, exact and commutes with arbitrary sums. Note that the model
category structure on Sph(−,R′) is a particular instance of a general construction
(see [CD12, 7.2.1 and Theorem 7.2.2]), from which we immediately get the following
useful result (which is not dificult to prove directly though):

Lemma 5.3.2. The functor ρ∗ : C(Sph(S,R′)) → C(Sph(S,R)) preserves and detects
stable weak A1-equivalences.

As a corollary, we get:

Proposition 5.3.3. Consider the notations of Paragraph 5.3.1. The functors Rρ∗ =
ρ∗ is conservative and admits a right adjoint:

ρ! : DMh(S,R)→DMh(S,R′).

For any h-motive M over S, the following computations hold:

ρ∗Lρ∗(M)= M⊗L
R R′,

ρ∗ρ!(M)=RHomR(R′, M).

5.3.4. We consider the particular case of the discussion above when R = Z and R′ =
Z/nZ for a positive integer n. For any h-motive M over S, we put:

(5.3.4.a) M/n := M⊗L Z/nZ.

Then the short exact sequence

0→Z n−−→Z−→Z/nZ→ 0

induces a canonical distinguished triangle in DMh(S,Z):

(5.3.4.b) M n−−→ M −→ M/n −→ .

In the next statement, we will use the fact that DMh(S,R) is a dg-category (see
[CD12, Rem. 5.1.19]). We denote the enriched Hom by RHom.

Proposition 5.3.5. Consider the previous notations. Let S be a scheme and f : X → S
be a morphism of Sch, M and N be h-motives over X . Then the natural exchange
transformations:

(1) R f∗(N)/n −→ R f∗(N/n),
(2) RHom(M, N)/n −→ RHomZ/nZ(M/n, N/n),
(3) RHom(M, N)/n −→ RHomZ/nZ(M/n, N/n),

are isomorphisms.

Proof. In each case, this follows from the distinguished triangle (5.3.4.b) – or its
analog in the derived category of abelian groups. �

5.3.6. Next we consider the case of Q-localisation.

Proposition 5.3.7. Let S be a quasi-excellent scheme dimension d. Then S is of
cohomological dimension ≤ d for Q-linear coefficients with respect to the h-topology.
In particular, for any complex of h-sheaves K over S, and for any S-scheme of finite
type, we have a canonical isomorphism

H0
h(X ,K)⊗Q' H0

h(X ,K ⊗Q).
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Proof. It readily follows from [CD12, Th. 3.3.25, 3.3.30] that the cohomology of a Q-
linear h-sheaf with respect to the h-topology coincides with its analogue for the cdh-
topology. The first assertion thus follows from the fact that the cdh-cohomological
dimension is bounded by the topological dimension; see [SV00a, Theorem 12.5]. The
last assertion of the proposition is then a direct application of Lemma 1.1.10. �

As an immediate corollary, we get:

Corollary 5.3.8. For any quasi-excellent scheme S of finite dimension, tensoring by
Q preserves fibrant symmetric Tate spectra. Furthermore, for any S-scheme of finite
type X , and for any object M of DMh(S,R), we have

HomDMh(S,R)(Rh
S(X ), M)⊗Q'HomDM(S,R)(Rh

S(X ), N ⊗Q) .

Proof. The previous proposition shows that tensoring with Q preserves the property
of cohomological h-descent, while it obviously preserves the properties of being ho-
motopy invariant and of being an Ω-spectrum. This proves the first assertion. The
second one, is a direct translation of the first. �

Corollary 5.3.9. Consider a quasi-excellent scheme S of finite dimension and any
ring R. For any objects M and N of DMh(S,R), if M is constructible, then

HomDMh(S,R)(M, N)⊗Q'HomDMh(S,R)(M, N ⊗Q) .

Proof. It is equivalent to show that the functor

ν∗ : DMh(S,R)→DMh(S,R)

commutes with Q-linearization (where, for an object E of DMh(S,R), one defines
E⊗Q= ν∗(ν](E)⊗Q)). Let M be any object of DMh(S), and X be a smooth separated
S-scheme of finite type. Then we have

HomDMh(S)(Z(X ),ν∗(M)⊗Q)'HomDMh(S)(Z(X ),ν](ν∗(M))⊗Q)

'HomDMh(S)(Z(X ),ν](ν∗(M)))⊗Q
'HomDMh(S)(Z(X ),ν∗(M))⊗Q
'HomDMh(S)(Z(X ), M)⊗Q
'HomDMh(S,Q)(Q(X ), M⊗Q)

'HomDMh(S,Q)(Q(X ),ν∗(M⊗Q))

'HomDMh(S)(Z(X ),ν∗(M⊗Q))

As both functors ν] and ν∗ preserve Tate twists, this implies that the canonical map
ν∗(M)⊗Q→ ν∗(M⊗Q) is invertible for any M. �

Remark 5.3.10. This corollary says in particular that the category DMh,c(S,R⊗Q) of
constructible h-motives with R⊗Q-coefficients is the pseudo-abelian enveloppe of the
naive Q-localisation of the triangulated category DMh,c(S,R). This is not an obvious
fact as the category DMh(S,R) is not compactly generated for general base schemes
S.

As a corollary, we get the following analog of Proposition 5.3.5:
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Corollary 5.3.11. Let S be a scheme and f : X → S be a morphism of finite type,
M and N be h-motives with R-coefficients over X , with M constructible. Then the
natural exchange transformations below are isomorphisms:

(1) R f∗(N)⊗Q −→ R f∗(N ⊗Q),
(2) RHomR(M, N)⊗Q −→ RHomR⊗Q(M⊗Q, N ⊗Q),
(3) RHom(M, N)⊗Q −→ RHom(M⊗Q, N ⊗Q) .

Proof. It is sufficient to check this after applying the functor HomDMh(S,R)(P,−) for
any constructible h-motive P with coefficients in R. Then the result follows again
from Corollary 5.3.9. �

As a notable application of the results proved so far, we get the following proposi-
tion:

Proposition 5.3.12. Let P be the set of prime integers and S be a scheme. Then the
family of functors:

ρ∗ : DMh(S,R)→DMh(S,RQ),

ρ∗p : DMh(S,R)→DMh(S,R/p), p ∈P ,

defined above is conservative.

Proof. Let K be an h-motive over S with coefficients in R such that ρ∗(K) = 0 and
ρ∗p(K)= 0 for all p ∈P .

It is sufficient to prove that for any constructible h-motive M, Hom(M,K) = 0.
Given any prime p, the fact ρ∗p(K) = 0 together with the distinguished triangle
(5.3.4.b) implies that the abelian group Hom(M,K) is uniquely p-divisible. As this is
true for any prime p, we get: Hom(M,K)=Hom(M,K)⊗Q. But, as M is constructible,
Corollary 5.3.9 implies the later group is isomorphic to Hom(ρ∗(M),ρ∗(K)) which is
zero by assumption on K . �

5.4. Comparison theorem.

5.4.1. Recall from [CD12, Par. 14.2.20] the category DMB(X ,R) of Beilinson motives.
The following theorem was proved in [CD12, Th. 16.1.2]:

Theorem 5.4.2. Given any any quasi-excellent scheme X of finite Krull dimension,
there exists a canonical equivalence of symmetric monoidal triangulated categories:

DMB(X )'DMh(X ,Q) .

This means, in particular, that, if X is regular, we have a canonical isomorphism

HomDMh(X ,Q)(QX ,QX (p)[q])'Grp
γK2p−q(X )⊗Q ,

where the second term stands for the graded pieces of algebraic K-theory with respect
to the γ-filtration (by virtue of a theorem of Voevodsky, the regularity assumption can
be dropped if we replace K-theory by its homotopy invariant version in the sense of
Weibel; see [CD12, 14.1.1] and [Cis13]).

5.4.3. Recall Λ is a sub-ring of Q and R is a Λ-algebra. As it appears already in
Paragraph 2.1.1, finite S-correspondences with coefficients in Λ are defined for sepa-
rated S-schemes of finite type. According to [CD12, Def. 9.1.8], they define a category
which we will denote by S cor

Λ,S .
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Given any S-scheme X , we denote by R tr
S (X ) the presheaf of R-modules on S cor

Λ,S
represented by X . Moreover the graph functor induces a canonical morphism of
presheaves on S f t

S :

(5.4.3.a) RS(X )→ R tr
S (X ).

Recall the following result of Suslin and Voevodsky (see [VSF00, 4.2.7 and 4.2.12]).

Proposition 5.4.4. The map (5.4.3.a) induces an isomorphism after h-sheafification.
Furthermore, if S is a noetherian Z[1/n]-scheme of finite dimension and if any integer
prime to n is invertible in R, then, for any S-scheme X of finite type, the presheaf
R tr

S (X ) is a qfh-sheaf, and the morphism (5.4.3.a) induces an isomorphism of qfh-
sheaves:

Rqf h
S (X )→ R tr

S (X ).

This implies in particular that any h-sheaf F over S defines by restriction an étale
sheaf with transfers ψ∗(F), on Smcor

S (without any restriction on the characteristic).
This gives a canonical functor:

ψ∗ : Shh(S,R)→Shtr
ét(S,R)

which preserves small limits as well as small filtering colimits. Using the argument
of the prooof of [CD12, Theorem 10.5.14], one can show this functor admits a left
adjoint ψ! uniquely defined by the property that ψ!(R tr

S (X )) = Rh
S(X ) for any smooth

S-scheme X .
We have defined an adjunction of premotivic categories over Sch[1/n]:

ψ! : Shtr
ét(−,R)�Shh(−,R) :ψ∗.

According to [CD12, 5.2.19], these functors can be derived and induce an adjunction
of premotivic categories over Sch[1/n]:

Lψ! : DMeff
ét (−,R)�DMeff

h (−,R) : Rψ∗.

As a consequence of the rigidity theorem 4.5.5 and of the cohomological h-descent
property for étale topology 5.2.3, we get:

Theorem 5.4.5. Assume that the ring R is of positive characteristic. For any noe-
therian scheme of finite dimension S, the functor Lψ! : DMeff

ét (S,R) → DMeff
h (S,R) is

fully faithful and induces an equivalence of triangulated categories

DMeff
ét (S,R) ∼−→DMeff

h (S,R) ∼−→DMh(S,R) .

Proof. The equivalence DMeff
ét (S,R) ' DMeff

h (S,R) follows from the first assertion:

the essential image of Lψ! is obviously included in DMeff
h (S,R) because Lψ!(Rtr

S (X ))=
Rh

S(X ) for any smooth S-scheme. Let n be the characteristic of R. As R is a Z/nZ-
algebra, to prove that the functor Lψ! is fully faithful, it is sufficient to consider the
case where R = Z/nZ. Decomposing n into its prime factors, we are thus reduced to
prove that Lψ! is fully faithful in the case where n = pa with p a prime and a ≥ 1.
Furthermore, by virtue of Proposition A.3.4, we may assume that n is invertible in
the residue fields of S. In this case, we know that the composite functor

ρ̃! : D(Sét,R)
ρ!−→DMeff

ét (S,R)
Lψ!−−→DMeff

h (S,R)
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is fully faithful (Proposition 5.2.3) and that the functor ρ! is an equivalence of cate-
gories (by the rigidity theorem 4.5.5). This obviously implies that the functor Lψ! is
fully faithful.

For the last equivalence, we simply notice that, for any ring of positive charac-
teristic R, the premotivic triangulated category DMeff

h (S,R) satisfies the stability
property with respect to the Tate object R(1), so that we get a canonical equivalence
of categories

DMeff
h (S,R)'DMh(S,R) .

This induce an equivalence of categories DMeff
h (S,R)'DMh(S,R). �

Using the preceding theorem, together with Theorem 4.5.5 and Proposition A.3.4,
we finally get:

Corollary 5.4.6. Assume R is a ring of positive characteristic n = pa, p being a
prime. Then for any noetherian scheme X of finite dimension, with p invertible in
the residue fields of X , there are canonical equivalences of triangulated monoidal
categories

D(X ét,R)'DMh(X ,R) ,
which restricts to equivalences of triangulated monoidal categories:

Db
c (X ét,R)'DMh,c(X ,R).

Moreover, these equivalences of categories induce an equivalence of premotivic trian-
gulated categories over Sch:

D
(
(−)ét,R

)'DMh(−,R) .

Recall the last statement is equivalent to assert that these equivalences are com-
patible with all of the 6 operations.

Recall from [CD12, 5.3.31] the triangulated category DA1,ét(X ,R)=DA1 (Shét(X ,R)),
obtained as the stabilisation of the A1-derived category of étale sheaves on the smooth-
étale site of X . The category DA1,ét(X ,R) is taken in Ayoub’s paper [Ayo] as the model
for étale motives.

Corollary 5.4.7. Let X be a quasi-excellent noetherian scheme of finite dimension.
Assume either that all the residue fields of X are of characteristice zero, or that 2 is
invertible in R. Then the canonical functor

DA1,ét(X ,R)→DMh(X ,R)

is an equivalence of categories.

Proof. We only sketch the proof. We see that it is sufficient to consider the cases
where R = Q or R = Z/pZ, with p a prime (which is assumed odd if X is of unequal
or positive characteristic). The case where R =Q is already known; see [CD12, The-
orems 16.1.2 and 16.2.18]. The case of torsion coefficients follows from the fact that
we may assume that p is prime to the residue characteristics of X (by Proposition
A.3.4), and that we have a commutative diagram of the form

D(X ét,Z/pZ)

vvmmmmmmmmmmmm

((PPPPPPPPPPPPP

DA1,ét(X ,Z/pZ) // DMh(X ,Z/pZ)



ÉTALE MOTIVES 45

in which the non-horizontal functors are equivalences of categories (see [Ayo, Th. 4.1]
and the preceding corollary, respectively). �

Proposition 5.4.8. Let f : X → Y a morphism of finite type between quasi-excellent
noetherian schemes of finite dimension. Then the functor

R f∗ : DMh(X ,R)→DMh(Y ,R)

preserves small sums. In particular, this functor has a right adjoint. In the case
where f is proper, we will denote by f ! the right adjoint to R f∗.

Proof. Using Proposition 5.3.5 and Corollary 5.3.11, we see that it is sufficient to
prove the result in the case where R = Q or R = Z/pZ for some prime p. For R = Q
and any quasi-excellent scheme of finite dimension S, the triangulated categorie
DMh(S,Q) is compactly generated and the functor L f ∗ preserves compact objects
(see [CD12, Example 5.1.29(6) and Corollary 5.3.40]), which implies the claim. For
R = Z/pZ, if p is invertible in the residue fields of Y , we conclude with Corollary
1.1.15 and Theorem 5.4.5. The general case follows from Proposition A.3.4. The exis-
tence of a right adjoint of R f∗ is a direct consequence of the Brown representability
theorem. �

Corollary 5.4.9. Let f : X → Y a morphism of finite type between quasi-excellent
noetherian schemes of finite dimension. For any object M of DMh(X ,R) and any R-
algebra R′, there is a canonical isomorphism

R′⊗L
R R f∗(M)→R f∗(R′⊗L

R M) .

Proof. Given a complex of R-modules C, we still denote by C the object of DMh(X ,R)
defined as the free Tate spectrum associated to the constant sheaf of complexes C.
This defines a left Quillen functor from the projective model category on the cat-
egory of complexes of R-modules (with quasi-isomorphisms ar weak equivalences,
and degreewise surjective maps as fibrations) to the model category of Tate spectra.
Therefore, we have a triangulated functor

D(R-Mod)→DMh(S,R) , C 7→ C

which preserves small sums and is symmetric monoidal. By virtue of the preced-
ing proposition, for any fixed M, we thus have a natural transformation between
triangulated functors which preserve small sums:

C⊗L
R R f∗(M)→R f∗(C⊗L

R M) .

To prove that the map above is an isomorphism for any complex of R-modules C,
as the derived category of R is compactly generated by R (seen as a complex con-
centrated in degree zero), it is sufficient to consider the case where C = R, which is
trivial. �

Corollary 5.4.10. Les X be a quasi-excellent noetherian scheme of finite dimension.
Then, for any constructible motive M in DMh(X ,R), the functor Hom(M,−) preserves
small sums. Furthermore, for any R-algebra R′, we have canonical isomorphisms

RHomR(M, N)⊗L
R R′ 'RHomR(M, N ⊗L

R R′)

for any object N in DMh(X ,R).
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Proof. It is sufficient to prove this in the case where M is of the form M = L f](1Y )
for a separated smooth morphism of finite type f : Y → X . But then, we have

RHomR(M, N)'R f∗ f ∗(N) .

This corollary is thus a reformulation of Proposition 5.4.8 and Corollary 5.4.9. �

Corollary 5.4.11. For any separated morphism of finite type f : X →Y between noe-
therian schemes of finite type, the functor

f ! : DMh(Y ,R)→DMh(X ,R)

preserves small sums, and, for any R-algebra R′, there is a canonical isomorphism

f !(M)⊗L
R R′ ' f !(M⊗L

R R′) .

Proof. For any constructible object C in DMh(X ,R), we have

R f∗RHomR(C, f !(M))'RHomR( f!(C), M) .

Using that the functor f! preserves constructible objects (see [CD12, Cor. 4.2.12]),
we deduce from Proposition 5.4.8 and Corollary 5.4.10 the following computation,
for any small family of objects Mi in DMh(Y ,R):

Hom(C,
⊕

i
f !(Mi))'Hom(1Y ,RHomR(C,

⊕
i

f !(Mi)))

'Hom(1Y ,
⊕

i
RHomR(C,

⊕
i

f !(Mi)))

'Hom(1X ,R f∗
⊕

i
RHomR(C, f !(Mi)))

'Hom(1Y ,
⊕

i
R f∗RHomR(C, f !(Mi)))

'Hom(1Y ,
⊕

i
RHomR( f!(C), Mi))

'Hom(1Y ,RHomR( f!(C),
⊕

i
Mi))

'Hom( f !(C),
⊕

i
Mi)

'Hom(C, f !(
⊕

i
Mi)) .

The change of coefficients formula is proved similarly (or with the same argument
as in the proof of Corollary 5.4.9. �

5.5. h-motives and Grothendieck’s 6 functors.

5.5.1. Let R be any commutative ring. Recall from [Voe96, Th. 4.2.5] that we get a
canonical isomorphism in DMeff

h (S,R):

1S(1)' R⊗L Gm[−1]

where Gm is identified with the h-sheaf of abelian groups over S represented by the
scheme Gm.

This gives a canonical morphism of groups:

c1 : Pic(S)= H1
Zar(S,Gm)→HomDMeff

h (S,R)(1S ,1S(1)[2])

→HomDMh(S,R)(1S ,1S(1)[2])
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so that the premotivic triangulated category DMh(S,R) is oriented in the sense of
Definition A.1.5.

Moreover, as a corollary of the results obtained above, we get:

Theorem 5.5.2. The triangulated premotivic category DMh(−,R) satisfies Grothendieck
6 functors formalism (Def. A.1.10) and the absolute purity property (Def. A.2.9).

Proof. Taking into account Corollaries 5.4.9, 5.4.10 and 5.4.11, we see that we may
assume R =Z.

Consider the first assertion. Taking into account Theorem A.1.13, we have only to
prove the localization property for DMh(−,Z). Fix a closed immersion i : Z → S. The
analog of Proposition 2.3.4 for the h-topology obviously holds. This means we have
to prove that for any smooth S-scheme X , the canonical map

Zh
S(X /X − XZ)→ i∗Zh

Z(XZ)

is an isomorphism in DMh(−,Z). According to Proposition 5.3.12, together with 5.3.5
and 5.3.11, we are reduced to check this when R =Q or R =Z/pZ. In the first case, it
follows from Theorem 5.4.2 and the localization property for DMB – see [CD12]. In
the second case, it follows from Theorem 5.4.5 and Theorem 4.3.1.

Concerning the second assertion, the absolute purity for DMh(−,Z), we use the
same argument as in the the proof of Theorem 4.6.1: using Theorem A.2.8, we can
apply Proposition 5.3.12, together with 5.3.5 and 5.3.11 to reduced to the case where
R = Q or R = Z/pZ. The first case follows from Theorem 5.4.2 and [CD12, Theorem
14.4.1] ; the second one follows from Theorem 5.4.5 and Theorem 4.6.1. �

5.6. Transfers and traces.

5.6.1. Transfers.– Consider the notations of Paragraph 5.4.3. Let X and Y be proper
S-schemes and α ∈ cS (X ,Y )Λ a finite S-correspondence. According to Proposition 5.4.4,
we get a morphism of h-sheaves on S f t

S :

(5.6.1.a) α∗ : Rh
S(X )→ Rh

S(Y )

which induces a moorphism in DMh(S,R):

α∗ :Σ∞Rh
S(X )→Σ∞Rh

S(Y ).

Let p and q be the respective structural morphisms of the S-schemes X and Y .
Applying the functor Hom(−,1S) to this map, we get a morphism in DMh(S,R):

α∗ : q∗(1X )→ p∗(1Y ).

Then we can apply to this functor the right adjoint ν∗ of the adjunction (5.1.3.a) and,
because it commutes with p∗ and q∗ and we have the isomorphism ν∗1 = 1, the
above morphism can be seen in DMh(S,R).

Given moreover any h-motive E over S, and using the projection formula – cf. Def.
A.1.10, (2) and (5) – applied to the proper morphisms p and q, we obtain finally a
canonical morphism:

q∗q∗(E)= q∗(1X )⊗E
α∗⊗IdE−−−−−−→ p∗(1Y )⊗E = p∗p∗(E)

which is natural in E.
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Definition 5.6.2. Consider the notations above. The following natural transforma-
tion of endofunctors of DMh(S,R)

(5.6.2.a) α? : q∗q∗ → p∗p∗

is called the cohomological h-transfer along the finite S-correspondence α.

The following results are easily derived from this definition:

Proposition 5.6.3. Consider the above definition.
(1) Normalisation.– Consider a commutative diagram of schemes:

X
f //

p ��@
@@

@@
Y

q��~~
~~

~

S

such that p and q are proper. Let α be the finite S-correspondence associated
with the graph of f . Then the natural transformation α? is equal to the
composite:

q∗q∗ ad( f ∗, f∗)−−−−−−−→ q∗ f∗ f ∗q∗ ' p∗p∗.

(2) Composition.– For composable finite S-correspondences α ∈ cS (X ,Y )Λ, β ∈
cS (Y , Z)Λ with X , Y , Z proper over S, one has: α?β? = (β◦α)?.

(3) Base change.– Let f : T → S be a morphism of schemes, α ∈ cS (X ,Y )Λ a finite
S-correspondence between proper S-schemes and put αT = f ∗(α) obtained us-
ing the premotivic structure on S cor

Λ . Let p (resp. q, p′, q′) be the structural
morphism of X /S (resp. Y /S, X ×S T/T, Y ×S T/T), f ′ = f ×S T. Then the
following diagram commutes:

f ∗q∗q∗ f ∗.α? //

Ex( f ∗,q∗) ∼
��

f ∗p∗p∗

Ex( f ∗,p∗)∼
��

q′∗ f ′∗q∗ q′∗q′∗ α?T // p′∗p′∗ p′∗p′∗q∗

where the vertical maps are the proper base change isomorphisms – Def.
A.1.10(4).

(4) Restriction.– Let π : S → T be a proper morphism of schemes. Consider a finite
S-correspondence α ∈ cS (X ,Y )Λ between proper schemes and put α|T = π](α)
using the S f t-premotivic structure on S cor

ΛS
. Let p (resp. q) be the structural

morphism of X /S (resp. Y /S), and put p′ =π◦p, q′ =π◦q. Then the following
diagram is commutative:

π∗q∗q∗π∗ π∗.α?.π∗ // π∗p∗p∗π∗

q′∗q′∗ (α|T )? // p′∗p′∗

Proof. Property (1) and (2) are clear as they are obviously true for the morphism α∗
of (5.6.1.a).

Similarly, property (3) (resp. (4)) follows from the fact the morphism (5.4.3.a) is
compatible with the functor f ∗ (resp. the functor π]). This boils down to the fact that
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the graph functor5 γ : S f t →S cor
Λ is a morphism of S f t-fibred category: see [CD12,

9.4.1]. �

5.6.4. Let f : Y → X be a morphism of schemes. Recall we say that f is Λ-universal if
the fundamental cycle associated with Y is Λ-universal over X (Def. [CD12, 8.1.48]).

Let us denote by t f the cycle associated with the graph of f over X seen as a
subscheme of X ×X Y . Then, by the very definition, the following conditions are
equivalent:

(i) f is finite Λ-universal;
(ii) the cycle t f is a finite X -correspondence from X to Y .

For matching the existing litterature, we introduce, the following definition, redun-
dant with the previous one:

Definition 5.6.5. Let f : Y → X be a finite Λ-universal morphism of schemes. Using
the preceding notations, we define the trace of f as the natural transformation of
endofunctors of DMh(X ,R):

Tr f := (t f )? : f∗ f ∗ → Id.

Remark 5.6.6. We will say that a morphism of schemes is pseudo-dominant if it sends
any generic point to a generic point. Recall that a finite Λ-universal f : Y → X is in
particular pseudo-dominant.

Let us recall the following example of finite Λ-universal morphisms of schemes:
(1) finite flat;
(2) finite pseudo-dominant morphisms whose aim is regular;
(3) finite pseudo-dominant morphisms whose aim is geometrically unibranch

and has residue fields whose exponential characteristic is invertible in Λ.

5.6.7. One readily obtain from Proposition 5.6.3 that our trace maps are compatible
with composition.

Recall that given a finite Λ-universal morphism f : Y → X and a generic point x
of X , we can define an integer degx( f ), the degree of f at x, by choosing any generic
point y of Y such that f (y)= x and putting:

degx( f ) := [κ(y) : κ(x)]

– see [CD12, 9.1.13]. We will say that f has constant degree d if for any generic point
x ∈ X , degx( f )= d.

Applying Proposition 5.6.3 to the particular case of traces, one gets the following
formulas:

Proposition 5.6.8. Consider the above definition.
(1) Normalisation.– Let f : Y → X be a finite étale morphism. Then the following

diagram commutes:

f∗ f ∗
Tr f //

α f .p′
f ∼
��

Id

f! f !
ad( f!, f !)

99ssssssss

where α f and p′f are the isomorphisms from Definition A.1.10(2),(3).

5Recall: it is the identity on objects ans it associates to a morphism of separated S-schemes of finite
type its S-graph seen as a finite S-correspondence.
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(2) Composition.– Let Z
g−→ Y

f−→ X be finite Λ-universal morphisms. Then the
following diagram commutes:

f∗g∗g∗ f ∗
f∗Trg . f ∗ // f∗ f ∗

Tr f // Id

( f g)∗( f g)∗
Tr f g // Id.

(3) Base change.– Consider a pullback square of schemes:

Y ′ f ′ //

π′
��

X ′

π

��
Y

f // X

such that f is a finite flat morphism. Then, the following diagram is commu-
tative:

π∗ f∗ f ∗
π∗.Tr f //

Ex(π∗,p∗) ∼
��

π∗

f ′∗π′∗ f ∗ f ′∗ f ′∗π∗ Tr f ′ .π∗ // π∗

where the left vertical map is the proper base change isomorphism.
(4) Degree formula.– Let f : Y → X be a finite Λ-universal morphism of constant

degree d, the following composite

f∗ f ∗
Tr f−−−→ Id

ad( f ∗, f∗)−−−−−−−→ f∗ f ∗

is equal to d.Id .

Proof. Point (1) follows from the fact that, in the category Shh(S,R), the sheaf Rh
X (Y )

is strongly dualizable with itself as a dual and with duality pairings:

Rh
X (Y )⊗Rh

X (Y )= Rh
X (Y ×X Y )

(tδ)∗−−−→ Rh
X (Y )

f∗−→ Rh
X (X )

Rh
X (X )

(t f )∗−−−→ Rh
X (Y )

δ∗−→ Rh
X (Y ×X Y )= Rh

X (Y )⊗Rh
X (Y ).

where δ is diagonal embedding (which is open and closed).
Point (2) is obtained from Proposition 5.6.3, properties (2) and (4). Point (3) is a

special case of Proposition 5.6.3(3), given the fact that: π∗(t f ) = t f ′ as f is flat – see
[CD12], property (P3) of the tensor product of relative cycles in Paragraph 8.1.34.
Point (4) follows from Proposition 5.6.3(1), (2) and the formula of Proposition 9.1.13
of [CD12]. �

Remark 5.6.9. According to Corollary 5.4.6, this notion of trace generalizes the one
introduced in [AGV73, XVII, sec. 6.2] in the case of finite morphisms, taking into
account Remark 5.6.6.

Let us consider the more general case of a quasi-finite separated morphism f :
Y → X . According to the theorem of Nagata ([Con07]), there exists a factorization,
f = f̄ ◦ j, such that f̄ is proper, thus finite according to Zariski’s main theorem, and j
is an open immersion.
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We will say that f is strongly Λ-universal if there exists such a factorization such
that in addition f̄ is Λ-universal.6

In this condition, one checks easily using Proposition 5.6.8, properties (1) and (2),
that the following composite is independent of the chosen factorization of f :

(5.6.9.a) Tr f : f! f ∗ = f̄! j! j∗ f̄ ∗ f̄!.ad( j!, j∗). f̄ ∗−−−−−−−−−−→ f! f ∗ = f∗ f ∗
Tr f̄−−→ Id.

This composition is called the trace of f
Properties (1), (2), (3) of the preceding proposition immediately extend to this

notion of trace.
However, this construction is not optimal as it is not clear that a flat quasi-finite

separated morphism if strongly Λ-universal.
In particular, it only partially generalizes the construction of [AGV73, Th. 6.2.3]

when R = Z/nZ and X has residual characteristics prime to n. However, in the case
where X is geometrically unibranch, and has residual characteristics prime to n,
any quasi-finite separated pseudo-dominant morphism is strongly Λ-universal (cf
Rem. 5.6.6). Thus, in this case, our notion does generalize the finer notion of trace
introduced in [AGV73, 6.2.5, 6.2.6].

5.7. Local localisations.

5.7.1. In the followings, we give some complements on localization of abstract trian-
gulated categories. We fix a commutative ring A and a multiplicative system S ⊂ A.

For a triangulated category T, we shall denote by T] its idempotent completion
(with its canonical triangulated structure; see [BS01]).

Proposition 5.7.2. Let T be a triangulated category and S ⊂ T a thick subcategory
of T. Then U] is a thick subcategory of T] and the natural triangulated functor(

T/U)]→ (
T]/U])]

is an equivalence of categories.

Proof. Both functors T → (
T/U)] and T → (

T]/U]
)] share the same universal prop-

erty, namely of being the universal functor from T to an idempotent complete trian-
gulated category in which any object of U becomes null. �

Corollary 5.7.3. Given a triangulated category T and a thick subcategory U of T,
an object of T belongs to U if and only if its image is isomorphic to zero in the trian-
gulated category

(
T]/U]

)].
Proof. As U is thick in T, an object of T is in U if and only if its image in the Verdier
quotient T/U is trivial. On the other hand, the preceding proposition implies in
particular that the natural functor

T/U → (
T]/U])]

is fully faithful, which implies the assertion. �

5.7.4. Let T be an A-linear triangulated category. We define a new triangulated cat-
egory T⊗A S−1 A as follows. The objects of T⊗A S−1 A are those of T, and morphisms
from X to Y are given by the formula

HomT⊗A S−1 A(X ,Y )=HomT (X ,Y )⊗A S−1 A

6This implies in particular that f is Λ-universal according to [CD12, Cor. 8.2.6]. The converse is not
true.
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(with the obvious composition law. We have an obvious triangulated functor

(5.7.4.a) T → T ⊗A S−1 A

which is the identity on objects and which is defined by the canonical maps

Hom(X ,Y )→HomT (X ,Y )⊗A S−1 A

on arrows. The distinguished triangles of T ⊗A S−1 A are the triangles which are
isomorphic to some image of a distinguished triangle of T by the functor (5.7.4.a).

Given an object X of T and an element f ∈ S, we write f : X → X for the map
f .1X , and we shall write X / f for some choice of its cone. We write TS-tors for the
smallest thick subcategory of T which contains the cones of the form X / f for any
object X and any f in S, the objects of which will be called S-torsion objects of T. The
functor (5.7.4.a) clearly sends S-torsion objects to zero, and thus induces a canonical
triangulated functor

(5.7.4.b) T/TS-tors → T ⊗A S−1 A .

Proposition 5.7.5. The functor (5.7.4.b) is an equivalence of categories.

Proof. One readily checks that T is S−1 A-linear if and only if TS-tors ' 0. Therefore,
both functors T → T/TS-tors and (5.7.4.a) share the same universal property: these
are the universal A-linear triangulated functors from T to an S−1 A-linear triangu-
lated category. �

Corollary 5.7.6. We have a canonical equivalence of A-linear triangulated categories

(T ⊗A S−1 A)] ' (T]⊗A S−1 A)] .

Proof. This follows again from the fact that, by virtue of Propositions 5.7.2 and 5.7.5,
these two categories are the universal A-linear idempotent complete triangulated
categories under T in which the S-torsion objects are trivial. �

Proposition 5.7.7. Let T be an A-linear triangulated category and U a thick sub-
category of T. Given a prime ideal p in A, we write Tp = T ⊗A Ap. For an object X of
T, the following conditions are equivalent.

(i) The object X belongs to U .
(ii) For any maximal ideal m in A, the image of X in (T/U)m is trivial.

(iii) For any maximal ideal m of A, the image of X in (T]
m/U]

m)] is trivial.

Proof. The equivalence between conditions (ii) and (iii) readily follows from Corol-
laries 5.7.3 and 5.7.6. The equivalence between conditions (i) and (ii) comes from
the fact that the localisations Am form a covering for the flat topology and from the
Yoneda lemma. �

5.7.8. Let S be a noetherian scheme. For any prime ideal p of Z, we have a fully
faithful functor

(5.7.8.a)
(
DMh,c(S,Z)p

)]→ (
DMh(S,Z)p

)]
Definition 5.7.9. An object M of DMh(S,Z) will be called p-constructible if its image
in

(
DMh(S,Z)p

)] lies in the essential image of the functor (5.7.8.a).

Let us state explicitly the corollary that we will use below:

Corollary 5.7.10. Let S be a noetherian scheme and M be an object of DMh(S,Z).
Then the following conditions are equivalent:



ÉTALE MOTIVES 53

(i) M is constructible;
(ii) for any maximal ideal p ∈Spec(Z), M is p-constructible.

Proof. We just apply the preceding proposition to the Z-linear category T =DMh(S,Z)
and its thick subcategory U =DMh,c(S,Z). �

Proposition 5.7.11. Let p be a prime number and X a noetherian scheme of char-
acteristic p. An object M of DMh(X ,Z) is (p)-constructible if and only if it is (0)-
constructible.

Proof. The Artin-Schreier short exact sequence (see the proof of Proposition A.3.1)
implies that the category DMh(S,Z) is Z[1/p]-linear, so that we have

DMh(X ,Z)(p) =DMh(X ,Z)⊗Q ,

and similarly for DMh,c(X ,Z). �

Remark 5.7.12. When p= (0), the functor ρ∗p which appears in this corollary coincide
with the functor ρ∗ of Corollary 5.3.9 in the case R′ = R⊗Z Q.

5.8. Constructible h-motives. In this subsection, we will simplify the notations by
dopping the symbols L and R; in other words, by default, all the functors will be the
derived ones. We will prove the main theorems about constructible h-motives: their
stability by the 6 operations (Th. 5.8.8 and its corollary) and the duality theorem
(Th. 5.8.12). The stability statement boils down to the stability with respect to direct
image. This result, based on an argument of Gabber, is intricate and we divide its
proof with the help of the following two results. The first one can be found either in
[Ayo07, Lem. 2.2.23] or in [CD12, Prop. 4.2.13]:

Proposition 5.8.1. Let X be a noetherian scheme. The category DMh,c(X ,R) is the
smallest thick triangulated subcategory of DMh(X ,R) which contains the objects of
the form f∗(RX ′ (n)) where f : X ′ → X is a projective morphism and n ∈Z.

The second result used in the proof of the forthcoming theorem 5.8.8 is an elab-
oration of an argument of Gabber used in the étale torsion case (see [ILO12, XIII,
section 3]).

Lemma 5.8.2 (Gabber’s Lemma). Let X be a quasi-excellent scheme, and p a prime
ideal of Z. Assume that, for any point x of X , the exponent characteristic of the residue
field κ(x) is not in p. Then, for any dense open immersion j : U → X , the h-motive
j∗(1U ) is p-constructible.

Proof. We will use the following geometrical consequence of the local uniformisation
theorem prime to p of Gabber (see [ILO12, VII, 1.1 and IX, 1.1]):

Lemma 5.8.3. Let j : U → X be a dense open immersion such that X is quasi-
excellent, and p a prime ideal of Z. Assume that, for any point x of X , the exponent
characteristic of the residue field κ(x) is not in p. Then, there exists the following data:

(i) a finite h-cover { f i : Yi → X }i∈I such that for all i in I, f i is a morphism
of finite type, the scheme Yi is regular, and f −1

i (U) is either Yi itself or the
complement of a strict normal crossing divisor in Yi; we shall write

f : Y = ∐
i∈I

Yi → X

for the induced global h-cover;
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(ii) a commutative diagram

X ′′′ g //

q
��

Y

f
��

X ′′ u // X ′ p // X

(5.8.3.a)

in which: p is a proper birational morphism, u is a Nisnevich cover, and q is
a flat finite surjective morphism of degree not in p.

Let T (resp. T ′) be a closed subscheme of X (resp. X ′) and assume that for any
irreducible component T0 of T, the following inequality is satisfied:

codimX ′ (T ′)≥ codimX (T0),

Then, possibly after shrinking X in an open neighbourhood of the generic points of T
in X , one can replace X ′′ by an open cover and X ′′′ by its pullback along this cover, in
such a way that we have in addition the following properties:

(iii) p(T ′) ⊂ T and the induced map T ′ → T is finite and sends any generic point
to a generic point;

(iv) if we write T ′′ = u−1(T ′), the induced map T ′′ → T ′ is an isomorphism.

Points (i) and (ii) are proved in [ILO12, Par. 3.2.1]. Then points (iii) and (iv) are
proved in [CD12, proof of Lem. 4.2.14].

5.8.4. We introduce the following notations: for any scheme Y , we let T0(Y ) be the
subcategory of DMh(Y ,Z) made of p-constructible objects K . Then T0 becomes a
fibred subcategory of DMh(−,Z) and we can moreover check the following properties:

(a) for any scheme Y in Sch, T0(Y ) is a triangulated thick subcategory of DMh(Y ,Z)
which contains the objects of the form 1Y (n), n ∈Z;

(b) for any separated morphism of finite type f : Y ′ → Y in Sch, T0 is stable
under f!;

(c) for any dense open immersion j : V → Y , with Y regular, which is the com-
plement of a strict normal crossing divisor, j∗(1V ) is in T0(V ).

Indeed: (a) is obvious, (b) follows from the fact the functor f! perserves constructible
motives, while (c) comes from the absolute purity property for DMh(−,Z); see Theo-
rem 5.5.2. With this notation, we have to prove that j∗(1U ) is in T0.

Following the argument of [ILO12, 3.1.3], it is sufficient to prove by induction on
c ≥ 0 that here exists a closed subscheme T ⊂ X of codimension > c such that the
restriction of j∗(1U ) to (X −T) is in T0.

Indeed, if this is the case, let us chose a closed subset Tc of X satisfying the
condition above with respect to an arbitrary integer c ≥ 0. As X is noetherian, we
get that X is covered by the family of open subschemes (X −Tc) indexed by c ≥ 0.
Moreover, X is quasi-compact so that only a finite number of these open subschemes
are sufficient to cover X . Thus we can conclude that j∗(1U ) is in T0 iteratively using
the Mayer-Vietoris exact triangle and property (a) of 5.8.4.

The case where c = 0 is clear: we can choose T such that (X −T) =U . If c > 0, we
choose a closed subscheme T of X , of codimension > c−1, such that the restriction of
j∗(1U ) to (X−T) is in T0. It is then sufficient to find a dense open subscheme V of X ,
which contains all the generic points of T, and such that the restriction of j∗(1U ) to
V is in T0: for such a V , we shall obtain that the restriction of j∗(1U ) to V ∪ (X −T)
is in T0, the complement of V ∪ (X −T) being the support of a closed subscheme of
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codimension > c in X . In particular, using the smooth base change isomorphism (for
open immersions), we can always replace X by a generic neighbourhood of T. It is
sufficient to prove that, possibly after shrinking X as above, the pullback of j∗(1U )
along T → X is in T0 (as we already know that its restriction to (X −T) is in T0).

We may assume that T is purely of codimension c. We may assume that we have
data as in points (i) and (ii) of Lemma 5.8.3. We let j′ : U ′ → X ′ denote the pullback
of j along p : X ′ → X . Then, we can find, by induction on c, a closed subscheme T ′
in X ′, of codimension > c−1, such that the restriction of j′∗(1U ′ ) to (X ′ −T ′) is in
T0. By shrinking X , we may assume that conditions (iii) and (iv) of Lemma 5.8.3 are
fulfilled as well.

Given any morphism i : Z → W of X -schemes, we consider the following commu-
tative diagram

Z
i //

π ��?
??

??
? W

��

WU

��

jWoo

X U ,
joo

where the right hand square is cartesian, and we define the following h-motive of
DMh(X ,R):

ϕ(W , Z) :=π∗ i∗ jW ,∗(1WU ) .
This notation is slightly abusive but it will most of the time be used when i is the
immersion of a closed subscheme. This construction is contravariantly functorial:
given any commutative diagram of X -schemes:

Z′ //

i′ ��

Z
i��

W ′ // W

we get a natural map ϕ(W , Z) → ϕ(W ′, Z′). Remember that we want to prove that
ϕ(X ,T) is in T0. This will be done via the following lemmas (which hold assuming
all the conditions stated in Lemma 5.8.3 as well as our inductive assumptions).

Lemma 5.8.5. The cone of the map ϕ(X ,T)→ϕ(X ′,T ′) is in T0.

The map ϕ(X ,T)→ϕ(X ′,T ′) factors as

ϕ(X ,T)→ϕ(X ′, p−1(T))→ϕ(X ′,T ′) .

By the octahedral axiom, it is sufficient to prove that each of these two maps has a
cone in T0.

We shall prove first that the cone of the map ϕ(X ′, p−1(T)) → ϕ(X ′,T ′) is in T0.
Given an immersion a : S → X ′, we shall write

MS = a! a∗(M) .

We then have distinguished triangles

Mp−1(T)−T ′ → Mp−1(T) → MT ′ → Mp−1(T)−T ′ [1] .

For M = j′∗(1U ′ ) (recall j′ is the pullback of j along p) the image of this triangle by
p∗ gives a distinguished triangle

p∗(Mp−1(T)−T ′ )→ϕ(X ′, p−1(T))→ϕ(X ′,T ′)→ p∗(Mp−1(T)−T ′ )[1] .

As the restriction of M = j′∗(1U ′ ) to X ′−T ′ is in T0 by assumption on T ′, the object
Mp−1(T)−T ′ is in T0 as well (by property (b) of 5.8.4), from which we deduce that
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p∗(Mp−1(T)−T ′ ) is in T0 (using the condition (iii) of Lemma 5.8.3 and property (b) of
5.8.4).

Let V be a dense open subscheme of X such that p−1(V ) → V is an isomorphism.
We may assume that V ⊂U , and write i : Z →U for the complement closed immer-
sion. Let pU : U ′ = p−1(U)→U be the pullback of p along j, and let Z̄ be the reduced
closure of Z in X . We thus get the commutative squares of immersions below,

Z
k //

i
��

Z̄

l
��

U
j
// X

and

Z′ k′
//

i′
��

Z̄′

l′
��

U ′
j′
// X ′

where the square on the right is obtained from the one on the left by pulling back
along p : X ′ → X . Recall that the triangulated motivic category DMh(−,Z) satisfies
cdh-descent (see [CD12, Prop. 3.3.10]). Thus, as p is an isomorphism over V , we get
the homotopy cartesian square below.

1U //

��

pU ,∗(1U ′ )

��
i∗ i∗(1Z) // i∗ i∗ pU ,∗(1U ′ )

If a : T → X denotes the inclusion, applying the functor a∗ a∗ j∗ to the commutative
square above, we see from the proper base change formula and from the identifi-
cation j∗ i∗ ' l∗ k∗ that we get a commutative square isomorphic to the following
one

ϕ(X ,T) //

��

ϕ(X ′, p−1(T))

��
ϕ(Z̄, Z̄∩T) // ϕ(Z̄′, p−1(Z̄∩T)) ,

which is thus homotopy cartesian as well. It is sufficient to prove that the two objects
ϕ(Z̄, Z̄ ∩T) and ϕ(Z̄′, p−1(Z̄ ∩T)) are in T0. It follows from the proper base change
formula that the object ϕ(Z̄, Z̄∩T) is canonically isomorphic to the restriction to T of
l∗ k∗(1Z). As dim Z̄ < dim X , we know that the object k∗(1Z) is in T0. By property (b)
of 5.8.4, we obtain that ϕ(Z̄, Z̄∩T) is in T0. Similarly, the object ϕ(Z̄′, p−1(Z̄∩T)) is
canonically isomorphic to the restriction of p∗ l′∗ k′∗(1Z′ ) to T, and, as dim Z̄′ < dim X ′
(because, p being an isomorphism over the dense open subscheme V of X , Z̄′ does
not contain any generic point of X ′), k′∗(1Z′ ) is in T0. We deduce again from property
(b) of 5.8.4 that ϕ(Z̄′, p−1(Z̄ ∩T)) is in T0 as well, which achieves the proof of the
lemma.

Lemma 5.8.6. The map ϕ(X ′,T ′)→ϕ(X ′′,T ′′) is an isomorphism in DMh(X ,Z).

Condition (iv) of Lemma 5.8.3 can be reformulated by saying that we have the Nis-
nevich distinguished square below.

X ′′−T ′′ //

��

X ′′

v
��

X ′−T ′ // X ′
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This lemma follows then by Nisnevich excision ([CD12, 3.3.4]) and smooth base
change (for étale maps).

In the next lemma, we call p-quasi-section of a morphism f : K → L in DMh(X ,Z)
any morphism s : L → K such that there exists an integer n, not in p, and such that:
f ◦ s = n.Id.

Lemma 5.8.7. Let T ′′′ be the pullback of T ′′ along the finite surjective morphism
X ′′′ → X ′′. The map ϕ(X ′′,T ′′)→ϕ(X ′′′,T ′′′) admits a p-quasi-section.

We have the following pullback squares

T ′′′ t //

r
��

X ′′′

q
��

U ′′′j′′′oo

qU
��

T ′′ s // X ′′ U ′j′′oo

in which j′′ and j′′′ denote the pullback of j along pu and puq respectively, while s
and t are the inclusions. By the proper base change formula applied to the left hand
square, we see that the map ϕ(X ′′,T ′′)→ϕ(X ′′′,T ′′′) is isomorphic to the image of the
map

j′′∗(1U ′′ )→ q∗ q∗ j′′∗(1U ′′ )→ q∗ j′′′∗ (1U ′′′ ) .
by f∗ s∗, where f : T ′′ → T is the map induced by p (note that f is proper as T ′′ ' T ′
by assumption). As q∗ j′′′∗ ' j′′∗ qU ,∗, we are thus reduced to prove that the unit map

1U ′′ → qU ,∗(1U ′′′ )

admits a p-quasi-section. By property (iii) of Lemma 5.8.3, qU is a flat finite surjec-
tive morphism of degree n not in p. Thus the p-quasi-section is given by the trace
map (Definition 5.6.5) associated with qU , taking into account the degree formula of
Proposition 5.6.8.

Now, we can finish the proof of Theorem 5.8.2. Let us apply the functoriality of
the construction ϕ with respect to the following commutative squares:

T ′′′

t
��

T ′′′ //

a
��

T

��
X ′′′ g // Y

f // X

where T ′′′ = q−1u−1(T ′), t is the natural map and a = g ◦ t, we get the following
commutative diagram of DMh(X ,Z):

ϕ(X ,T)
(1) //

&&NN
NNN

NN
ϕ(X ′′′,T ′′′)

ϕ(Y ,T ′′′)

77ooooooo

We consider the image of that diagram through the functor

ρ̄ : DMh(X ,Z)→DMh(X ,Z)/DMh,c(X ,Z)→ (
DMh(X ,Z)/DMh,c(X ,Z)

)
p .

By virtue of Proposition 5.7.7, we have to show that the image of ϕ(X ,T) under ρ̄
is 0. According to lemmas 5.8.5, 5.8.7, and 5.8.6, the image of (1) under ρ̄ is a split
monomorphism. Thus it is sufficient to prove that this image is the zero map, and
according to the commutativity of the above diagram, this will follow if we prove that
ρ̄(ϕ(Y ,T ′′′))= 0, which amounts to prove that ϕ(Y ,T ′′′) is p-constructible.
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We come back to the definition of ϕ(Y ,T ′′′): considering the following commutative
diagram,

T ′′′ a //

π   B
BB

BB
B Y

f
��

YU

��

jYoo

X U ,
joo

we have: ϕ(Y ,T ′′′) = π∗ a∗ jY ,∗(1YU ). By assumption, the morphism π is finite – this
follows more precisely from the following conditions of Lemma 5.8.3: (ii) saying that
q is finite, (iii) and (iv). Thus by assumption on jY (see point (i) of Lemma 5.8.3), we
obtain that ϕ(Y ,T ′′′) is p-constructible, according to properties (b) and (c) stated in
Paragraph 5.8.4. This achieves the proof of Gabber’s Lemma. �

Theorem 5.8.8. Let f : Y → X be a morphism of finite type such that X is a quasi-
excellent scheme. Then for any constructible h-motive K of DMh(Y ,R), f∗(K) is con-
structible in DMh(X ,R).

Proof. The case where f is proper is already known from [CD12, Prop. 4.2.11]. Then,
a well-known argument allows to reduce to prove that for any dense open immersion
j : U → X , the h-motive j∗(RU ) is constructible. Indeed, assume this is known. We
want to prove that f∗(K) is constructible whenever K is constructible. According
to Proposition 5.8.1, and because f∗ commutes with Tate twists, it is sufficient to
consider the case K = RY . Moreover, we easily conclude from Corollary 5.4.9 that we
may assume that R = Z. Then, as this property is assumed to be known for dense
open immersions, by an easy Mayer-Vietoris argument, we see that the condition
that f∗(RY ) is constructible is local on Y and X with respect to the Zariski topology.
Therefore, we may assume that X and Y are affine, thus f is affine ([GD61, (1.6.2)])
and in particular quasi-projective ([GD61, (5.3.4)]): it can be factored as f = f̄ ◦ j
where f is projective and j is a dense open immersion. The case of f̄ being already
known from [CD12, Prop. 4.2.11], we may assume f = j.

Thus, as j∗ commutes with Tate twist, it is sufficient to prove that for any dense
open immersion j : U → X , with X a quasi-excellent, the h-motive j∗(RU ) is con-
structible. Applying Corollary 5.7.10, it is sufficient to prove that, given any prime
ideal p ∈Spec(Z), the h-motive j∗(1U ) is p-constructible.

The case where p= (0) directly follows from Gabber’s Lemma 5.8.2. Assume now
that p= (p) for a prime number p > 0. Let us consider the following cartesian square
of schemes, in which X p = X ×Spec(Z[1/p]):

Up
iU //

jp
��

U

j
��

U ′

j′
��

jUoo

X p
iX // X X ′jXoo

Then we can consider the following localization distinguished triangle:

jX ! j∗X j∗(1U )→ j∗(1U )→ iX∗ i∗X j∗(1U ) +1−−→
so that it is sufficient to prove that the first and third motives in the above triangle
are p-constructible. Note that the functors jX ! and iX∗ preserve, p-constructible ob-
jects, so that it is sufficient to prove that i∗X j∗(1U ) and j∗X j∗(RU ) are p-constructible.
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The object i∗X j∗(1U ) being (0)-constructible, it is p-constructible, by virtue of Propo-
sition 5.7.11. It remains to prove that the following h-motive is p-constructible:

j∗X j∗(RU )= j′∗(RU ′ )

(for the isomorphism, we have used the smooth base change theorem, which is triv-
ially true in DMh, by construction). Thus, we are finally reduced to Gabber’s Lemma
5.8.2, and this concludes. �

Corollary 5.8.9. The six operations preserve constructibility in DMh(−,R) over quasi-
excellent noetherian schemes of finite dimension. In other words, we have the follow-
ing stability properties.

(a) For any quasi-excellent noetherian scheme of finite dimension X , any con-
structible objects M and N in DMh(X ,R), the objects M⊗R N and HomR(M, N)
are constructible.

(b) For any separated morphism of finite type between quasi-excellent noether-
ian schemes of finite dimension f : X → Y , and for any constructible object
M of DMh(X ,R), the objects f∗(M) and f!(M) are constructible, and for any
constructible object N of DMh(Y ,R), the objects f ∗(N) and f !(N) are con-
structible.

Proof. The fact that f ∗ preserves constructibility is obvious. The case of f∗ follows
from the preceding theorem. The tensor product also preserves constructibility on
the nose. To prove that HomR(M, N) is constructible for any constructible objects
M and N in DMh(X ,R), we may assume that M = f](1Y ) for a separated smooth
morphism of finite type f : Y → X . In this case, we have the isomorphism

HomR(M, N)' f∗ f ∗(N) ,

from which we get the expected property. The fact that the functors of the form
f! preserve constructibility is well known (see for instance [CD12, Cor. 4.2.12]). Let
f : X →Y be a separated morphism of finite type between quasi-excellent noetherian
schemes of finite dimension. The property that f ! preserves constructibility is local
on X and on Y with respect to the Zariski topology (see [CD12, Lemma 4.2.27]), so
that we may assume that f is affine. From there, we see that we may assume that
f is an open immersion, or that f is the projection of the projective space Pn

Y to
the base, or that f is a closed immersion. The case of an open immersion is trivial.
In the case where f is a projective space of dimension n, the purity isomorphism
f ! ' f ∗(n)[2n] allows to conclude. Finally, if f = i is a closed immersion with open
complement j : U →Y , then we have distinguished triangles

i∗ i!(M)→ M → j∗ j∗(M)→
from which deduce that i∗ i!(M) is constructible, and thus that i!(M) ' i∗ i∗ i!(M) is
constructible, whenever M has this property. �

5.8.10. An object U of DMh(X ,R) will be said to be dualizing if it has the following
two properties:

(i) U is constructible;
(ii) For any constructible object M in DMh(X ,R), the canonical morphism

M →HomR(HomR(M,U),U)

is an isomorphism.
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Lemma 5.8.11. Let X be a quasi-excellent noetherian scheme of finite dimension.
(i) If an object U of DMh(X ,Z) is dualizing, then, for any commutaitve ring R,

the (derived) tensor product R⊗U is dualizing in DMh(X ,R).
(ii) A constructible object U of DMh(X ,R) is dualizing if an only if Q⊗U is dual-

izing in DMh(X ,Q) and, for any prime p, U /p is dualizing in DMh(X ,Z/pZ).

Proof. Assume that the object U of DMh(X ,Z) is dualizing. To prove that the canon-
ical map

M →HomR(HomR(M,R⊗U),R⊗U)
is invertible for any constructible object M in DMh(X ,R), we may assume that

M = f](RY )' R⊗ f](ZY )

for a separated smooth morphism of finite type f : Y → X . In particular, we may
assume that M = R⊗C for a constructible object C in DMh(X ,Z). But then, by virtue
of Corollary 5.4.10, we have a canonical isomorphism

Hom(Hom(C,U),U)⊗R 'HomR(HomR(M,R⊗U),R⊗U) ,

from which we conclude that R⊗U is dualizing. The proof of the second assertion is
similar. Indeed, for any constructible object C of DMh(X ,Z), by virtue of Corollary
5.3.11, we have canonical isomorphisms

Hom(Hom(C,U),U)⊗Q'HomQ(HomQ(Q⊗C,Q⊗U),Q⊗U) ,

and, by Proposition 5.3.5, for any positive integer n, canonical isomorphisms

Hom(Hom(C,U),U)/n 'HomZ/nZ(HomZ/nZ(C/n,U /n),U /n) .

By virtue of Proposition 5.3.12, this readily implies assertion (ii). �

Theorem 5.8.12. Let B be an excellent noetherian scheme of dimension ≤ 2 (or, more
generally, which admits wide resolution of singularities up to quotient singularities
in the sense of [CD12, Def. 4.1.9]).

(a) For any regular B-scheme of finite type S, an object U of DMh(S,R) is dualiz-
ing if and only if it is constructible and ⊗-invertible.

(b) For any separated morphism of B-schemes of finite type f : X → S, with S
regular, and for any dualizing object U in DMh(S,R), the object f !(U) is a
dualizing object in DMh(X ,R).

Proof. Consider separated morphism of B-schemes of finite type f : X → S, with S
regular. Then we claim that the object f !(RS) is dualizing in DMh(X ,R). Indeed, by
virtue of Corollary 5.4.11 and Lemma 5.8.11, we may assume that R =Q or R =Z/pZ
for some prime p. In the first case, this is already known (see [CD12, Theorems
15.2.4 and 16.1.2]). If R = Z/pZ, as, for any open immersion j, the functor j∗ is
symmetric monoidal and preserves internal Hom’s, by virtue of Corolaries 4.5.6 and
5.4.6, we may assume that p is invertible in the residue fields of S and that we have
equivalence of triangulated categories

Db
c (Yét,Z/pZ)'DMh(Y ,Z/pZ)

for any S-scheme of finite type, in a functorial way with respect to the six opera-
tions. In other words, this property boils down to the analogous result in classical
étale cohomology (which, as this level of generality, has been proved by O. Gabber;
see [ILO12]). This implies the theorem through classical and fomal arguments; see
[CD12, Proposition 4.4.22]. �
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5.9. Completion and realisation. In this section, we fix a prime ` and an integral
flat Z-algebra R.

Definition 5.9.1. Let X be a noetherian scheme.
We denote by DMh(X , R̂`) the localizing subcategory of DMh(X ,R) generated by

the objects of the form M/`, for any constructible object M of DMh(X ,R).

5.9.2. Recall from section 5.3 the following adjunctions of triangulated categories,
expressing various change of coefficients:

Lρ∗` : DMh(X ,R)�DMh(X ,R/`) : ρ`∗,

Lρ∗ : DMh(X ,R)�DMh(X ,R[`−1]) : ρ∗ ,

where ρ∗
`
(M) = M/` and ρ∗(M) = Z[`−1]⊗ M. Note that, for any h-motive M in

DMh(X ,R), the h-motive Z[`−1]⊗M is the homotopy colimit of the tower:

M
`.1M−−−−→ M

`.1M−−−−→ M →···→ M
`.1M−−−−→ M →···

Moreover, the functor ρ∗ is fully faithful, and identifies DMh(X ,R[`−1]) with the full
subcategory of DMh(X ,R) whose objects are those on which the multiplication by `

is invertible. Such an object will be said uniquely `-divisible.

Lemma 5.9.3. For an object M of DMh(X ,R), the following conditions are equivalent:
(i) M is uniquely `-divisible;

(ii) M/`' 0;
(iii) for any constructible object C of DMh(X ,R), any map C/`→ M is zero;
(iv) for any object C of DMh(X , R̂`), any map from C to M is zero.

Proof. The equivalence between conditions (i) and (ii) is trivial (in view of the dis-
tinguished triangle (5.3.4.b)), and the equivalence between conditions (iii) and (iv)
is true by definition of DMh(X , R̂`). The equivalence between conditions (ii) and
(iii) comes from the fact that the objects of the form C/`, with C constructible in
DMh(X ,R), form a generating family of the triangulated category DMh(X ,Z/`Z). �

5.9.4. We are thus in the situation of the six gluing functors as defined in [Nee01,
9.2.1]. This means that we have six functors:

(5.9.4.a) DMh(X , R̂`)
ρ̂`! //

ρ̂`∗
// DMh(X ,R)ρ̂∗

`
oo

Lρ∗ //

ρ!
// DMh(X ,R[`−1]) ,ρ∗oo

where ρ̂`! denotes the inclusion functor, and that, for any h-motive in DMh(X ,R) we
have functorial distinguished triangles

ρ̂`!ρ̂
∗
` (M)

ad(ρ̂`!,ρ̂∗` )−−−−−−−→ M
ad′(Lρ∗,ρ∗)−−−−−−−−→ ρ∗Lρ∗(M)→ M[1],(5.9.4.b)

ρ∗ρ!(M)
ad(ρ∗,ρ!)−−−−−−→ M

ad′(ρ̂∗
`

,ρ̂l∗)−−−−−−−−→ ρ̂`∗ρ̂∗` (M)→ M[1].(5.9.4.c)

Consider the obvious exact sequence of R-modules:

0→ R → R[`−1]→ R[`−1]/R → 0.

It induces the following distinguished triangle in DMh(X ,R):

M⊗L (R[`−1]/R)[−1]−→ M −→ M⊗L R[`−1]−→ M⊗L (R[`−1]/R)
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which is isomorphic to the triangle (5.9.4.b). In other words, we have the formulas:

ρ̂`!ρ̂
∗
` (M)= M⊗L (R[`−1]/R)[−1] and ρ∗Lρ∗(M)= M[`−1]= M⊗Z[`−1] .

5.9.5. Let M be a cofibrant object in the model category underlying DMh(X ,R). The
h-motive M/`r is then represented by the complex of Tate spectra:

Coker(M
`r .1M−−−−→ M).

Thus, we get a tower:

M

`

��

` // M

`2

��

// · · · // M

`r

��

` // M

`r+1

��

// · · ·

M M · · · M M · · ·
(5.9.5.a)

which defines a projective system (M/lr)r∈N, and it makes sense to take its derived
limit. This construction defines a triangulated functor

DMh(X ,R)→DMh(X ,R) , M 7→R lim←−−r
M/`r .

Furthermore, the towers (5.9.5.a) define a natural transformation

(5.9.5.b) εM
` : M →R lim←−−

r∈N
M/`r.

Lemma 5.9.6. For any h-motive M in DMh(X ,R), we have a canonical isomorphism:

RHomR(R[`−1]/R, M)[1]'R lim←−−
r∈N

M/`r.

Proof. We have
Z[`−1]/Z= lim−−→r

Z/`rZ ,

from which we get that
R⊗Z[`−1]/Z= lim−−→r

R/`rR .

As this colimit is filtering, this is in fact an homotopy colimit, and we conclude from
the canonical isomorphisms RHom(Z/`rZ, M)[1]' M/`r. �

Definition 5.9.7. For any h-motive M in DMh(X ,R), we define the `-completion of
M as the h-motive:

M̂` :=R lim←−−
n∈N

M/`r.

We say that M is `-complete if the map εM
l : M → M̂` defined above is an isomor-

phism.

According to Lemma 5.9.6 and Paragraph 5.9.4, the triangle (5.9.4.c) can be iden-
tified to the triangle:

RHom(R[`−1], M)−→ M
εM
`−−−→ M̂ +1−−−→

Note in particular the following well known fact (see for instance [DG02]).

Proposition 5.9.8. Let M be an h-motive in DMh(X ,R). Then the following condi-
tions are equivalent:

(i) M belongs to DMh(X , R̂`).
(ii) M is `-complete.
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(iii) M is left orthogonal to uniquely `-divisible objects in DMh(X ,R).

Lemma 5.9.6 readily implies the following computation, which means (at least
when ` is prime to the residue chracteristics of X ), in view of the equivalences
DMh(X ,R/`r) ' D(X ét,R/`r), that the category DMh(X , R̂`) is a categorical incar-
nation of continuous étale cohomology in the sense of Jannsen [Jan88].

Proposition 5.9.9. For any objects M and N in DMh(X , R̂`), we have

RHomDMh(X ,R̂`)(M, N)'R lim←−−r
RHomDMh(X ,R/`r)(M/`r, N/`r) .

5.9.10. The right adjoints f∗, RHom of the triangulated premotivic category DMh(−,R)
commutes with homotopy limits. Moreover, Proposition 5.3.5 shows they preserve `-
complete objects.

On the other hand, for any morphism of scheme f : Y → X , and smooth morphism
p : X → S and any `-complete h-motives M, N, we put:

f̂ ∗(M)= áf ∗(M)` , p̂](M)=áp](M)` , M⊗̂N = á(M⊗N)` .

This defines a structure of a premotivic triangulated category on DMh(−, R̂`), the
right adjoints being induced their counterpart in DMh(−,R).

According to these definitions, we get a premotivic adjunction:

(5.9.10.a) ρ̂∗` : DMh(−,R)�DMh(−, R̂`) : ρ̂`∗.

Moreover, ρ̂∗
`

obviously commutes with f∗ and Hom.
Taking into account Proposition 5.8.9, Corollary 5.3.11, Theorem 5.5.2, and Lemma

5.9.6, we thus obtain:

Theorem 5.9.11. The triangulated premotivic category DMh(−, R̂l) satisfies the Gro-
thendieck six functors formalism (Def. A.1.10) and the absolute purity property (Def.
A.2.9) over quasi-excellent noetherian schemes. The premotivic morphism ρ̂∗

`
defined

above commutes with the six operations (Def. A.1.17).

Remark 5.9.12. Note that, by virtue of Theorem 5.4.5, if we perform this `-completion
procedure to DMeff

ét (X ,R) or DMeff
h (X ,R), this leads to the same category DMh(−, R̂`).

Definition 5.9.13. Let X be any scheme. One defines the category DMh,gm(X , R̂`)
of geometric `-adic h-motives as the thick triangulated subcategory of DMh(X , R̂`)
generated by h-motives of the form R̂h

S(X )(n) for X /S smooth and n ∈ Z. An object
M of DMh(X , R̂`) is said to be constructible if, M/` is constructible in DMh(X ,R/`).
We write DMh,c(X , R̂`) for the thick subcategory of DMh(X , R̂`) generated by con-
structible `-adic motives. We thus have a natural inclusion

DMh,gm(X , R̂`)⊂DMh,c(X , R̂`) .

Remark 5.9.14. The notion of constructible `-adic motive corresponds to what is
usually called (bounded complex of) constructible `-adic sheaves, while geometric
`-adic h-motives correspond to (bounded complex of) constructible `-adic sheaves of
geometric origin.

Remark 5.9.15. It is clear that DMh,c(X , R̂`) is closed under the six operations in
DMh(X , R̂`): this readily follows from Corollary 5.8.9 in the case of R =Z/`Z: indeed,
the functor

DMh(X , R̂`)→DMh(X ,R/`)'D(X ét,R/`) , M 7→ M/`
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is conservative and preserves the six operations as well as constructible objects (by
definition). Note also that an object M of DMh(X , R̂`) is constructible if and only if
M/`r is constructible in DMh(X ,R/`r) for any r ≥ 1.

Theorem 5.9.16. The `-adic realization functor of Theorem 5.9.11 sends constructible
objects to geometric ones. Moreover, the six operations preserve geometric objects in
DMh(X , R̂`).

Proof. The first assertion is obvious. To prove that the subcategory DMh,gm(X , R̂`)
is closed under the six operations in DMh(X , R̂`), it is sufficient check what happens
on objects of the form M̂` with M constructible in DMh(X ,R). But then, the fact that
the `-adic realization functor preserves the six operations on the nose means that
they preserve the class of these objects in DMh(X , R̂`). �

5.9.17. Let ` be a prime, and S a noetherian scheme with residue characteristics
prime to `, and such that, for any constructible sheaf of Z/`Z-modules F on Sét, the
cohomology groups H i

ét(S,F) are finite. Then, for any S-scheme of finite type X , one
can define, following Beilinson, Bernstein and Deligne [BBD82], the triangulated
category of constructible `-adic sheaves as the following 2-limit of derived categories
of constructible sheaves:

Db
c (X ,Z`)= 2-lim←−−r

Db
c (X ,Z/`rZ) .

On the other hand, we have an obvious family of triangulated functors

DMh,c(X , Ẑ`)→DMh,c(X ,Z/`rZ) , M 7→Z/`rZ⊗L M

which, together with the equivalences of categories given by Corollary 5.4.6,

Db
c (X ,Z/`rZ)'DMh,c(X ,Z/`rZ) ,

induce a triangulated functor

(5.9.17.a) DMh,c(X , Ẑ`)→Db
c (X ,Z`)

Proposition 5.9.18. Under the assumptions of 5.9.17, the functor (5.9.17.a) is an
equivalence of categories.

Proof. Let M and N be two objects of DMh,c(X , Ẑ`). By virtue of Proposition 5.9.8,
we have

N =R lim←−−r
N/`r .

Moreover, by assumption, for any r ≥ 1, the groups Hom(M/`r, N/`r) are finite, and
thus, for any integer i, we have

Hom(M, N[i])= H i(R lim←−−r
RHom(M, N/`r))' lim←−−r

Hom(M, N/`r[i]) .

The fully faithfulness of the functor (5.9.17.a) readily follows from this computation.
Let F be an object of Db

c (X ,Z`), that is a collection of objects Fr in Db
c (X ,Z/`rZ),

together with isomorphisms

ur : Z/`rZ⊗L
Z/`r+1Z Fr+1 ' Fr

for each r ≥ 1. Such data can be lifted into a collection (Er,vr), where Er is a complex
of sheaves of Z/`rZ-modules on X ét, and

vr : Z/`rZ⊗Z/`r+1Z Er+1 → Er
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is a Z/`rZ-linear morphism of complexes of sheaves for each r ≥ 1, such that Er ' Fr
in Db

c (X ,Z/`rZ), and such that the canonical map

Z/`rZ⊗L
Z/`r+1Z Er+1 →Z/`rZ⊗Z/`r+1Z Er+1 → Er

coincides with the given isomorphism ur under these identifications. Applying the
functor α∗ (5.2.1.a), this defines similar data (α∗(Er),α∗(vr)) in the category of com-
plexes of sheaves over the h-site of X . We may assume that each sheaf Er if flat over
Z/`rZ (by choosing them cofibrant for the projective model structure, for instance),
in which case the maps vr already are quasi-isomorphisms. Applying the infinite
suspension functor Σ∞, finally leads to a diagram of Tate spectra, and we can define

E =R lim←−−r
Σ∞(α∗(Er)) .

Note that, for any integer r ≥ 1, we have E/`r ' Σ∞(α∗(Er)) in DMh,c(X ,Z/`rZ). We
thus see through the equivalences

Db
c (X ,Z/`rZ)'DMeff

h,c(X ,Z/`rZ)'DMh,c(X ,Z/`rZ)

that the functor (5.9.17.a) sends E to an object isomorphic to F. �

5.9.19. Recall that T. Ekedahl has constructed in [Eke90, Th. 6.3] a triangulated
monoidal category: Db

c (X −Z·) of `-adic constructible systems over a separated S-
scheme X of finite type, assuming suitable technical conditions on S.

Using Corollary 5.4.6 and Proposition 5.9.9, one can construct an equivalence of
categories

Db
c (X −Z·)→DMh,c(X , Ẑ`)

Moreover, using point (3) of loc. cit., one can see from the above definitions that this
functor commutes with the 6 operations on the category of separated S-schemes of
finite type.

But we will not do this here. Instead, we define

Db
c (X ,Z`) :=DMh,c(X , Ẑ`)

for any noetherian scheme X . We also define the category of Q`-sheaves over X

Db
c (X ,Q`)=DMh,c(X , Ẑ`)⊗Q

as the Q-linearisation of the triangulated category DMh,c(X , Ẑ`). Both Db
c (−,Z`) and

Db
c (−,Q`) are motivic categories which satisfy the absolute purity property (at least

when restricted to quasi-excellent noetherian schemes of finite dimension).

5.9.20. As a final result, taking into account the fact the Q-localization functor is
well behaved for h-motives (Corollary 5.3.11), we have a canonical identification, for
any quasi-excellent noetherian scheme of finite dimension:(

DMh(X ,Z)⊗Q
)] 'DMh,c(X ,Q) .

We thus obtain straight away the following result.

Theorem 5.9.21. The functor ρ̂∗
`

(5.9.10.a) induces, for any noetherian scheme of
finite dimension X , a triangulated monoidal functor:

DMh,c(X ,Q)→Db
c (X ,Q`)]

(where Db
c (X ,Q`)] is the idempotent completion of the triangulated category Db

c (X ,Q`)).
This functor is compatible with the 6 operations (when one restricts our attention to
quasi-excellent schemes and morphisms of finite type between them).
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APPENDIX A. RECALL AND COMPLEMENT ON PREMOTIVIC CATEGORIES

A.1. Premotivic categories and morphisms. The following definition is a sum-
mary of the definitions in [CD09, sec. 1].

Definition A.1.1. Let P be one of the classes: Ét, Sm, S f t.
A triangulated (resp. abelian) P -premotivic category M is a fibred category over

Sch satisfying the following properties:
(1) For any scheme S, MS is a well generated triangulated (resp. abelian Grothendieck)

category with a closed monoidal structure.7

(2) For any morphism of schemes f , the functor f ∗ is triangulated (resp. addi-
tive), monoidal and admits a right adjoint denoted by f∗.

(3) For any morphism p in P , the functor p∗ admits a left adjoint denoted by
p].

(4) P -base change: For any cartesian square

Y
g
��

q //

∆

X
f��

T p
// S

there exists a canonical isomorphism: Ex(∆∗
]
) : q]g∗ → f ∗p].

(5) P -projection formula: For any morphism p : T → S in P , and any object
(M, N) of MT ×MS , there exists a canonical isomorphism:

Ex(p∗
] ,⊗) : p](M⊗T p∗(N))→ p](M)⊗S N .

When P =Sm, we say simply premotivic instead of Sm-premotivic. Objects of M are
generically called premotives.

Remark A.1.2. The isomorphisms appearing in properties (4) and (5) are particular
instances of what is generically called an exchange transformation in [CD09].

Example A.1.3. Let P be one of the classes: Ét, Sm, S f t.
Then the categories Shét(PS ,R) (resp. Psh(PS ,R)) of étale sheaves (resp. pre-

sheaves) of R-modules over PS for various base schemes S form the fibers of an
abelian premotivic category (see [CD12, Ex. 5.1.1]).

Moreover, the derived categories D(Shét(PS ,R)) (resp. D(Psh(PS ,R))) for vari-
ous schemes S form the fibers of a canonical triangulated premotivic category (see
[CD12, Def. 5.1.17]).

A.1.4. Consider a premotivic triangulated category T .
Given any smooth morphism p : X → S, we define following Voevodsky the (homo-

logical) premotive associated with X /S as the object: MS(X ) := p](1X ). Then MS is a
covariant functor.

Let p : P1
S → S be the canonical projection. We define the Tate premotive as the

kernel of the map p∗ : MS(P1
S)→1S shifted by −2. Given an integer n and an object

M of T , we define the n-th Tate twist M(n) of M as the n-th tensor power of M by
the object 1(1) – allowing negative n if 1(1) is ⊗-invertible.

We associate to T a bigraded cohomology theory on Sch:

H i,n
T

(S) :=HomT (1S ,1S(n)[i]).

7In the triangulated case, we require that the bifunctor ⊗ is triangulated in each variable.
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One can isolate the following basic properties of T (see [CD12]).

Definition A.1.5. Consider the notations above. One introduces the following prop-
erties of the premotivic triangulated category T :

(1) Homotopy property.– For any scheme S, the canonical projection of the affine
line over S induces an isomorphism MS(A1

S)→1S .
(2) Stability property.– The Tate premotive 1(1) is ⊗-invertible.
(3) Orientation.– An orientation of T is natural transformation of contravariant

functors
c1 : Pic→ H2,1

(not necessarily additive).8

When T is equiped with an orientation one says T is oriented.

A.1.6. Recall that a cartesian functor ϕ∗ : T → T ′ between fibred categories over
Sch is the following data:

• for any base scheme S in Sch, a functor ϕ∗
S : T (S)→T ′(S).

• for any morphism f : T → S in Sch, a natural isomorphism c f : f ∗ϕ∗
S

∼−→ϕ∗
T f ∗

satisfying the cocycle condition.
The following definition is a particular case of [CD12, Def. 1.4.6]:

Definition A.1.7. Let P be one of the classes: Ét, Sm, S f t.
A morphism ϕ∗ : M →M ′ of triangulated (resp. abelian) P -premotivic categories

is a cartesian functor satisfying the following properties:
(1) For any scheme S, ϕ∗

S is triangulated (resp. additive), monoidal and admits
a right adjoint denoted by ϕS∗.

(2) For any morphism p : T → S in P , there exists a canonical isomorphism:
Ex(p],ϕ∗) : p]ϕ∗

T →ϕ∗
S p].

Sometimes, we refer to such a morphism as the premotivic adjunction:

ϕ∗ : M �M ′ :ϕ∗.

A sub-P -premotivic triangulated (resp. abelian) category M0 of M is a full trian-
gulated (resp. additive) sub-category of M equipped with a P -premotivic structure
such that the inclusion M0 →M is a morphism of P -premotivic categories.

Remark A.1.8. Given a morphism of triangulated premotivic categories

ϕ∗ : T →T ′,

any orientation of T induces a canonical orientation of T ′. Indeed, we deduce from
the preceding that for any scheme X , the functor ϕ∗

X induces a morphism

H2,1
T

(X )→ H2,1
T ′ (X )

contravariantly natural in X .

Example A.1.9. Consider the notations of Example A.1.3
Recall from [CD12, Def. 5.2.16] the A1-localization Deff

A1 (Shét(P ,R)) of D(Shét(P ,R)),
which which is a P -fibred category equipped with a localization morphism

D(Shét(P ,R))→Deff
A1 (Shét(P ,R))

and satisfying the homotopy property.

8However, the orientations which appear in this article are always additive.
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When P =Sm, we will put: Deff
A1,ét

(S,R)=Deff
A1 (Shét(SmS ,R)).

The main properties of a triangulated premotivic category can be summarized in
the so called Grothendieck 6 functors formalism:

Definition A.1.10. A triangulated premotivic category T satisfies Grothendieck 6
functors formalism if it satisfies the stability property and for any separated mor-
phism of finite type f : Y → X in Sch, there exists a pair of adjoint functors

f! : T (Y )�T (X ) : f !

such that:
(1) There exists a structure of a covariant (resp. contravariant) 2-functor on

f 7→ f! (resp. f 7→ f !).
(2) There exists a natural transformation α f : f! → f∗ which is an isomorphism

when f is proper. Moreover, α is a morphism of 2-functors.
(3) For any smooth morphism f : X → S in Sch of relative dimension d, there

are canonical natural isomorphisms

p f : f] −→ f!(d)[2d]

p′f : f ∗ −→ f !(−d)[−2d]

which are dual to each other.
(4) For any cartesian square in Sch:

Y ′ f ′ //

g′
��

∆

X ′

g
��

Y
f
// X ,

such that f is separated of finite type, there exist natural isomorphisms

g∗ f!
∼−→ f ′! g′∗ ,

g′
∗ f ′! ∼−→ f ! g∗ .

(5) For any separated morphism of finite type f : Y → X , there exist natural
isomorphisms

Ex( f ∗! ,⊗) : ( f!K)⊗X L ∼−−→ f!(K ⊗Y f ∗L) ,

HomX ( f!(L),K) ∼−−→ f∗HomY (L, f !(K)) ,

f ! HomX (L, M) ∼−−→HomY ( f ∗(L), f !(M)) .

(6) For any closed immersion i : Z → S with complementary open immersion j,
there exists distinguished triangles of natural transformations as follows:

j! j!
α′

j−−−→ 1
αi−−→ i∗ i∗ ∂i−−→ j! j![1]

i! i! α′
i−−→ 1

α j−−−→ j∗ j∗ ∂̃i−−→ i! i![1]

where α′
? (resp. α?) denotes the counit (resp. unit) of the relevant adjunction.

A.1.11. In [CD12], we have studied some of these properties axiomatically, introduc-
ing the following definitions:
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• Given a closed immersion i, the fact i∗ is conservative and the existence of
the first triangle in (6) is called the localization property with respect to i.

• The conjunction of properties (2) and (3) gives, for a smooth proper morphism
f , an isomorphism p f : f]→ f∗(d)[2d]. Under the stability and weak localiza-
tion properties, when such an isomorphism exists, we say that f is T -pure
(or simply pure when T is clear).9

Definition A.1.12. Consider the notations an assumptions above.
We say that T satisfies the localization property (resp. weak localization property)

if it satisfies the localization property with respect to any closed immersion i (resp.
which admits a smooth retraction).

We say that T satisfies the purity property (resp. weak purity property) if for any
smooth proper morphism f (resp. for any scheme S and integer n > 0, the projection
p : Pn

S → S) is T -pure.

Building on the construction of Deligne of f! and on the work of Ayoub on cross
functors, we have obtained in [CD12, th. 2.4.50] the following theorem which is little
variation on a theorem of Ayoub:

Theorem A.1.13. The following conditions on a well generated triangulated premo-
tivic category T equipped with an orientation and satisfying the homotopy property
are equivalent:

(i) T satisfies Grothendieck 6 functors formalism.
(ii) T satisfies the stability and localization properties.

Remark A.1.14. In fact, J. Ayoub in [Ayo07] proves this result with the following
notable differences:

• One has to restrict to a category of quasi-projective schemes over a scheme
which admits an ample line bundle.

• The questions of orientation are not treated in op. cit.: this means one has
to replace the Tate twist in property (3) above by the tensor product with a
Thom space.

• The theorem of Ayoub is more general in the sense that it does not require
an orientation on the category T . In particular, it applies to the stable ho-
motopy category of schemes, which does not admit an orientation.

Recall the following definition from [CD12]:

Definition A.1.15. A triangulated premotivic category T which satisfies the sta-
bility and localization properties, and in which the functor f ! exists for any proper
morphism f in Sch, is called a triangulated motivic category.

A.1.16. Consider an adjunction

ϕ∗ : T �T ′ :ϕ∗
of triangulated premotivic categories which satisfies Grothendieck 6 functors formal-
ism. Then it is proved in [CD12] that ϕ∗ commutes with f! for f separated of finite
type. In fact, ϕ∗ commutes with the left adjoint of the 6 functors formalism while ϕ∗
commutes with the right adjoint functors.

9In fact, the isomorphism p f is canonical up to the choice of an orientation of T . Moreover, we will
define explicitely this isomorphism in the case where we need it – see (4.2.5.a).



70 DENIS-CHARLES CISINSKI AND FRÉDÉRIC DÉGLISE

On the other hand, there are canonical exchange transformations:

ϕ∗ f∗ → f∗ϕ∗, f morphism in Sch,

ϕ∗ f ! → f !ϕ∗, f separated morphism of finite type in Sch,

[ϕ∗Hom(−,−)]−→ [Hom(ϕ∗(−),ϕ∗(−))].

(A.1.16.a)

Definition A.1.17. In the above assumptions, one says the morphism ϕ∗ commutes
with the 6 operations if the exchange transformations (A.1.16.a) are all isomorphisms.

If T is a sub-premotivic triangulated category of T ′, one simply says T is stable
by the 6 operations if the inclusion commutes with the 6 operations.

For example, if ϕ∗ is an equivalence of premotivic triangulated categories, then it
commutes with the 6 operations.

A.2. Complement: the absolute purity property. In this section, we consider a
triangulated premotivic category T which satisfies the hypothesis and equivalent
conditions of Theorem A.1.13. We assume in addition that the motives of the form
MS(X )(i) for a smooth S-scheme X and a Tate twist i ∈Z form a family of generators
of the category T (S).

A.2.1. As usual, a closed pair is a pair of schemes (X , Z) such that Z is a closed sub-
scheme of X . We will consider abusively that to give such a closed pair is equivalent
to give a closed immersion i : Z → X . We will say (X , Z) is regular when i is regular.

A (cartesian) morphism of closed pairs ( f , g) : (Y ,T)→ (X , Z) is a cartesian square
of schemes:

(A.2.1.a) T
g ��

� � k // Y
f��

Z � � i // X

We will usually denote it by f instead of ( f , g).
Note the preceding diagram induces a unique map CTY → g−1(CZ X ) on the un-

derlying normal cones. We say f (or the above square) is transversal when this map
is an isomorphism.

Definition A.2.2. Let (X , Z) be a closed pairs and i : Z → X be the canonical inclu-
sion. For any pair of integers (n,m), we define the cohomology of X with support in
Z as:

Hn,m
Z (X ) :=HomT (S)(i∗(1Z),1S(m)[n]).

Equivalently,

(A.2.2.a) Hn,m
Z (X )=HomT (Z)(1Z , i!(1S)(m)[n]).

Moreover, using the first localization triangle for T with respect to i (point (6), Def.
A.1.10), we obtain it is contravariantly functorial with respect to morphism of closed
pairs.

Remark A.2.3. (1) Using this localization triangle, this cohomology can be in-
serted in the usual localization long exact sequence (the twist m being the
same for each group).
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(2) Consider a morphism of closed pairs f : (Y ,T)→ (X , Z) defined by a cartesian
square of the form (A.2.1.a). Using point (4) of Definition A.1.10 applied to
this square, we can define the following exchange transformation:

(A.2.3.a) Ex∗! : g∗ i! ad( f∗, f ∗)−−−−−−−→ g∗ i! f∗ f ∗ ∼−→ g∗g∗k! f ∗ ad′(g∗,g∗)−−−−−−−→ k! f ∗.

One can check that the functoriality property of H∗∗
Z (X ) is given by associat-

ing to a morphism ρ :1Z → i!(1Z)(i)[n] the composite map:

1T
g∗(ρ)−−−→ g∗ i!(1Z)(i)[n] Ex∗!

−−−→ k!(1T )(i)[n]

through the identification (A.2.2.a).

According to formula (A.2.2.a), the bigraded cohomology group H∗∗(X ) admits a
structure of a bigraded module over the cohomology ring H∗∗(Z). According to the
preceding remark, this module structure in compatible with pullbacks.

Definition A.2.4. Let (X , Z) be a regular closed pair of codimension c. A fundamen-
tal class of Z in X is an element

ηX (Z) ∈ H2c,c
Z (X )

which is a base of the H∗∗(Z)-module H∗∗
Z (X ).

In other words, the canonical map:

(A.2.4.a) H∗∗(Z)→ H∗∗
Z (X ) , λ 7→λ.ηX (Z)

is an isomorphism. Note that if such a fundamental class exists, it is unique up to
an invertible element of H00(Z).

Proposition A.2.5. Consider a regular closed immersion i : Z → X of codimension c
and a morphism in T (Z):

ηX (Z) :1Z → i!(1X )(c)[2c].

The following conditions are equivalent:
(i) The map ηX (Z) is an isomorphism.

(ii) For all smooth morphism f : Y → X , the cohomology class f ∗(ηX (Z)) in H2c,c
f −1(T)

(Y )
is a fundamental class.

Proof. We first remark that for any smooth X -scheme Y , T = Y ×X Z, and for any
couple of integers (n, r) ∈Z2, the map induced by ηX (Z):

Hom(MZ(T)(−r)[−n],1Z)→Hom(MZ(T)(−r)[−n], i!(1X )(c)[2c])

is isomorphic to the map

Hn,r(T)→ Hn,r
T (Y ),λ 7→λ.ηT (Y ).

Then the equivalence between (i) and (ii) follows from the fact the family of motives
of the form MZ(Y ×Z X )(−r)[−n] generates the category T (Z) because:

• We have assumed T it is generated by Tate twist as a triangulated premo-
tivic category.

• i∗ is essentially surjective according to the localization property.

�
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Using the arguments10 of [Dég08], one obtains that the orientation c1 : Pic →
H2,1 can be extended canonically to a full theory of Chern classes and deduced the
projective bundle formula. One gets in particular, following Paragraph 4.4 of loc. cit.:

Proposition A.2.6. Let E be a vector bundle over a scheme X , s : X → E the zero
section. Then s admits a canonical11 fundamental class.

This is the Thom class defined in loc. cit. In what follows we will denote it by
th(E), as an element of H2c,c

X (E).

A.2.7. Let (X , Z) be a closed pair with inclusion i : Z → X . Assume i is a regular
closed immersion of codimension c.

Following the classical construction, one define the deformation space DZ X at-
tached to (X , Z) as the complement of the blow-up BZ(X ) in BZ(A1

X ). Note it contains
A1

Z as a closed subscheme.
This space is fibered over A1, with fiber over 1 (resp. 0) being the scheme X (resp.

the normal bundle NZ X ). In particular, we get morphisms of closed pairs:

(A.2.7.a) (X , Z)
d1−→ (DZ X ,A1

Z)
d0←− (NZ X , Z)

where d0 (resp. d1) means inclusion of the fiber over 0 (resp. 1). It is important to
note that d0 and d1 are transversal.

For the next statement, we denote by Preg the class of closed pairs (X , Z) in Sch
such that X and Z are regular.

Theorem A.2.8. The following conditions are equivalent:
(i) There exists a family (

ηX (Z)
)
(X ,Z)∈Preg

such that:
• For any closed pair (X , Z), ηX (Z) is a fundamental class of (X , Z).
• For any transversal morphism f : (Y ,T)→ (X , Z) of closed pairs in Preg,

f ∗ηX (Z)= ηY (T).
(ii) For any closed pair (X , Z) in Preg, the deformation diagram (A.2.7.a) induces

isomorphisms of bigraded cohomology groups:

H∗∗
Z (X )

d∗
1←−− H∗∗

A1
Z
(DZ X )

d∗
0−−→ H∗∗

Z (NZ X )

Proof. The fact (i) implies (ii) follows from the homotopy property of T , using the
isomorphism of type (A.2.4.a) and the fact the morphisms of closed pairs d0 and d1
are transversal.

Reciprocally, given the isomorphisms which appear in (ii), one can put ηX (Z) =
d∗

1 (d∗
0 )−1(th(NZ X )), using Proposition A.2.6. This is a fundamental class for (X , Z)

using once again the homotopy property for T . The fact these classes are stable by
transversal base change follows from the functoriality of the deformation diagram
(A.2.7.a) with respect to transversal morphisms. �

Definition A.2.9. We will say that T satisfies the absolute purity property if the
equivalent properties of the preceding propositions are satisfied.

10In fact, if T is equipped with a premotivic morphism D(PSh(−,R)) → T , one can readily apply all
the results of [Dég08] to the category T (S) for any fixed base scheme S. All the premotivic triangulated
categories considered in this paper will satisfy this hypothesis.

11Depending only on the orientation c1 of T .
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Example A.2.10. (1) The motivic category of Beilinson motives DMB satisfies
the absolute purity property according to [CD12, Th. 14.4.1].

(2) According to the theorem of Gabber [Fuj02], the motivic category Db
c (−,Λ)

satisfies the absolute purity property for any quasi-excellent scheme, with Λ
a finite ring of order prime to the residue characteristics of X .

A.3. Torsion, homotopy and étale descent. Recall the following result, essen-
tially proved in [Voe96], but formulated in the premotivic triangulated category of
Example A.1.9:

Proposition A.3.1. For any scheme S of characteristic p > 0, the category Deff
A1,ét

(S,Z)
is Z[1/p]-linear.

Proof. The Artin-Schreier exact sequence ([AGV73, IX, 3.5]) can be written as an
exact sequence of sheaves in Shét(X ,Z):

0→ (Z/pZ)S →Ga
F−1−−−→Ga → 0

where F is the Frobenius morphism. But Ga is a strongly contractible sheaf, thus
F −1 induces an isomorphism in the A1-localized derived category Deff

A1,ét
(S,Z). This

implies (Z/pZ)S = 0 in the latter category which in turn implies p.Id is an isomor-
phism, as required. �

A.3.2. Let T be a triangulated premotivic category. If T is obtained by a localization
of the derived category of an abelian premotivic category, it comes with a canonical
premotivic adjunction

D(PSh(S,Z))�T .
Then, the fact T satisfies the homotopy and the étale descent properties is equiva-
lent to the fact that the previous adjunction induces a premotivic adjunction of the
form:

(A.3.2.a) Deff
A1,ét

(−,Z)�T

– see [CD12, 5.1.2, 5.2.10, 5.2.19, and 5.3.23].

Corollary A.3.3. Let T be a premotivic triangulated category equipped with an
adjunction of the form (A.3.2.a). Then for any scheme S of characteristic p > 0, T (S)
is Z[1/p]-linear.

Proposition A.3.4. Let p be a prime number and n = pa be a power of p. Let T be a
premotivic triangulated category equipped with a premotivic adjunction of the form:

t∗ : Deff
A1,ét

(−,Z/nZ)�T : t∗.

Let S be a scheme. We put S[1/p] = S×Spec(Z[1/p]) and consider the canonical open
immersion j : S[1/p]→ S. Then the functor

j∗ : T (S)→T (S[1/p])

is an equivalence of categories.

Proof. Note that the proposition is obvious when T = Deff
A1,ét

(−,Z/nZ) by the previ-
ous corollary and the localization property. In particular, for any object of the form
E = t∗(M) with M in Deff

A1,ét
(−,Z/nZ), we have j] j∗(E) ' E. In particular, we have

j] j∗(1S)'1S . Therefore, for any object E of T (S), one has

j] j∗(E)' j]( j∗(1S)⊗E)' j] j∗(1S)⊗E '1S ⊗E .
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As the functor j] is fully faithful, this readily implies the proposition. �
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