
MW-MOTIVIC COMPLEXES

FRÉDÉRIC DÉGLISE AND JEAN FASEL

Abstract. The aim of this work is to develop a theory parallel to that of motivic complexes
based on cycles and correspondences with coefficients in quadratic forms. This framework
is closer to the point of view of A1-homotopy than the original one envisioned by Beilinson
and set up by Voevodsky.
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Introduction

The aim of this paper is to define the various categories of MW-motives built out of the
category of finite Chow-Witt correspondences constructed in [CF14], and to study the motivic
cohomology groups intrinsic to these categories. In Section 1, we start with a quick remainder

of the basic properties of the category C̃ork. We then proceed with our first important result,
namely that the sheaf (in either the Nisnevich or the étale topologies) associated to a MW-

presheaf, i.e. an additive functor C̃ork → Ab, is a MW-sheaf. The method follows closely
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Voevodsky’s method and relies on Lemma 1.2.6. We also discuss the monoidal structure on
the category of MW-sheaves. In the second part of the paper, we prove the analogue for MW-
sheaves of a famous theorem of Voevodsky saying that the sheaf (with transfers) associated
to a homotopy invariant presheaf with transfers is strictly A1-invariant. Our method here
is quite lazy. We heavily rely on the fact that an analogue theorem holds for quasi-stable
sheaves with framed transfers by [GP15, Theorem 1.1]. Having this theorem at hand, it

suffices to construct a functor from the category of linear framed presheaves to C̃ork to prove
the theorem. This functor is of independent interest and this is the reason why we take
this shortcut. However, there is now a direct proof of this theorem due to H. A. Kolderup
(still relying on ideas of Panin-Garkusha). In Section 3, we finally pass to the construction
of the categories of MW-motives starting with a study of different model structures on the
category of possibly unbounded complexes of MW-sheaves. The ideas here are closely related

to [CD09b]. The category of effective motives D̃Meff(k,R) (with coefficients in a ring R) is
then defined as the category of A1-local objects in this category of complexes. Using the
analogue of Voevodsky’s theorem proved in Section 2, these objects are easily characterized
by the fact that their homology sheaves are strictly A1-invariant. This allows as usual to
give an explicit A1-localization functor, defined in terms of the Suslin (total) complex. The
category of geometric objects is as in the classical case the subcategory of compact objects of

D̃Meff(k,R). Our next step is the formal inversion of the Tate motive in D̃Meff(k,R) to obtain

the stable category of MW-motives D̃M(k,R) (with coefficients in R). We can then consider
motivic cohomology as groups of extensions in this category, a point of view which allows
to prove in Section 4 many basic property of this version of motivic cohomology, including a
commutativity statement and a comparison theorem between motivic cohomology and Chow-
Witt groups.
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Conventions

In all this work, we will fix a base field k assumed to be infinite perfect. All schemes
considered will be assumed to be separated of finite type over k, unless explicitly stated.

We will fix a ring of coefficients R. We will also consider a Grothendieck topology t on the
site of smooth k-schemes, which in practice will be either the Nisnevich of the étale topology.
In section 3 and 4 we will restrict to these two latter cases.

1. MW-transfers on sheaves

1.1. Reminder on MW-correspondences.

1.1.1. We will use the definitions and constructions of [CF14].
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In particular, for any smooth schemes X and Y (with Y connected of dimension d), we
consider the following group of finite MW-correspondences from X to Y :

(1.1.1.a) c̃(X,Y ) := lim−→T
C̃H

d

T

(
X × Y, ωY

)
where T runs over the ordered set of reduced (but not necessarily irreducible) closed sub-
schemes in X × Y whose projection to X is finite equidimensional and ωY is the pull back of
the canonical sheaf of Y along the projection to the second factor. This definition is extended
to the case where Y is non connected by additivity. When considering the coefficients ring
R, we put:

c̃(X,Y )R := c̃(X,Y )⊗Z R.

In the sequel, we drop the index R from the notation when there is no possible confusion.
Because there is a natural morphism from Chow-Witt groups (twisted by any line bundle)

to Chow groups, we get a canonical map:

(1.1.1.b) πXY : c̃(X,Y )→ c(X,Y )

for any smooth schemes X and Y , where the right hand side is the group of Voevodsky’s
finite correspondences which is compatible to the composition — see loc. cit. Remark 4.12.
Let us recall the following result.

Lemma 1.1.2. If 2 ∈ R×, the induced map

πXY : c̃(X,Y )→ c(X,Y )

is a split epimorphism.

The lemma comes from the basic fact that the following composite map

KM
n (F )

(1)−−→ KMW
n (F,L)

(2)−−→ KM
n (F )

is multiplication by 2, where (1) is the map from Milnor K-theory of a field F to Milnor-Witt
K-theory of F twisted by the 1-dimensional F -vector space L described in [CF14, §1] and (2)
is the map killing η (see the discussion in loc. cit. after Definition 3.1).

Remark 1.1.3. (1) In fact, a finite MW-correspondence amounts to a finite correspon-
dence α together with a quadratic form over the function field of each irreducible
component of the support of α satisfying some condition related with residues; see
[CF14, Def. 4.6].

(2) Every finite MW-correspondence between smooth schemes X and Y has a well defined
support ([CF14, Definition 4.6]). Roughly speaking, it is the minimal closed subset of
X × Y on which the correspondence is defined.

(3) Recall that the Chow-Witt group in degree n of a smooth k-scheme X can be defined
as the n-th Nisnevich cohomology group of the n-th unramified Milnor-Witt sheaf
KMW
n (this cohomology being computed using an explicit flabby resolution of KMW

n ).
This implies that the definition can be uniquely extended to the case where X is an
essentially smooth k-scheme. Accordingly, one can extend the definition of finite MW-
correspondences to the case of essentially smooth k-schemes using formula (1.1.1.a).
The definition of composition obviously extends to that generalized setting. We will
use that fact in the proof of Lemma 1.2.6.
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(4) Consider the notations of the previous point. Assume that the essentially smooth k-
scheme X is the projective limit of a projective system of essentially smooth k-schemes
(Xi)i∈I . Then the canonical map:(

lim−→i∈Iop c̃(Xi, Y )
)
−→ c̃(X,Y )

is an isomorphism. This readily follows from formula (1.1.1.a) and the fact that Chow-
Witt groups, as Nisnevich cohomology, commute with projective limits of schemes.
See also [CF14, §5.1] for an extended discussion of these facts.

(5) For any smooth schemes X and Y , the group c̃(X,Y ) is endowed with a structure of a
left KMW

0 (X)-module and a right KMW
0 (Y )-module ([CF14, Example 4.10]). Pulling

back along X → Spec k, it follows that c̃(X,Y ) is a left KMW
0 (k)-module and it is

readily verified that the category C̃ork is in fact KMW
0 (k)-linear. Consequently, we

can also consider KMW
0 (k)-algebras as coefficient rings.

1.1.4. Recall from loc. cit. that there is a composition product of MW-correspondences
which is compatible with the projection map πXY .

Definition 1.1.5. We denote by C̃ork (resp. Cork) the additive category whose objects are
smooth schemes and morphisms are finite MW-correspondences (resp. correspondences). If

R is a ring, we let C̃ork,R (resp. Cork,R) be the category C̃ork ⊗Z R (resp. Cork ⊗Z R).
We denote by

(1.1.5.a) π : C̃ork → Cork

the additive functor which is the identity on objects and the map πXY on morphisms.

As a corollary of the above lemma, the induced functor

π : C̃ork,R → Cork,R,

is full when 2 ∈ R×. Note that the corresponding result without inverting 2 is wrong by
[CF14, Remark 4.15].

1.1.6. The external product of finite MW-correspondences induces a symmetric monoidal

structure on C̃ork which on objects is given by the cartesian product of k-schemes. One can
check that the functor π is symmetric monoidal, for the usual symmetric monoidal structure
on the category Cork.

Finally, the graph of any morphism f : X → Y can be seen not only as a finite correspon-
dence γ(f) from X to Y but also as a finite MW-correspondence γ̃(f) such that πγ̃(f) = γ(f).
One obtains in this way a canonical functor:

(1.1.6.a) γ̃ : Smk → C̃ork

which is faithful, symmetric monoidal, and such that π ◦ γ̃ = γ.

1.2. MW-transfers.

Definition 1.2.1. We let P̃Sh(k,R) (resp. PShtr(k,R), resp. PSh(k,R)) be the category of

additive presheaves of R-modules on C̃ork (resp. Cork, resp. Smk). Objects of P̃Sh(k,R) will
be simply called MW-presheaves.

Definition 1.2.2. We denote by c̃R(X) the representable presheaf Y 7→ c̃(Y,X) ⊗Z R. As
usual, we also write c̃(X) in place of c̃R(X) in case the context is clear.
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The category of MW-presheaves is an abelian Grothendieck category.1 It admits a unique
symmetric monoidal structure such that the Yoneda embedding

C̃ork → P̃Sh(k,R), X 7→ c̃(X)

is symmetric monoidal (see e.g. [MVW06, Lecture 8]). From the functors (1.1.5.a) and
(1.1.6.a), we derive as usual adjunctions of categories:

PSh(k,R)
γ̃∗ //

P̃Sh(k,R)
π∗ //

γ̃∗
oo PShtr(k,R)

π∗
oo

such that γ̃∗(F ) = F ◦ γ̃, π∗(F ) = F ◦ π. The left adjoints γ̃∗ and π∗ are easily described
as follows. For a smooth scheme X, let R(X) be the presheaf (of abelian groups) such
that R(X)(Y ) is the free R-module generated by Hom(Y,X) for any smooth scheme Y .
The Yoneda embedding yields HomPSh(k,R)(R(X), F ) = F (X) for any presheaf F , and in
particular

HomPSh(k,R)(R(X), γ̃∗(F )) = F (X) = Hom
P̃Sh(k,R)

(c̃R(X), F )

for any F ∈ P̃Sh(k,R). We can thus set γ̃∗(R(X)) = c̃R(X). On the other hand, suppose
that

F1 → F2 → F3 → 0

is an exact sequence in PSh(k,R). The functor HomPSh(k,R)( , F ) being left exact for any
F ∈ PSh(k,R), we find an exact sequence of presheaves

0→ HomPSh(k,R)(F3, γ̃∗(G))→ HomPSh(k,R)(F2, γ̃∗(G))→ HomPSh(k,R)(F1, γ̃∗(G))

for any G ∈ P̃Sh(k,R) and by adjunction an exact sequence

0→ HomPSh(k,R)(γ̃
∗(F3), G)→ HomPSh(k,R)(γ̃

∗(F2), G)→ HomPSh(k,R)(γ̃
∗(F1), G)

showing that γ̃∗(F3) is determined by γ̃∗(F2) and γ̃∗(F1), i.e. that the sequence

γ̃∗(F1)→ γ̃∗(F2)→ γ̃∗(F3)→ 0

is exact. This gives the following formula. If F is a presheaf, we can choose a resolution by
(infinite) direct sums of representable presheaves (e.g. [MVW06, proof of Lemma 8.1])

F1 → F2 → F → 0

and compute γ̃∗F as the cokernel of γ̃∗F1 → γ̃∗F2. We let the reader define γ̃∗ on mor-
phisms and check that it is independent (up to unique isomorphisms) of choices. A similar
construction works for π∗. Note that the left adjoints γ̃∗ and π∗ are symmetric monoidal and
right-exact.

Lemma 1.2.3. The functors γ̃∗ and π∗ are faithful. If 2 is invertible in the ring R then the
functor π∗ is also full.

1Recall that an abelian category is called Grothendieck abelian if it admits a family of generators, admits
small sums and filtered colimits are exact. The category of presheaves over any essentially small category S
with values in a the category of R-modules is a basic example of Grothendieck abelian category. In fact, it
is generated by representable presheaves of R-modules. The existence of small sums is obvious and the fact
filtered colimits are exact can be reduced to the similar fact for the category of R-modules by taking global
sections over objects of S .
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Proof. The faithfulness of both γ̃∗ and π∗ are obvious. To prove the second assertion, we
use the fact that the map (1.1.1.b) from finite MW-correspondences to correspondences is
surjective after inverting 2 (Lemma 1.1.2). In particular, given a MW-presheaf F , the property
F = π∗(F0) is equivalent to the property on F that for any α, α′ ∈ c̃(X,Y ) with π(α) = π(α′)
then F (α) = F (α′). Then it is clear that a natural transformation between two presheaves
with transfers F0 and G0 is the same thing as a natural transformation between F0 ◦ π and
G0 ◦ π. �

Definition 1.2.4. We define a MW-t-sheaf (resp. t-sheaf with transfers) to be a presheaf
with MW-transfers (resp. with transfers) F such that γ̃∗(F ) = F ◦ γ̃ (resp. F ◦ γ) is a sheaf
for the given topology t. When t is the Nisnevich topology, we will simply say MW-sheaf and
when t is the étale topology we will say étale MW-sheaf.

We denote by S̃ht(k,R) the category of MW-t-sheaves, seen as a full subcategory of the

R-linear category P̃Sh(k,R). When t is the Nisnevich topology, we drop the index in this
notation.

Note that there is an obvious forgetful functor

Õt : S̃ht(k,R)→ P̃Sh(k,R) (resp. Otr
t : Shtr

t (k,R)→ PShtr(k,R))

which is fully faithful. In what follows, we will drop the indication of the topology t in the
above functors, as well as their adjoints.

Example 1.2.5. Given a smooth scheme X, the presheaf c̃(X) is in general not a MW-sheaf
(see [CF14, 5.12]). Note however that c̃(Spec k) is the unramified 0-th Milnor-Witt sheaf
KMW

0 (defined in [Mor12, §3]) by loc. cit. Ex. 4.4.

As in the case of the theory developed by Voevodsky, the theory of MW-sheaves rely on the
following fundamental lemma, whose proof is adapted from Voevodsky’s original argument.

Lemma 1.2.6. Let X be a smooth scheme and p : U → X be a t-cover where t is the
Nisnevich or the étale topology.

Then the following complex

. . .
dn−−−→ c̃(UnX) −→ . . . −→ c̃(U ×X U)

d1−−→ c̃(U)
d0−−→ c̃(X)→ 0

where dn is the differential associated with the Čech simplicial scheme of U/X, is exact on
the associated t-sheaves.

Proof. We have to prove that the fiber of the above complex at a t-point is an acyclic complex
of R-modules. Taking into account Remark 1.1.3(4), we are reduced to prove, given an
essentially smooth local henselian scheme S, that the following complex

C∗ := . . .
dn−−−→ c̃(S,UnX) −→ . . . −→ c̃(S,U ×X U)

d1−−→ c̃(S,U)
d0−−→ c̃(S,X)→ 0

is acyclic.
Let A = A(S,X) be the set of admissible subsets in S×X ([CF14, Definition 4.1]). Given

any T ∈ A, and an integer n ≥ 0, we let C
(T )
n be the subgroup of c̃(S,UnX) consisting of

MW-correspondences whose support is in the closed subset UnT := T ×X UnX of S × UnX . The
differentials are given by direct images along projections so they respect the support condition

on MW-correspondence associated with T ∈ F and make C
(T )
∗ into a subcomplex of C∗.

It is clear that C∗ is the filtering union of the subcomplexes C
(T )
∗ for T ∈ F so it suffices

to prove that, for a given T ∈ F , the complex C
(T )
∗ is split. We prove the result when R = Z,
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the general statement follows after tensoring with R. Because S is henselian and T is finite
over S, the scheme T is a finite sum of local henselian schemes. Consequently, the t-cover
pT : UT → T , which is in particular étale and surjective, admits a splitting s. It follows from
[Mil12, Proposition 2.15] that s is an isomorphism onto a connected component of UT . We
therefore obtain maps s× 1Un

T
: UnT → Un+1

T such that Un+1
T = UnT tD

n+1
T for any n ≥ 0 and

a commutative diagram

UnT

��

// (S × Un+1
X ) \Dn+1

T

��
Un+1
T

//

��

S × Un+1
X

��
UnT

// S × UnX
in which the squares are Cartesian and the right-hand vertical maps are étale. By étale
excision, we get isomorphisms

C̃H
∗
Un
T

(S × UnX , ωUn
X

)→ C̃H
∗
Un
T

((S × Un+1
X ) \Dn+1

T , ωUn+1
X

)

and

C̃H
∗
Un
T

(S × Un+1
X , ωUn+1

X
)→ C̃H

∗
Un
T

((S × Un+1
X ) \Dn+1

T , ωUn+1
X

).

Putting these isomorphisms together, we obtain an isomorphism

C̃H
∗
Un
T

(S × UnX , ωUn
X

)→ C̃H
∗
Un
T

(S × Un+1
X , ωUn+1

X
)

that we can compose with the extension of support to finally obtain a homomorphism

(s× 1Un
T

)∗ : C̃H
∗
Un
T

(S × UnX , ωUn
X

)→ C̃H
∗
Un+1
T

(S × Un+1
X , ωUn+1

X
)

yielding a contracting homotopy

(s× 1Un
T

)∗ : C(T )
n → C

(T )
n+1.

�

1.2.7. As in the classical case, one can derive from this lemma the existence of a left adjoint
ã to the functor Õ. The proof is exactly the same as in the case of sheaves with transfers (cf.
[CD09b, 10.3.9] for example) but we include it here for the convenience of the reader.

Let us introduce a notation. If P is a presheaf on Smk, we define a presheaf with transfers

(1.2.7.a) γ̃!(P ) : Y 7→ HomPSh(k,R)(γ̃∗(c̃(Y )), P ).

and we observe that γ̃! is right adjoint to the functor γ̃∗. The latter, having both a left and
a right adjoint, is then exact. Given a natural transformation

φ : P → γ̃∗γ̃
!(P )

and smooth schemes X and Y , we define a pairing

P (X)× c̃(Y,X)→ P (Y ), (ρ, α) 7→ 〈ρ, α〉φ := [φX(ρ)]Y (α)

where φX(ρ) is seen as a natural transformation c̃(X) → P . The following lemma is tauto-
logical.
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Lemma 1.2.8. Let P be a presheaf on Smk. Then there is a bijection between the following
data:

• Presheaves with transfers P̃ such that γ̃∗(P̃ ) = P ;
• Natural transformations φ : P → γ̃∗γ̃

!(P ) such that:
(W1) ∀ρ ∈ P (X), 〈ρ, IdX〉φ = ρ.
(W2) ∀(ρ, β, α) ∈ P (X)× c̃(Y,X)× c̃(Z, Y ), 〈〈ρ, β〉φ, α〉φ = 〈ρ, β ◦ α〉φ;

according to the following rules:

P̃ 7→
(
P = γ̃∗(P̃ )

ad′−−→ γ̃∗γ̃
!γ̃∗(P̃ ) = γ̃∗γ̃

!(P )
)

(P, 〈., α〉φ)←[ φ,

where ad′ is the unit map for the adjunction (γ̃∗, γ̃
!).

Before going further, we note the following corollary of the previous result.

Corollary 1.2.9. (1) For any t-sheaf F on Smk, γ̃!(F ) is a MW-t-sheaf.
(2) Let α ∈ c̃(X,Y ) be a finite MW-correspondence and p : W → Y a t-cover. Then there

exists a t-cover q : W ′ → X and a finite MW-correspondence α̂ : W ′ → W such that
the following diagram commutes:

W ′
α̂ //• //

q
��

W

p
��

X α
//• // Y

(1.2.9.a)

The first property is a direct consequence of Lemma 1.2.6 given Formula (1.2.7.a). The
second property is an application of the fact that c̃(W )→ c̃(X) is an epimorphism of sheaves,
obtained from the same proposition.

We are ready to state and prove the main lemma which proves the existence of the right
adjoint ã to Õ.

Lemma 1.2.10. Let P̃ be a MW-presheaf and P := γ̃∗(P̃ ). Let F be the t-sheaf associated
with P and let τ : P → F be the canonical natural transformation.

Then there exists a unique pair (F̃ , τ̃) such that:

(1) F̃ is a MW-t-sheaf such that γ̃∗(F̃ ) = F .

(2) τ̃ : P̃ → F̃ is a natural transformation of MW-presheaves such that the induced
transformation

P = γ̃∗(P̃ )
γ̃∗(τ̃)−−−→ γ̃∗(F̃ ) = F

coincides with τ .

Proof. Let us construct F̃ . Applying Lemma 1.2.8 to P̃ and P , we get a canonical natural
transformation: ψ : P → γ̃∗γ̃

!(P ). Applying point (1) of Corollary 1.2.9 and the fact that
F is the t-sheaf associated with P , there exists a unique natural transformation φ which fits
into the following commutative diagram:

P
ψ //

τ
��

γ̃∗γ̃
!(P )

γ̃∗γ̃!(τ)
��

F
φ
// γ̃∗γ̃

!(F ).
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To obtain the MW-sheaf F̃ satisfying (1), it is sufficient according to Lemma 1.2.8 to prove
that conditions (W1) and (W2) are satisfied for the pairing 〈., .〉φ. Before proving this, we
note that the existence of τ̃ satisfying property (2) is equivalent to the commutativity of the

above diagram. In particular, the unicity of (F̃ , τ̃) comes from the unicity of the map φ.
Therefore, we only need to prove (W1) and (W2) for φ. Consider a couple (ρ, α) ∈ F (X)×

c̃(Y,X). Because F is the t-sheaf associated with P , there exists a t-cover p : W → X and
a section ρ̂ ∈ P (W ) such that p∗(ρ) = τW (ρ̂). According to point (2) of Corollary 1.2.9, we
get a t-cover q : W ′ → Y and a correspondence α̂ ∈ c̃(W ′,W ) making the diagram (1.2.9.a)
commutative. As φ is a natural transformation, we get

q∗〈ρ, α〉φ = 〈ρ, α ◦ q〉φ = 〈ρ, p ◦ α̂〉φ = 〈p∗ρ, α̂〉φ = 〈τW (ρ̂), α̂〉φ = 〈ρ̂, α̂〉ψ.
Because q∗ : F (X) → F (W ) is injective, we deduce easily from this principle the properties
(W1) and (W2) for φ from their analog properties for ψ. �

Proposition 1.2.11. (1) The obvious forgetful functor Õ : S̃ht(k,R) → P̃Sh(k,R) ad-
mits a left adjoint ã such that the following diagram commutes:

PSh(k,R)

a
��

P̃Sh(k,R)

ã��

γ̃∗oo

Sht(k,R) S̃ht(k,R)
γ̃∗oo

where a is the usual t-sheafification functor with respect to the smooth site.

(2) The category S̃ht(k,R) is a Grothendieck abelian category and the functor ã is exact.
(3) The functor γ̃∗, appearing in the lower line of the preceding diagram, admits a left

adjoint γ̃∗, and commutes with every limit and colimit.

Proof. The first point follows directly from the previous lemma: indeed, with the notation of
this lemma, we can put: ã(P ) = F̃ .

For point (2), we first remark that the functor ã, being a left adjoint, commutes with

every colimit. Moreover, the functor a is exact and γ̃∗ : P̃Sh(k,R)→ PSh(k,R) is also exact
(Paragraph 1.2.7). Therefore, ã is exact because of the previous commutative square and

the fact that γ̃∗ is faithful. Then, we easily deduce that S̃ht(k,R) is a Grothendieck abelian

category from the fact that P̃Sh(k,R) is such a category.
The existence of the left adjoint γ̃∗ follows formally. Thus γ̃∗ commutes with every limit.

Because γ̃∗ is exact and commutes with arbitrary coproducts, we deduce that it commutes
with arbitrary colimits, therefore proving point (3). �

Remark 1.2.12. The left adjoint γ̃∗ of γ̃∗ : S̃ht(k,R) → Sht(k,R) can be computed as the
composite

Sht(k,R)
O→ PSh(k,R)

γ̃∗→ P̃Sh(k,R)
ã→ S̃ht(k,R).

One can also observe that, according to point (2), a family of generators of the Grothendieck

abelian category S̃ht(k,R) is obtained by applying the functor ã to a family of generators of

P̃Sh(k,R).

Definition 1.2.13. Given any smooth scheme X, we put R̃t(X) = ã (c̃(X)).

In particular, for a smooth scheme X, R̃t(X) is the t-sheaf associated with the presheaf
c̃(X), equipped with its canonical action of MW-correspondences (Lemma 1.2.10). The cor-

responding family, for all smooth schemes X, generates the abelian category S̃ht(k,R).
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1.2.14. One deduces from the monoidal structure on C̃ork a monoidal structure on S̃ht(k,R)
whose tensor product ⊗̃ is uniquely characterized by the property that for any smooth schemes
X and Y :

(1.2.14.a) R̃t(X) ⊗̃ R̃t(Y ) = R̃t(X × Y ).

Explicitly, the tensor product of any two sheaves F,G ∈ S̃ht(k,R) is obtained by applying
ã to the presheaf tensor product F ⊗ G mentioned after Definition 1.2.2. In particular, the

bifunctor ⊗̃ commutes with colimits and therefore, as the abelian category S̃ht(k,R) is a

Grothendieck abelian category, the monoidal category S̃ht(k,R) is closed. The internal Hom
functor is characterized by the property that for any MW-t-sheaf F and any smooth scheme
X,

Hom
(
R̃t(X), F

)
= F (X ×−).

As a corollary of Proposition 1.2.11, we obtain functors between the category of sheaves
we have considered so far.

Corollary 1.2.15. (1) There exists a commutative diagram of symmetric monoidal func-
tors

PSh(k,R)

γ̃∗

��

aNis // ShNis(k,R)

γ̃∗Nis
��

aét // Shét(k,R)

γ̃∗ét
��

P̃Sh(k,R)

π∗

��

ãNis // S̃hNis(k,R)

π∗Nis

��

ãét // S̃hét(k,R)

π∗ét

��
PShtr(k,R)

atrNis // Shtr
Nis(k,R)

atrét // Shtr
ét(k,R)

which are all left adjoints of an obvious forgetful functor. Each of these functors
respects the canonical family of abelian generators.

(2) Let t = Nis, ét. Then the right adjoint functor γ̃t∗ : S̃ht(k,R) → Sht(k,R) is faithful.

If 2 is invertible in R, the right adjoint functor πt∗ : Shtr
t (k,R) → S̃ht(k,R) is fully

faithful.

Indeed, the first point is a formal consequence of Proposition 1.2.11 and its analog for
sheaves with transfers. The second point follows from the commutativity of the diagram in
point (1), which induces an obvious commutative diagram for the right adjoint functors, the
fact that the forgetful functor from sheaves to presheaves is always fully faithful and Lemma
1.2.3.

2. Framed correspondences

2.1. Definitions and basic properties. The aim of this section is to make a link between
the category of linear framed correspondences (after Garkusha-Panin-Voevodsky) and the
category of MW-presheaves. We start with a quick reminder on framed correspondences
following [GP14].

Definition 2.1.1. Let U be a smooth k-scheme and Z ⊂ U be a closed subset of codimension
n. A set of regular functions φ1, . . . , φn ∈ k[U ] is called a framing of Z in U if Z coincides
with the closed subset φ1 = . . . = φn = 0.
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Definition 2.1.2. Let X and Y be smooth k-schemes, and let n ∈ N be an integer. An
explicit framed correspondence c = (U, φ, f) of level n from X to Y consists of the following
data:

(1) A closed subset Z ⊂ AnX which is finite over X (here, Z is endowed with its reduced
structure).

(2) An étale neighborhood α : U → AnX of Z.
(3) A framing φ = (φ1, . . . , φn) of Z in U .
(4) A morphism f : U → Y .

The closed subset Z is called the support of the explicit framed correspondence c = (U, φ, f).

Remark 2.1.3. One could give an alternative approach to the above definition. A framed
correspondence (U, φ, f) corresponds to a pair of morphisms φ : U → Ank and f : U → Y
yielding a unique morphism ϕ : U → AnY . The closed subset Z ⊂ U corresponds to the
preimage of Y × {0} ⊂ Y × Ank = AnY . This correspondence is unique.

Remark 2.1.4. Note that Z is not supposed to map surjectively onto a component of X.
For instance Z = ∅ is an explicit framed correspondence of level n, denoted by 0n. If Z is
non-empty, then an easy dimension count shows that Z ⊂ AnX → X is indeed surjective onto
a component of X.

Remark 2.1.5. Suppose that X is a smooth connected scheme. By definition, an explicit
framed correspondence of level n = 0 is either a morphism of schemes f : X → Y or 00.

Definition 2.1.6. Let c = (U, φ, f) and c′ = (U ′, φ′, f ′) be two explicit framed correspon-
dences of level n ≥ 0. Then, c and c′ are said to be equivalent if they have the same support
and there exists an open neighborhood V of Z in U ×An

X
U ′ such that the diagrams

U ×An
X
U ′ //

��

U ′

f ′

��
U

f
// Y

and
U ×An

X
U ′ //

��

U ′

φ′

��
U

φ
// Ank

are both commutative when restricted to V . A framed correspondence of level n is an equiv-
alence class of explicit framed correspondences of level n.

Definition 2.1.7. Let X and Y be smooth schemes and let n ∈ N. We denote by Frn(X,Y )
the set of framed correspondences of level n fromX to Y and by Fr∗(X,Y ) the set tnFrn(X,Y ).
Together with the composition of framed correspondences described in [GP14, §2], this defines
a category whose objects are smooth schemes and morphisms are Fr∗( , ). We denote this
category by Fr∗(k) and refer to it as the category of framed correspondences.

We now pass to the linear version of the above category following [GP14, §7], starting with
the following observation. Let X and Y be smooth schemes, and let cZ = (U, φ, f) be an
explicit framed correspondence of level n from X to Y with support Z of the form Z = Z1tZ2.
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Let U1 = U \ Z2 and U2 = U \ Z1. For i = 1, 2, we get étale morphisms αi : Ui → X and
morphisms φi : Ui → Ank , fi : Ui → Y by precomposing the morphisms α, φ and f with the
open immersion Ui → U . Note that Ui is an étale neighborhood of Zi for i = 1, 2 and that
cZi = (Ui, φi, fi) are explicit framed correspondences of level n from X to Y with support Zi.

Definition 2.1.8. Let X and Y be smooth schemes and let n ∈ N. Let

ZFn(X,Y ) = ZFrn(X,Y )/H

where H is the subgroup generated by elements of the form cZ − cZ1 − cZ2 where Z = Z1tZ2

is as above and ZFrn(X,Y ) is the free abelian group on Frn(X,Y ). The category ZF∗(k) of
linear framed correspondences is the category whose objects are smooth schemes and whose
morphisms are

HomZF∗(k)(X,Y ) =
⊕
n∈N

ZFrn(X,Y ).

Remark 2.1.9. Note that there is an obvious functor ι : Fr∗(k) → ZF∗(k) with ι(0n) = 0 for
any n ∈ N.

The stage being set, we now compare the category of finite MW-correspondences with the
above categories.

Let U be a smooth k-scheme and let φ : U → Ank be a morphism corresponding to (nonzero)
global sections φi ∈ O(U). Each section φi can be seen as an element of k(U)× and defines
then an element of KMW

1 (k(U)). Let |φi| be the support of fi, i.e. its vanishing locus, and let
Z = |φ1| ∩ . . . ∩ |φn|. Consider the residue map

d : KMW
1 (k(U))→

⊕
x∈U(1)

KMW
0 (k(x), ωx).

Then, d(φi) defines an element supported on |φi|. As it is a boundary, it defines a cycle
Z(φi) ∈ H1

|φi|(U,K
MW
1 ). Now, we can consider the intersection product

H1
|φ1|(U,K

MW
1 )× . . .×H1

|φn|(U,K
MW
1 )→ Hn

Z(U,KMW
n )

to get an element Z(φ1) · . . . · Z(φn) that we denote by Z(φ).

Lemma 2.1.10. Any explicit framed correspondence c = (U, φ, f) induces a finite MW-
correspondence α(c) from X to Y . Moreover, two equivalent explicit framed correspondences
c and c′ induce the same finite MW-correspondence.

Proof. Let us start with the first assertion. If Z is empty, its image is defined to be zero. If c is

of level 0, then it corresponds to a morphism of schemes and we use the functor Smk → C̃ork
to define the image of c. We thus suppose that Z is non-empty (thus finite and surjective on
some components of X) of level n ≥ 1. Consider the following diagram

U

α

��

(φ,f) // AnY

Z //

??

AnX
pX
��
X
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defining an explicit framed correspondence (U, φ, f) of level n. The framing φ defines an
element Z(φ) ∈ Hn

Z(U,KMW
n ) as explained above. Now, α is étale and therefore induces an

isomorphism α∗ωAn
X
' ωU . Choosing the usual orientation for Ank , we get an isomorphism

OAn
X
' ωAn

X
⊗ (pX)∗ω∨X and therefore an isomorphism

OU ' α∗(OAn
X

) ' α∗(ωAn
X
⊗ p∗Xω∨X) ' ωU ⊗ (pXα)∗ω∨X .

We can then see Z(φ) as an element of the group Hn
Z(U,KMW

n , ωU ⊗ (pXα)∗ω∨X). Consider
next the map (pXα, f) : U → X × Y and the image T of Z under the map of underlying
topological spaces. It follows from [MVW06, Lemma 1.4] that T is closed, finite and surjective
over (some components of) X. Moreover, the morphism Z → T is finite and it follows that
we have a push-forward homomorphism

(pXα, f)∗ : Hn
Z(U,KMW

n , ωU ⊗ (pXα)∗ω∨X)→ Hn
T (X × Y,KMW

n , ωX×Y/X)

yielding, together with the canonical isomorphism ωX×Y/X ' ωY , a finite Chow-Witt corre-
spondence α(c) := (pXα, f)∗(Z(φ)) between X and Y .

Suppose next that c = (U, φ, f) and c′ = (U ′, φ′, f ′) are two equivalent explicit framed
correspondences of level n. Following the above construction, we obtain two cocycles α̃(c) ∈
Hn
Z(U,KMW

n , ωU ⊗ (pXα)∗ω∨X) and α̃(c′) ∈ Hn
Z(U ′,KMW

n , ωU ′ ⊗ (pXα
′)∗ω∨X). Now, the pull-

backs along the projections

U ×An
X
U ′

p2 //

p1

��

U ′

U

yield homomorphisms

p∗1 : Hn
Z(U,KMW

n , ωU ⊗ (pXα)∗ω∨X) ' Hn
p−1

1 (Z)
(U ×An

X
U ′,KMW

n , ωU×An
X
U ′ ⊗ (pXαp1)∗ω∨X)

and

p∗2 : Hn
Z(U ′,KMW

n , ωU ′ ⊗ (pXα
′)∗ω∨X) ' Hn

p−1
2 (Z)

(U ×An
X
U ′,KMW

n , ωU×An
X
U ′ ⊗ (pXαp2)∗ω∨X),

while the pull-back along the open immersion i : V → U ×An
X
U ′ induces homomorphisms

i∗ : Hn
p−1

1 (Z)
(U ×An

X
U ′,KMW

n , ωU×An
X
U ′ ⊗ (pXαp1)∗ω∨X) ' Hn

Z(V,KMW
n , ωV ⊗ (pXαp1i)

∗ω∨X)

and

i∗ : Hn
p−1

2 (Z)
(U ×An

X
U ′,KMW

n , ωU×An
X
U ′ ⊗ (pXαp2)∗ω∨X) ' Hn

Z(V,KMW
n , ωV ⊗ (pXαp2i)

∗ω∨X).

Note that pXαp2 = pXαp1 and that i∗p∗1(α̃(c)) = i∗p∗2(α̃(c′)) by construction. Pushing forward
along V → U ×An

X
U ′ → U → X × Y , we get the result. �

Example 2.1.11. Let X be a smooth k-scheme. Consider the explicit framed correspondence
σX of level 1 from X to X given by (A1

X , q, pX) where q : A1
X = A1×X → A1 is the projection

to the first factor and pX : A1
X → X is the projection to the second factor. We claim that

α(σX) = Id ∈ C̃ork(X,X). To see this, observe that we have a commutative diagram

A1
X

(pX ,pX)//

pX
��

X ×X

X

4

;;
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where4 is the diagonal map. Following the process of the above lemma, we start by observing
that Z(q) ∈ H1

X(A1
X ,K

MW
1 ) is the class of 〈1〉 ⊗ t ∈ KMW

0 (k(X), (m/m2)∗) where m is the
maximal ideal corresponding to X in the appropriate local ring and t is a coordinate of A1.
Now, we choose the canonical orientation of A1 and the class of Z(q) corresponds then to the
class of 〈1〉 ∈ KMW

0 (k(X)) in H1
X(A1

X ,K
MW
1 , ω(A1

X/X)). Its push-forward under

(pX)∗ : H1
X(A1

X ,K
MW
1 , ω(A1

X/X))→ H0(X,KMW
0 )

is the class of 〈1〉 and the claim follows from the fact that (pX , pX)∗ = 4∗(pX)∗ and the

definition of the identity in C̃ork(X,X).

Proposition 2.1.12. The assignment c = (U, φ, f) 7→ α(c) made explicit in Lemma 2.1.10

define functors α : Fr∗(k)→ C̃ork and α′ : ZF∗(k)→ C̃ork such that we have a commutative
diagram of functors

Fr∗(k)

α

��

ι

$$
Smk

;;

γ̃ ##

ZF∗(k)

α′zz

C̃ork.

Proof. For any smooth schemes X,Y and any integer n ≥ 0, we have a well-defined map

α : Frn(X,Y ) → C̃ork(X,Y ) and therefore a well-defined map ZFrn(X,Y ) → C̃ork(X,Y ).
Let c = (U, φ, f) be an explicit framed correspondence of level n with support Z of the form
Z = Z1 t Z2. Let ci = (Ui, φi, fi) be the explicit framed correspondences with support Zi
obtained as in Definition 2.1.8. By construction, we get α(c) = α(c1) + α(c2) and it follows

that α : Frn(X,Y )→ C̃ork(X,Y ) induces a homomorphism α′ : ZFn(X,Y )→ C̃ork(X,Y ).

It remains then to show that the functors α : Frk → C̃ork and α′ : ZF∗(k)→ C̃ork are well-
defined, which amounts to prove that the respective compositions are preserved. Suppose
then that (U, φ, f) is an explicit framed correspondence of level n between X and Y , and
that (V, ψ, g) is an explicit framed correspondence of level m between Y and Z. We use the
diagram

(2.1.12.a) W
prV //

��
prU

%%

V

β

��

ψ //

g
,,

Am

U × Am
f×Id

//

��

Y × Am

pY
��

Z

U
f

//

pXα

��
φ //

Y

X An

in which the squares are all cartesian. The composition of (U, φ, f) with (V, ψ, g) is given by
(W, (φ ◦ prU , ψ ◦ prV ), g ◦ prV ).
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On the other hand, the morphisms (pXα, f) ◦ prU : W → X × Y and (pY β, g) ◦ prV : W →
Y × Z yield a morphism ρ : W → X × Y × Z and then a diagram

(2.1.12.b) W
prV //

ρ

��

V

(pY β,g)

��
W

ρ //

prU

��

X × Y × Z
pX×Y

��

pY×Z // Y × Z

��
U

(pXα,f)
// X × Y // Y

in which all squares are cartesian. By base change ([CF14, Proposition 3.2, Remark 3.3]), we
have (pX×Y )∗(pXα, f)∗ = ρ∗(prU )∗ and (pY×Z)∗(pY β, g)∗ = ρ∗(prV )∗. By definition of the
pull-back and the product, we have (prU )∗(Z(φ)) = Z(φ◦prU ) and (prV )∗(Z(ψ)) = Z(ψ◦prV ).
It follows that

Z(φ ◦ prU , ψ ◦ prV ) = (prU )∗(Z(φ)) · (prV )∗(Z(ψ)).

Finally, observe that there is a commutative diagram

W
g◦prV // Z

W
ρ // X × Y × Z

pX×Z // X × Z

��

OO

W
pX◦α◦prU

// X.

Using these ingredients, we see that the composition is preserved. �

Remark 2.1.13. Note that the functor α′ : ZF∗(k)→ C̃ork is additive. It follows from Example
2.1.11 that it is not faithful.

2.2. Presheaves. Let X be a smooth scheme. Recall from Example 2.1.11 that we have for
any smooth scheme X an explicit framed correspondence σX of level 1 given by the triple
(A1

X , q, pX) where q and pX are respectively the projections onto A1
k and X. The following

definition can be found in [GP15, §1].

Definition 2.2.1. Let R be a ring. A presheaf of R-modules F on ZF∗(k) is quasi-stable if
for any smooth scheme X, the pull-back map F (σX) : F (X) → F (X) is an isomorphism. A
quasi-stable presheaf is stable if F (σX) : F (X) → F (X) is the identity map for any X. We
denote by PShFr(k,R) the category of presheaves on ZF∗(k), by QPShFr(k,R) the category
of quasi-stable presheaves on ZF∗(k) and by SPShFr(k,R) the category of stable presheaves.

Now, the functor α′ : ZF∗(k) → C̃ork induces a functor P̃Sh(k,R) → PShFr(k,R). By
Example 2.1.11, this functor induces a functor

(α′)∗ : P̃Sh(k,R)→ SPShFr(k,R).

Recall next that a presheaf F on Smk is A1-invariant if the map F (X)→ F (X×A1) induced by
the projection X×A1 → X is an isomorphism for any smooth scheme X. A Nisnevich sheaf of
abelian groups F is strictly A1-invariant if the homomorphisms Hi

Nis(X,F )→ Hi
Nis(X×A1, F )

induced by the projection are isomorphisms for i ≥ 0.
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We can now state the main theorem of [GP15].

Theorem 2.2.2. Let F be an A1-invariant quasi-stable ZF∗(k)-presheaf of R-modules F .

(1) If the base field k is infinite, the associated Nisnevich sheaf FNis of R-modules is
A1-invariant and quasi-stable.

(2) Assume the base field k is infinite and perfect and the presheaf of R-modules F is in
addition a Nisnevich sheaf. Then F is strictly A1-invariant, as a Nisnevich sheaf of
R-modules.

Proof. These results are proved in [GP15] in the case where R = Z but we can deduce from
the latter the case of an arbitrary ring of coefficients, simply by forgetting the scalars. Let us
give the details below.

Let ϕ : Z→ R be the unique morphism of rings attached with the ring R. We will consider
the restriction of scalars functor

ϕ∗ : R−mod→ Z−mod.

As this functor admits both a left and a right adjoint (extension of scalars and coinduced
module), it commutes with every limits and colimits. Besides, it is conservative.

For any category S , one extends the functor ϕ∗ to presheaves on S by applying it term-
wise:

ϕ̂∗ : PSh(S , R)→ PSh(S ,Z).

By construction, for any object X of S and any presheaf F of R-modules, we have the
relation:

(2.2.2.a) Γ(X, ϕ̂∗F ) = ϕ∗(Γ(X,F )).

Suppose now that S is endowed with a Grothendieck topology. Then, as ϕ∗ is exact and
commutes with products, the functor ϕ̂∗ respects sheaves so that we get an induced functor:

ϕ̃∗ : Sh(S , R)→ Sh(S ,Z).

Then, using again the fact ϕ∗ commutes with colimits, and the classical formula defining the
associated sheaf functor a : PSh(S , ?)→ Sh(S , ?), we get, for any presheaf F of R-modules,
a canonical isomorphism:

(2.2.2.b) a
(
ϕ̂∗(F )

)
' ϕ̃∗a(F ).

The fact ϕ∗ is conservative together with relations (2.2.2.a) and (2.2.2.b) are sufficient to
prove assertion (1). Indeed, these facts imply that it is sufficient to check the A1-invariance
and quasi-stability of the presheaf ϕ̂∗(F ) to conclude.

Let us come back to the abstract situation to prove the remaining relation. Recall that one
can compute cohomology of an object X in S with coefficients in a sheaf F by considering
the colimit of the Čech cohomology of the various hypercovers of X. Thus, relation (2.2.2.a)
and the fact that ϕ∗ commutes with colimits and products implies that, for any integer n, we
get the following isomorphism of abelian groups, natural in X:

(2.2.2.c) Hn
(
X, ϕ̃∗(F )

)
' ϕ∗Hn

(
X,F ).

Therefore to prove assertion (2), using the latter relation and once again the fact ϕ∗ is
conservative, we are reduced to consider the sheaf ϕ̃∗(F ) of abelian groups, which as a presheaf
is just ϕ̂∗(F ). Using relation (2.2.2.a), the latter is A1-invariant and quasi-stable so that we
are indeed reduced to the case of abelian groups as expected. �
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Remark 2.2.3. It is worth to mention that the considerations of the preceding proof are part
of a standard machinery of changing coefficients for sheaves that can be applied in particular
in our context.

We left the exact formulation to the reader, but describe it in the general case of a morphism
of rings ϕ : R→ R′.

The restriction of scalars functor ϕ∗ together with its left adjoint ϕ∗ (extension of scalars)
and its right adjoint ϕ! (associated coinduced module), can be extended (using the arguments
of the preceding proof or similar arguments) to the category of MW -presheaves or MW -
sheaves as two pairs of adjoint functors, written for simplicity here by (ϕ∗, ϕ∗) and (ϕ∗, ϕ

!).
Note that the extended functor ϕ∗ will still be conservative and that the functor ϕ∗ will be
monoidal.

Moreover, using the definitions of the following section, the pair of adjoint functors (ϕ∗, ϕ∗)
will induce adjoint functors on the associated effective and stable A1-derived categories, such
that in particular the induced functor ϕ∗ is still conservative on DMeff(k,R) and DM(k,R).
Similarly the pair of adjoint functors (ϕ∗, ϕ

!) can also be derived. Such considerations have
been used for example in [CD16, §5.4].

3. MW-motivic complexes

3.1. Derived category. For any abelian category A, we denote by C(A) the category of
(possibly unbounded) complexes of objects of A and by K(A) the category of complexes with
morphisms up to homotopy. Finally, we denote by D(A) the derived category of C(A). We
refer to [Wei94, §10] for all these notions.

3.1.1. Recall from our notations that t is now either the Nisnevich or the étale topology.
As usual in motivic homotopy theory, our first task is to equip the category of complexes of

MW-t-sheaves with a good model structure. This is done using the method of [CD09a], thanks
to Lemma 1.2.6 and the fact that Sht(k,R) is a Grothendieck abelian category (Proposition
1.2.11(2)).

Except for one subtlety in the case of the étale topology, our construction is analogous to
that of sheaves with transfers. In particular, the proof of the main point is essentially an
adaptation of [CD09b, 5.1.26]. In order to make a short and streamlined proof, we first recall
a few facts from model category theory.

3.1.2. We will be using the adjunction of Grothendieck abelian categories:

γ̃∗ : Sht(k,R) � S̃ht(k,R) : γ̃∗

of Corollary 1.2.15. Recall from Lemma 1.2.3 that the functor γ̃∗ is conservative and exact.

First, there exists the so-called injective model structure on C(Sht(k,R)) and C(S̃ht(k,R))
which is defined such that the cofibrations are monomorphisms (thus every object is cofibrant)
and weak equivalences are quasi-isomorphisms (this is classical; see e.g. [CD09a, 2.1]). The
fibrant objects for this model structure are called injectively fibrant.

Second, there exists the t-descent model structure on the category C(Sht(k,R)) (see [CD09a,
Ex. 2.3]) characterized by the following properties:

• the class of cofibrations is given by the smallest class of morphisms of complexes closed
under suspensions, pushouts, transfinite compositions and retracts generated by the
inclusions

(3.1.2.a) Rt(X)→ C
(
Rt(X)

Id−→ Rt(X)
)
[−1]
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for a smooth scheme X, where Rt(X) is the free sheaf of R-modules on X.
• weak equivalences are quasi-isomorphisms.

Our aim is to obtain the same kind of model structure on the category C(S̃ht(k,R)) of
complexes of MW-t-sheaves. Let us recall from [CD09a] that one can describe nicely the
fibrant objects for the t-descent model structure. This relies on the following definition for a
complex K of t-sheaves:

• the complex K is local if for any smooth scheme X and any integer n ∈ Z, the
canonical map:

(3.1.2.b) Hn
(
K(X)

)
= HomK(Sht(k,R))(Rt(X),K[n])→ HomD(Sht(k,R))(Rt(X),K[n])

is an isomorphism;
• the complex K is t-flasque if for any smooth scheme X and any t-hypercover p : X →
X, the induced map:

(3.1.2.c)

Hn
(
K(X)

)
= HomK(Sht(k,R))(Rt(X),K[n])

p∗−→ HomK(Sht(k,R))(Rt(X ),K[n]) = Hn
(
K(X )

)
is an isomorphism.

Our reference for t-hypercovers is [DHI04]. Recall in particular that X is a simplicial
scheme whose terms are arbitrary direct sums of smooth schemes. Then the notation
Rt(X ) stands for the complex associated with the simplicial t-sheaves obtained by
applying the obvious extension of the functor Rt to the category of direct sums of
smooth schemes. Similarly, K(X ) is the total complex (with respect to products) of
the obvious double complex.

Then, let us state for further reference the following theorem ([CD09a, Theorem 2.5]).

Theorem 3.1.3. Let K be a complex of t-sheaves on the smooth site. Then the following
three properties on K are equivalent:

(i) K is fibrant for the t-descent model structure,
(ii) K is local,

(iii) K is t-flasque.

Under these equivalent conditions, we will say that K is t-fibrant.2

3.1.4. Consider now the case of MW-t-sheaves. We will define cofibrations in C(S̃ht(k,R))

as in the previous paragraph by replacing Rt by R̃t in (3.1.2.a), i.e. the cofibrations are the
morphisms in the smallest class of morphisms of complexes of MW-t-sheaves closed under
suspensions, pushouts, transfinite compositions and retracts generated by the inclusions

(3.1.4.a) R̃t(X)→ C
(
R̃t(X)

Id−→ R̃t(X)
)
[−1]

for a smooth scheme X. In particular, note that bounded above complexes of MW-t-sheaves
whose components are direct sums of sheaves of the form R̃t(X) are cofibrant. This is easily

seen by taking the push-out of (3.1.2.a) along the morphism R̃t(X)→ 0.

Similarly, a complex K in C(S̃ht(k,R)) will be called local (resp. t-flasque) if it satisfies
the definition in the preceding paragraph after replacing respectively Sht(k,R) and Rt by

S̃ht(k,R) and R̃t in (3.1.2.b) (resp. (3.1.2.c)).

2Moreover, fibrations for the t-descent model structure are epimorphisms of complexes whose kernel is
t-fibrant.
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In order to show that cofibrations and quasi-isomorphisms define a model structure on

C(S̃ht(k,R)), we will have to prove the following result in analogy with the previous theorem.

Theorem 3.1.5. Let K be a complex of MW-t-sheaves. Then the following conditions are
equivalent:

(i) K is local;
(ii) K is t-flasque.

The proof is essentially an adaptation of the proof of [CD09b, 5.1.26, 10.3.17], except that
the case of the étale topology needs a new argument. It will be completed as a corollary of
two lemmas, the first of which is a reinforcement of Lemma 1.2.6.

Lemma 3.1.6. Let p : X → X be a t-hypercover of a smooth scheme X. Then the induced
map:

p∗ : R̃t(X )→ R̃t(X)

is a quasi-isomorphism of complexes of MW-t-sheaves.

Proof. In fact, we have to prove that the complex R̃t(X ) is acyclic in positive degree and

that p∗ induces an isomorphism H0(R̃t(X )) = R̃t(X).3 In particular, as these assertions only

concerns the n-th homology sheaf of R̃t(X ), we can always assume that X ' coskn(X ) for a
large enough integer n (because these two simplicial objects have the same (n− 1)-skeleton).
In other words, we can assume that X is a bounded t-hypercover in the terminology of [DHI04,
Def. 4.10].

As a consequence of the existence of the injective model structure, the category D(S̃ht(k,R))
is naturally enriched over the derived category of R-modules. Let us denote by R Hom• the
corresponding Hom-object. We have only to prove that for any complex K of MW-t-sheaves,
the natural map:

p∗ : R Hom•(R̃t(X),K)→ R Hom•(R̃t(X ),K)

is an isomorphism in the derived category of R-modules. Because there exists an injectively
fibrant resolution of any complex K, and R Hom• preserves quasi-isomorphisms, it is enough
to consider the case of an injectively fibrant complex K of MW-t-sheaves.

In this case, R Hom•(−,K) = Hom•(−,K) (as any complex is cofibrant for the injective
model structure) and we are reduced to prove that the following complex of presheaves on
the smooth site:

X 7→ Hom•(R̃t(X),K)

satisfies t-descent with respect to bounded t-hypercovers i.e. sends bounded t-hypercovers
X/X to quasi-isomorphisms of complexes of R-modules. But Lemma 1.2.6 (and the fact that
K is injectively fibrant) tells us that this is the case when X is the t-hypercover associated
with a t-cover. So we conclude using [DHI04, A.6]. �

The second lemma for the proof of Theorem 3.1.5 is based on the previous one.

Lemma 3.1.7. Let us denote by C, K, D (respectively by C̃, K̃, D̃) the category of com-
plexes, complexes up to homotopy and derived category of the category Sht(k,R) (respectively

S̃ht(k,R)).

3Note that the second fact follows from Lemma 1.2.6 and the definition of t-hypercovers, but our proof
works more directly.
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Given a simplicial scheme X whose components are (possibly infinite) coproducts of smooth
k-schemes and a complex K of MW-t-sheaves, we consider the isomorphism of R-modules
obtained from the adjunction (γ̃∗, γ̃∗):

εX ,K : HomC̃(R̃t(X ),K)→ HomC(Rt(X ), γ̃∗(K)).

Then there exist unique isomorphisms ε′X ,K and ε′′X ,K of R-modules making the following
diagram commutative:

HomC̃(R̃t(X ),K)
εX ,K //

��

HomC(Rt(X ), γ̃∗(K))

��
HomK̃(R̃t(X ),K)

ε′X ,K //

πX ,K
��

HomK(Rt(X ), γ̃∗(K))

π′X ,K
��

HomD̃(R̃t(X ),K)
ε′′X ,K // HomD(Rt(X ), γ̃∗(K))

where the vertical morphisms are the natural localization maps.

Proof. The existence and unicity of ε′X ,K simply follows from the fact γ̃∗ and γ̃∗ are additive
functors, so in particular εX ,K is compatible with chain homotopy equivalences.

For the case of ε
′′
X ,K , we assume that the complex K is injectively fibrant. In this case, the

map πX ,K is an isomorphism. This already implies the existence and unicity of the map ε′′X ,K .
Besides, according to the previous lemma and the fact that the map πX ,K is an isomorphism
natural in X , we obtain that K is t-flasque (in the sense of Paragraph 3.1.4). Because ε′X ,K is

an isomorphism natural in X , we deduce that γ̃∗(K) is t-flasque. In view of Theorem 3.1.3,
it is t-fibrant. As Rt(X ) is cofibrant for the t-descent model structure on C, we deduce that
π′X ,K is an isomorphism. Therefore, ε′′X ,K is an isomorphism.

The case of a general complex K now follows from the existence of an injectively fibrant
resolution K → K ′ of any complex of MW-t-sheaves K. �

proof of Theorem 3.1.5. The previous lemma shows that the following conditions on a com-
plex K of MW-t-sheaves are equivalent:

• K is local (resp. t-flasque) in C(S̃ht(k,R));
• γ̃∗(K) is local (resp. t-flasque) in C(Sht(k,R)).

Then Theorem 3.1.5 follows from Theorem 3.1.3. �

Here is an important corollary (analogous to [VSF00, chap. 5, 3.1.8]) which is simply a
restatement of Lemma 3.1.7.

Corollary 3.1.8. Let K be a complex of MW-t-sheaves and X be a smooth scheme. Then
for any integer n ∈ Z, there exists a canonical isomorphism, functorial in X and K:

Hom
D(S̃ht(k,R))

(R̃t(X),K[n]) = Hn
t (X,K)

where the right hand side stands for the t-hypercohomology of X with coefficients in the com-
plex γ̃∗(K) (obtained after forgetting MW-transfers).

Recall that the category C(S̃ht(k,R)) is symmetric monoidal, with tensor product induced

as usual from the tensor product on S̃ht(k,R) (see Paragraph 1.2.14).
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Corollary 3.1.9. The category C(S̃ht(k,R)) has a proper cellular model structure (see [Hir03,
12.1.1 and 13.1.1]) with quasi-isomorphisms as weak equivalences and cofibrations as defined
in Paragraph 3.1.4. Moreover, the fibrations for this model structure are epimorphisms of
complexes whose kernel are t-flasque (or equivalently local) complexes of MW-t-sheaves. Fi-
nally, this is a symmetric monoidal model structure; in other words, the tensor products (resp.
internal Hom functor) admits a total left (resp. right) derived functor.

Proof. Each claim is a consequence of [CD09a, 2.5, 5.5 and 3.2], applied to the Grothendieck

abelian category S̃ht(k,R) with respect to the descent structure (G,H) (see [CD09a, Def. 2.2]
for the notion of descent structure) defined as follows:

• G is the class of MW-t-sheaves of the form R̃t(X) for smooth scheme X;

• H is the (small) family of complexes which are cones of morphisms p∗ : R̃t(X ) →
R̃t(X) for a t-hypercover p.

Indeed, G generates the category S̃ht(k,R) (see after Definition 1.2.13) and the condition to
be a descent structure is given by Theorem 3.1.5.

In the end, we can apply [CD09a, 3.2] to derive the tensor product as the tensor structure
is weakly flat (in the sense of [CD09a, §3.1]) due to the preceding definition and formula
(1.2.14.a). �

Remark 3.1.10. We can follow the procedure of [MVW06, §8] to compute the tensor product
of two bounded above complexes of MW-t-sheaves. This follows from [CD09a, Proposition
3.2] and the fact that bounded above complexes of MW-t-sheaves whose components are
direct sums of representable sheaves are cofibrant.

Definition 3.1.11. The model structure on C(S̃ht(k,R)) of the above corollary is called the
t-descent model structure.

In particular, the category D(S̃ht(k,R)) is a triangulated symmetric closed monoidal cate-
gory.

3.1.12. We also deduce from the t-descent model structure that the vertical adjunctions of
Corollary 1.2.15 induce Quillen adjunctions with respect to the t-descent model structure on
each category involved and so admit derived functors as follows:

D(Sh(k,R))
Lγ̃∗ //

a

��

D(S̃h(k,R))
Lπ∗ //

ã
��

γ̃∗
oo D(Shtr(k,R))

atr

��

π∗
oo

D(Shét(k,R))
Lγ̃∗ét //

RO

OO

D(S̃hét(k,R))
Lπ∗ét //

RO

OO

γ̃ét∗
oo D(Shtr

ét(k,R))

RO

OO

πét∗
oo

(3.1.12.a)

where we have not indicated the topology in the notations when it is the Nisnevich topology,
denoted by (a,O) for the adjoint pair associated étale sheaf and forgetful functor and similarly
for MW-transfers and transfers. When the functors are exact, they are trivially derived and
so we have used the same notation than for their counterpart for sheaves.

Note that by definition, the left adjoints in this diagram are all monoidal functors and
sends the object represented by a smooth scheme X (say in degree 0) to the analogous object

(3.1.12.b) Lγ̃∗
(
Rt(X)

)
= R̃t(X),Lπ∗

(
R̃t(X)

)
= Rtr(X).
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3.2. The A1-derived category. We will now adapt the usual A1-homotopy machinery to
our context.

Definition 3.2.1. We define the category D̃Meff
t (k,R) of MW-motivic complexes for the

topology t as the localization of the triangulated category D(S̃ht(k,R)) with respect to the
localizing triangulated subcategory4 TA1 generated by complexes of the form:

· · · 0→ R̃t(A1
X)

p∗−→ R̃t(X)→ 0 · · ·

where p is the projection of the affine line relative to an arbitrary smooth k-scheme X. As
usual, we define the MW-motive M̃(X) associated to a smooth scheme X as the complex

concentrated in degree 0 and equal to the representable MW-t-sheaf R̃t(X). Respecting our
previous conventions, we mean the Nisnevich topology when the topology is not indicated.

According to this definition, it is formal that the localizing triangulated subcategory TA1 is

stable under the derived tensor product of D(S̃ht(k,R)) (cf. Corollary 3.1.9). In particular,

it induces a triangulated monoidal structure on D̃Meff
t (k,R).

3.2.2. As usual, we can apply the classical techniques of localization to our triangulated
categories and also to our underlying model structure. So a complex of MW-t-sheaf E is
called A1-local if for any smooth scheme X and any integer i ∈ Z, the induced map

Hom
D(S̃ht(k,R))

(R̃t(X), E[i])→ Hom
D(S̃ht(k,R))

(R̃t(A1
X), E[i])

is an isomorphism. In view of Corollary 3.1.8, it amounts to ask that the t-cohomology of
γ̃∗(E) is A1-invariant, or in equivalent words, that E is strictly A1-local.

Applying Neeman’s localization theorem (see [Nee01b, 9.1.19]),5 the category D̃Meff
t (k,R)

can be viewed as the full subcategory of D(S̃ht(k,R)) whose objects are the A1-local com-

plexes. Equivalently, the canonical functor D(S̃ht(k,R))→ D̃Meff
t (k,R) admits a fully faithful

right adjoint whose essential image consists in A1-local complexes. In particular, one deduces

formally the existence of an A1-localization functor LA1 : D(S̃ht(k,R))→ D(S̃ht(k,R)).
Besides, we get the following proposition by applying the general left Bousfield localization

procedure for proper cellular model categories (see [Hir03, 4.1.1]). We say that a morphism

φ of D(S̃ht(k,R)) is an weak A1-equivalence if for any A1-local object E, the induced map
Hom(φ,E) is an isomorphism.

Proposition 3.2.3. The category C(S̃ht(k,R)) has a symmetric monoidal model structure
with weak A1-equivalences as weak equivalences and cofibrations as defined in Paragraph 3.1.4.
This model structure is proper and cellular. Moreover, the fibrations for this model structure
are epimorphisms of complexes whose kernel are t-flasque and A1-local complexes.

The resulting model structure on C(S̃ht(k,R)) will be called the A1-local model structure.
The proof of the proposition follows formally from Corollary 3.1.9 by the usual localization
procedure of model categories, see [CD09a, §3] for details. Note that the tensor product of
two bounded above complexes can be computed as in the derived category.

4Recall that according to Neeman [Nee01b, 3.2.6], localizing means stable by coproducts.
5Indeed recall the derived category of S̃ht(k,R) is a well generated triangulated category according to

[Nee01a, Th. 0.2].
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3.2.4. As a consequence of the above discussion, the category D̃Meff
t (k,R) is a triangulated

symmetric monoidal closed category. Besides, it is clear that the functors of Corollary (1.2.15)
induce Quillen adjunctions for the A1-local model structures. Equivalently, Diagram (3.1.12.a)
is compatible with A1-localization and induces adjunctions of triangulated categories:

Deff
A1(k,R)

Lγ̃∗ //

a

��

D̃Meff(k,R)
Lπ∗ //

ã
��

γ̃∗
oo DMeff(k,R)

atr

��

π∗
oo

Deff
A1,ét(k,R)

Lγ̃∗ét //

RO

OO

D̃Meff
ét (k,R)

Lπ∗ét //

RO

OO

γ̃ét∗
oo DMeff

ét (k,R).

RO

OO

πét∗
oo

(3.2.4.a)

In this diagram, the left adjoints are all monoidal and send the different variant of motives
represented by a smooth scheme X to the analogous motive. In particular,

Lπ∗M̃(X) = M(X).

Also, the functors γ̃t∗ and πt∗ for t = Nis, ét (or following our conventions, t = ∅, ét) are
conservative. Note moreover that their analogues in diagram (3.1.12.a) preserve A1-local
objects and so commute with the A1-localization functor. Therefore one deduces from Morel’s
A1-connectivity theorem [Mor05] the following result.

Theorem 3.2.5. Assume k is a perfect field. Let E be a complex of MW-sheaves concentrated
in positive degrees. Then the complex LA1E is concentrated in positive degrees.

Indeed, to check this, one needs only to apply the functor γ̃∗ as it is conservative and so
we are reduced to Morel’s theorem [Mor05, 6.1.8].

Corollary 3.2.6. Under the assumption of the previous theorem, the triangulated category

D̃Meff(k,R) admits a unique t-structure such that the functor γ̃∗ : D̃Meff(k,R)→ D
(
S̃h(k,R)

)
is t-exact.

Note that the truncation functor on D̃Meff(k,R) is obtained by applying to an A1-local

complex the usual truncation functor of D(S̃h(k,R)) and then the A1-localization functor.

Definition 3.2.7. If k is a perfect field, the t-structure on D̃Meff(k,R) obtained in the previous
corollary will be called the homotopy t-structure.

Remark 3.2.8. Of course, the triangulated categories DMeff(k,R) and Deff
A1(k,R) are also

equipped with t-structures, called in each cases homotopy t-structures — in the first case, it
is due to Voevodsky and in the second to Morel.

It is clear from the definitions that the functors γ̃∗ and π∗ in Diagram (3.2.4.a) are t-exact.

As in the case of Nisnevich sheaves with transfers, we can describe nicely A1-local objects
and the A1-localization functor due to the following theorem.

Theorem 3.2.9. Assume k is an infinite perfect field. Let F be an A1-invariant MW-
presheaf. Then, the associated MW-sheaf ã(F ) is strictly A1-invariant. Moreover, the Zariski
sheaf associated with F coincides with ã(F ) and the natural map

Hi
Zar(X, ã(F ))→ Hi

Nis(X, ã(F ))

is an isomorphism for any smooth scheme X.
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Proof. Recall that we have a functor (α′)∗ : P̃Sh(k,R)→ SPShFr(k,R). In view of Theorem
2.2.2, the Nisnevich sheaf associated to the presheaf (α′)∗(F ) is strictly A1-invariant and
quasi-stable. It follows that ã(F ) is strictly A1-invariant by Corollary 1.2.15. Now, a strictly
A1-invariant sheaf admits a Rost-Schmid complex in the sense of [Mor12, §5] and the result
follows from [Mor12, Corollary 5.43]. �

Remark 3.2.10. It would be good to have a proof intrinsic to MW-motives of the above
theorem. This will be worked out in H̊akon Andreas Kolderup’s thesis ([Kol17]).

As in the case of Voeovdsky’s theory of motivic complexes, this theorem has several im-
portant corollaries.

Corollary 3.2.11. Assume k is an infinite perfect field. Then, a complex E of MW-sheaves
is A1-local if and only if its homology (Nisnevich) sheaves are A1-invariant. The heart of the

homotopy t-structure (Def. 3.2.7) on D̃Meff(k,R) consists of A1-invariant MW-sheaves.

The proof is classical. We recall it for the comfort of the reader.

Proof. Let K be an A1-local complex of MW-sheaves over k. Let us show that its homology
sheaves are A1-invariant. According to the existence of the A1-local model structure on
C(Sht(k,R)) (Proposition 3.2.3), there exist a Nisnevich fibrant and A1-local complex K ′ and
a weak A1-equivalence:

K
φ−→ K ′.

As K and K ′ are A1-local, the map φ is a quasi-isomorphism. In particular, we can replace
K by K ′. In other words, we can assume K is Nisnevich fibrant thus local (Theorem 3.1.3).
Then we get:

Hn
(
K(X)

)
' Hom

D(S̃ht(k,R))

(
R̃t(X),K[n]

)
according to the definition of local in Paragraph 3.1.4. This implies in particular that the
cohomology presheaves of K are A1-invariant. We conclude using Theorem 3.2.9.

Assume conversely that K is a complex of MW-sheaves whose homology sheaves are A1-
invariant. Let us show that K is A1-local. According to Corollary 3.1.8, we need only to show
its Nisnevich hypercohomology is A1-invariant. Then we apply the Nisnevich hypercohomol-
ogy spectral sequence for any smooth scheme X:

Ep,q2 = Hp
Nis(X,H

q
Nis(K))⇒ Hn

Nis(X,K).

As the cohomological dimension of the Nisnevich topology is bounded by the dimension of
X, the E2-term is concentrated in degree p ∈ [0,dim(X)] and the spectral sequence converges
([SV00, Theorem 0.3]). It is moreover functorial in X. Therefore it is enough to show the
map induced by the projection

Hp
Nis(X,H

q
Nis(K))→ Hp

Nis(A
1
X ,H

q
Nis(K))

is an isomorphism to conclude. By assumption the sheaf Hq
Nis(K) is A1-invariant so Theorem

3.2.9 applies again.

As the functor γ̃∗ is t-exact by Corollary 3.2.6, the conclusion about the heart of D̃Meff(k,R)
follows. �

Corollary 3.2.12. Let K be an A1-local complex of MW-sheaves. Then we have

Hi
Zar(X,K) = Hi

Nis(X,K)

for any smooth scheme X and any i ∈ Z.
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Proof. The proof uses the same principle as in the previous result. Let us first consider the
change of topology adjunction:

α∗ : ShZar(k,R) � ShNis(k,R) : α∗

where α∗ is obtained using the functor “associated Nisnevich sheaf functor” and α∗ is just
the forgetful functor. This adjunction can be derived (using for example the injective model
structures) and induces:

α∗ : D(ShZar(k,R)) � D(ShNis(k,R)) : Rα∗

— note indeed that α∗ is exact. Coming back to the statement of the corollary, we have to
show that the adjunction map:

(3.2.12.a) γ̃∗(K)→ Rα∗α
∗(γ̃∗(K))

is a quasi-isomorphism. Let us denote abusively by K the sheaf γ̃∗(K). Note that this will
be harmless as γ̃∗(H

q
Nis(K)) = Hq

Nis(γ̃∗K). With this abuse of notation, one has canonical
identifications:

HomD(ShNis(k,R))(Z̃t(X),Rα∗α
∗(K)) = Hp

Zar(X,K)

HomD(ShNis(k,R))(Z̃t(X),Rα∗α
∗(Hq

Nis(K))) = Hp
Zar(X,H

q
Nis(K))

Using now the tower of truncation of K for the standard t-structure on D(S̃ht(k,R)) — or
equivalently D(Sht(k,R)) — and the preceding identifications, one gets a spectral sequence:

ZarEp,q2 = Hp
Zar(X,H

q
Nis(K))⇒ Hp+q

Zar (X,K)

and the morphism (3.2.12.a) induces a morphism of spectral sequence:

Ep,q2 = Hp
Nis(X,H

q
Nis(K)) −→ZarEp,q2 = Hp

Zar(X,H
q
Nis(K))

⇒ Hp+q
Nis (X,K) −→ Hp+q

Zar (X,K).

The two spectral sequences converge (as the Zariski and cohomological dimension of X are
bounded). According to Theorem 3.2.9, the map on the E2-term is an isomorphism so the
map on the abutment must be an isomorphism and this concludes. �

3.2.13. Following Voevodsky, given a complex E of MW-sheaves, we define its associated
Suslin complex as the following complex of sheaves:6

Csing
∗ (E) := Hom(R̃t(∆

∗), E)

where ∆∗ is the standard cosimplicial scheme.

Corollary 3.2.14. Assume k is an infinite perfect field.
Then for any complex E of MW-sheaves, there exists a canonical quasi-isomorphism:

LA1(E) ' Csing
∗ (E).

Proof. Indeed, according to Corollary 3.2.11, it is clear that Csing
∗ (E) is A1-local. Thus the

canonical map
c : E → Csing

∗ (E)

induces a morphism of complexes:

LA1(c) : LA1(E)→ LA1(Csing
∗ (E)) = Csing

∗ (E).

6Explicitly, this complex associates to a smooth scheme X the total complex (for coproducts) of the bicom-
plex E(∆∗ ×X).
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As ∆n ' Ank , one checks easily that the map c is an A1-weak equivalence. Therefore the map
LA1(c) is an A1-weak equivalence of A1-local complexes, thus a quasi-isomorphism. �

3.2.15. As usual, one defines the Tate object in D̃Meff(k,R) by the formula

R̃(1) := M̃(P1
k)/M̃({∞})[−2] ' M̃(A1

k)/M̃(A1
k − {0})[−2] ' M̃(Gm)/M̃({1})[−1].

Then one defines the effective MW-motivic cohomology of a smooth scheme X in degree
(n, i) ∈ Z× N:7 as

Hn,i
MW(X,R) = Hom

D̃Meff(k,R)
(R̃(X), R̃(i)[n])

where R̃(i) = R̃(1)⊗i.

Corollary 3.2.16. Assume k is an infinite perfect field. The effective MW-motivic coho-
mology defined above coincides with the generalized motivic cohomology groups defined (for
R = Z) in [CF14, Definition 6.6].

Proof. By Corollary 3.2.14, the Suslin complex of R(i) is A1-local. It follows then from Corol-
lary 3.2.12 that its Nisnevich hypercohomology and its Zariski hypercohomology coincide. We
conclude using [FØ16, Corollary 4.0.4]. �

We now spend a few lines in order to compare ordinary motivic cohomology with MW-
motivic cohomology, following [CF14, Definition 6.8]. In this part, we suppose that R is flat
over Z. If X is a smooth scheme, recall from [CF14, Definition 5.15] that the presheaf with
MW-transfers Ic̃(X) defined by

Ic̃(X)(Y ) = lim−→T
Hd
T

(
X × Y, Id+1, ωY

)
fits in an exact sequence

0→ Ic̃(X)→ c̃(X)→ Ztr(X)→ 0

As c̃(X) is a sheaf in the Zariski topology, it follows that Ic̃(X) is also such a sheaf. We can
also consider the Zariski sheaf Ic̃R(X) defined by

Ic̃R(X)(Y ) = Ic̃(X)(Y )⊗R.

Definition 3.2.17. We denote by IR̃t(X) the t-sheaf associated to the presheaf Ic̃R(X).

In view of Proposition 1.2.11, Ic̃R(X) has MW-transfers. Moreover, sheafification being
exact and R being flat, we have an exact sequence

0→ IR̃t(X)→ R̃t(X)→ Rtr(X)→ 0

of MW-t-sheaves (note the slight abuse of notation when we writeRtr(X) in place of πt∗R
tr(X)).

We deduce from [MVW06, Lemma 2.13] an exact sequence

0→ IR̃t{q} → R̃t{q} → Rtr
t {q} → 0

for any q ∈ N, where IR̃t{m} = IR̃t(G∧mm ).

Definition 3.2.18. For any q ∈ N, we set IR̃t(q) = IR̃t{q}[−q] in D̃Meff(k,R) and

Hp,q
I (X,R) = Hom

D̃Meff(k,R)
(M̃(X), IR̃t(q)[p])

for any smooth scheme X.

7Negative twists will be introduced in the next section.
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As Zariski cohomology and Nisnevich cohomology coincide by Corollary 3.2.12, these groups
coincide with the ones defined in [CF14, Definition 6.8] (when R = Z). We now construct a
long exact sequence

. . .→ Hp,q
I (X,R)→ Hp,q

MW(X,R)→ Hp,q(X,R)→ Hp+1,q
I (X,R)→ . . .

for any smooth scheme X and any q ∈ N. The method we use was explained to us by Grigory
Garkusha, whom we warmly thank.

For a smooth scheme X, let B(X) be the quotient R̃t(X)/IR̃t(X). This association defines
a presheaf B with MW-transfers, whose associated sheaf is Rtr{q}. Next, observe that Suslin’s
construction is exact on presheaves, and therefore we obtain an exact sequence of complexes
of MW-presheaves

0→ Csing
∗ (IR̃{q})→ Csing

∗ (R̃{q})→ Csing
∗ (B)→ 0.

In particular, we obtain an exact sequence of complexes of R-modules

0→ Csing
∗ (IR̃{q})(Z)→ Csing

∗ (R̃{q})(Z)→ Csing
∗ (B)(Z)→ 0.

for any local scheme Z. Now, [FØ16, Corollary 4.0.4] shows that the morphism Csing
∗ (B)(Z)→

Csing
∗ (Rtr{q})(Z) is a quasi-isomorphism. Consequently, we obtain an exact triangle in the

derived category of MW-sheaves

Csing
∗ (IR̃{q})→ Csing

∗ (R̃{q})→ Csing
∗ (Rtr{q})→ Csing

∗ (IR̃{q})[1]

and the existence of the long exact sequence

. . .→ Hp,q
I (X,R)→ Hp,q

MW(X,R)→ Hp,q(X,R)→ Hp+1,q
I (X,R)→ . . .

follows.

3.2.19. To end this section, we now discuss the effective geometric MW-motives, which are
built as in the classical case.

Definition 3.2.20. One defines the category D̃M
eff

gm(k,Z) of geometric effective motives over
the field k as the pseudo-abelianization of the Verdier localization of the homotopy category

Kb(C̃ork) associated to the additive category C̃ork with respect to the thick triangulated
subcategory containing complexes of the form:

(1) . . .→ [W ]
k∗−g∗−−−−→ [V ]⊕ [U ]

f∗+j∗−−−−→ [X]→ . . . for an elementary Nisnevich distinguished
square of smooth schemes:

W
g ��

k // V
f��

U
j
// X;

(2) . . . → [A1
X ]

p∗−→ [X] → . . . where p is the canonical projection and X is a smooth
scheme.

It is clear that the natural map Kb(C̃ork)→ D(S̃h(k,Z)) induces a canonical functor:

ι : D̃M
eff

gm(k,Z)→ D̃Meff(k).

As a consequence of [CD09a, Theorem 6.2] (see also Example 6.3 of op. cit.) and Theorem
3.2.9, we get the following result.
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Proposition 3.2.21. The functor ι is fully faithful and its essential image coincides with
each one of the following subcategories:

• the subcategory of compact objects of D̃Meff(k);

• the smallest thick triangulated subcategory of D̃Meff(k) which contains the motives

M̃(X) for a smooth scheme X.

Moreover, when k is an infinite perfect field, one can reduce in point (1) in the definition of

D̃M
eff

gm(k,Z) to consider those complexes associated to a Zariski open cover U ∪V of a smooth
scheme X.

Remark 3.2.22. Note that the previous proposition states in particular that the objects of

the form M̃(X) for a smooth scheme X are compact in D̃Meff(k,R). Therefore, they form

a family of compact generators of D̃Meff(k,R) in the sense that D̃Meff(k,R) is equal to its

smallest triangulated category containing M̃(X) for a smooth scheme X and stable under
coproducts.

3.3. The stable A1-derived category.

3.3.1. As usual in motivic homotopy theory, we now describe the P1-stabilization of the
category of MW-motivic complexes for the topology t (again, t = Nis, ét).

Recall that the Tate twist in D̃Meff
t (k,R) is defined by one of the following equivalent

formulas:

R̃(1) := M̃(P1
k)/M̃({∞})[−2] ' M̃(A1

k)/M̃(A1
k − {0})[−2] ' M̃(Gm)/M̃({1})[−1].

In the construction of the P1-stable category as well as in the study of the homotopy t-
structure, it is useful to introduce a redundant notation of Gm-twist:

R̃{1} := M̃(Gm)/M̃({1})
so that R̃{1} = R̃(1)[1]. The advantage of this definition is that we can consider R̃{1} as a

MW-t-sheaf instead of a complex. For m ≥ 1, we set R̃{m} = R̃{1}⊗m and we observe that

R̃(m) = R̃{m}[−m].
Let us recall the general process of ⊗-inversion of the Tate twist in the context of model

categories, as described in our particular case in [CD09a, §7]. We define the category S̃pt(k,R)
of (abelian) Tate MW-t-spectra as the additive category whose object are couples (F∗, ε∗)
where F∗ is a sequence of MW-t-sheaves such that Fn is equipped with an action of the
symmetric group Sn and, for any integer n ≥ 0,

εn : (Fn{1} := Fn ⊗ R̃{1})→ Fn+1

is a morphism of MW-t-sheaves, called the suspension map, such that the iterated morphism

Fn{m} → Fn+m

is Sn × Sm-equivariant for any n ≥ 0 and m ≥ 1. (see loc. cit. for more details). The

morphisms in S̃pt(k,R) between couples (F∗, ε∗) and (G∗, τ∗) are sequences of Sn-equivariant
morphisms fn : Fn → Gn such that the following diagram of Sn ×Sm-equivariant maps

Fn{m} //

fn{m}
��

Fn+m

fn+m

��
Gn{m} // Gn+m
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is commutative for any n ≥ 0 and m ≥ 1.
This is a Grothendieck abelian, closed symmetric monoidal category with tensor product

described in [CD09a, §7.3, §7.4] (together with [ML98, Chapter VII, §4, Exercise 6]). Further,
we have a canonical adjunction of abelian categories:

(3.3.1.a) Σ∞ : S̃ht(k,R) � S̃pt(k,R) : Ω∞

such that Σ∞(F) = (F{n})n≥0 with the obvious suspension maps and Ω∞(F∗, ε∗) = F0.
Recall the Tate MW-t-spectrum Σ∞(F) is called the infinite spectrum associated with F .
The functor Σ∞ is monoidal (cf. [CD09a, §7.8]).

One can define the A1-stable cohomology of a complex E = (E∗, σ∗) of Tate MW-t-spectra,
for any smooth scheme X and any couple (n,m) ∈ Z2:

(3.3.1.b) Hn,m
st−A1(X,E) := lim−→r≥max(0,−m)

(
Hom

D̃Meff(k,R)
(M̃(X){r},Em+r[n])

)
where the transition maps are induced by the suspension maps σ∗ and M̃(X){r} = M̃(X)⊗
R̃{r}.

Definition 3.3.2. We say that a morphism ϕ : E→ F of complexes of Tate MW-t-spectra is
a stable A1-equivalence if for any smooth scheme X and any couple (n,m) ∈ Z2, the induced
map

ϕ∗ : Hn,m
st−A1(X,E)→ Hn,m

st−A1(X,F)

is an isomorphism.

One defines the category D̃Mt(k,R) of MW-motivic spectra for the topology t as the lo-

calization of the triangulated category D(S̃pt(k,R)) with respect to stable A1-derived equiv-
alences.

3.3.3. As usual, we can describe the above category as the homotopy category of a suitable
model category.

First, recall that we can define the negative twist of an abelian Tate MW-t-spectrum F∗
by the formula, for n > 0:

[(F∗){−n}]m =

{
Z[Sm]⊗Z[Sm−n] Fm−n if m ≥ n.
0 otherwise.

(3.3.3.a)

with the obvious suspension maps. Note for future references that one has according to this
definition and that of the tensor product:

(3.3.3.b) F∗{−n} = F∗ ⊗ (Σ∞R̃){−n}.

We then define the class of cofibrations in C(S̃pt(k,R)) as the smallest class of morphisms
of complexes closed under suspensions, negative twists, pushouts, transfinite compositions

and retracts generated by the infinite suspensions of cofibrations in C(S̃ht(k,R)).
Applying [CD09a, Prop. 7.13], we get:

Proposition 3.3.4. The category C(S̃pt(k,R)) of complexes of Tate MW-t-spectra has a
symmetric monoidal model structure with stable A1-equivalences as weak equivalences and
cofibrations as defined above. This model structure is proper and cellular.

Moreover, the fibrations for this model structure are epimorphisms of complexes whose
kernel is a complex E such that:

• for any n ≥ 0, En is a t-flasque and A1-local complex;
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• for any n ≥ 0, the map obtained by adjunction from the obvious suspension map:

En+1 → R Hom(R̃{1},En)

is an isomorphism.

Therefore, the homotopy category D̃Mt(k,R) is a triangulated symmetric monoidal cate-
gory with internal Hom. The adjoint pair (3.3.1.a) can be derived and induces an adjunction
of triangulated categories:

Σ∞ : D̃Meff
t (k,R) � D̃Mt(k,R) : Ω∞.

As a left derived functor of a monoidal functor, the functor Σ∞ is monoidal. Slightly abusing
notation, we still denote by M̃(X) the MW-motivic spectrum Σ∞(M̃(X)).

3.3.5. By construction, the MW-motivic spectrum R̃{1}, and thus R̃(1) is ⊗-invertible in

D̃Mt(k,R) (see [CD09a, Prop. 7.14]). Moreover, using formulas (3.3.3.a) and (3.3.3.b), one

obtains a canonical map in S̃pt(k,R):

φ : Σ∞R̃{1} ⊗
(
(Σ∞R̃){−1}

)
→
(
Σ∞R̃{1}

)
{−1} → R̃.

The following proposition justifies the definition of Paragraph 3.3.3 of negative twists.

Proposition 3.3.6. The map φ is a stable A1-equivalence. The MW-motive (Σ∞R̃){−1} is

the tensor inverse of R̃{1}. For any MW-t-spectra E, the map obtained by adjunction from
E⊗ φ:

E{−1} → R Hom(R̃{1},E)

is a stable A1-equivalence.

Proof. The first assertion follows from a direct computation using the definition of stable
A1-equivalences via the A1-stable cohomology (3.3.1.b). The other assertions are formal
consequences of the first one. �

As in the effective case, we derive from the functors of Corollary 1.2.15 Quillen adjunc-
tions for the stable A1-local model structures and consequently adjunctions of triangulated
categories:

DA1(k,R)
Lγ̃∗ //

a

��

D̃M(k,R)
Lπ∗ //

ã
��

γ̃∗
oo DM(k,R)

atr

��

π∗
oo

DA1,ét(k,R)
Lγ̃∗ét //

RO

OO

D̃Mét(k,R)
Lπ∗ét //

RO

OO

γ̃ét∗
oo DMét(k,R)

RO

OO

πét∗
oo

(3.3.6.a)

where each left adjoints is monoidal and sends a motive of a smooth scheme to the corre-
sponding motive.

Formally, one can compute morphisms of MW-motivic spectra as follows.

Proposition 3.3.7. For any smooth scheme X, any pair of integers (n,m) ∈ Z2 and any
MW-motivic spectrum E, one has a canonical functorial isomorphism:

Hom
D̃M(k,R)

(M̃(X),E(n)[m]) ' Hn,m
st−A1(X,E)

= lim−→r≥max(0,−m)

(
Hom

D̃Meff(k,R)
(M̃(X){r},Em+r[n])

)
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Proof. This follows from [Ayo07, 4.3.61 and 4.3.79] which can be applied because of Remark

3.2.22 and the fact the cyclic permutation of order 3 acts on R̃{3} as the identity in D̃Meff(k,R)
(the proof of this fact is postponed until Corollary 4.1.5). �

In fact, as in the case of motivic complexes, one gets a better result if we assume the base
field k is infinite perfect. This is due to the following analogue of Voevodsky’s cancellation
theorem [Voe10], which is proved in [FØ16].

Theorem 3.3.8. Let k be a perfect infinite field. Then for any complexes K and L of MW-
sheaves, the morphism

Hom
D̃Meff(k,R)

(K,L)→ Hom
D̃Meff(k,R)

(K(1), L(1)),

obtained by tensoring with the Tate twist, is an isomorphism.

We then formally deduce the following corollary from this result.

Corollary 3.3.9. If k is an infinite perfect field, the functor

Σ∞ : D̃Meff(k,R)→ D̃M(k,R)

is fully faithful.

4. MW-motivic cohomology

4.1. MW-motivic cohomology as Ext-groups. Given our construction of the triangulated

category D̃M(k,R), we can now define, in the style of Beilinson, a generalization of motivic
cohomology as follows.

Definition 4.1.1. We define the MW-motivic cohomology of a smooth scheme X in degree
(n, i) ∈ Z2 and coefficients in R as:

Hn,i
MW(X,R) = Hom

D̃M(k,R)
(M̃(X), R̃(i)[n]).

As usual, we deduce a cup-product on MW-motivic cohomology. We define its étale vari-

ant by taking morphisms in D̃Mét(k,R). Then we derive from the preceding (essentially)
commutative diagram the following morphisms of cohomology theories, all compatible with
products and pullbacks:

(4.1.1.a) Hn,i
A1 (X,R) //

��

Hn,i
MW(X,R) //

��

Hn,i
M (X,R)

��

Hn,i
A1,ét

(X,R) // Hn,i
MW,ét(X,R) // Hn,i

L (X,R).

where HA1(X,R) and HA1,ét(X,R) are respectively Morel’s stable A1-derived cohomology and

its étale version while Hn,i
M (X,R) and Hn,i

L (X,R) are respectively the motivic cohomology and
the Lichtenbaum motivic cohomology (also called étale motivic cohomology).

Gathering all the informations we have obtained in the previous section on MW-motivic
complexes, we get the following computation.

Proposition 4.1.2. Assume that k is an infinite perfect field. For any smooth scheme X
and any couple of integers (n,m) ∈ Z2, the MW-motivic cohomology Hn,m

MW(X,Z) defined
previously coincides with the generalized motivic cohomology defined in [CF14].
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More explicitly,

Hn,m
MW(X,Z) =


Hn

Zar(X, Z̃(m)) if m > 0,

Hn
Zar(X,K

MW
0 ) if m = 0,

Hn−m
Zar (X,W) if m < 0

where KMW
0 (resp. W) is the unramified sheaf associated with Milnor-Witt K-theory in degree

0 (resp. unramified Witt sheaf) – see [Mor12, §3].

Proof. The cases m > 0 and m = 0 are clear from the previous corollary and Corollary 3.2.16.
Consider the case m < 0. Then we can use the following computation:

Hn,m
MW(X,Z) = Hom

D̃M(k,R)

(
M̃(X), Z̃{m}[n−m]

)
= Hom

D̃M(k,R)

(
M̃(X)⊗ Z̃{−m}, Z̃[n−m]

)
= Hom

D̃Meff(k,R)

(
M̃(X),R Hom(Z̃{−m}, Z̃)[n−m]

)
where the last identification follows from the preceding corollary and the usual adjunction.

As the MW-motivic complex Z̃{−m} is cofibrant and the motivic complex Z̃ = KMW
0 is

Nisnevich-local and A1-invariant (cf. [CF14, Ex. 4.4] and [Fas08, Cor. 11.3.3]), we get:

R Hom(Z̃{−m}, Z̃) = Hom(Z̃{−m}, Z̃)

and this last sheaf is isomorphic to W according to [CF14, Lemma 5.23]. So the assertion
now follows from Corollaries 3.2.11 and 3.1.8. �

4.1.3. We next prove a commutativity result for MW-motivic cohomology. First, note that
the sheaf R̃{1} = R̃(Gm,k)/R̃({1}) is a direct factor of R̃(Gm,k) and that the permutation
map

σ : R̃(Gm,k)⊗ R̃(Gm,k)→ R̃(Gm,k)⊗ R̃(Gm,k)

given by the morphism of schemes Gm,k × Gm,k → Gm,k × Gm,k defined by (x, y) 7→ (y, x)
induces a map

σ : R̃{1} ⊗ R̃{1} → R̃{1} ⊗ R̃{1}.

On the other hand, recall from Remark 1.1.3 (5), that C̃ork is KMW
0 (k)-linear. In particular,

the class of ε = −〈−1〉 ∈ KMW
0 (k) (and its corresponding element in KMW

0 (k) ⊗Z R that we
still denote by ε) yields a MW-correspondence

ε = ε · Id : R̃(Gm,k)⊗ R̃(Gm,k)→ R̃(Gm,k)⊗ R̃(Gm,k)

that also induces a MW-correspondence

ε : R̃{1} ⊗ R̃{1} → R̃{1} ⊗ R̃{1}.

We can now state the following lemma ([FØ16, Lemma 3.0.6]).

Lemma 4.1.4. The MW-correspondences σ and ε are A1-homotopic.

As an obvious corollary, we obtain the following result.

Corollary 4.1.5. For any i, j ∈ Z, the switch R̃(i) ⊗ R̃(j) → R̃(j) ⊗ R̃(i) is A1-homotopic
to 〈(−1)ij〉.
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Proof. By definition, we have R̃(i) := R̃{i}[−i] and R̃(j) := R̃{j}[−j]. We know from the

previous lemma that the switch R̃{i}⊗ R̃{j} → R̃{j}⊗ R̃{i} is homotopic to (ε)ij . The result
now follows from the compatibility isomorphisms for tensor triangulated categories (see e.g.
[MVW06, Exercise 8A.2]) and the fact that (−1)ij(ε)ij = 〈(−1)ij〉. �

Theorem 4.1.6. Let i, j ∈ Z be integers. For any smooth scheme X, the pairing

Hp,i
MW(X,R)⊗Hq,j

MW(X,R)→ Hp+q,i+j
MW (X,R)

is (−1)pq〈(−1)ij〉-commutative.

Proof. The proof of [MVW06, Theorem 15.9] applies mutatis mutandis. �

4.2. Comparison with Chow-Witt groups.

4.2.1. The naive Milnor-Witt presheaf. . Let S be a ring and let S× be the group of units
in S. We define the naive Milnor-Witt presheaf of S as in the case of fields by considering
the free Z-graded algebra A(S) generated by the symbols [a] with a ∈ S× in degree 1 and a
symbol η in degree −1 subject to the usual relations:

(1) [ab] = [a] + [b] + η[a][b] for any a, b ∈ S×.
(2) [a][1− a] = 0 for any a ∈ S× \ {1}.
(3) η[a] = [a]η for any a ∈ S×
(4) η(η[−1] + 2) = 0.

This definition is clearly functorial in S and it follows that we obtain a presheaf of Z-graded
algebras on the category of smooth schemes via

X 7→ KMW
∗ (O(X)).

We denote by KMW
∗,naive the associated Nisnevich sheaf of graded Z-algebras and observe that

this definition naturally extends to essentially smooth k-schemes. Our next aim is to show
that this naive definition in fact coincides with the definition of the unramified Milnor-Witt
K-theory sheaf given in [Mor12, §3] (see also [CF14, §1]). Indeed, let X be a smooth in-
tegral scheme. The ring homomorphism O(X) → k(X) induces a ring homomorphism
KMW
∗ (O(X)) → KMW

∗ (k(X)) and it is straightforward to check that elements in the im-
age are unramified, i.e. that the previous homomorphism induces a ring homomorphism
KMW
∗ (O(X)) → KMW

∗ (X). By the universal property of the associated sheaf, we obtain a
morphism of sheaves

KMW
∗,naive → KMW

∗ .

If X is an essentially smooth local k-scheme, it follows from [GSZ16, Theorem 6.3] that the
map KMW

∗,naive(X)→ KMW
∗ (X) is an isomorphism, showing that the above morphism is indeed

an isomorphism.

4.2.1. A comparison map. Let now X be a smooth connected scheme and let a ∈ O(X)×

be an invertible global section. It corresponds to a morphism X → Gm,k and in turn to an

element in C̃ork(X,Gm,k) yielding a map

s : O(X)× → Hom
D̃Meff(k)

(M̃(X), Z̃{1}) = H1,1
MW(X,Z).

Consider next the correspondence η[t] ∈ C̃H
0
(X × Gm,k) = C̃ork(X × Gm,k,Spec k) and

observe that it restricts trivially when composed with the map X → X × Gm,k given by
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x 7→ (x, 1). It follows that we obtain an element

s(η) ∈ Hom
D̃Meff(k)

(M̃(X)⊗ Z̃{1}, Z̃) = Hom
D̃M(k,R)

(M̃(X), Z̃{−1}) = H−1,−1
MW (X,Z).

Using the product structure of the cohomology ring, we finally obtain a (graded, functorial
in X) ring homomorphism

s : A(O(X))→
⊕
n∈Z

Hn,n
MW(X,Z),

where A(O(X)) is the free Z-graded (unital, associative) algebra generated in degree 1 by the
elements s(a) and in degree −1 by s(η).

Theorem 4.2.2. Let X be a smooth scheme. Then, the graded ring homomorphism

s : A(O(X))→
⊕
n∈Z

Hn,n
MW(X,Z)

induces a graded ring homomorphism

s : KMW
∗ (O(X))→

⊕
n∈Z

Hn,n
MW(X,Z)

which is functorial in X.

Proof. We have to check that the four relations defining Milnor-Witt K-theory hold in the
graded ring on the right-hand side. First, note that Theorem 4.1.6 yields εs(η)s(a) = s(a)s(η)
and the third relation follows from the fact that εs(η) = s(η) by construction. Observe next
that s(η)s(−1)+1 = 〈−1〉 by [FØ16, Lemma 6.0.1] and it follows easily that s(η)(s(η)s(−1)+
2) = 0. Next, consider the multiplication map

m : Gm,k ×Gm,k → Gm,k

and the respective projections on the j-th factor

pj : Gm,k ×Gm,k → Gm,k

for j = 1, 2. They all define correspondences that we still denote by the same symbols and it

is straightforward to check that m−p1−p2 defines a morphism Z̃{1}⊗Z{1} → Z̃{1} in C̃ork.
It follows from [FØ16, Lemma 6.0.2] that this correspondence corresponds to s(η) through
the isomorphism

Hom
D̃Meff(k)

(Z̃{1}, Z̃)→ Hom
D̃Meff(k)

(Z̃{1} ⊗ Z{1}, Z̃{1})

given by the cancellation theorem. As a corollary, we see that the defining relation (1)
of Milnor-Witt K-theory is satisfied in

⊕
n∈Z Hn,n

MW(X,Z). Indeed, if a, b ∈ O(X)×, then
s(a)s(b) is represented by the morphism X → Gm,k ×Gm,k corresponding to (a, b). Applying
m − p1 − p2 to this correspondence, we get s(ab) − s(a) − s(b) which is s(η)s(a)s(b) by the
above discussion.

To check that the Steinberg relation holds in the right-hand side, we first consider the
morphism

A1 \ {0, 1} → A1 \ {0} × A1 \ {0}
defined by a 7→ (a, 1 − a). Composing with the correspondence M̃(A1 \ {0} × A1 \ {0}) →
M̃((Gm,k)

∧2), we obtain a morphism

M̃(A1 \ {0, 1})→ M̃((Gm,k)
∧2).
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We can perform the same computation in Deff
A1(k) where this morphism is trivial by [HK01]

and we conclude that it is also trivial in D̃Meff(k) by applying the functor Lγ̃∗. �

For any p, q ∈ Z, we denote by Hp,q
MW the (Nisnevich) sheaf associated to the presheaf

X 7→ Hp,q
MW(X,Z). The homomorphism of the previous theorem induces a morphism on

induced sheaves and we have the following result.

Theorem 4.2.3. The homomorphism of sheaves of graded rings

s : KMW
∗ →

⊕
n∈Z

Hn,n
MW

is an isomorphism.

Proof. Let L/k be a finitely generated field extension. Then, it follows from [CF14, Theorem

6.19] that the homomorphism sL is an isomorphism. Now, the presheaf on C̃ork given by
X 7→

⊕
n∈Z Hn,n

W (X,Z) is homotopy invariant by definition. It follows from Theorem 2.2.2

that the associated sheaf is strictly A1-invariant. Now, KMW
∗ is also strictly A1-invariant and

it follows from [Mor12, Definition 2.1, Remark 2.3, Theorem 2.11] that s is an isomorphism
if and only if sL is an isomorphism for any finitely generated field extension L/k. �

Theorem 4.2.4. For any smooth scheme X and any integers p, n ∈ Z, the hypercohomology
spectral sequence induces isomorphisms

Hp,n
MW(X,Z)→ Hp−n(X,KMW

n )

provided p ≥ 2n− 1.

Proof. In view of Proposition 4.1.2, we may suppose that n > 0. For any q ∈ Z, we denote by
Hq,n

MW the Nisnevich sheaf associated to the presheaf X 7→ Hq,n
MW(X,Z) and observe that they

coincide with the cohomology sheaves of the complexes Z̃(n). Now, the latter are concentrated
in cohomological levels ≤ n and it follows that Hq,n

MW = 0 if q > n. On the other hand,
the sheaves Hq,n

MW are strictly A1-invariant, and as such admit a Gersten complex whose
components in degree m are of the form⊕

x∈X(p)

(Hq,n
MW)−p(k(x),∧p(mx/m

2
x)∗)

by [Mor12, §5]. By the cancellation theorem 3.3.8, we have a canonical isomorphism of sheaves

Hq−p,n−p
MW ' (Hq,n

MW)−p and it follows that the terms in the Gersten resolution are of the form⊕
x∈X(p)

(Hq−p,n−p
MW )(k(x),∧p(mx/m

2
x)∗).

If p ≥ n, then Z̃(n− p) ' KMW
n−p[p− n] and it follows that Hq−p,n−p

MW is the sheaf associated to

the presheaf X 7→ Hq−n(X,KMW
n−p), which is trivial if q 6= n. Altogether, we see that

Hp(X,Hq,n
MW) =

{
0 if q > n.

0 if p ≥ n and q 6= n.

We now consider the hypercohomology spectral sequence for the complex Z̃(n) ([SV00, The-
orem 0.3]) Ep,q2 := Hp(X,Hq,n

MW) =⇒ Hp+q,n(X,Z) which is strongly convergent. Our
computations of the sheaves Hq,n

MW immediately imply that Hp−n(X,Hn,n
MW) = Hp,n

MW(X,Z) if
p ≥ 2n− 1. We conclude using Theorem 4.2.3. �
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Remark 4.2.5. The isomorphisms Hp,n
MW(X,Z)→ Hp−n(X,KMW

n ) are functorial in X. Indeed,
the result comes from the analysis of the hypercohomology spectral sequence for the complexes
Z̃(n), which is functorial in X.

Setting p = 2n in the previous theorem, and using the fact that Hn(X,KMW
n ) = C̃H

n
(X)

by definition (for n ∈ N), we get the following corollary.

Corollary 4.2.6. For any smooth scheme X and any n ∈ N, the hypercohomology spectral
sequence induces isomorphisms

H2n,n
MW(X,Z)→ C̃H

n
(X).

Remark 4.2.7. Both Theorems 4.2.4 and Corollary 4.2.6 are still valid if one considers coho-
mology with support on a closed subset Y ⊂ X, i.e. the hypercohomology spectral sequence
(taken with support) yields an isomorphism

Hp,n
MW,Y (X,Z)→ Hp−n

Y (X,KMW
n )

provided p ≥ 2n− 1.
Let now E be a rank r vector bundle over X, s : X → E be the zero section and E0 =

E \ s(X). The Thom space of E is the object of D̃M(k,Z) defined by

Th(E) = Σ∞M̃(Z̃(E)/Z̃(E0)).

It follows from Corollary 3.1.8 and [AF16, Proposition 3.13] that (for n ∈ N)

Hom
D̃M(k,Z)

(Th(E), Z̃(n)[2n]) ' Hom
D̃Meff(k,R)

(M̃(Z̃(E)/Z̃(E0)), Z̃(n)[2n]) ' H2n,n
MW,X(E,Z).

Using the above result, we get Hom
D̃M(k,Z)

(Th(E), Z̃(n)[2n]) ' C̃H
n

X(E). Using finally the

Thom isomorphism ([Mor12, Corollary 5.30] or [Fas08, Remarque 10.4.8])

C̃H
n−r

(X,det(E)) ' C̃H
n

X(L),

we obtain an isomorphism

Hom
D̃M(k,Z)

(Th(E), Z̃(n)[2n]) ' C̃H
n−r

(X,det(E))

which is functorial (for schemes over X).

Remark 4.2.8. The isomorphisms of Corollary 4.2.6 induce a ring homomorphism⊕
n∈ N

H2n,n
MW(X,Z)→

⊕
n∈N

C̃H
n
(X).

This follows readily from the fact that the isomorphism of Theorem 4.2.3 is an isomorphism
of graded rings.

5. Relations with ordinary motives

Our aim in this section is to show that both the categories D̃Meff(k,R) and D̃M(k,R) split
into two factors when 2 ∈ R×, one of the factors being the corresponding category of ordinary
motives. We assume that R = Z[1/2], the general case being obtained from this one. To start
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with, let X be a smooth k-scheme and let L be a line bundle over X. On the small Nisnevich
site of X, we have a Cartesian square of sheaves of graded abelian groups ([CF14, §1])

KMW
∗ (L) //

��

I∗(L)

��
KM
∗ // I

∗
(L)

where I
∗
(L) is the sheaf associated to the presheaf I∗(L)/I∗+1(L). Observe that I

∗
(L) is in

fact independent of L ([Fas08, Lemme E.1.2]), and we will routinely denote it by I
∗

below.

Next, observe that 〈1, 1〉I∗(Y ) ⊂ I∗+1(Y ) for any smooth scheme Y , and it follows that I
∗

is
a 2-torsion sheaf. Inverting 2, we then obtain an isomorphism

(5.0.0.a) KMW
∗ (L)[1/2] ' I∗(L)[1/2]×KM

∗ [1/2].

This decomposition can be more concretely seen as follows. In KMW
0 (X)[1/2] (no line bundle

here), we may write

1 = (1 + 〈−1〉)/2 + (1− 〈−1〉)/2.
We observe that both e := (1 + 〈−1〉)/2 and 1− e = (1− 〈−1〉)/2 are idempotent, and thus
decompose KMW

0 (X)[1/2] as

KMW
0 (X)[1/2] ' KMW

0 (X)[1/2]/e⊕KMW
0 (X)[1/2]/(1− e).

Now, KMW
0 (X)[1/2]/e = W(X)[1/2] (as 2e = 2 + η[−1] := h), while the relation ηh = 0

(together with h = 2 modulo (1 − e)) imply KMW
0 (X)[1/2]/(1 − e) = KM

0 (X) = Z. As
KMW
∗ (L)[1/2] is a sheaf of KMW

∗ -algebra, we find

KMW
∗ (L)[1/2] ' KMW

∗ (L)[1/2]/e⊕KMW
∗ (L)[1/2]/(1− e)

and

KMW
∗ (L)[1/2]/e = KMW

∗ (L)[1/2]/h = KW
∗ (L)[1/2]

where KW(L) is the Witt K-theory sheaf discussed in [Mor04] and

KMW
∗ (L)[1/2]/(1− e) = KM

∗ [1/2].

This splitting has very concrete consequences on the relevant categories of motives. To explain
them in their proper context, recall first from [CF14, Remark 5.16] that one can introduce
the category of finite W-correspondences as follows.

For smooth (connected) schemes X and Y , let WCork(X,Y ) be the abelian group

WCork(X,Y ) := lim−→T∈A(X,Y )
HdY
T

(
X × Y,W, ωY

)
where A(X,Y ) is the poset of admissible subsets of X × Y ([CF14, Definition 4.1]), dY is
the dimension of Y and ωY is the pull-back along the second projection of the canonical
module on Y . We let WCork be the category whose objects are smooth schemes and whose
morphisms are given by the above formula. The results of [CF14] apply mutatis mutandis,
showing in particular that WCork is an additive category endowed with a tensor product.
Moreover the results of the present paper also apply, allowing to use the main theorems in
this new framework. In particular, we can build the category of effective W-motives along
the same lines as those used above, and its stable version as well.
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Definition 5.0.1. For any ring R, we denote by WDMeff(k,R) the category of effective W-
motives, i.e. the full subcategory of A1-local objects of the derived category of W-sheaves.
We denote by WDM(k,R) the category obtained from the previous one by inverting the Tate
object.

The relations with the categories previously built can be described as follows. Observe that
by definition we have

WCork(X,Y ) := lim−→T∈A(X,Y )
HdY
T

(
X × Y,W, ωY

)
= lim−→T∈A(X,Y )

HdY
T

(
X × Y, IdY , ωY

)
for any smooth schemes X and Y . The morphism of sheaves KMW

dY
(ωY ) → IdY (ωY ) thus

yields a well defined functor

β : C̃ork →WCork

This functor in turn induces a functor β∗ between the categories of presheaves and sheaves
(in either the Nisnevich or the étal topologies), yielding finally (exact) functors fitting in the
commutative diagram

WDMeff(k,R)
β∗ //

Σ∞

��

D̃Meff(k,R)

Σ∞

��

WDM(k,R)
β∗

// D̃M(k,R)

where the vertical functors are stabilization functors (which are fully faithful). Note that
both functors β∗ admit monoidal left adjoints Lβ∗ preserving representable objects.

Theorem 5.0.2. Suppose that 2 ∈ R×. We then have equivalences of categories

(β∗, π∗) : WDMeff(k,R)×DMeff(k,R)→ D̃Meff(k,R)

and

(β∗, π∗) : WDM(k,R)×DM(k,R)→ D̃M(k,R).

Proof. The functors β and π are constructed using the isomorphism of sheaves (5.0.0.a)

KMW
∗ (L)[1/2] ' I∗(L)[1/2]×KM

∗ [1/2]

together with the first and second projection. We can construct functors in the other direction
by using the inclusion into the relevant factor and then the inverse of the above isomorphism.
The result is then clear. �

Remark 5.0.3. Still under the assumption that 2 ∈ R×, the above splitting induces isomor-
phisms

Hp,q
MW(X,R) ' Hp,q

W (X,R)×Hp,q(X,R)

functorial in X. Here, Hp,q
W (X,R) is the W-motivic cohomology defined in the category

WDM(k,R). Moreover, this isomorphism is compatible with pull-backs, push-forwards and
products.
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