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Introduction

Voevodsky’s initial program: building the Eilenberg MacLane motivic spectrum.
Motivic homotopy towards Milnor conjecture. Morel-Voevodsky’s motivic homo-
topy theory.

Recall on rational homotopy theory and program for rational motivic com-
plexes/spectra.

Conventions

We fix a base scheme S, which is only assumed to be noetherian finite dimen-
sional.

By convention, smooth S-schemes will mean smooth separated of finite type
S-schemes. We let SmS be the category of such smooth S-schemes.

1. Unstable A1-homotopy theory

1.1. The ∞-categorical definition.

1.1. We first start from a universal, ∞-categorical, construction of the unstable
A1-homotopy category.

It is strictly parallel to that of motivic complexes except one forgets about
transfers, and one uses the∞-category of pointed spaces S∗ instead of the derived
category of abelian groups.1

Definition 1.2. The A1-homotopy (or motivic homotopy) ∞-category H*(S) of
spaces over S is the ∞-category of functors

X : (SmS)op → S∗,

simply called spaces over S, which satisfies the following properties:

(1) Excision. For any smooth S-schemes X, Y and any excisive morphism p :
(Y, T )→ (X,Z) of closed pairs, the induced map p∗ : X (Y, T )→ X (X,Z)
is a weak equivalence in S∗.

(2) A1-invariance. for any smooth S-scheme X, the map X (X) → X (A1
X)

induced by the canonical projection is a weak equivalence in S∗.

For a closed pair (X,Z), we have denoted by X (X,Z) the (homotopy) fiber of
X (X)→ X (X − Z) in S∗.

Note that an advantage of this definition is that it is clear that H*(S) admits
products. These are the smash products, usually denoted by X ∧ Y .

Example 1.3. Here are two examples of objects of the motivic homotopy category.

1We have used pointed spaces in order to get a formulation of excision closed to that of
motives. It is of course possible to work with unpointed spaces!
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(1) Take a pointed simplicial set K, that we view as an object of S∗. Then
the constant functor with value K defines an object of H*(S) that we will
still denote by K. This actually defines an embedding of S∗ in H*(S) !

(2) Let X/S be a smooth scheme, and x : S → X an S-point (i.e. a section
of the canonical projection). Then the Yoneda ∞-categorical embedding
allows to view (X, x) as a (simplicially constant) object of the motivic
homotopy category. If there is no given S-point of X/S (of course it can
happen there is no S-point at all !), one put X+ = XtS, seen as a pointed
S-scheme and therefore as an object of H*(S).

The magic of A1-homotopy theory is to mix non-trivially these two examples: the
simplicial direction and the (algebraic) geometric direction!

Remarque 1.4. A useful (and more classical) way of formulating the excision prop-
erty of the above definition is that for any Nisnevich distinguished square ∆ in
SmS, the square

W+
//

��

V+

��
U+

// X+

is homotopy cartesian in H*(S).

1.2. Definition via Nisnevich sheaves, A1-local objects.

1.5. The previous construction is nice as it reveals the universal property of the
pointed A1-homotopy category. As in the case of motivic complexes, there is a
more down-to-earth construction, the original one of Morel and Voevodsky. Its
main interest is to allow basic arguments at the 1-categorical level, i.e. that of
sheaves.

A pointed simplicial presheaf over SmS is a contravariant functor:

X : (SmS)op → ∆opSet∗.

It is a Nisnevich sheaf if it satisfies the sheaf condition with respect to Nisnevich
covers. Equivalently, one asks that for any Nisnevich distinguished square ∆ (see
lecture one), the square X (∆) is cocartesian in the category of simplicial sets.

Definition 1.6. A pointed space over S will be a pointed simplicial Nisnevich
sheaf over S.

Example 1.7. It is obvious how to make the previous examples spaces in that
sense. For a pointed simplicial set K, one considers Kct the constant Nisnevich
sheaf with values K over SmS — that is, the Nisnevich sheaves associated with K.
For a pointed smooth S-scheme X, this is the classical Yoneda lemma: X(−) =
HomSmS

(−, X).
As above, we will abusively denote this spaces respectively as K and X.
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1.8. We can view the category of spaces over S as an ∞-category. A good way to
do it is to define a well suited mapping space. This can be done by using model
categories, and that was the solution used by Morel and Voevodsky in [MV99]. In
brief, one can take the so-called injective model structure, where weak equivalence
are defined fibrewise and cofibrations are monomorphisms. Morel and Voevodsky
showed that this model category is simplicial, therefore provided the hoped-for
mapping space.

Then the category of pointed spaces over S becomes a simplicial category, and
this is a model for ∞-categories.2

Here is an presentation, closer to Morel and Voevodsky’s original definition, for
the pointed motivic homotopy category.

Proposition 1.9. The ∞-category H*(S) is equivalent to the localization of the
∞-category of spaces over S with respect to A1-homotopy i.e. maps of the form
A1
S ×S X → X for a space X .

Remarque 1.10. Note that the ∞-category of spaces over S is presentable. There-
fore, one can use the localization theory for presentable∞-category. In particular,
one defines A1-local spaces as those space X such that for any smooth scheme
X/S3, the canonical map

Map(X+,X )→ Map
(
(A1

X)+,X
)

is a weak equivalence. Then the∞-category H*(S) is equivalent to the subcategory
of spaces over S made by A1-local spaces.

Formally, the inclusion of A1-local spaces into spaces admits a left adjoint. Con-
cretely, for any space X over S, there exists an A1-local space LA1(X ) and a natural
map

X → LA1(X )

which is a weak equivalence. Everything can be made functorial in the space
X . This called is the A1-localization functor. This is the analogue for spaces of
the Suslin complex for sheaves with transfers. Some of the main theorems of A1-
homotopy theory rely on the ability to find a nice construction (model) of this
functor: see [Mor12], with LA1 = ExA1 defined p. 107, or [AE17, Sec. 4.3].

1.3. Topological realization and motivic spheres.

1.11. Let us work over the field C of complex numbers. Then any smooth complex
scheme X gives a topological space by taking the algebraic variety of its complex
points X(C), and the topology coming from the fact it is an analytic variety.

Of course A1(C) = C is contractible. Using moreover excision for topological
spaces, one can prove:

2But of course, the natural world to define the ∞-category of Nisnevich (pointed) simplicial
sheaves is Lurie’s theory of ∞-topos. See [Lur09].

3Note it is enough to restrict to smooth S-schemes for this definition
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Proposition 1.12. The functor X 7→ X(C) extends (in fact Kan-extends) to a
realization functor

H*(C)→ S∗.

The existence of this functor allows to guess the A1-homotopy type of complex
varieties, as this functors respects weak equivalences !

Example 1.13. All the following complex schemes realize to spheres: (Gm, 1),
(P1,∞), (An − {0}, 1, ..., 1). In fact Sn seen as a space is sent to Sn by the above
functor (this is true for any pointed simplicial set!).

In fact, all this schemes, as well as there smash products, are what we call
motivic spheres.

In fact, one has the following weak A1-equivalences that relate these spheres:

P1 ' S1 ∧Gm

An − {0} ' Sn−1 ∧G∧,nm
A last example of sphere is given by Thom spaces. One defines Th(An) as the
homotopy cofiber of An − {0} → An. Then:

Th(An) ' Sn ∧G∧,nm .

These weak A1-equivalences exist over any base !
As a conclusion, one can remark that all these sphere can be expressed as a smash

product of S1 and Gm. In fact, as we have seen in the case of motivic complexes,
Gm corresponds to the Tate twist (up to 1 suspension!): we have obtained in the
previous lecture that the reduced motivic complex of the pointed smooth S-scheme
Gm is 1S(1)[1].

Before going to the next point, we must state the following theorem of Morel,
computing some stable A1-homotopy groups of one particular motivic spheres, of
fundamental importance:

Theorem 1.14 (Morel, [Mor12]). Let k be a field, and GW(k) be the Grothendieck
group of quadratic forms of k. Then for any n ≥ 2, one has the following compu-
tation:

πA1

n−1(An − {0}, 1) := [Sn−1,An − {0}]A1

∗ ' GW(k)

where [−,−]A
1

∗ denotes the homotopy classes of maps in the ∞-category H*(k).

1.4. A glimpse of six operations.

1.15. As we have seen in the case of motivic complexes, it is possible to build a
basic functoriality for the motivic homotopy category:

• The smash product admits a right adjoint, the internal Hom functor.4 Note
that as left adjoint, (− ∧ −) commutes with colimits. Moreover, it is

4The only way I am aware of to get this right adjoint is to use Blander’s model structure as
one can prove it is monoidal.
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characterized by the property:

X+ ∧ Y+ = (X ×S Y )+.

• For f : T → S any map, one obtains a pair of adjoint ∞-functor:

f ∗ : H*(S) � H*(T ) : f∗

such that f ∗ is obtained by left Kan extension of the functor f ∗ on smooth
schemes. In particular, for X/S smooth, f ∗(X+) = (Y ×S T )+ and this
characterizes the adjunction.
• for p : T → S smooth, one an adjunction of ∞-functors:

p] : H*(S) � H*(T ) : p∗

such that p] is obtained by left Kan extension of the functor p] at the level of
smooth schemes. In particular, for Y/T smooth, p](Y+) = (Y → T → S)+

and this characterizes the adjunction.

Let us go further. The characterizing properties of the left adjoints yield:

Proposition 1.16. With the above notations, one gets:

(1) Smooth base change: for any cartesian square of arbitrary schemes

Y
q //

g
��

X

f
��

T
p // S

there exists a canonical equivalence of ∞-functors: q]g
∗ ∼−→ f ∗p].

By adjunction: p∗f∗
∼−→ g∗q

∗.
(2) Smooth projection formula: let p : T → S be a smooth morphism. For any

pointed space X (resp. Y) over S (resp. T ), one has an equivalence:

p](Y ∧ p∗X )
∼−→ p](Y) ∧ X .

In fact, this is an equivalence of bifunctor: p]
(
−∧p∗(−)

) ∼−→ (
p](−) ∧−

)
.

By adjunction, one gets equivalences:

p∗Hom(X ,X ′) ∼−→ Hom(p∗X , p∗X ′)
Hom(p]Y ,X )

∼−→ p∗Hom(Y , p∗X )

In fact, the smooth base change formula (resp. projection formula) is obviously
true when the functors are evaluated at smooth schemes (exercice!). Then the
result follows by uniqueness of Kan extensions.

The following result is a crucial theorem when dealing with the functoriality
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Theorem 1.17 (Localization, Morel-Voevodsky). Let i : Z → S be a closed
immersion with complementary open immersion j. Then for any pointed space X ,
the following is a homotopy cofiber (right exact) sequence:

j]j
∗(X )

ad′j−−−→ X adi−−−→ i∗i
∗(X )

Here ad′j (resp. adi) is the counit map for the adjunction (j], j
∗) (resp. (i∗, i∗)).

The original proof in [MV99, 2.21, p. 114] is fundamentally correct, but with
inaccuracies. It was written correctly in [Ayo07b, 4.5.36]. One can restate the
theorem more geometrically by saying that for any smooth S-scheme X, XZ =
X ×S Z, the canonical map

X/(X −XZ)→ i∗(XZ+)

is a weak A1-equivalence. This statement uses both Excision and the A1-homotopy
relation.

2. Stable A1-homotopy theory

2.1. The stabilization procedure and spectra.

2.1. We will now pass from the unstable category to the stable one. Historically,
this models the passage from effective pure (Chow, etc...) motives to pure motives.
The reason to make this passage was to get a rigid category, i.e. one were an
object (pure motive here) admits (strong) dual in the monoidal sense. The same
procedure can be applied to motivic complexes, with respect to the Tate twist.

We will present the construction for in the A1-homotopical setting. Then an-
other motivation comes from algebraic topology: it is (much) simpler to study
stable homotopy groups than homotopy groups. The companion theory to stable
homotopy groups is that of S1-spectra, such as the infinite suspension spectrum of
a space. The passage from space to spectra can be understood as a simple stabi-
lization procedure in the sense of∞-categories. A similar procedure works for the
A1-homotopical setting, but we now have a choice of spheres to do, say between
S1 and Gm given the discussion in Example 1.13. Actually, based on the (pure
and mixed) motivic picture, we choose to invert both. That is done by taking the
sphere P1 = S1 ∧Gm as our sphere for spectra.

We now present a summarized construction, using the language of ∞-category.
This is due to Robalo [Rob15, Section 2]. The idea is to construct a category
whose objects are ”infinitely divisible” by P1. More topologicaly, objects are ∞-
loop spaces with respect to the sphere P1: Ω(X ) = Hom(P1,X ).

Definition 2.2. One defines the stable homotopy category SH(S) over a scheme
S as the limit of presentable ∞-categories of the N-tower:

. . .
Ω−→H*(S)

Ω−→H*(S).
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In particular, one gets a canonical ∞-functor, the infinite suspension functor

Σ∞ : H*(S)→ SH(S)

and one can check the following properties (here the real work starts!):

Proposition 2.3. There exists a symmetric monoidal structure ⊗ on the ∞-
category SH(S), the functor Σ∞ is monoidal and maps the motivic sphere P1 to a
⊗-invertible object.

The ∞-category SH(S) is stable.5

Note that, with the above definition, the existence of the symmetric monoidal
structure is not formal. It follows from the fact that the cyclic permutation on
(P1)∧,3 is equivalent to the identity (see again loc. cit.).

2.4. To understand concretely this definition, it is useful to come back to an
explicit model of SH(S). By the above definition, one is naturally led to Ω-spectra:
these are sequence of spaces (Xn)n∈N together with a given map of spaces:

Xn → R Hom(P1,Xn+1)

which is a weak equivalence. In fact, to get a good model category structure, one
is led to drop the latter condition. These are called the P1-spectra.6 The standard
example is the infinite suspension spectrum associated with a pointed space X ,
defined by

(Σ∞X )n = (P1)∧,n ∧ X ,
The structural maps being obvious.

Example 2.5. As announced, the spectrum construction amount to invert for the
tensor product P1, and therefore also S1 and Gm taking into account Example 1.13.
Similarly, all Thom spaces Th(An) becomes ⊗-invertible in SH(S). By an easy
argument using Excision (in fact a Zariski-local argument suffices), we get further
that for any vector bundle V/S, the (stable) Thom space Th(V ) = Σ∞V/V × is
⊗-invertible.

Remarque 2.6. (1) Using the above definition with the Tate twist ZS(1), one
obtains the stable/non effective category DM(S), which is closer to the
category of pure motives. Indeed, one obtains along the lines of the previous
course a fully faithful embedding: CHM(k)op → DM(k), mapping a smooth
projective k-scheme to the (infinite suspension) of the motivic complex
M(X).

5This means that a square is a homotopy pullback if and only if it is a homotopy pushout. It
implies that the associated homotopy category is triangulated in the sense of Verdier.

6It is then possible to get a model structure (out of a good model monoidal structure on
spaces) along classical lines, and to compare the associated monoidal∞-category with the above
definition. See [Rob15, 2.3].
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(2) It is possible to consider the simplicial sphere S1 in H*(S) in the above con-
struction. One gets an interesting intermediate category, SHeff(S), which
is still stable, and a factorisation:

H*(S)→ SHeff(S)→ SH(S).

This allows to break the study of the P1-stabilisation procedure into two
steps.

The interest of this construction is also to fit in the following link between
A1-homotopy and motivic complexes:

SmS

(−)+ //

γ
��

H*(S) // SHeff(S) //

γ∗ ��

SH(S)

γ∗
��

Smcor
S

M // DMeff(S) // DM(S)

the two left vertical functors are obtained as a mixture of the Dold-Kan cor-
respondence (which abeliaized the (stable) homotopy types) and the func-
tor ”adding transfers” γ∗ seen in the preceding course. In fact, it is useful
to further factorized the vertical maps through the so-called A1-derived and
stable A1-derived category, built out of (complexes of) Nisnevich sheaves
of abelian groups on SmS, that is without transfers.

Note that all functors in this diagram are monoidal, and have a right
adjoint. Moreover, γ∗ send the motivic sphere Gm to ZS(1)[1].

Of course, stable homotopy and stable motives are quite different. Morel’s
computating gives a first hint of this difference.

Theorem 2.7 (Morel, [Mor12] ). Let k be a perfect field and n ∈ Z an integer.
Then one gets isomorphisms and a commutative diagram:

πstn (G∧,nm )

∼
��

[1k,G∧,nm ]SH(k)
γ∗ // HomDM(k)(1k,1k(n)[n]) Hn,n

M (k)

∼
��

KMW
n (k)

mod η // KM
n (k)

where KMW
n (k) is the Milnor-Witt K-theory of the field k and the lower vertical

maps is the canonical morphism of rings sending η to 0.

Remarque 2.8. (1) The identification of Homs in DM with Milnor K-theory
uses the cancellation theorem mentioned in the first course. In fact, this
theorem can be stated as the fact that the natural stabilization functor
DMeff(k)→ DM(k) is fully faithful.

(2) Recall that unlike Milnor K-theory, Milnor-Witt K-theory is negatively
graded and one has:

KMW
n (k) =

{
GW (k) n = 0

W (k) n < 0.
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2.2. A (brief) summary of the six functors formalism. Based on the opera-
tions Proposition 1.16 and thir obvious extension to the stable homotopy category,
and most notably on Theorem 1.17, we now have all the ingredients to state the
following theorem, due to Ayoub and Voevodsky:

Theorem 2.9. For any separated morphism of finite type f : X → S, there exists
a pair of adjoint triangulated functors

f! : SH(X) � SH(S) : f !

which is uniquely characterized by the properties:

• (f ◦ g)! ' f∗ ◦ g!.
• Proper support. there exists a canonical natural transformation αf : f! → f∗

compatible with composition, which is an isomorphism if f is proper.
• Smooth purity. for f smooth with tangent bundle Tf , there exists a natural

purity isomorphism:

pf : f] → f!(Th(Tf )⊗−)

compatible with composition. Here Th(Tf ) = Σ∞Tf/T
×
f is the Thom space,

relative to X, associated with the vector bundle Tf/X.

Moreover, this exceptional functoriality satisfies the required property of the so
called Grothendieck six functors formalism:

• Base change: f !p∗ ' q∗g
!.

• Projection formula f!(E⊗ f ∗(F)) ' f!(E)⊗ F.

Remarque 2.10. This theorem was first stated by Voevodsky, but he never pub-
lished his proof. It was then proved by Ayoub in his Ph. D., published in [Ayo07a,
1.4.2] for all the assertions except the projection formula, which was proved in
[Ayo07a, Section 2.3]. Actually, the theorem of Ayoub-Voevodsky is proved ax-
iomatically: via the cross functors formalism in the terminology of Voevodsky,
monoidal stable homotopy functor in that of Ayoub. In [CD19], we give another
axiomatic framework, that of premotivic/motivic categories, in an attempt to gen-
eralize this statement to motivic complexes. We also give a full proof of the
theorem,7 and we refer the reader to [CD19, 2.4.50] for a precise account of the
theorem.

Remarque 2.11. The formalism used in [Ayo07a] is that of triangulated categories,
which is sufficient for many purposes. In [CD19], we have argued axiomatically, and
uses both the formalism of triangulated and model categories. It is formal to extend
the language of loc. cit. to the formalism of∞-categories (see for example [Dre18]).
However, the above theorem is formulated in terms of triangulated category in

7Actually two proofs of the theorem: one reduces to the smooth purity property for Pn
S/S,

which was proved by J. Ayoub in [Ayo07a, 1.7.9], and the other one is a direct proof in the
particular case where the underlying motivic category is oriented in the sense of [CD19, 2.4.38].
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[CD19]. The extension to the formalism of (presentable monoidal and stable) ∞-
categories is not obvious at all: the problem is to build f! (or equivalently f !) as
an ∞-functor and to state the compatibility with composition correctly. There is
a long history on that problem with many contributions: Liu-Zheng, Gaitsgory-
Rosenblyum, Blanc-Robalo-Toën-Vezzosi, Khan.

The fact that f∗ is not a derived functor was a known problem in the étale
formalism. This is not a problem in general, but it makes some reasoning literally
impossible, in particular functoriality statements involving cones.

Example 2.12. Let f : X → S be a smooth morphism. Inspired by the notations
of Voevodsky’s homological motives, let us put ΠS(X) = f!f

!(1S). Then it follows
from the purity isomorphism (and its dual) that:

ΠS(X) = Σ∞X+.

To go further, for any vector bundle V over X, let us put:

ΠS(X,−V ) = f∗
(

ThX(V )⊗,−1 ⊗ f !(1S)
)
.

Then if f is proper and smooth, with tangent bundle Tf , it follows formally
from the above theorem that the object ΠS(X) is strongly dualizable with dual
ΠS(X,−Tf ) (see [CD19, 2.4.31]).

This is the A1-homotopical analogue of the Poincaré duality.

2.13. Because we do not know the localization theorem 1.17 for motivic complexes,
we do not have the preceding theorem in general for them. It is known however in
several particular cases.

On the other hand, the situation for motives (and torsion étale sheaves prime
to the characteristics, Saito’s mixed Hodge modules, etc...) Thom spaces always
reduces to Tate twists: Th(V ) = 1S(r)[2r] where r is the rank of V/S. One can
still prove the preceding duality result in general for motivic complexes. It has
the following more usual form: for X/S smooth proper of dimension d, MS(X) is
rigid in DM(S) with dual MS(X)(−d)[−2d] where d is the dimension of X/S

Again, this explains the interest of inverting Tate twists!

3. Algebraic K-theory and Beilinson motives

As mentioned in the first course, Beilinson conjectures explicitly referred to
algebraic rational K-theory as the motivic cohomology with rational coefficients
for regular bases. This is the idea that we will exploit here.

3.1. Representability algebraic K-theory.

3.1. Recall that algebraic K-theory of a ring A has been constructed by Quillen
from the classifying space BGL(A) of the infinite group of invertible matrices with
coefficients in A:

GL(A) = lim−→
n>0

GLn(A),
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and the plus construction of a space X which roughly abelianize the first homotopy
group of X without changing its homology. Then one puts for n > 0:

Kn(A) = πn(BGL(A)+).

Of course many other constructions of algebraic K-theory have been proposed.
Morel and Voveodsky come after this rich story and propose the following result,
in plain analogy with the representability theorem of complex K-theory in the
(usual) homotopy category.

Theorem 3.2 ([MV99], Th. 3.13, p. 140). Let S be a regular scheme. Then there
exists a classifying space BGLS in H*(S) which is a commutative H-monoid and
such that there exists a canonical isomorphism of abelian groups:

[Sn ∧G∧,mm ,Z× BGLS]H*(S) =

{
Kn−m(S) n ≥ m

0 n < m.

where Z× BGL is pointed by (0, ∗), and is an H-group in H*(S).

The main ingredients for this theorem are the following properties of algebraic
K-theory: Thomason-Trobaugh’s Nisnevich descent theorem, A1-homotopy invari-
ance regular bases (which easily comes from the existence of K ′-theory). However,
it also relies on the Morel-Voevodsky’s theory of classifying spaces of sheaves of
algebraic groups and the ability to give good models from these. As a byproduct,
they also obtain a canonical isomorphism in H*(S) with the infinite Grassmanian
(over S):

BGLS ' Gr∞,∞

where Grn,m is the Grassmannian scheme, classifying n dimensional sub-vector
spaces in An+m

S .

Remarque 3.3. The isomorphism is functorial in S with respect to pullbacks. More-
over, it follows formally that for any smooth S-scheme X,

[Sn ∧G∧,im ∧X+,Z× BGLS]H*(S) =

{
Kn−i(X) n ≥ i

0 n < m.

3.4. Recall that P1 = S1 ∧Gm. It follows essentially from the above theorem that
one has a weak A1-equivalence:

τ : Z× BGL→ R Hom(P1,Z× BGL) = Ω(Z× BGL).

This is the algebraic analog of the Bott periodicity theorem! One can therefore
deduce from that map an Ω-spectrum of the form:

(Z× BGL,Z× BGL, . . .)

where the structural maps are given by the chosen map τ . Elaborating this con-
struction, one gets:
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Theorem 3.5 ([Rio10], [PPR09]). Let S be a regular scheme.
The following definition does not depend on the choice of τ and gives a well-

defined P1-spectrum KGLS such that for any pair (n,m) ∈ Z2, there exists an
isomorphism of abelian groups:

εSn,i : [1S(i)[n],KGLS]SH(S) '

{
Kn−2i(X) n ≥ 2i

0 n < 2i.

Moreover, there exists a commutative ring structure on KGL such that the preced-
ing isomorphism is compatible with products on K-theory as defined Waldhausen.

More precisely, the existence of the spectrum was obtained in [Rio10], and the
construction of the product with the good properties, done in [PPR09].8

Remarque 3.6. One can define KGLS over an arbitrary scheme S. Actually, we
can even put KGLS = f ∗(KGLZ) where f : S → Spec(Z) is the unique map.
However, as algebraic K-theory is not A1-invariant over singular bases, this object
cannot represent algebraic K-theory when S is singular. It was proved by Cisinski
in [Cis13] that KGLS actually represents Weibel homotopy invariant K-theory.

3.2. Beilinson motivic cohomology.

3.7. Let us go back to the origin of (algebraic) K-theory, used by Grothendieck to
prove the Riemann-Roch formula in higher dimension, and in a relative form. Let
X be a regular scheme. Given a closed (integral) subscheme Z ⊂ S, the structure
sheaf OZ can be seen as a coherent sheaf on S. As S is regular, this sheaf admits
a well-defined class in the K-group of locally free OS-modules:

[OZ ]S ∈ K0(S).

This extends to a morphism of groups from the group of algebraic cycles on S to
K0(S):

Z(S)→ K0(S), α =
∑
i

ni.[Zi] 7→
∑
i

ni.[OZi
]S.

In SGA6, Grothendieck proves that this extends to an isomorphism, modulo tor-
sion:

CH(S)Q
∼−−→ K0(S)Q.

The left hand-side, the group of algebraic cycles modulo rational equivalence, is
natural graded by codimension. So this gives a natural grading on K0:

GriK0(S)Q = CHi(S)Q.

In SGA6, this graduation was explained from three different point of views:

• the filtration induced by the codimension of the support of coherent sheaves,
and its associated graduation;

8In fact, the principle of this construction was singled out by Voevodsky, in his long road to
prove the Milnor conjecture: see [Voe99].
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• the filtration induced by the so-called λ-ring structure9 on K0(S), and the
associated γ-filtration;
• as some eigenspace for the so-called Adams operations ψk; more precisely,

for a fixed k > 0:

GriK0(S)Q = Ker
(
ψk − ki.Id

)
.

This decomposition was extended, independently by Gillet and Soulé, on higher K-
theory. More recently, Riou obtained the following lifting in the stable homotopy
category:

Theorem 3.8 ([Rio10], Th. 5.3.10). Let S be a regular ring. Then there exists a
decomposition in SH(S)

(3.8.a) KGLS ⊗Q '
⊕
i∈Z

KGL
(i)
S

such that for any integer i, the associated projector πi of KGLS corresponding to

the factor KGL
(i)
S induces via the isomorphism εSs,t of Theorem 3.5 the projection

on GriKs−2t(S)Q.

In other words:

[1S(s)[t],KGL
(i)
S ]SH(S) ' Gri−sKt−2s(S)Q.

Definition 3.9. With the preceding notations, one defines the (rational) Beilinson
motivic cohomology spectrum over a regular scheme S as:

HB,S = KGL
(0)
S .

We define the Beilinson motivic cohomology of S as:

Hn,i
B (S) :=

[
1S,HB,S(i)[n]

]
SH(S)

.

Note that the graduation on KGLS ⊗ Q is compatible with products. This
implies that the ring structure on KGLS ⊗ Q induces a ring structure on HB,S.
Therefore, Beilinson motivic cohomology is naturally equipped with products.

Example 3.10. From the preceding theorem, one deduces the following formula:

(3.10.a) Hn,i
B (S) = GriK2i−n(S)Q.

In particular, from Grothendieck isomorphism, one gets

H2n,n
B (S) =

[
1S,HB,S(n)[2n]

]
SH(S)

' CHn(X)Q.

Remarque 3.11. (1) The definition of Belinson motivic cohomology through
formula (3.10.a) goes back to 1985: see [Sou85].

(2) The P1-periodicity of K-theory can be seen in decomposiotion (3.8.a), as

one deduce that KGL(i) = HB(i)[2i] — recall P1
S = 1S(1)[2].

9This corresponds to the λ-operations defined by the exterior power operators on locally free
OS-modules.
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In fact, the motivation for higher Chow groups was to extend the above example.
As a consequence of the so-called localization long exact sequence for higher Chow
groups, Levine obtained the following optimal result:

Theorem 3.12 ([Lev01]). Let S be a smooth scheme over a field or a Dedekind
scheme. Then there exists a canonical isomorphism:

Hn,i
B (S) ' CHn(X, 2i− n)⊗Q.

where the right hand-side is Bloch’s higher Chow grouups.

3.3. Beilinson motives.

3.13. One possible approach to mixed motives with rational coefficients, once
we are convinced we have the good theory, is to use Bousfield localization of
the rational stable homotopy category: this amount to look only at phenomena
(isomorphisms!) that are detected by HB,S.

We really want to work over arbitrary bases now. In fact, one can check that
all our constructions are functorial in the regular scheme S. It means that for
any morphism of regular schemes f : T → S, one has HB,T ' f ∗(HB,S). So we
simply put for a general scheme S, with canonical projection f : S → Spec(Z),
HB,S = f ∗HB,Z.

In [CD19, Def. 14.2.1], we proposed the following definition:

Definition 3.14. We define the category DMB(S) of Beilinson motives over S
as the localization of the stable presentable ∞-category SH(S)Q with respect to
morphisms f : E→ F such that f ⊗HB,S is an isomorphism.

Again, we can use the general theory of localization of ∞-category.10 This
means, surprisingly enough, the the category of Beilinson motives is a full subcat-
egory of SH(S)⊗Q, made by the HB-local spectra.

The reason why this is a reasonable definition is the following general properties.

Theorem 3.15. The HB-localization of the unit spectrum 1S = Σ∞S+ is the
spectrum HB.

Moreover, a spectrum E is HB-local if and only if the map

u⊗ E : 1S ⊗ E→ HB,S ⊗ E

is an isomorphism, where u is the unit of the ring spectrum (commutative monoid)
E.

Finally, there exists an equivalence of HB-local spectra and modules over the
commutative monoid HB,S (in any possible sense!):

DMB(S) ' HB,S −mod.

10or model categories as it was done originally by Bousfield!
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As a consequence, one can apply Ayoub-Voevodsky’s theorem to the category
DMB(S). To summarize, we have obtained a stable∞-category DMB(S) satisfying
the six functors formalism, and such that if we denote by 1S the unit object with
respct to the monoidal structure on DMB(S), the following formula holds for a
regular scheme S:

HomDMB(S)(1S,1S(i][n]) = GriγK2i−n(S)Q.

3.16. Grothendieck-Verdier duality. Let us mention the following application,
which was actually the original motivation behind Grothendieck’s formalism.

To fix terminology, and by analogy with the notion of perfect complexes, we will
say that a rational motive M is constructible if it is compact in the triangulated
sense: the functor Hom(M,−) commutes with arbitrary coproducts.

Let f : X → S be any separated morphism of finite type, such that S is
regular. Then the object DX = f !(1S) is dualizing for constructible motives. More
precisely, if we let DX = HomDM(S)(−, DX) then DX is an auto-anti-equivalence
of the category of constructible rational motives M :

M ' DX(DX(M)).

This result was proved only when S itself is of finite type over a 2-dimensional
excellent scheme in [CD19, Th. 15.2.4]. The general case was obtained in [Cis20,
2.3.2].

Finally, we can link the previous abstract definition with the more concrete one
described in the previous course.

Theorem 3.17. Let S be a regular scheme (or even a geometrically unibranch
scheme). Then there the graph functor

γ∗ : SH(S)→ DM(S)

where the right hand-side is the stable category of motivic complexes — built out
from sheaves with transfers — induces an equivalence of monoidal ∞-categories:

DMB(S)
∼−→ DM(S)⊗Q.

One deduces in particular that for regular schemes, there exists an isomorphism:

Hn,i
M (S)⊗Q ' GriγK2n−i(S)Q

where the left hand-side are the motivic cohomology groups as defined by Voevod-
sky in [Voe02]. Besides, this isomorphism is compatible with the product on both
sides, whereas in SGA6, one deduced a product on Chow groups from the one on
algebraic K-theory!
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4. Conclusion

This is only the beginning of the story. For rational coefficients, the situation
seems very well understood. The above definition can be compared with various
other possible candidates, and satisfies several universal properties (see [CD19,
Sections 15, 16]). It satisfies a lot of good structural properties: absolute purity,
constructibility of the six operations, cohomological descent theorems. An impor-
tant conjectural property is the existence of the weight structure due to Bondarko.
Unfortunately, the remaining properties in Beilinson’s conjectures are hard: the
existence of the motivic t-structure, and the conservativity conjecture.

For integral coefficients, the situation is more open. A construction has been ob-
tained when restricting to bases which are schemes over a field, using sheaves with
transfers and replacing the Nisnevich topology by the cdh-topology. A more gen-
eral construction has been introduced by Spitzweck in [Spi18] for general schemes
by defining a good Eilenberg-MacLane ring spectrum representing motivic coho-
mology (higher Chow groups for smooth schemes over Dedekind rings). Still it
remains to show that the definition does not depend on the choice of the Dedekind
ring, and the comparison with Voevodsky’s motivic cohomology is open in general.

When working with étale coefficients, the situation is much better and two
definitions were proposed and proved to be equivalent: [Ayo14], [CD15]. In fact,
these definitions are equivalent to the h-motives introduced in Voevodsky’s 1994
Ph. D. thesis! (after appropriate restrictions)
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K-theory spectrum. In Algebraic topology, volume 4 of Abel Symp., pages 279–330.
Springer, Berlin, 2009.
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