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Introduction

The aim of this talk is to show the proof of the Gersten’s
conjecture for Rost’s complexes.

In order to achieve this goal, we are going to study sections 5 and
6 of Rost’s article.

We are going to study a corollary of Rost but in the Nisnevich
site.
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Cycle complexes

For a cycle module M over X, we define the complexes

Cp(X;M) =
∐

x∈X(p)

M(x)

with differentials

d = dX : Cp(X;M)→ Cp+1(X;M)
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Cycle complexes

Another important remark, is that in practice, all cycle module that
we are considering have a Z−grading, so we put

Cp(X;M,n) =
∐

x∈X(p)

Mn−p(x)

Cp(X;M,n) =
∐

x∈X(p)

Mn+p(x)


C∗(X;M) =

∐
n∈Z

C∗(X;M,n)

(
C∗(X;M) =

∐
n∈Z

C∗(X;M,n)

)
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Classical Chow groups

From the definition, we can see that

Ap(X;K∗, p) = CHp(X)

where KM
∗ is the cycle module associated to the Milnor’s K-theory.
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Classical Chow groups

Classical Chow groups: If we consider the cycle module M = KM
∗

(Milnor’s K-theory). Recalling that the classical Chow groups of
p−codimension cycles on a variety X it is defined as the cokernel of
the divisor map ∐

x∈X(p−1)

κ(x)∗
div−−→

∐
x∈X(p)

Z

For each n ∈ N we have the complex C∗(X;n) defined as follows:

Cp(X;n) :=
∐

x∈X(p)

KM
n−pκ(x)

therefore

. . .→
∐

x∈X(p)

KM
n−pκ(x)→

∐
x∈X(p+1)

KM
n−(p+1)κ(x)→ . . .
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As we said previously, there is a complex

· · · →
⊕

xn−1∈X(n−1)

KM
1 (κ(xn−1))

dn−→
⊕

xn∈X(n)

KM
0 (κ(xn))→ 0

Let xn−1 ∈ X(n−1), Z = {xn−1} and we denote Z̃ as the
normalization of Z.
If xn ∈ Z(1) then

p−1({xn}) Z̃

{xn} Z

finite p

where p−1({xn}) = {y1, . . . , yN}.
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(dn)xn−1
xn (σ) =

∑
yi

cκ(yi)|κ(xn) ◦ ∂vi(σ)

where vi is the associated valuation to the discrete valuation ring
OZ̃,yi . Therefore we have that

KM
∗ (κ(Z̃))

∂vi−−→ KM
∗−1(κ(yi))

cκ(yi)|κ(xn)−−−−−−−→ KM
∗−1(κ(xn))

In degree 0, this map corresponds to the multiplication by the degree
extension, and for degree 1 ∂vi corresponds to the valuation vi. Hence

(dn)xn−1
xn (σ) =

∑
yi

cκ(yi)|κ(xn) ◦ ∂vi(σ)

=
∑
yi

[κ(yi) : κ(xn)] · ordvi(σ)
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Acyclicity for smooth local rings

We can state the main result as follow:

Theorem ([4, Theorem 6.1])

Let X be a smooth and semi-local scheme over a field k. Then

Ap(X;M) = 0 for all p > 0

This theorem is know for the following cases:

Quillen’s K-theory (see [3] section 7, theorem 5.11),

étale cohomology (see [1]),
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Let V be a vector space over k and let A(V ) be the associated affine
space. For a linear subspace W of V let

πW : A(V )→ A(V/W ),

v 7→ πW (v) = v +W

I. Rosas Soto The Gersten conjecture for Rost complexes



12/24

Cycle Complexes
Acyclicity for smooth local rings

Zariski setting
What about other sites?

Acyclicity for smooth local rings

Lemma ([4, Theorem 6.2])

Let X ⊂ A(V ) be an equidimensional closed subvariety with
dim(X) = d and let Y ⊂ X be a closed subvariety with dim(Y ) < d be
a finite subset such that X is smooth in S. Then for a generic
(d− 1)−codimensional linear subspace W of V the following
conditions hold.

1. The restriction

πW

∣∣∣
Y

: Y → A(V/W )

is finite.

2. The restriction

πW

∣∣∣
X

: X → A(V/W )

is locally around S smooth of relative dimension 1.
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Proposition ([4, Proposition 6.4])

Let X be a smooth variety over a field and let Y ⊂ X be a closed
subscheme of codimension ≥ 1. Then for any finite subset S ⊂ Y
there is an open neighbourhood X ′ of S in X such that the map

i∗ : A∗(Y ∩X ′;M)→ A∗(X
′;M)

is the trivial map. Here i : Y ∩X ′ → X ′ is the inclusion
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Bloch’s formula

In the smooth case, we can sheafify cycle modules in the following
way:

Let X be a smooth variety X, and let MX be the Zariski sheaf
on X given by

U 7→ MX(U) := A0(U ;M) ⊂M(ξX)

for U open subset of X.

Corollary ([4, Corollary 6.5])

For a smooth variety X over k there are natural isomorphisms

Ap(X;M) = Hp
Zar(X;MX)
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Nisnevich site

Let XNis be the small Nisnevich site of X. Let us define the Nisnevich
sheaf CMXNis

(U) which is the sheaf associated to C∗(UNis,M).

Definition (Distinguished square)

A distinguished square is a pull-back square of schemes

U ×X V V

U X

j2

g f

j1

where j1 : U → X is an open immersion and f : V → X is an étale
morphism such that the induced map from f−1((X − U)red) to
(X − U)red is an isomorphism.
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Nisnevich site

Definition

If F is a Nisnevich presheaf, then it is a sheaf if and only if for any
distinguished square, we obtain a pull-back square

F (X) F (U)

F (V ) F (U ×X V )

j∗1

f∗ g∗

j∗2
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Definition

Let F be a complex of presheaf of R−modules. We will say that F have
the Brown-Gersten property with respect to the Nisnevich topology if
for any distinguished square we have that the following square

F (X) F (U)

F (V ) F (U ×X V )

j∗1

f∗ g∗

j∗2

is homotopy pullback.
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Nisnevich site

Lemma

CMXNis
is a Nisnevich sheaf.

Lemma

CMXNis
satisfies the Brown-Gersten property.
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Nisnevich site

Theorem

Let FMXNis
be the Nisnevich sheaf associated to A0(−,M), then the

following conditions are equivalent:

1. FMXNis
→ CMXNis

is a quasi-isomorphism.

2. For n ∈ Z we have that Hn(CMXNis
) = 0 if n 6= 0, or

Hn(CMXNis
) = FMXNis

otherwise.
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The arguments for the proofs of the previous lemmas comes from the
following diagram

0 Cp−m(Z,M) Cp(X,M) Cp(U,M) 0

0 Cp−m(T,M) Cp(V,M) Cp(U ×X V,M) 0

f̃∗

j∗1

f∗ g∗

j∗2
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Nisnevich site

Proposition ([2, Proposition 1.1.10])

Let F be a complex of presheaves of R-modules. Then the following
two conditions are equivalent:

1. The complex F has the Brown-Gersten property.

2. For any X the canonical map

Hn(F (X))→ Hn
Nis(X,FNis)

is an isomorphism of R-modules.
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Conclusion

Remark

The complex C∗(−,M) has the Brown-Gersten property, then
Hn

Nis(X,C
∗(−,M)) ∼= Hn(C∗(−,M)), therefore we can conclude the

following

Hn
Nis(X,C

∗(−,M)) Hn(C∗(X,M))

Hn(X,FMNis) An(X;M)

∼=

∼= =

∼=

which give us an isomorphism between Chow groups with coefficient
and the cohomology of sheaf in the Zariski and Nisnevich sites

An(X;M) ∼= Hn
Nis(X,F

M
Nis)
∼= Hn

Zar(X,F
M
Zar)
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Thanks for your attention!
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