The axiomatic of Rost cycle modules I

Clémentine Lemarié-Rieusset

February 12, 2021

Clémentine Lemarié-Rieusset

The axiomatic of Rost cycle modules I

February 12, 2021 1 / 35

• • • • • • • • • •

We are going to introduce cycle modules (and before that, cycle premodules) which generalize Milnor *K*-theory, with $\varphi_* : \{a_1, \ldots, a_n\} \mapsto \{\varphi(a_1), \ldots, \varphi(a_n)\}, \varphi^*$ (the degree $\mathbb{Z} \to \mathbb{Z}$, the norm $E^* \to F^*$, etc.), (ring) product and residue morphism ∂_v .

(Other examples are Quillen K-theory and Galois cohomology.)

We are going to study de Rham cohomology as an example.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

Cycle premodules

- The data of cycle premodules and cycle modules
- de Rham cohomology and the rules of cycle premodules
- Morphisms of cycle premodules

2 Cycle modules

- Definitions
- Additional properties of cycle modules

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Contents

Cycle premodules

• The data of cycle premodules and cycle modules

- de Rham cohomology and the rules of cycle premodules
- Morphisms of cycle premodules

Cycle modules

- Definitions
- Additional properties of cycle modules

From now on, k is a field and B is the base scheme, it is the (semi-)localization of a separated scheme of finite type over k at a finite (e.g. empty) family of points, or more generally the limit of étale morphisms between separated schemes of finite type over k.

Our schemes X will be "localizations" of separated B-schemes of finite type over k in the same sense.

Definition

A field over B is a field F with a morphism $\text{Spec}(F) \to B$ such that $\text{Spec}(F) \to B \to \text{Spec}(k)$ is the spectrum of a finitely generated extension. A B-field extension $\varphi : F \to E$ is a field extension whose spectrum is a morphism of B-schemes.

イロト 不得 トイラト イラト 一日

A valuation over B is a non-trivial discrete valuation $v : F^* \to \mathbb{Z}$ with a morphism $\text{Spec}(\mathcal{O}_v) \to B$ such that $k \subset \mathcal{O}_v$ and such that $F = \text{Frac}(\mathcal{O}_v)$ and $\kappa(v) = \mathcal{O}_V/\mathfrak{m}$ are finitely generated extensions of k. (Note that F and $\kappa(v)$ are fields over B.)

We will most often consider normalized (i.e. surjective) discrete valuations.

For example, you can take $\mathcal{O}_v = \mathcal{O}_{X,x}$ with x a point of codimension one in a smooth k-scheme X.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

M is a cycle premodule over *B* if for all fields *F* over *B*, M(F) is an abelian group with a \mathbb{Z} -grading $(M(F) = \bigoplus M_n(F))$ with :

 $n \in \mathbb{Z}$

э

• • • • • • • • • • • •

M is a cycle premodule over *B* if for all fields *F* over *B*, *M*(*F*) is an abelian group with a \mathbb{Z} -grading (*M*(*F*) = $\bigoplus_{n \in \mathbb{Z}} M_n(F)$) with :

D1 for all *B*-field extensions $\varphi : F \to E$ we have a restriction morphism $\varphi_* : M(F) \to M(E)$ of degree 0, also denoted $r_{E/F}$;

< ロト < 同ト < ヨト < ヨト

M is a cycle premodule over *B* if for all fields *F* over *B*, *M*(*F*) is an abelian group with a \mathbb{Z} -grading (*M*(*F*) = $\bigoplus_{n \in \mathbb{Z}} M_n(F)$) with :

- D1 for all *B*-field extensions $\varphi : F \to E$ we have a restriction morphism $\varphi_* : M(F) \to M(E)$ of degree 0, also denoted $r_{E/F}$;
- D2 for all finite *B*-field extension $\varphi : F \to E$ we have a corestriction morphism $\varphi^* : M(E) \to M(F)$ of degree 0, also denoted $c_{E/F}$;

< ロト < 同ト < ヨト < ヨト

M is a cycle premodule over *B* if for all fields *F* over *B*, *M*(*F*) is an abelian group with a \mathbb{Z} -grading ($M(F) = \bigoplus_{n \in \mathbb{Z}} M_n(F)$) with :

- D1 for all *B*-field extensions $\varphi : F \to E$ we have a restriction morphism $\varphi_* : M(F) \to M(E)$ of degree 0, also denoted $r_{E/F}$;
- D2 for all finite *B*-field extension $\varphi : F \to E$ we have a corestriction morphism $\varphi^* : M(E) \to M(F)$ of degree 0, also denoted $c_{E/F}$;
- D3 for all field F over B, the abelian group M(F) is a left K_*F -module such that the product respects the gradings $(K_nF \bullet M_m(F) \subset M_{n+m}(F));$

3

< □ > < □ > < □ > < □ > < □ > < □ >

M is a cycle premodule over *B* if for all fields *F* over *B*, *M*(*F*) is an abelian group with a \mathbb{Z} -grading ($M(F) = \bigoplus_{n \in \mathbb{Z}} M_n(F)$) with :

- D1 for all *B*-field extensions $\varphi : F \to E$ we have a restriction morphism $\varphi_* : M(F) \to M(E)$ of degree 0, also denoted $r_{E/F}$;
- D2 for all finite *B*-field extension $\varphi : F \to E$ we have a corestriction morphism $\varphi^* : M(E) \to M(F)$ of degree 0, also denoted $c_{E/F}$;
- D3 for all field F over B, the abelian group M(F) is a left K_*F -module such that the product respects the gradings $(K_nF \bullet M_m(F) \subset M_{n+m}(F));$
- D4 for all valuation $v : F^* \to \mathbb{Z}$ over B, we have a residue morphism $\partial_v : M(F) \to M(\kappa(v))$ of degree -1 satisfying some rules.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If *M* is a cycle premodule over *B* and π is a prime of *v* (i.e. $\mathfrak{m} = (\pi)$), we have a specialization morphism of degree 0 $s_v^{\pi} : \begin{cases} M(F) \rightarrow M(\kappa(v)) \\ \rho \rightarrow \partial_v(\{-\pi\} \bullet \rho) \end{cases}$ (this uses D3 and D4).

イロト 不得下 イヨト イヨト 二日

Contents

Cycle premodules

• The data of cycle premodules and cycle modules

• de Rham cohomology and the rules of cycle premodules

Morphisms of cycle premodules

Cycle modules

- Definitions
- Additional properties of cycle modules

< □ > < □ > < □ > < □ >

From now on, $k \subset F$ is an extension of fields of characteristic zero.

Definition

The vector space of 1-differential forms (or Kähler differentials), denoted by $\Omega^1_{F/k}$, is the quotient of $\bigoplus_{f \in F} F df$ by the sub-*F*-vector space generated by the $d\lambda$, $\lambda \in k$, the $d(f_0 + f_1) - df_0 - df_1$ and the $d(f_0f_1) - f_0.df_1 - f_1.df_0$, $f_0, f_1 \in F$. The differentiation is the *k*-linear map $d_0: \begin{cases} F \to \Omega^1_{F/k} \\ f \mapsto df \end{cases}$ (it satisfies the Leibniz rule).

10 / 35

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Universal property of the *F*-vector space of Kähler differentials.

with M an F-vector space, d a k-linear map satisfying the Leibniz rule, and φ the unique F-linear map given by the universal property.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $n \geq 2$. The vector space of *n*-differential forms, denoted by $\Omega_{F/k}^n$, is the exterior product of *n* copies of $\Omega_{F/k}^1$, i.e. it is the quotient of the tensor product over *F* of *n* copies of $\Omega_{F/k}^1$ by the sub-*F*-vector space generated by the $x_1 \otimes \cdots \otimes x_n$ with $i \neq j$ such that $x_i = x_j$. The differentiation is d_{n-1} : $\Omega_{F/k}^{n-1} \longrightarrow \Omega_{F/k}^n$ $\sum_{i \in I} f_{0,i} d_0(f_{1,i}) \wedge \cdots \wedge d_0(f_{n,i}) \mapsto \sum_{i \in I} d_0(f_{0,i}) \wedge d_0(f_{1,i}) \wedge \cdots \wedge d_0(f_{n,i})$ (it is well-defined and verifies $d_{n-1} \circ d_{n-2} = 0$).

The de Rham complex, denoted by $\Omega^*(F/k)$, is the complex of differential forms and differentiations as above. For all $n \in \mathbb{N}$, we define $H_{dR}^n(F/k) := H^n(\Omega^*(F/k)) = \operatorname{Ker} d_n / \operatorname{Im} d_{n-1}$ (the associated *n*-th cohomology group $(d_{-1}$ being the zero map by convention)).

12/35

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If F is a field over Spec(k) then $M(F) = \bigoplus_{n \in \mathbb{N}} H^n_{dR}(F/k)$ (it is a \mathbb{Z} -grading with terms zero in negative degree).

D1) If $\varphi: F \to E$ is a *k*-field extension then we define $\varphi_*: M(F) \to M(E)$ by : $(\varphi_*)_n^n: H_{dR}^n(F/k) \to H_{dR}^n(E/k)$ is the morphism deduced from the morphism $\Omega_{F/k}^n \to \Omega_{E/k}^n$ which verifies $f_0 d_0(f_1) \wedge \cdots \wedge d_0(f_n) \mapsto \varphi(f_0) d_0(\varphi(f_1)) \wedge \cdots \wedge d_0(\varphi(f_n)).$

(Such a morphism exists because of the universal properties of the vector space of Kähler differentials and of the exterior product.)

D2) Let $\varphi : F \to \overline{E}$ be a finite k-field extension of (finite) Galois closure \overline{E} (we have $\psi : E \to \overline{E}$ and $\psi \circ \varphi : F \to \overline{E}$ is Galois). Denote $G = \text{Gal}(\overline{E}/F)$.

We have a group action of G on $H^n_{dR}(\overline{E}/k)$ given by

$$\sigma \bullet \sum_{i \in I} f_{0,i} d_0(f_{1,i}) \wedge \cdots \wedge d_0(f_{n,i}) = \sum_{i \in I} \sigma(f_{0,i}) d_0(\sigma(f_{1,i})) \wedge \cdots \wedge d_0(\sigma(f_{n,i})))$$

Note that for all $n \in \mathbb{N}$, $H^n_{dR}(\overline{E}/k)^G \simeq H^n_{dR}(F/k)$ (canonically).

We define
$$\operatorname{Tr}(\omega) = \sum_{\sigma \in G} \sigma \bullet \omega$$
 and $\varphi^* = \operatorname{Tr} \circ \psi_*$ (via the isomorphism).

The first set of rules is the following :

R1a) Whenever defined, $(\psi \circ \varphi)_* = \psi_* \circ \varphi_*$; R1b) Whenever defined, $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$; R1c) If $\psi : F \to L$ is a *B*-field extension and $\varphi : F \to E$ is a finite *B*-field extension, $R = L \otimes_F E$, then $\psi_* \circ \varphi^* = \sum_{p \in \text{Spec}(R)} \text{length}(R_p) \bullet (\varphi_p)^* \circ (\psi_p)_*$ with $\varphi_p : L \to R/p$ and $\psi_p : E \to R/p$ the canonical morphisms $(\varphi_p \text{ is finite since } \varphi \text{ is})$

Note that R1c) implies R2e) If $\varphi : E \to F$ is a finite and totally inseparable *B*-field extension then $\varphi_* \circ \varphi^* = \deg(\varphi) \bullet \mathsf{Id}$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

For D3, let *F* be a *k*-field. If $m \in \mathbb{Z}$, define an additive morphism $m \bullet$ by $m \bullet (f_0 d_0(f_1) \land \cdots \land d_0(f_n)) = m f_0 d_0(f_1) \land \cdots \land d_0(f_n).$

If $f'_1, \ldots, f'_l \in F^*$, define an additive morphism $\{f'_1, \ldots, f'_l\} \bullet$ by $\{f'_1, \ldots, f'_l\} \bullet (f_0 d_0(f_1) \land \cdots \land d_0(f_n)) = f_0 f'^{-1}_1 \ldots f'^{-1} d_0(f'_1) \land \cdots \land d_0(f'_l) \land d_0(f_1) \land \cdots \land d_0(f_n).$ (It is well defined since for all $f \in F^* \setminus \{1\}$, $f^{-1}(1-f)^{-1} df \land d(1-f) = -f^{-1}(1-f)^{-1} df \land df = 0$)

The second set of rules is the following :

R2a) Whenever defined, $\varphi_*(x \bullet \rho) = \varphi_*(x) \bullet \varphi_*(\rho)$; R2b) Whenever defined, $\varphi^*(\varphi_*(x) \bullet \mu) = x \bullet \varphi^*(\mu)$; R2c) Whenever defined, $\varphi^*(y \bullet \varphi_*(\rho)) = \varphi^*(y) \bullet \rho$

Note that in the expressions $\varphi_*(x)$ and $\varphi^*(y)$, the morphisms are the ones from Milnor K-theory (for instance, φ_* is the identity of \mathbb{Z} or the morphism induced by φ).

Note that R2c) implies R2d) If $\varphi : E \to F$ is a finite *B*-field extension then $\varphi^* \circ \varphi_* = \deg(\varphi) \bullet \operatorname{Id}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For D4, let us describe $(\partial_v)_0^1 : H^1_{dR}(F/k) \to H^0_{dR}(\kappa(v)/k) \simeq H^0_{dR}(k/k) \simeq k$, with v a Spec(k)-valuation of ring O_v (hence $F = \operatorname{Frac}(O_v)$) and residual field $\kappa(v) \simeq k$ (by hypothesis).

We will construct a morphism $\partial : \bigoplus_{f \in F} F df \to \kappa(v)$ which will induce a morphism $\partial_v : H^1_{dR}(F/k) = \operatorname{Ker}(d_1) / \operatorname{Im}(d_0) \to \operatorname{Ker}(d_0) = H^0_{dR}(\kappa(v)/k).$

Note that $\widehat{O_{\nu}}$ is a complete discrete valuation ring such that its residual field $\kappa(v)$ and its fraction field are of characteristic zero, hence $\widehat{O_v} \simeq \kappa(v)[[X]]$ and $F_v := \operatorname{Frac}(\widehat{O_v}) \simeq \kappa(v)((X)).$ Let's denote by π a prime of v and by $\psi: F \to F_v$ the canonical morphism. For each $f \in F$, there is a unique $m \in \mathbb{Z} \cup \{+\infty\}$ and a unique decomposition $\psi(f) = \sum a_n \pi^n$ such that $a_m \neq 0$. $\partial: \begin{cases} \bigoplus_{f \in F} F df \rightarrow \kappa(v) \\ \sum_{i \in I}^{f \in F} f_i dg_i \rightarrow \sum_{i \in I, k \in \mathbb{Z}} a_{i,-k} k b_{i,k} \end{cases} \text{ (with } \psi(f_i) = \sum_{n \ge n_i} a_{i,n} \pi^n \text{ and} \\ \psi(g_i) = \sum_{n \ge n_i} b_{i,n} \pi^n, \text{ i.e. the sum of the residues of } f_i g'_i \text{).} \end{cases}$ n > m

19/35

To define $\partial_{v} : \bigoplus_{n \in \mathbb{N}} H^{n}_{dR}(F/k) \to \bigoplus_{n \in \mathbb{N}} H^{n}_{dR}(\kappa(v)/k)$, we use hypercohomology.

First, for a *k*-scheme *X* we define $\Omega^1_{X/k}$ and $\Omega^1_{X/k}$. Let $\Delta : X \to X \times_k X$ be the diagonal : it is an immersion, so *X* is isomorphic to a subscheme (Y, \mathcal{O}_Y) of $X \times_k X$; let *U* be the biggest open of $X \times_k X$ in which *Y* is closed, and \mathcal{I} be the sheaf of ideals defining the closed subscheme (Y, \mathcal{O}_Y) of (U, \mathcal{O}_U) ; $\mathcal{I}/\mathcal{I}^2$ is an $\mathcal{O}_{X \times_k X}/\mathcal{I}$ -module, i.e. an \mathcal{O}_Y -module. We define $\Omega^1_{X/k}$ to be this \mathcal{O}_X -module.

We define $\Omega_{X/k}^n$ to be the Zariski sheaf associated to the presheaf $U \mapsto \Lambda^n(\Omega_{U/k}^{\overline{1}})$, with $\Lambda^0(\Omega_{U/k}^1) = \mathcal{O}_U$ and $\Lambda^1(\Omega_{U/k}^1) = \Omega_{U/k}^1$.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Now let us take $\mathcal{O}_v = \mathcal{O}_{X,x}$ with x a point of codimension one in a smooth k-scheme X and $Z := \overline{\{x\}}$ smooth over k (by replacing X by a suitable open neighbourhood of x and Z by $Z \cap U$ if need be).

For *F* a Zariski sheaf of complexes of \mathcal{O}_X -modules (for instance $F = \Omega^*_{X/k}$), we define $\Gamma(X, F) = F(X)$ and $\Gamma_Z(\overline{X, F}) = \{\rho \in F(X), \forall x \in Z, \rho_x = 0\}$, and $H^n_{Zar}(X, F)$ (resp. $H^n_{Z,Zar}(X, F)$) to be the *n*-th right derived functor of $\Gamma(X, F)$ (resp. $\Gamma_Z(X, F)$). We define $H^n_{dR}(X) = H^n_{Zar}(X, \Omega^*_{X/k})$ and $H^n_{dR}(X, Z) = H^n_{Z,Zar}(X, \Omega^*_{X/k})$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

We have the de Rham localization sequence :

$$0 \longrightarrow H^0_{dR}(X,Z) \longrightarrow H^0_{dR}(X) \longrightarrow H^0_{Zar}(X \setminus Z, \Omega^*_{X/k}) \xrightarrow{d_0} H^1_{dR}(X,Z)$$

$$\cdots \to H^n_{dR}(X,Z) \longrightarrow H^n_{dR}(X) \longrightarrow H^n_{Zar}(X \setminus Z, \underline{\Omega^*_{X/k}}) \xrightarrow{d_n} H^{n+1}_{dR}(X,Z)$$

We define $(\partial_v)_{n-1}^n$ to be d_n via the isomorphisms $H^n_{Zar}(X \setminus Z, \Omega^*_{X/k}) \simeq H^n_{dR}(F)$ and $H^{n+1}_{dR}(X, Z) \simeq H^{n-1}_{dR}(Z) \simeq H^{n-1}_{dR}(\kappa(v))$ (thanks to a purity result and the facts that $\mathcal{O}_{X,Z} = \mathcal{O}_v$ and $\kappa(Z) = \kappa(v)$ (since $Z = \overline{\{x\}}, \mathcal{O}_{X,x} = \mathcal{O}_v$ and $F = \operatorname{Frac}(\mathcal{O}_v)$)). The third set of rules is the following :

R3a) If $v: F^* \to \mathbb{Z}$ is a valuation over B and $\varphi: E \to F$ is a B-field extension such that $w = v \circ \varphi$ is a valuation over B then, denoting $\overline{\varphi}: \kappa(w) \to \kappa(v)$ the morphism induced by φ , we have $\partial_{v} \circ \varphi_{*} = |v(F)/w(E)| \bullet \overline{\varphi}_{*} \circ \partial_{w};$ R3b) If $v : F^* \to \mathbb{Z}$ is a valuation over B and $\varphi : F \to E$ is a finite B-field extension then we have $\partial_{\mathbf{v}} \circ \varphi^* = \sum \varphi^*_{\mathbf{w}} \circ \partial_{\mathbf{w}}$; R3c) If $v: F^* \to \mathbb{Z}$ is a valuation over B and $\varphi: E \to F$ is a B-field extension such that $v \circ \varphi = 0$ then $\partial_v \circ \varphi_* = 0$; R3d) If $v: F^* \to \mathbb{Z}$ is a valuation over B and $\varphi: E \to F$ is a B-field extension such that $v \circ \varphi = 0$, and if π is a prime of v, then, denoting $\varphi: E \to \kappa(v)$ the morphism induced by φ , we have $s_v^{\pi} \circ \varphi_* = \overline{\varphi}_*$; R3e) If $v : F^* \to \mathbb{Z}$ is a valuation over $B, u \in \mathcal{O}_v$ is a unit, of class $\overline{u} \in \kappa(v)$, and $\rho \in M(F)$, then $\partial_v(\{u\} \bullet \rho) = -\{\overline{u}\} \bullet \partial_v(\rho)$.

23 / 35

イロト 不得 トイヨト イヨト 二日

Note that R3e) implies R3f) If $v : F^* \to \mathbb{Z}$ is a valuation over B, π is a prime of $v, x \in K_n F$, and $\rho \in M(F)$, then $\partial_v(x \bullet \rho) = \partial_v(x) \bullet s_v^{\pi}(\rho) + (-1)^n s_v^{\pi}(x) \bullet \partial_v(\rho) + \{-1\}\partial_v(x) \bullet \partial_v(\rho)$ and $s_v^{\pi}(x \bullet \rho) = s_v^{\pi}(x) \bullet s_v^{\pi}(\rho)$.

24 / 35

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

Cycle premodules

- The data of cycle premodules and cycle modules
- de Rham cohomology and the rules of cycle premodules
- Morphisms of cycle premodules

Cycle modules

- Definitions
- Additional properties of cycle modules

25 / 35

< □ > < 同 > < 回 > < 回 > < 回 >

A morphism $\omega: M \to M'$ of cycle premodules over B of even type (respectively of odd type) is given by morphisms $\omega_F: M(F) \to M'(F)$ of degree 0 which are even : $\omega_F(-x) = \omega_F(x)$ (respectively odd : $\omega_F(-x) = -\omega_F(x)$ and satisfy : $\varphi_* \circ \omega_F = \omega_F \circ \varphi_*;$ $\varphi^* \circ \omega_F = \omega_F \circ \varphi^*$: $\{a\} \bullet \omega_F(\rho) = \omega_F(\{a\} \bullet \rho)$ which implies $\{a_1,\ldots,a_n\} \bullet \omega_F(\rho) = \omega_F(\{a_1,\ldots,a_n\} \bullet \rho)$ (respectively $\{a\} \bullet \omega_F(\rho) = -\omega_F(\{a\} \bullet \rho)$ which implies $\{a_1,\ldots,a_n\}\bullet\omega_F(\rho)=(-1)^n\omega_F(\{a_1,\ldots,a_n\}\bullet\rho));$ $\partial_{\mathbf{v}} \circ \omega_{\mathbf{F}} = \omega_{\kappa(\mathbf{v})} \circ \partial_{\mathbf{v}}$ (respectively $\partial_{\mathbf{v}} \circ \omega_{\mathbf{F}} = -\omega_{\kappa(\mathbf{v})} \circ \partial_{\mathbf{v}}$).

26 / 35

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

Cycle premodules

- The data of cycle premodules and cycle modules
- de Rham cohomology and the rules of cycle premodules
- Morphisms of cycle premodules

Cycle modules

- Definitions
- Additional properties of cycle modules

(I) < (II) <

Contents

Cycle premodules

- The data of cycle premodules and cycle modules
- de Rham cohomology and the rules of cycle premodules
- Morphisms of cycle premodules

Cycle modules

- Definitions
- Additional properties of cycle modules

28 / 35

イロト イヨト イヨト イヨト

From now on, if X is an irreducible scheme, we denote by ξ_X its generic point.

If X is a normal and irreducible scheme then for each $x \in X^{(1)}$ $O_v := \mathcal{O}_{X,x}$ is a discrete valuation ring, and we denote by ∂_x the residue morphism $\partial_v : M(\kappa(\xi_X)) \to M(\kappa(x))$.

If X is a scheme and $x, y \in X$, we define $\partial_y^x : M(\kappa(x)) \to M(\kappa(y))$ by : if $y \notin \overline{\{x\}}^{(1)}$ then $\partial_y^x = 0$, else $\partial_y^x = \sum_z c_{\kappa(z)/\kappa(y)} \circ \partial_z$ with z running through the points (in finite number) of the normalization of $\overline{\{x\}}$ lying over y.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

M is a cycle module over B if M is a cycle premodule over B satisfying :

3

< □ > < 同 > < 回 > < 回 > < 回 >

M is a cycle module over B if M is a cycle premodule over B satisfying :

FD (finite support of divisors) For all normal and irreducible schemes X, $\rho \in M(\kappa(\xi_X))$ and all but finitely many $x \in X^{(1)}$, $\partial_x(\rho) = 0$;

 ${\it M}$ is a cycle module over ${\it B}$ if ${\it M}$ is a cycle premodule over ${\it B}$ satisfying :

- FD (finite support of divisors) For all normal and irreducible schemes X, $\rho \in M(\kappa(\xi_X))$ and all but finitely many $x \in X^{(1)}$, $\partial_x(\rho) = 0$;
 - C (closedness) For all integral and local schemes X of dimension 2, denoting x_0 the closed point of X, $\sum_{x \in X^{(1)}} \partial_{x_0}^x \circ \partial_x^{\xi_X} = 0.$

Morphisms of cycle modules are morphisms of cycle premodules between cycle modules.

3

Note that in (FD), $\partial_x = \partial_x^{\xi x}$, that if $x \notin X^{(1)}$ then $\partial_x^{\xi x} = 0$, and that more generally (FD) implies that if $y \in X$, $\rho \in M(\kappa(y))$, then for all but finitely many $z \in X$, $\partial_z^y(\rho) = 0$.

If X is an integral scheme which verifies (FD), we define $d: M(\kappa(\xi_X)) \to \bigoplus_{x \in X^{(1)}} M(\kappa(x))$ by $d = (\partial_x^{\xi_X})_{x \in X^{(1)}}$ and $A^0(X; M) := \bigcap_{x \in X^{(1)}} \ker(\partial_x^{\xi_X}).$

Contents

Cycle premodules

- The data of cycle premodules and cycle modules
- de Rham cohomology and the rules of cycle premodules
- Morphisms of cycle premodules

Cycle modules

- Definitions
- Additional properties of cycle modules

< ロト < 同ト < ヨト < ヨト

If M is a cycle module and F is a field over B then we have :

3

イロト イヨト イヨト イヨト

If M is a cycle module and F is a field over B then we have :

H (homotopy property for \mathbb{A}^1) We have the short exact sequence $0 \to M(F) \to M(F(X)) \to \bigoplus_{x \in (\mathbb{A}^1_F)_{(0)}} M(\kappa(x)) \to 0$, the second map

being $r_{F(x)/F}$ and the third map being d (with $(\mathbb{A}_F^1)_{(0)}$ the points of \mathbb{A}_F^1 whose closure is of dimension 0);

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If M is a cycle module and F is a field over B then we have :

H (homotopy property for \mathbb{A}^1) We have the short exact sequence $0 \to M(F) \to M(F(X)) \to \bigoplus_{x \in (\mathbb{A}^1_F)_{(0)}} M(\kappa(x)) \to 0$, the second map

being $r_{F(x)/F}$ and the third map being d (with $(\mathbb{A}_F^1)_{(0)}$ the points of \mathbb{A}_F^1 whose closure is of dimension 0);

RC (reciprocity for curves) For each proper curve X over F we have

$$c \circ d = 0$$
, with $c : \begin{cases} \bigoplus_{x \in X_{(0)}} M(\kappa(x)) & \to & M(F) \\ (
ho_i \in M(\kappa(x_i))) & \mapsto & \sum_i c_{\kappa(x_i)/F}(
ho_i) \end{cases}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If *M* is a cycle module, *X* is a smooth and local scheme (we denote by x_0 its closed point), $Y \to X$ is the blow-up of *X* at x_0 , *v* is the valuation corresponding to the exceptional fiber over x_0 , then :

- 4 回 ト - 4 回 ト

If *M* is a cycle module, *X* is a smooth and local scheme (we denote by x_0 its closed point), $Y \to X$ is the blow-up of *X* at x_0 , *v* is the valuation corresponding to the exceptional fiber over x_0 , then :

Co (continuity) $A^0(X; M) \subset A^0(Y; M)$ i.e. $\partial_{\nu}(A^0(X; M)) = 0$;

34 / 35

< □ > < □ > < □ > < □ > < □ > < □ >

If *M* is a cycle module, *X* is a smooth and local scheme (we denote by x_0 its closed point), $Y \to X$ is the blow-up of *X* at x_0 , *v* is the valuation corresponding to the exceptional fiber over x_0 , then :

Co (continuity) $A^0(X; M) \subset A^0(Y; M)$ i.e. $\partial_{\nu}(A^0(X; M)) = 0$;

E (evaluation) There exists a unique morphism
ev :
$$A^0(X; M) \to M(\kappa(x_0))$$
 such that for all prime π of v ,
 $r_{\kappa(v)/\kappa(x_0)} \circ ev = s^{\pi}_{v|A^0(X;M)}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thanks for your attention !

2

イロト イヨト イヨト イヨト