The axiomatic of Rost cycle modules II

Clémentine Lemarié-Rieusset

February 26, 2021

Clémentine Lemarié-Rieusset

The axiomatic of Rost cycle modules II

February 26, 2021 1 / 38

• • • • • • • • • •

Contents

1 Cycle premodules in a nutshell

2 Cycle modules

3 Change of coefficients

4) The four basic maps

- Push-forward
- Pull-back
- Multiplication with units
- Boundary map

э

< □ > < □ > < □ > < □ > < □ > < □ >

M is a cycle premodule over *B* if for all fields *F* over *B*, *M*(*F*) is an abelian group with a \mathbb{Z} -grading ($M(F) = \bigoplus_{n \in \mathbb{Z}} M_n(F)$) with :

- D1 for all *B*-field extensions $\varphi : F \to E$ we have a restriction morphism $\varphi_* : M(F) \to M(E)$ of degree 0, also denoted $r_{E/F}$;
- D2 for all finite *B*-field extension $\varphi : F \to E$ we have a corestriction morphism $\varphi^* : M(E) \to M(F)$ of degree 0, also denoted $c_{E/F}$;
- D3 for all field F over B, the abelian group M(F) is a left K_*F -module such that the product respects the gradings $(K_nF \bullet M_m(F) \subset M_{n+m}(F));$
- D4 for all valuation $v : F^* \to \mathbb{Z}$ over B, we have a residue morphism $\partial_v : M(F) \to M(\kappa(v))$ of degree -1 satisfying some rules.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If M is a cycle premodule over B and π is a prime of v (i.e. $\mathfrak{m} = (\pi)$), we have a specialization morphism of degree 0 $s_v^{\pi} : \begin{cases} M(F) \rightarrow M(\kappa(v)) \\ \rho \mapsto \partial_v(\{-\pi\} \bullet \rho) \end{cases}$ (this uses D3 and D4).

イロト 不得 トイヨト イヨト 二日

If F is a field over Spec(k) then $M(F) = \bigoplus_{n \in \mathbb{N}} H^n_{dR}(F/k)$ (it is a \mathbb{Z} -grading with terms zero in negative degree).

D1) If $\varphi: F \to E$ is a k-field extension then we define $\varphi_*: M(F) \to M(E)$ by : $(\varphi_*)_n^n: H^n_{dR}(F/k) \to H^n_{dR}(E/k)$ is the morphism deduced from the morphism $\Omega^n_{F/k} \to \Omega^n_{E/k}$ which verifies $f_0 d_0(f_1) \wedge \cdots \wedge d_0(f_n) \mapsto \varphi(f_0) d_0(\varphi(f_1)) \wedge \cdots \wedge d_0(\varphi(f_n)).$

D2) Let $\varphi : F \to \overline{E}$ be a finite k-field extension of (finite) Galois closure \overline{E} (we have $\psi : E \to \overline{E}$ and $\psi \circ \varphi : F \to \overline{E}$ is Galois). Denote $G = \text{Gal}(\overline{E}/F)$.

We have a group action of G on $H^n_{dR}(\overline{E}/k)$ and for all $n \in \mathbb{N}$, $H^n_{dR}(\overline{E}/k)^G \simeq H^n_{dR}(F/k)$ (canonically).

We define
$$\operatorname{Tr}(\omega) = \sum_{\sigma \in G} \sigma \bullet \omega$$
 and $\varphi^* = \operatorname{Tr} \circ \psi_*$ (via the isomorphism).

<ロト < 四ト < 三ト < 三ト = 三

D3) If *F* is a *k*-field and $f'_1, \ldots, f'_l \in F^*$, define an additive morphism $\{f'_1, \ldots, f'_l\} \bullet$ by $\{f'_1, \ldots, f'_l\} \bullet (f_0 d_0(f_1) \land \cdots \land d_0(f_n)) = f_0 f'^{-1}_1 \ldots f'^{-1} d_0(f'_1) \land \cdots \land d_0(f'_l) \land (f'_1) \land \cdots \land d_0(f_n).$

D4) Note that if $\kappa(v) \simeq k$ then $(\partial_v)_0^1 : H^1_{dR}(F/k) \to H^0_{dR}(\kappa(v)/k)$ is induced by

$$\partial: \left\{ \begin{array}{ll} \bigoplus_{i \in F} F df \rightarrow \kappa(v) \\ \sum_{i \in I}^{f \in F} f_i dg_i \rightarrow \sum_{i \in I, k \in \mathbb{Z}} a_{i,-k} k b_{i,k} \text{ (with } f_i = \sum_{n \geq n_i} a_{i,n} \pi^n \text{ and} \\ g_i = \sum_{n \geq m_i} b_{i,n} \pi^n \text{ in } \operatorname{Frac}(\widehat{O_v}) \simeq \kappa(v)((X)), \text{ with } \pi \text{ a prime of } v, \text{ i.e. the} \\ \text{sum of the residues of } f_i g'_i \right). \\ \text{For the general case, we define } H^n_{dR}(X) = H^n_{Zar}(X, \Omega^*_{X/k}) \text{ and} \\ H^n_{dR}(X, Z) = H^n_{Z, Zar}(X, \Omega^*_{X/k}). \end{array} \right.$$

- ロ ト - (周 ト - (日 ト - (日 ト -)日

We have the de Rham localization sequence :

$$0 \longrightarrow H^0_{dR}(X,Z) \longrightarrow H^0_{dR}(X) \longrightarrow H^0_{Zar}(X \setminus Z, \underline{\Omega^*_{X/k}}) \xrightarrow{d_0} H^1_{dR}(X,Z)$$

$$\cdots \to H^n_{dR}(X,Z) \longrightarrow H^n_{dR}(X) \longrightarrow H^n_{Zar}(X \setminus Z, \underline{\Omega^*_{X/k}}) \xrightarrow{d_n} H^{n+1}_{dR}(X,Z)$$

We define $(\partial_v)_{n-1}^n$ to be d_n via the isomorphisms $H^n_{Zar}(X \setminus Z, \Omega^*_{X/k}) \simeq H^n_{dR}(F)$ and $H^{n+1}_{dR}(X, Z) \simeq H^{n-1}_{dR}(Z) \simeq H^{n-1}_{dR}(\kappa(v))$ (thanks to a purity result and the facts that $\mathcal{O}_{X,Z} = \mathcal{O}_v$ and $\kappa(Z) = \kappa(v)$ (since $Z = \overline{\{x\}}, \mathcal{O}_{X,x} = \mathcal{O}_v$ and $F = \operatorname{Frac}(\mathcal{O}_v)$)). The first set of rules is the following :

R1a) Whenever defined, $(\psi \circ \varphi)_* = \psi_* \circ \varphi_*$; R1b) Whenever defined, $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$; R1c) If $\psi : F \to L$ is a *B*-field extension and $\varphi : F \to E$ is a finite *B*-field extension, $R = L \otimes_F E$, then $\psi_* \circ \varphi^* = \sum_{p \in \text{Spec}(R)} \text{length}(R_p) \bullet (\varphi_p)^* \circ (\psi_p)_* \text{ with } \varphi_p : L \to R/p \text{ and}$ $\psi_p : E \to R/p$ the canonical morphisms $(\varphi_p \text{ is finite since } \varphi \text{ is})$

Note that R1c) implies R2e) If $\varphi : E \to F$ is a finite and totally inseparable *B*-field extension then $\varphi_* \circ \varphi^* = \deg(\varphi) \bullet \mathsf{Id}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The second set of rules is the following :

R2a) Whenever defined, $\varphi_*(x \bullet \rho) = \varphi_*(x) \bullet \varphi_*(\rho)$; R2b) Whenever defined, $\varphi^*(\varphi_*(x) \bullet \mu) = x \bullet \varphi^*(\mu)$; R2c) Whenever defined, $\varphi^*(y \bullet \varphi_*(\rho)) = \varphi^*(y) \bullet \rho$

Note that in the expressions $\varphi_*(x)$ and $\varphi^*(y)$, the morphisms are the ones from Milnor K-theory (for instance, φ_* is the identity of \mathbb{Z} or the morphism induced by φ).

Note that R2c) implies R2d) If $\varphi : E \to F$ is a finite *B*-field extension then $\varphi^* \circ \varphi_* = \deg(\varphi) \bullet \operatorname{Id}$.

The third set of rules is the following :

R3a) If $v: F^* \to \mathbb{Z}$ is a valuation over B and $\varphi: E \to F$ is a B-field extension such that $w = v \circ \varphi$ is a valuation over B then, denoting $\overline{\varphi}: \kappa(w) \to \kappa(v)$ the morphism induced by φ , we have $\partial_{v} \circ \varphi_{*} = |v(F)/w(E)| \bullet \overline{\varphi}_{*} \circ \partial_{w};$ R3b) If $v: F^* \to \mathbb{Z}$ is a valuation over B and $\varphi: F \to E$ is a finite B-field extension, denoting $\varphi_w : \kappa(v) \to \kappa(w)$ the morphism induced by φ , we have $\partial_{v} \circ \varphi^{*} = \sum \varphi_{w}^{*} \circ \partial_{w}$; R3c) If $v: F^* \to \mathbb{Z}$ is a valuation over B and $\varphi: E \to F$ is a B-field extension such that $v \circ \varphi = 0$ then $\partial_v \circ \varphi_* = 0$; R3d) If $v: F^* \to \mathbb{Z}$ is a valuation over B and $\varphi: E \to F$ is a B-field extension such that $v \circ \varphi = 0$, and if π is a prime of v, then, denoting $\varphi: E \to \kappa(v)$ the morphism induced by φ , we have $s_v^{\pi} \circ \varphi_* = \overline{\varphi}_*$; R3e) If $v : F^* \to \mathbb{Z}$ is a valuation over $B, u \in \mathcal{O}_v$ is a unit, of class $\overline{u} \in \kappa(v)$, and $\rho \in M(F)$, then $\partial_v(\{u\} \bullet \rho) = -\{\overline{u}\} \bullet \partial_v(\rho)$.

イロト イヨト イヨト イヨト 三日

Note that R3e) implies R3f) If $v : F^* \to \mathbb{Z}$ is a valuation over B, π is a prime of $v, x \in K_n F$, and $\rho \in M(F)$, then $\partial_v(x \bullet \rho) = \partial_v(x) \bullet s_v^{\pi}(\rho) + (-1)^n s_v^{\pi}(x) \bullet \partial_v(\rho) + \{-1\}\partial_v(x) \bullet \partial_v(\rho)$ and $s_v^{\pi}(x \bullet \rho) = s_v^{\pi}(x) \bullet s_v^{\pi}(\rho)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A morphism $\omega: M \to M'$ of cycle premodules over B of even type (respectively of odd type) is given by morphisms $\omega_F: M(F) \to M'(F)$ of degree 0 which are even : $\omega_F(-x) = \omega_F(x)$ (respectively odd : $\omega_F(-x) = -\omega_F(x)$ and satisfy : $\varphi_* \circ \omega_F = \omega_F \circ \varphi_*;$ $\varphi^* \circ \omega_F = \omega_F \circ \varphi^*$: $\{a\} \bullet \omega_F(\rho) = \omega_F(\{a\} \bullet \rho)$ which implies $\{a_1,\ldots,a_n\} \bullet \omega_F(\rho) = \omega_F(\{a_1,\ldots,a_n\} \bullet \rho)$ (respectively $\{a\} \bullet \omega_F(\rho) = -\omega_F(\{a\} \bullet \rho)$ which implies $\{a_1,\ldots,a_n\}\bullet\omega_F(\rho)=(-1)^n\omega_F(\{a_1,\ldots,a_n\}\bullet\rho));$ $\partial_{\mathbf{v}} \circ \omega_{\mathbf{F}} = \omega_{\kappa(\mathbf{v})} \circ \partial_{\mathbf{v}}$ (respectively $\partial_{\mathbf{v}} \circ \omega_{\mathbf{F}} = -\omega_{\kappa(\mathbf{v})} \circ \partial_{\mathbf{v}}$).

12/38

Contents

Cycle premodules in a nutshell

2 Cycle modules

3 Change of coefficients

4) The four basic maps

- Push-forward
- Pull-back
- Multiplication with units
- Boundary map

3

(日) (四) (日) (日) (日)

From now on, if X is an irreducible scheme, we denote by ξ_X its generic point.

If X is a normal and irreducible scheme then for each $x \in X^{(1)}$ $O_v := \mathcal{O}_{X,x}$ is a discrete valuation ring, and we denote by ∂_x the residue morphism $\partial_v : M(\kappa(\xi_X)) \to M(\kappa(x))$.

If X is a scheme and $x, y \in X$, we define $\partial_y^x : M(\kappa(x)) \to M(\kappa(y))$ by : if $y \notin \overline{\{x\}}^{(1)}$ then $\partial_y^x = 0$, else $\partial_y^x = \sum_z c_{\kappa(z)/\kappa(y)} \circ \partial_z$ with z running through the points (in finite number) of the normalization of $\overline{\{x\}}$ lying over y.

M is a cycle module over B if M is a cycle premodule over B satisfying :

3

< □ > < 同 > < 回 > < 回 > < 回 >

M is a cycle module over B if M is a cycle premodule over B satisfying :

FD (finite support of divisors) For all normal and irreducible schemes X, $\rho \in M(\kappa(\xi_X))$ and all but finitely many $x \in X^{(1)}$, $\partial_x(\rho) = 0$;

M is a cycle module over B if M is a cycle premodule over B satisfying :

- FD (finite support of divisors) For all normal and irreducible schemes X, $\rho \in M(\kappa(\xi_X))$ and all but finitely many $x \in X^{(1)}$, $\partial_x(\rho) = 0$;
 - C (closedness) For all integral and local schemes X of dimension 2, denoting x_0 the closed point of X, $\sum_{x \in X^{(1)}} \partial_{x_0}^x \circ \partial_x^{\xi_X} = 0.$

Morphisms of cycle modules are morphisms of cycle premodules between cycle modules.

Note that in (FD), $\partial_x = \partial_x^{\xi_X}$, that if $x \notin X^{(1)}$ then $\partial_x^{\xi_X} = 0$, and that more generally (FD) implies that if $y \in X$, $\rho \in M(\kappa(y))$, then for all but finitely many $z \in X$, $\partial_z^{\gamma}(\rho) = 0$.

Definition

Let *M* be a cycle module over *X*. The complex of cycles on *X* with coefficients in *M*, denoted $C_*(X; M)$, is defined by :

- for all integers $p \ge 0$, $C_p(X; M) = \bigoplus_{x \in X_{(n)}} M(\kappa(x));$

$$- d_X : C_p(X; M) \to C_{p-1}(X; M) \text{ is defined by } d_y^{\times} = \partial_y^{\times}.$$

The maps d_X are well-defined and verify $d_X \circ d_X = 0$ thanks to axioms (FD) and (C).

イロト 不得下 イヨト イヨト 二日

If X is an integral scheme which verifies (FD), we define $d: M(\kappa(\xi_X)) \to \bigoplus_{x \in X^{(1)}} M(\kappa(x))$ by $d = (\partial_x^{\xi_X})_{x \in X^{(1)}}$ and $A^0(X; M) := \bigcap_{x \in X^{(1)}} \ker(\partial_x^{\xi_X}).$

3

17 / 38

If M is a cycle module then :

æ

<ロト <問ト < 目と < 目と

If M is a cycle module then :

H (homotopy property for \mathbb{A}^1) For all fields F over B, \mathbb{A}^1_F verifies (FD) (hence d is well-defined) and we have the short exact sequence $0 \to M(F) \to M(F(X)) \to \bigoplus_{x \in (\mathbb{A}^1_F)_{(0)}} M(\kappa(x)) \to 0$, the second map

being $r_{F(X)/F}$ and the third map being d (with $(\mathbb{A}_F^1)_{(0)}$ the points of \mathbb{A}_F^1 whose closure is of dimension 0);

If M is a cycle module then :

H (homotopy property for \mathbb{A}^1) For all fields F over B, \mathbb{A}^1_F verifies (FD) (hence d is well-defined) and we have the short exact sequence $0 \to M(F) \to M(F(X)) \to \bigoplus_{x \in (\mathbb{A}^1_F)_{(0)}} M(\kappa(x)) \to 0$, the second map

being $r_{F(X)/F}$ and the third map being d (with $(\mathbb{A}_F^1)_{(0)}$ the points of \mathbb{A}_F^1 whose closure is of dimension 0);

RC (reciprocity for curves) For all fields F over B and for all proper curves X over F we have $c \circ d = 0$, with

$$c: egin{cases} igoplus_{\kappa\in X_{(0)}} M(\kappa(x)) & o & M(F) \ (
ho_i \in M(\kappa(x_i))) & \mapsto & \sum_i c_{\kappa(x_i)/F}(
ho_i) \end{cases}$$

18 / 38

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Indeed :

< □ > < □ > < □ > < □ > < □ > < □ >

Indeed :

• (H) implies (FDL) (the (FD) axiom for the affine lines over fields over k) by definition;

< □ > < □ > < □ > < □ > < □ > < □ >

Indeed :

- (H) implies (FDL) (the (FD) axiom for the affine lines over fields over k) by definition;
- (H) implies (WR) (which is weak reciprocity : ∂_∞(A⁰(A¹_F; M)) = 0 with ∂_∞ the residue morphism for the valuation at infinity of F(X) over F), see Step 3 : (FD) + (H) ⇒ (RC) in Rost's paper (p.341) and note that if you weaken (FD) into (FDL) you get (WR);

19/38

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Indeed :

- (H) implies (FDL) (the (FD) axiom for the affine lines over fields over k) by definition;
- (H) implies (WR) (which is weak reciprocity : ∂_∞(A⁰(A¹_F; M)) = 0 with ∂_∞ the residue morphism for the valuation at infinity of F(X) over F), see Step 3 : (FD) + (H) ⇒ (RC) in Rost's paper (p.341) and note that if you weaken (FD) into (FDL) you get (WR);
- (FDL) and (WR) imply that *M* is a cycle module (see Theorem (2.3) in Rost's paper (p.338)).

19/38

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hence we only need to show that the cycle premodule of de Rham cohomology (over a field k of characterisitic zero (hence perfect)) verifies the homotopy property for \mathbb{A}^1 (H) in order to know that it is a cycle module.

To get (H), take the colimit over (the directed set of) the closed subschemes Z of dimension 0 of \mathbb{A}_F^1 of the de Rham localization sequence with $H_{dR}^n(\mathbb{A}_F^1)$ replaced by the isomorphic group $H_{dR}^n(F)$:

$$\cdots \to H^{n-2}_{dR}(Z) \xrightarrow{i_*} H^n_{dR}(F) \xrightarrow{p_n^*} H^n_{Zar}(\mathbb{A}^1_F \setminus Z, \underline{\Omega^*_{\mathbb{A}^1_F/k}}) \xrightarrow{d_n} H^{n-1}_{dR}(Z)$$

Note that p_n^* is injective since $s_n^* \circ p_n^*$ is, with $s : \operatorname{Spec}(L) \to \mathbb{A}_F^1 \setminus Z$ the inclusion of a closed point; the point being closed, $f := p \circ s$ is the spectrum of a finite extension φ , hence by R2d) $\varphi^* \circ \varphi_* = \operatorname{deg}(\varphi) \bullet \operatorname{Id}$ and $(\varphi_*)_n = f_n^* = s_n^* \circ p_n^*$ is injective.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

Note that we also have (though we won't use them) :

If *M* is a cycle module, *X* is a smooth and local scheme (we denote by x_0 its closed point), $Y \to X$ is the blow-up of *X* at x_0 , *v* is the valuation corresponding to the exceptional fiber over x_0 , then :

- Co (continuity) $A^0(X; M) \subset A^0(Y; M)$ i.e. $\partial_{\nu}(A^0(X; M)) = 0$;
 - E (evaluation) There exists a unique morphism ev : $A^0(X; M) \to M(\kappa(x_0))$ such that for all prime π of v, $r_{\kappa(v)/\kappa(x_0)} \circ ev = s^{\pi}_{v|A^0(X;M)}$.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Contents

1 Cycle premodules in a nutshell

2 Cycle modules

3 Change of coefficients

4) The four basic maps

- Push-forward
- Pull-back
- Multiplication with units
- Boundary map

3

< □ > < 同 > < 回 > < 回 > < 回 >

If $\omega : M \to N$ is a morphism of cycle modules over X (of even or odd type) and U is a subset of X, we define the change of coefficients induced by ω , denoted $\omega_{\sharp} : \bigoplus_{x \in U} M(\kappa(x)) \to \bigoplus_{x \in U} N(\kappa(x))$, by $(\omega_{\sharp})_x^x = \omega_{\kappa(x)}$ and the other components are 0.

Note that if ω is of even type (resp. of odd type) then $d_X \circ \omega_{\sharp} = \omega_{\sharp} \circ d_X$ (resp. $d_X \circ \omega_{\sharp} = -\omega_{\sharp} \circ d_X$).

Hence ω_{\sharp} induces a morphism between the homology groups of the complex of cycles on X with coefficients in M.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

- 1 Cycle premodules in a nutshell
- 2 Cycle modules
- 3 Change of coefficients

4 The four basic maps

- Push-forward
- Pull-back
- Multiplication with units
- Boundary map

э

< □ > < □ > < □ > < □ > < □ > < □ >

Contents

- 1 Cycle premodules in a nutshell
- 2 Cycle modules
- 3 Change of coefficients
- The four basic maps
 - Push-forward
 - Pull-back
 - Multiplication with units
 - Boundary map

3

25 / 38

< □ > < □ > < □ > < □ > < □ > < □ >

Let $f: X \to Y$ be a morphism of schemes of finite type over a field, $p \ge 0$ be an integer, and M be a cycle module over B (hence over X and over Y). The push-forward of f, denoted $f_*: C_p(X; M) \to C_p(Y; M)$, is defined by $(f_*)_y^x = c_{\kappa(x)/\kappa(y)}$ if y = f(x) and the morphism $\kappa(y) \to \kappa(x)$ induced by f is finite, 0 otherwise.

Note that $(f' \circ f)_* = f'_* \circ f_*$.

If $\omega : M \to N$ is a morphism of cycle modules over B then $\omega_{\sharp} \circ f_* = f_* \circ \omega_{\sharp}$.

If we further suppose that $f: X \to Y$ is proper, then we have $d_Y \circ f_* = f_* \circ d_X$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

- 1 Cycle premodules in a nutshell
- 2 Cycle modules
- 3 Change of coefficients

The four basic maps

- Push-forward
- Pull-back
- Multiplication with units
- Boundary map

3

< □ > < □ > < □ > < □ > < □ > < □ >

If $g: Y \to X$ is a morphism of schemes of finite type over a field of constant relative dimension d (i.e. all non-empty fibers of g are equidimensional of dimension d) then the pull-back of g, denoted $g^*: C_p(X; M) \to C_{p+d}(Y; M)$, is defined by $(g^*)_y^x = 0$ if $x \neq g(y)$, $(g^*)_y^{g(y)} = \text{length}(f^*\mathcal{O}_Y) \bullet r_{\kappa(y)/\kappa(g(y))}$ with $f: \text{Spec}(\mathcal{O}_{Y_{g(y)},y}) \to Y_{g(y)} \to Y(Y_{g(y)})$ being the fiber over g(y)).

Interesting cases are open immersions, closed immersions and base change (the projection $X \times_{\text{Spec}(F)} \text{Spec}(E) \to X$ with $F \to E$ a morphism of fields and X of finite type over F), which all have constant relative dimension 0.

If $\omega: M \to N$ is a morphism of cycle modules over B then $\omega_{\sharp} \circ g^* = g^* \circ \omega_{\sharp}.$

If we further suppose that $g: Y \to X$ is flat then $(g' \circ g)^* = g^* \circ g'^*$ and $d_Y \circ g^* = g^* \circ d_X$.

28 / 38

Proposition

Note that if
$$U \xrightarrow{g'} Z$$
 is a cartesian square of schemes of finite type
 $f' \downarrow \qquad \qquad \downarrow f$
 $Y \xrightarrow{g'} X$
over a field and g is of constant relative dimension then $g^* \circ f_* = f'_* \circ g'^*$.

The proof uses rule R1c).

æ

イロト イヨト イヨト イヨト

Contents

- 1 Cycle premodules in a nutshell
- 2 Cycle modules
- 3 Change of coefficients

The four basic maps

- Push-forward
- Pull-back
- Multiplication with units
- Boundary map

э

< □ > < □ > < □ > < □ > < □ > < □ >

If $a_1, \ldots, a_n \in \mathcal{O}_X(X)^*$, we define $\{a_1, \ldots, a_n\} : C_\rho(X; M) \to C_\rho(X; M)$ by $\{a_1, \ldots, a_n\}_x^x(\rho) = \{a_1(x), \ldots, a_n(x)\} \bullet \rho$ and the other components are 0.

This turns $C_p(X; M)$ into a module over the tensor algebra of $\mathcal{O}_X(X)^*$, and if X is a scheme over a field F then it turns $C_p(X; M)$ into a module over K_*F .

Note that $\{a_1, \ldots, a_n\} \circ \{b_1, \ldots, b_m\} = \{a_1, \ldots, a_n, b_1, \ldots, b_m\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\omega : M \to N$ is a morphism of cycle modules over B of even type then $\{a_1, \ldots, a_n\} \circ \omega_{\sharp} = \omega_{\sharp} \circ \{a_1, \ldots, a_n\}.$

If $\omega : M \to N$ is a morphism of cycle modules over B of odd type then $\{a_1, \ldots, a_n\} \circ \omega_{\sharp} = (-1)^n \ \omega_{\sharp} \circ \{a_1, \ldots, a_n\}.$

32 / 38

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Note that
$$\{a_1,\ldots,a_n\}\circ d_X=(-1)^n\ d_X\circ\{a_1,\ldots,a_n\}.$$

Note that
$$f_* \circ \{f^*(a_1), \ldots, f^*(a_n)\} = \{a_1, \ldots, a_n\} \circ f_*$$
 and
 $g^* \circ \{a_1, \ldots, a_n\} = \{g^*(a_1), \ldots, g^*(a_n)\} \circ g^*$ (where if $f : Y \to X$,
 $f^* : \mathcal{O}_X(X) \to \mathcal{O}_Y(Y)$ is the associated morphism, and idem for g).

Note that if $f: Y \to X$ is a finite and flat morphism of schemes of finite type over a field and $a \in \mathcal{O}_Y(Y)^*$ then $f_* \circ \{a\} \circ f^* = \{\tilde{f}_*(a)\}$ with $\tilde{f}_*: \mathcal{O}_Y(Y)^* \to \mathcal{O}_X(X)^*$ the standard transfer map (if X = Spec(A) and Y = Spec(B) are integral then $\tilde{f}_* = (N_{\text{Frac}(B)/\text{Frac}(A)})_{|B^*|}^{|A^*}$ (the norm)).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

- 1 Cycle premodules in a nutshell
- 2 Cycle modules
- 3 Change of coefficients

The four basic maps

- Push-forward
- Pull-back
- Multiplication with units
- Boundary map

э

< □ > < □ > < □ > < □ > < □ > < □ >

If X is a scheme of finite type over a field, $i: Y \to X$ is the inclusion of a closed subscheme, $j: U := X \setminus Y \to X$ is the inclusion, we call (Y, i, X, j, U) a boundary triple and we define the boundary map associated to *i*, denoted $\partial_Y^U : C_p(U; M) \to C_{p-1}(Y; M)$, by $(\partial_Y^U)_y^x = \partial_y^x$ (with respect to X).

If $\omega : M \to N$ is a morphism of cycle modules over B of even type then $\partial_Y^U \circ \omega_{\sharp} = \omega_{\sharp} \circ \partial_Y^U$.

If $\omega : M \to N$ is a morphism of cycle modules over B of odd type then $\partial_Y^U \circ \omega_{\sharp} = -\omega_{\sharp} \circ \partial_Y^U$.

イロト 不得下 イヨト イヨト 二日

Note that $d_Y \circ \partial_Y^U = -\partial_Y^U \circ d_U$.

Note that if
$$a_1, \ldots, a_n \in \mathcal{O}_X(X)^*$$
 then
 $\partial_Y^U \circ \{j^*(a_1), \ldots, j^*(a_n)\} = (-1)^n \{i^*(a_1), \ldots, i^*(a_n)\} \circ \partial_Y^U.$

1

æ

36 / 38

イロト イヨト イヨト イヨト

Let $h: X \to X'$ be a morphism of schemes of finite type over a field, Y' be a closed subscheme of X', $U' = X' \setminus Y'$ and

be two cartesian squares.

If *h* is proper then $\overline{h}_* \circ \partial^U_Y = \partial^{U'}_{Y'} \circ \overline{\overline{h}}_*$.

If *h* is flat then $\overline{h}^* \circ \partial_{Y'}^{U'} = \partial_Y^U \circ \overline{\overline{h}}^*$.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Thanks for your attention !

æ

イロト イヨト イヨト イヨト