Computer Science and Privacy
Non Interference Analyzes

F. Prost
Frederic.Prost@ens-lyon.fr

Ecole Normale Supérieure de Lyon

September 2015
From a programming point of view the question of privacy becomes: how can we prove/certify that a program does not reveal secret information to the public space?
From a programming point of view the question of privacy becomes: how can we prove/certify that a program does not reveal secret information to the public space?

It is an instance of the more general problem of non-interference: x, y do not interfere in P if any modification on the value of x cannot be “observed” on y.
From a programming point of view the question of privacy becomes: how can we prove/certify that a program does not reveal secret information to the public space?

It is an instance of the more general problem of non-interference: x, y do not interfere in P if any modification on the value of x cannot be "observed" on y.

Non-Interference is a very general problem:
- Proof-theory: useless hypotheses.
- Non-computational content of proofs: extraction of programs through the Curry-Howard correspondence.
- Parallelism.
- Strictness analysis.
- etc.
Non-interference analyzes

- NI analysis depends very much on the semantics and programming paradigm in use.
Non-interference analyzes

- NI analysis depends very much on the semantics and programming paradigm in use.
 - How do we model the fact that two programs are “equivalent”?
 - What is the exact nature or quality of “observations”?

It is a very strict approach to privacy: for instance a password check is an interference.

Can we define policies allowing such interferences?

Non-Interference is a yes/no approach.

Can we quantify the amount of information released?
Non-interference analyzes

- NI analysis depends very much on the semantics and programming paradigm in use.
 - How do we model the fact that two programs are “equivalent”?
 - What is the exact nature or quality of “observations”?
- It is a very strict approach to privacy: for instance a password check is an interference.
Non-interference analyzes

- NI analysis depends very much on the semantics and programming paradigm in use.
 \[\Rightarrow\] How do we model the fact that two programs are “equivalent”?
 \[\Rightarrow\] What is the exact nature or quality of “observations”?

- It is a very strict approach to privacy: for instance a password check is an interference.
 \[\Rightarrow\] Can we define policies allowing such interferences?

- Non-Interference is a yes/no approach.
 \[\Rightarrow\] Can we quantify the amount of information released?
Plan

1. NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2. NI in an Imperative Setting

3. NI and concurrency

4. Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5. Conclusion
Plan

1. NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2. NI in an Imperative Setting

3. NI and concurrency

4. Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5. Conclusion
Dependencies in pure λ-calculus [Abadi et al., 1996]

- What parts of a term contributes to the final result?
 Suppose $a \rightarrow^* v$, what can be removed from a while still having a term reducing to v?

- Pure λ-terms:
 \[t ::= x \mid \lambda x. t \mid (t_1 \ t_2) \]

- Prefixes:
 \[p ::= _ \mid x \mid \lambda x. p \mid (p_1 \ p_2) \]
Prefix order

- How to formalize the idea of a “useless” part in a term?
Prefix order

- How to formalize the idea of a “useless” part in a term?
- Let a, b be prefixes: $a \preceq b$ if a can be produced by b replacing some subterms with `_`.
- Example:

 $$(\lambda x.(t _ _) _) \preceq (\lambda x.(t \ u) \ v)$$
Prefix order

- How to formalize the idea of a “useless” part in a term?
- Let a, b be prefixes: $a \leq b$ if a can be produced by b replacing some subterms with `_`.
- Example:
 \[
 (\lambda x. (t _ _)) \leq (\lambda x. (t \ u) \ v)
 \]
- The question is: how \leq behaves wrt β-reduction?
Two results about \preceq

Théorème (Monotonicity)

$t \preceq u$

$t' \preceq u'$
Two results about \preceq

Théorème (Monotonicity)

\[
\begin{array}{c}
t \preceq u \\
\downarrow \quad \quad \quad \downarrow \\
* t' \preceq * u'
\end{array}
\]

Théorème (Stability)

If $a \rightarrow^ v$, and v is in normal form, there is a minimal prefix $a_0 \preceq a$ such that $a_0 \rightarrow^* v$.***

The minimal prefix is the *mathematical* solution of the non-interference computation:
how can it be effectively computed?
Labeled terms

- Extension of the pure \(\lambda \)-calculus:

\[
l ::= x \mid \lambda x.l \mid (l_1 l_2) \mid e : l
\]
Labeled terms

- Extension of the pure λ-calculus:

\[l ::= x \mid \lambda x.l \mid (l_1 \ l_2) \mid e : l \]

- We add the reduction rule:

\[(e : l_1 \ l_2) \rightarrow e : (l_1 \ l_2) \]

which makes possible the usual β-reduction:

\[(e_0 : [\lambda x.(x \ x)] \ e_1 : y) \rightarrow e_0 : (\lambda x.(x \ x) \ e_1 : y) \rightarrow e_0 : (e_1 : y \ e_1 : y) \]
Minimal prefix computation

1. Attribute a unique label to each subterm of a.

2. If a has $\text{nf } \nu$, we write $L(a)$, the set of all labels occurring in ν.

3. Define $G(a)$ as the one obtained by replacing each subterm of a whom the label is not in $L(a)$ by $_$.

\[
(ef : (\lambda x. e_5 : 5) \ e_t : t) \rightarrow ef : (\lambda x. e_5 : 5 \ e_t : t) \rightarrow ef : e_5 : 5
\]

Hence t does not interfere with the rest of the program.
NI in a typed setting [Berardi, 1996]

- How to *statically* compute the minimum prefix?
- The problem in its whole generality undecidable.
NI in a typed setting [Berardi, 1996]

- How to \textit{statically} compute the minimum prefix?
- The problem in its whole generality undecidable. Easy reduction to the halting problem.
How to \textit{statically} compute the minimum prefix?

The problem in its whole generality undecidable. Easy reduction to the halting problem.

Is it possible to statically \textit{approximate} the result?

\implies yes with a surprising use of types in the simply typed λ-calculus.
Dependencies in simply-typed λ-calculus

Simply typed λ-calculus with base type \mathcal{N} and constants $S : \mathcal{N} \rightarrow \mathcal{N}$ and $0 : \mathcal{N}$.
Dependencies in simply-typed λ-calculus

- Simply typed λ-calculus with base type \mathcal{N} and constants $S : \mathcal{N} \rightarrow \mathcal{N}$ and $0 : \mathcal{N}$.
- Introduction of a constant \emptyset, only term of type \mathcal{U}.
- Definition of an order relation \preceq w.r.t. \emptyset.
- How do we define two equivalent terms?
Dependencies in simply-typed λ-calculus

- Simply typed λ-calculus with base type \mathcal{N} and constants $S : \mathcal{N} \rightarrow \mathcal{N}$ and $0 : \mathcal{N}$.
- Introduction of a constant \emptyset, only term of type \mathcal{U}.
- Definition of an order relation \preceq w.r.t. \emptyset.
- How do we define two equivalent terms?
- Two terms $t_1, t_2 : A$ are observationnally equivalents iff:

$$\forall C[^A] : \mathcal{N}, C[t_1] =^\beta C[t_2]$$
Dead code in simply typed λ-calculus

Théorème ([Berardi, 1996])

If $t, t' : A$ and $t \preceq t'$ then t and t' are observationally equivalent.
Dead code in simply typed λ-calculus

Théorème ([Berardi, 1996])

If $t, t' : A$ and $t \preceq t'$ then t and t' are observationnally equivalent.

Proof.
If $A = \mathcal{N}$ then by subject reduction, strong normalization and monotonicity we have $t \rightarrow^* v$ and $t' \rightarrow v'$ with $v \preceq v'$, but closed nf of type \mathcal{N} are either 0 or $(S \ldots (S 0) \ldots)$, hence $v \equiv v'$.
Dead code in simply typed λ-calculus

Théorème ([Berardi, 1996])

If $t, t' : A$ and $t \leq t'$ then t and t' are observationnally equivalent.

Proof.

If $A = N$ then by subject reduction, strong normalization and monotonicity we have $t \to^* v$ and $t' \to v'$ with $v \leq v'$, but closed nf of type N are either 0 or $(S \ldots (S 0) \ldots)$, hence $v \equiv v'$.

For any other type A take any closing context $C[.^A] : N$. Then $C[t] \leq C[t']$, and $C[t], C[t'] : N$, hence we can apply the previous reasonning.

An example:

$$(\lambda x : U.5 \emptyset) \leq (\lambda x : N.5 \ t)$$
How can we actually compute the minimal prefix?

- The typing tree has to be analyzed from root to leaves.
- Each type may be annotated with its privacy/dead code level (actually a fresh variable at the type of the root of the tree).
- Typing constraints are resolved and each privacy/dead code level variable that occurs at the root of the tree is set to be \top.
- Very similar to Caml type inference (but simpler).
How can we actually compute the minimal prefix?

- The typing tree has to be analyzed from root to leaves.
- Each type may be annotated with its privacy/dead code level (actually a fresh variable at the type of the root of the tree).
- Typing constraints are resolved and each privacy/dead code level variable that occurs at the root of the tree is set to be \top.
- Very similar to Caml type inference (but simpler).

\[
\Gamma, x : \mathcal{N}^\epsilon \vdash 5 : \mathcal{N}^\delta \\
\Gamma \vdash \lambda x.5 : \mathcal{N}^\epsilon \rightarrow \mathcal{N}^\delta \\
\Gamma \vdash t : \mathcal{N}^\epsilon
\]

\[
\Gamma \vdash + : \mathcal{N}^\delta \rightarrow \mathcal{N}^\beta \rightarrow \mathcal{N}^\gamma \\
\Gamma \vdash (\lambda x.5 \; t) : \mathcal{N}^\delta \\
y : \mathcal{N}^\alpha, z : \mathcal{N}^\beta \vdash (+ (\lambda x.5 \; t) \; z) : \mathcal{N}^\beta \rightarrow \mathcal{N}^\gamma \\
\Gamma \vdash \lambda y, z.(+ (\lambda x.5 \; t) \; z) : \mathcal{N}^\alpha \rightarrow \mathcal{N}^\beta \rightarrow \mathcal{N}^\gamma
\]
Problems linked with the unicity of typing

Type unicity + Conservative approximation = less accurate analyzis

\[t = (\lambda f : N \rightarrow N. (g \ f \ (f \ 5)) \ \lambda x : N.4) \]

We would like to type first occurrence of \(f \) with \(N \rightarrow N \) and the second one with \(U \rightarrow N \).
Plan

1. NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2. NI in an Imperative Setting

3. NI and concurrency

4. Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5. Conclusion
The λ-cube [Barendregt, 1991]

- **Terms:** $\mathcal{T} ::= V \mid C \mid (\mathcal{T} \cdot \mathcal{T}) \mid \lambda V : \mathcal{T}.\mathcal{T} \mid \Pi V : \mathcal{T}.\mathcal{T}$
- **Parameters:**
 - \mathcal{S}: sorts,
 - \mathcal{A}, axioms of the form $c : s$,
 - \mathcal{R}, rules of the form (s_1, s_2, s_3). We write (s_1, s_2) when $s_3 = s_2$.

 Rules define valid product:
 \[
 \Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2 \quad \frac{}{\Gamma \vdash \Pi x : A. B : s_3}
 \]
 if $(s_1, s_2, s_3) \in \mathcal{R}$.
- **Computation rule:** $(\lambda x : A. B \ C) \rightarrow_{\beta} B[x := C]$
Pure Type Systems Rules

\[\vdash c; s \ (c : s \in A) \]

\[\Gamma \vdash A : s \quad \Gamma, x : A \vdash x : A \ (x \not\in \Gamma) \]

\[\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2 \quad (s_1, s_2, s_3) \in \mathcal{R} \quad \Gamma \vdash \Pi x : A. B : s_3 \]

\[\Gamma \vdash F : (\Pi x : A. B) \quad \Gamma \vdash a : A \quad \Gamma \vdash (F \ a) : B [x := a] \]

\[\Gamma \vdash B =_\beta B' \]

\[\Gamma \vdash A : B \quad \Gamma \vdash C : s \ (x \not\in \Gamma) \]

\[\Gamma, x : C \vdash A : B \]

\[\Gamma \vdash (\lambda x : A. b) : (\Pi x : A. B) \]

\[\Gamma, x : A \vdash b : B \]

\[\Gamma \vdash (\Pi x : A. B) : s \]
The λ-cube

- Take sorts: $\{\ast, \Box\}$, and axiom ($\ast : \Box$).
- We consider only rules of the form (s_1, s_2).
- We have four possible rules:
 \begin{align*}
 \{(\ast, \ast), (\Box, \ast), (\ast, \Box), (\Box, \Box)\}
 \end{align*}
Intuitions behind rules

- (\ast, \ast): simply typed λ-calculus.
- (\Box, \ast): polymorphism.
- (\Box, \Box): possibility to build connective.
- (\ast, \Box): dependent types.
Higher-order Types

NI in a Purely Functional Setting

<table>
<thead>
<tr>
<th>System</th>
<th>Historical name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda \rightarrow$</td>
<td>Simply typed λ-calculus [Church, 1940]</td>
</tr>
<tr>
<td>λ_2</td>
<td>System F [Girard, 1972]</td>
</tr>
<tr>
<td>λP</td>
<td>AUT-QE; LF [Bruijn, 1970]</td>
</tr>
<tr>
<td>λP_2</td>
<td>[Longo and Moggi, 1988]</td>
</tr>
<tr>
<td>$\lambda \omega$</td>
<td>POLYREC</td>
</tr>
<tr>
<td>λ_ω</td>
<td>[de Lavalette, 1992]</td>
</tr>
<tr>
<td>λC</td>
<td>Calculus of Constructions</td>
</tr>
<tr>
<td></td>
<td>[Coquand and Huet, 1988]</td>
</tr>
</tbody>
</table>

λ-cube [Barendregt, 1991]
Variable sorts

- “A is a type” is a judgment:
 \[
 \Gamma \vdash A : *
 \]

- We introduce judgments of the form:
 \[
 \Gamma \vdash A : \alpha
 \]
 where α is a sort variable ranging over $*_\bot, *\top$.

- The two different $*$s are used to denote separated universes.

- We add axiom
 \[
 *_i : \square \text{ for } i \in \{\top, \bot\}
 \]
Sort abstraction

- Abstracting sorts w.r.t. terms:

\[
\frac{\Gamma, \alpha : \Box, \Gamma' \vdash t : B \quad \Gamma, \Gamma' \vdash ok}{\Gamma, \Gamma' \vdash (\lambda \alpha : \Box. t) : (\Pi \alpha : \Box. B)}
\]

- Sort application:

\[
\frac{\Gamma \vdash t : (\Pi \alpha : \Box. A) \quad \Gamma \vdash k : \Box}{\Gamma \vdash (t \ k) : A[\alpha := k]}
\]
Examples

\[N^\alpha \overset{\text{def}}{=} \prod X : \alpha. X \rightarrow (X \rightarrow X) \rightarrow X \]

\[n^\alpha \overset{\text{def}}{=} \lambda X : \alpha. \lambda x : X. \lambda f : X \rightarrow X. (f \ldots (f \ x) \ldots) \]

\[\alpha : \square, \beta : \square, y : N^\alpha \vdash 5^\beta : N^\beta \]

\[\alpha : \square, \beta : \square \vdash \lambda y : N^\alpha. 5^\beta : (N^\alpha \rightarrow N^\beta) \]
k-types, k-constants

- k-type: Type where the only occurring sort is k. Example of \ast_{\bot}-type:

 $$\Pi X : \ast_{\bot} . \Pi Y : \ast_{\bot} . X \rightarrow Y \rightarrow (\Pi Z : \ast_{\bot} . Z \rightarrow X)$$

- For all k-type A, we define a constant d_A of type A.

- We define an order \leq_k w.r.t. k-constants:

 $$(\lambda x : \mathcal{N}^{\ast_{\bot}} . \overline{5}^{\ast_{\bot}} \ d_{\mathcal{N}^{\ast_{\bot}}}) \leq_{\ast_{\bot}} (\lambda x : \mathcal{N}^{\ast_{\bot}} . \overline{5}^{\ast_{\bot}} \ t)$$

 if t is of type $\mathcal{N}^{\ast_{\bot}}$, for instance.
Non-interference and types

- A first result:

Theorem (Non-interference)

Let \(x : A \vdash t : B, \) \(A \) a \(*_{\bot}\)-type, \(B \) a \(*_{\top}\)-type then for all \(<\rangle\vdash t_1, t_2 : A \) one has:

\[
t[x := t_1] =_{ob} t[x := t_2]
\]

- A corollary:

Theorem (Dead-code)

If \(<\rangle\vdash t_1, t_2 : A, \) and \(A \) a \(*_{\top}\)-type, and \(t_1 \leq_{*_{\bot}} t_2, \) then

\[
t_1 =_{ob} t_2
\]
Example 1

Let t be such that $\llbracket t : N^\ast \bot \rrbracket$, then terms

$$t_1 = (\lambda y : N^\ast \bot. 5^\ast \top t),$$

$$t_2 = (\lambda y : N^\ast \bot. 5^\ast \top d_{N^\ast \bot})$$

are both of type $N^\ast \top$.

$t_2 \leq_{\ast \bot} t_1$.

Then from theorem 2, we conclude $t_1 =_{\text{obs}} t_2$.
Example 2

The ability to abstract over sorts introduces flexibility:

\[
t = (\lambda f : \Pi \alpha, \beta : \Box. N^{\alpha} \to N^{\beta} (g (f \ast \top \ast \top) ((f \ast \bot \ast \top) t')))
\]

\[
\lambda \alpha, \beta : \Box. \lambda x : N^{\alpha}.5^{\beta}
\]

with \(g \) of type \((N^{* \top} \to N^{* \top}) \to N^{* \top} \to N^{* \top} \), and \(t' \) of type \(N^{* \bot} \).
\(t \) is of type \(N^{\top} \), and \(t' \) analyzed as dead-code.
Sort abstraction in “cube” style

- Addition of sort: \triangle;
- Addition of axiom: $\Box : \triangle$;
- Addition of rule: $(\triangle, *)$;

$$
\Gamma \vdash \Box : \triangle \quad \Gamma, \alpha : \Box \vdash A : \ast \\
\Gamma \vdash (\Pi \alpha : \Box. A) : \ast
$$
Higher-order Types

(□, *) (□, □) (□, *) (□, □) (□, *)

Hyper λ-cube
It is possible to prove theorems 1 and 2 in the \mathcal{E}-cube: a non-interference result for the Calculus of Constructions.

The rule (\triangle, \ast) expresses the logical content of type-based analyses.
Technical considerations

- Original formalism has been extended in order to have judgments like
 \[x : X : \alpha : \Box \]

 where \(x, X, \alpha \) are variables.

- In \(\lambda \alpha : \Box . A \), \(\alpha \) is a **weak** variable, i.e. it stands either for \(\ast \top \) or \(\ast \bot \).

- The work done is of theoretical nature.

- Hint for an algorithm: ML unification modified (not complete).
Plan

1. NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2. NI in an Imperative Setting

3. NI and concurrency

4. Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5. Conclusion
Interferences in imperative programs
[Volpano and Smith, 1997]

- Programs input and output are classified at different security levels.
- We would like to allow the information to go up but never down w.r.t. security levels.
- The security can be expressed by comparing the memory of the computer regarding the different levels of security (different from the functional approach in which there are no variables).
- Simple imperative programming language with procedures.
- Type soundness result: if a program is well typed, then non-interference is enforced.
Some Information Leaking Programs and Non-Termination

for $i = 0$ to secret
 output i on public_channel
Some Information Leaking Programs and Non-Termination

for i = 0 to secret
 output i on public_channel

for i = 0 to secret
 output i on public_channel
while true do skip
for i = 0 to secret
 output i on public_channel

for i = 0 to secret
 output i on public_channel
while true do skip

for i = 0 to maxNat {
 output i on public_channel
 if (i = secret) then (while true do skip)
}
Three kinds of types

- \(\tau \)-types: security levels.
- \(\pi \)-types: expressions and commands.
- \(\rho \)-types: types of phrases.

For instance \(\tau \in \{h, l\} \) with \(l \leq h \).

Command types have form \(\tau \text{ cmd} \). A command of type \(h \text{ cmd} \) says it does not contain assignment to low variables.

Phrase types are of the form \(\tau \text{ var} \) or \(\tau \text{ acc} \).

The subtype relation is contravariant in command and acceptor types and covariant on expressions.
Information flow

- Direct information flow: \(l := h \)
Information flow

- Direct information flow: \(l := h \)
- Indirect information flow

 While \(h > 0 \) do

 \(l := l + 1; \)

 \(h := h - 1; \)

 od
Information flow

- Direct information flow: \(l := h \)
- Indirect information flow

 While \(h > 0 \) do

 \(l := l + 1 \);

 \(h := h - 1 \);

 od

- We must have typing rules forbidding such programs:

\[
\frac{\gamma \vdash e : \tau \quad \gamma \vdash c : \tau \text{ cmd}}{\gamma \vdash \text{while } e \text{ do } c : \tau \text{ cmd}}
\]
One needs to define the operational semantics of the programming language: \[\mu \vdash c \implies \mu' \]

One needs to define a notion of “equivalent” memories \(\mu \simeq_1 \nu \) if \(\mu \) and \(\nu \) agree on the value of low-level variables.

The non-interference property can be stated as:

- Suppose that \(\lambda \vdash c : \pi \)
- Suppose that \(\mu \vdash c \implies \mu' \)
- Suppose that \(\nu \vdash c \implies \nu' \)
- Suppose that \(\mu \simeq_\tau \nu \simeq_\tau \lambda \)

then \(\nu'(l) = \mu'(l) \) for all \(l \) such that \(\lambda(l) \leq \tau \).
Plan

1. NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2. NI in an Imperative Setting

3. NI and concurrency

4. Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5. Conclusion
Process interlock and information leakage

\[\alpha \iff [c_\alpha = 0 \Rightarrow SPY := 0 ; c_\beta := 0] ; \theta \]
Process interlock and information leakage

\[\alpha \iff [c_\alpha = 0 \Rightarrow SPY := 0; \ c_\beta := 0]; \ \theta \]

\[\beta \iff [c_\beta = 0 \Rightarrow SPY := 1; \ c_\alpha := 0]; \ \theta \]
Process interlock and information leakage

\[
\alpha \leftarrow [c_\alpha = 0 \Rightarrow SPY := 0; c_\beta := 0]; \theta
\]
\[
\beta \leftarrow [c_\beta = 0 \Rightarrow SPY := 1; c_\alpha := 0]; \theta
\]
\[
\gamma \leftarrow ([PIN = 1 \Rightarrow c_\alpha := 0]; \theta) +
([PIN = 0 \Rightarrow c_\beta := 0]; \theta)
\]

\[\alpha \parallel \beta \parallel \gamma\]
\(\lambda_{ar} \) [Prost, 2005]: \(\lambda \)-calculus with adressed resources

- Variation of the blue-calculus of G. Boudol (variant of Milner’s polyadic \(\pi \)-calculus).

- Terms:

\[
t :::= x, a \mid (t \ t) \mid \lambda x. t \\
\mid t \parallel t \\
\mid \nu a(t) \\
\mid (t \ s) \mid (s \ t)
\]

- Adressed resources:

\[
s :::= \langle a \leftrightarrow t \rangle \mid \langle a = t \rangle \mid (s \ s)
\]
Operational Semantics

Definition (Reduction rules)

\[(\lambda x. t \ u) \rightarrow_\beta t\{x := u\}\]
\[t \ | \ \langle a \leftarrow u \rangle \rightarrow_\rho t\{a := u\}\]

- Communication example:

\[\langle a \leftarrow \lambda x. t \rangle \ | \ (a \ v) \rightarrow_\rho (\lambda x. t \ v) \rightarrow_\beta t\{x := v\}\]
\(\lambda_{ar} \) Typing

- It is possible to have a fine-grained typing of \(\lambda_{ar} \):

\[
[PPAR] \quad \frac{\Gamma \vdash t : \tau \quad \Gamma \vdash u : \sigma}{\Gamma \vdash t \parallel u : Pa(\tau, \sigma)(\tau, \sigma \neq \circ)}
\]

- Sort abstraction “à la” [Prost00] leads to similar result than in \(\lambda \)-calculus.
Plan

1. NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2. NI in an Imperative Setting

3. NI and concurrency

4. Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5. Conclusion
A lot of every-day life scenarios involve dynamic evolution of data privacy levels.
A lot of every-day life scenarios involve dynamic evolution of data privacy levels.

- Pay-per-view;
Non-Interference Dynamic policies [Prost, 2011]

- A lot of every-day life scenarios involve dynamic evolution of data privacy levels.
 - Pay-per-view;
 - Sealed auctions;
Non-Interference Dynamic policies [Prost, 2011]

- A lot of every-day life scenarios involve dynamic evolution of data privacy levels.
 - Pay-per-view;
 - Sealed auctions;
 - etc.

- Challenge: to adapt non-interference to fit with dynamic evolution of privacy?
A lot of every-day life scenarios involve dynamic evolution of data privacy levels.

- Pay-per-view;
- Sealed auctions;
- etc.

Challenge: to adapt non-interference to fit with dynamic evolution of privacy?

In our framework we propose:

1. A “security profile” for each operator: rewrite rules over privacy lattice.
Non-Interference Dynamic policies [Prost, 2011]

- A lot of every-day life scenarios involve dynamic evolution of data privacy levels.
 - Pay-per-view;
 - Sealed auctions;
 - etc.

- Challenge: to adapt non-interference to fit with dynamic evolution of privacy?

- In our framework we propose:
 1. A “security profile” for each operator: rewrite rules over privacy lattice.
 2. Rewrite rules may have actions modifying the policy.
Non-Interference Dynamic policies [Prost, 2011]

- A lot of every-day life scenarios involve dynamic evolution of data privacy levels.
 - Pay-per-view;
 - Sealed auctions;
 - etc.

- Challenge: to adapt non-interference to fit with dynamic evolution of privacy?

- In our framework we propose:
 1. A “security profile” for each operator: rewrite rules over privacy lattice.
 2. Rewrite rules may have actions modifying the policy.
 3. Definition of high/low bisimulation with dynamic policies.
Non-Interference Dynamic policies [Prost, 2011]

- A lot of every-day life scenarios involve dynamic evolution of data privacy levels.
 - Pay-per-view;
 - Sealed auctions;
 - etc.

- Challenge: to adapt non-interference to fit with dynamic evolution of privacy?

- In our framework we propose:
 1. A “security profile” for each operator: rewrite rules over privacy lattice.
 2. Rewrite rules may have actions modifying the policy.
 3. Definition of high/low bisimulation with dynamic policies.
 4. Program safety verification by abstract execution on privacy levels.
Plan

1. NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2. NI in an Imperative Setting

3. NI and concurrency

4. Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5. Conclusion
LINE Programming language

- Minimalistic programming language:

\[
\begin{align*}
\mathit{v} &::= x \mid 0 \mid 1 \mid 0 \mid 1 \mid \ldots \\
\mathit{t}, \mathit{b} &::= \mathit{v} \mid \mathit{f}(x_1, \ldots, x_n) \\
\mathit{P} &::= x := t \mid \mathit{P} ; \mathit{P} \mid \text{if } b \text{ then } \mathit{P} \text{ else } \mathit{P} \mid \text{while } b \text{ do } \mathit{P} \mid \text{skip}
\end{align*}
\]

- It can be seen as an intermediate language:

\[x := \mathit{f}(345, \mathit{g}(x_1, x_2)) \equiv (x_0 := 345; x_3 := \mathit{g}(x_2, x_3); x := \mathit{f}(x_0, x_3)\]

- Natural semantics \(\langle \mu, \mathit{P} \rangle \rightarrow_{\text{os}} \langle \mu', \mathit{P}' \rangle\)
Plan

1. NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2. NI in an Imperative Setting

3. NI and concurrency

4. Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5. Conclusion
Interference policy

- Program variables are attributed privacy levels.
- Privacy levels are elements of a lattice \mathcal{L}.
- Interference policies are based on authorised behavior of operators.
Interference policy

- Program variables are attributed privacy levels.
- Privacy levels are elements of a lattice \mathcal{L}.
- Interference policies are based on authorised behavior of operators.
- Usually it is done through types but it is too rigid.

\Rightarrow We use term rewriting system on privacy levels in order to deal with concrete privacy levels used at evaluation time.
Static interference policy

- For each operator f we consider f_{DIP}.
- $\Sigma_{DIP} = (\mathcal{V}_{DIP}, \mathcal{V} \cup \Omega_{DIP} \cup \mathcal{L})$
- $x \in \mathcal{V}_{DIP}$ are variables of the rewrite system whereas x is a program variable that has to be seen as a constant in the rewrite system.
- Encryption policy, \mathcal{SP}:

 $\text{encrypt}_{DIP}(\pi_{128}, x) \rightarrow \pi_1$
 $\text{encrypt}_{DIP}(\pi_{256}, x) \rightarrow \bot$
 $\text{SPY}_{DIP} \rightarrow \bot$
 $\text{PIN}_{DIP} \rightarrow \top$
 ...

- In the program: $\text{SPY} := \text{encrypt}(K, \text{PIN})$
 The security level of $\text{encrypt}(K, \text{PIN})$ is computed using rules of \mathcal{SP}.
Dynamicity

- Privacy levels may change during computation.

- Rewriting rules with actions: $l \rightarrow r; a$

 $$a ::= x \mapsto \pi \mid \overline{x} \mapsto \pi \mid \overline{x} \mapsto y \mid x \mapsto \overline{y} \mid a; a$$

- The interference policy changes through the evaluation of operator security level computation:

 $$\langle t[\sigma(l)], SP \rangle \leadsto \langle t[\sigma(r)], SP' \rangle$$
Dynamicity

- For an operator of arity n we consider an operator of arity $2 \times n$ in the \mathcal{SP}.
 \implies to make the distinction between the privacy level and the identity of a parameter.
- Hence, in fact encrypt(K_{128}, PIN) is represented with encrypt$_{DIP}(\pi_{128}, K_{128}, \pi_{PIN}, PIN)$
Dynamicity

- For an operator of arity n we consider an operator of arity $2 \times n$ in the SP.
 - to make the distinction between the privacy level and the identity of a parameter.
- Hence, in fact encrypt(K_{128}, PIN) is represented with encrypt$_{DIP}$(π_{128}, K_{128}, π_{PIN}, PIN)
- Example: aging process for encryption keys (we drop the DIP subscripts)

\[
\begin{align*}
\text{encrypt}(\pi_{128/1}, \overline{x}, \overline{y}, \overline{z}) & \rightarrow \pi_{1}; \overline{x} \mapsto \pi_{128/2} \\
\text{encrypt}(\pi_{128/2}, \overline{x}, \overline{y}, \overline{z}) & \rightarrow \pi_{1}; \overline{x} \mapsto \pi_{128/3} \\
\text{encrypt}(\pi_{128/3}, \overline{x}, \overline{y}, \overline{z}) & \rightarrow \top; \overline{x} \mapsto \top \\
\text{encrypt}(\top, \overline{x}, \overline{y}, \overline{z}) & \rightarrow \top
\end{align*}
\]
Three strikes, out

- Aim: account suspended after 3 unsuccessful login attempts.
- In the program: \(ckpwd(g, PWD) \)
- For each operator \(f \) of arity \(n \) we consider \(f_{DIP} \) of arity \(2n \).
 \[\Rightarrow \] distinction between the name of a program variable and its privacy level.
- Privacy level of \(ckpwd(g, PWD) \) is computed by the evaluation of:
 \[
 ckpwd_{DIP}(\pi_g, g, \pi_{pwd}, PWD)
 \]
Three strikes, out

\[
\begin{array}{c}
t_0 \\
\downarrow \\
t_1 \\
\downarrow \\
t_2 \\
\downarrow \\
t_3 \\
\uparrow \\
\end{array}
\]

\[
\begin{align*}
\text{ckpwd}(\bot, \overline{g}, t_0, \overline{p}) & \rightarrow \bot; \overline{p} \rightarrow t_1 \\
\text{ckpwd}(\bot, \overline{g}, t_2, \overline{p}) & \rightarrow \bot; \overline{p} \rightarrow t_3 \\
\text{ckpwd}(\bot, \overline{g}, t_1, \overline{p}) & \rightarrow \bot; \overline{p} \rightarrow t_2 \\
\text{ckpwd}(\bot, (\overline{g}, t_3, \overline{p}) & \rightarrow \top \\
\text{ckok}(\overline{x}, \overline{y}) & \rightarrow \bot; \overline{y} \rightarrow t_0 \\
PIN_1 & \rightarrow t_0 \\
\end{align*}
\]

\[
\begin{align*}
g & \rightarrow \bot \\
PIN_2 & \rightarrow t_0 \\
\end{align*}
\]
Three strikes, out

In the program:

if ckpwd\((g, PIN_1) \) then blah else next_try
Dynamic interference policy

Definition

A DIP, \mathcal{SP}, is a confluent terminating rewrite system with actions with:

1. For every $x \in V$ there is a rule $x \rightarrow \pi$ in \mathcal{SP}.
Dynamic interference policy

Definition

A DIP, SP, is a confluent terminating rewrite system with actions with:

1. For every $x \in V$ there is a rule $x \rightarrow \pi$ in SP.
2. For each rule $l \rightarrow r$ such that l is in V then r is in L.

F. Prost Frederic.Prost@ens-lyon.fr (Ecole Normale Supérieure de Lyon) Computer Science and Privacy Non Interference Analyzes September 2015
Dynamic interference policy

Definition

A DIP, \mathcal{SP}, is a confluent terminating rewrite system with actions with:

1. For every $x \in \mathcal{V}$ there is a rule $x \rightarrow \pi$ in \mathcal{SP}.
2. For each rule $l \rightarrow r$ such that l is in \mathcal{V} then r is in \mathcal{L}.
3. \mathcal{SP} introduces no junk into \mathcal{L}. I.e., for all ground terms, t, over $\Sigma \cup \mathcal{L}$, the normal form of t, is in \mathcal{L}.
Dynamic interference policy

Definition

A DIP, \mathcal{SP}, is a confluent terminating rewrite system with actions with:

1. For every $x \in V$ there is a rule $x \rightarrow \pi$ in \mathcal{SP}.
2. For each rule $l \rightarrow r$ such that l is in V then r is in \mathcal{L}.
3. \mathcal{SP} introduces no junk into \mathcal{L}. I.e., for all ground terms, t, over $\Sigma \cup \mathcal{L}$, the normal form of t, is in \mathcal{L}.
4. \mathcal{SP} introduces no confusion into \mathcal{L}. I.e.,
 \[\forall \tau_1, \tau_2 \in \mathcal{L}, \tau_1 \neq \tau_2 \implies \tau_1 \not\rightarrow^* \tau_2. \]
Definition

A DIP, \mathcal{SP}, is a confluent terminating rewrite system with actions with:

1. For every $x \in \mathcal{V}$ there is a rule $x \rightarrow \pi$ in \mathcal{SP}.
2. For each rule $l \rightarrow r$ such that l is in \mathcal{V} then r is in \mathcal{L}.
3. \mathcal{SP} introduces no junk into \mathcal{L}. I.e., for all ground terms, t, over $\Sigma \cup \mathcal{L}$, the normal form of t, is in \mathcal{L}.
4. \mathcal{SP} introduces no confusion into \mathcal{L}. I.e.,
 $$\forall \tau_1, \tau_2 \in \mathcal{L}, \tau_1 \neq \tau_2 \implies \tau_1 \not\rightarrow^* \tau_2.$$
5. Functions in Σ are monotonic w.r.t. privacy levels: $\forall \pi_i, \pi_i' \in \mathcal{L}, \pi_i \sqsubseteq \pi_i' \implies \text{nf}^{\mathcal{SP}}(f(\pi_1, \ldots, \pi_n)) \sqsubseteq \text{nf}^{\mathcal{SP}}(f(\pi_1', \ldots, \pi_n'))$.

$$\langle t, \mathcal{SP} \rangle \rightsquigarrow^* \langle \text{nf}^{\mathcal{SP}}(t), \overline{\mathcal{SP}}^t \rangle$$
Privacy level of a term wrt SP

- to compute the privacy level of $f(x, y)$ we consider

$$t = f_{DIP}(nf^{SP}(x), x, nf^{SP}(y), y)$$
Privacy level of a term wrt \mathcal{SP}

- to compute the privacy level of $f(x, y)$ we consider
 \[
 t = f_{DIP}(\text{nf}^{\mathcal{SP}}(x), x, \text{nf}^{\mathcal{SP}}(y), y)
 \]

- The evaluation of this term in \mathcal{SP} gives the privacy level and a new interference policy: $\langle t, \mathcal{SP} \rangle \rightsquigarrow^{*} \langle \pi^{\mathcal{SP}}(t), \overline{\mathcal{SP}}^{t} \rangle$
Privacy level of a term wrt SP

- to compute the privacy level of $f(x, y)$ we consider
 $$t = f_{DIP}(nf^{SP}(x), x, nf^{SP}(y), y)$$

- The evaluation of this term in SP gives the privacy level and a new interference policy: $\langle t, SP \rangle \rightsquigarrow^* \langle \pi^{SP}(t), \overline{SP}^t \rangle$

Definition

$\langle t, SP \rangle \rightsquigarrow \langle t', SP' \rangle$ iff there is a position p and a substitution θ and a rewrite rule $l \rightarrow r$; a such that $\theta(l) = t|_p$, $\theta(l_i) \in V$ and $a = l_1 \mapsto r_1; \ldots; l_m \mapsto r_m$, then

- $t' = t[\theta(r)]_p$
- $SP' = SP \bullet \{\theta(l_i) \mid 1 \leq i \leq m\} \oplus \theta(l_1) \rightarrow nf^{SP}(\theta(r_1)) \oplus \ldots \oplus \theta(l_m) \rightarrow nf^{SP}(\theta(r_m))$
Plan

1. NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2. NI in an Imperative Setting

3. NI and concurrency

4. Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5. Conclusion
Program safety

- Traditionally: a program is safe if every modification of a value above \(\pi \) cannot be observed below \(\pi \):
 \[
 \langle \mu_1, P \rangle \xrightarrow{\mu_1'} \langle \mu_2, P \rangle \xrightarrow{\mu_2'} \\
 \mu_1' \equiv_\pi \mu_2'
 \]

- What to do with the policy:
 \[
 \text{encrypt} (\pi_{1024}, \top) \rightarrow \bot
 \]
 making possible program as:
 \[
 \text{SPY} := \text{encrypt}(\text{key}_{1024}, \text{PIN})
 \]
Program safety

- Traditionally: a program is safe if every modification of a value above π cannot be observed below π:

$$\langle \mu_1, P \rangle \xrightarrow{\ast_{os}} \mu_1'$$
$$\langle \mu_2, P \rangle \xrightarrow{\ast_{os}} \mu_2'$$
$$\mu_1' \equiv_{\pi} \mu_2'$$

- What to do with the policy:

$$\text{encrypt}(\pi_{1024}, \top) \rightarrow \bot$$

making possible program as:

$$\text{SPY} := \text{encrypt}(\text{key}_{1024}, \text{PIN})$$

$$\implies$$ Use an alternate op. sem. declared leaks are treated specifically.

- Notion of declassified operational semantics.

$$\langle \mu_1, P \rangle \xrightarrow{\mu_d} \langle \mu'_1, P' \rangle$$
Memory equivalences

Definition

\(\mu, \mu' \) are equivalent up to security level \(\pi \) and security policy \(SP \) if for all \(x \in \mathcal{V} \) such that \(\pi^{SP}(x) \sqsubseteq \pi \) then \(\mu(x) = \mu'(x) \). We write \(\mu \sim_{\pi}^{SP} \mu' \)
Memory equivalences

Definition

\(\mu, \mu' \) are equivalent up to security level \(\pi \) and security policy \(S\mathcal{P} \) if for all \(x \in V \) such that \(\pi^{S\mathcal{P}}(x) \sqsubseteq \pi \) then \(\mu(x) = \mu'(x) \). We write \(\mu \simeq_{\pi}^{S\mathcal{P}} \mu' \)

Definition

Let \(S\mathcal{P}, S\mathcal{P}' \) be two DIPs such that \(\{S\mathcal{P}\} = \{S\mathcal{P}'\} \) and \(\text{Dom}(S\mathcal{P}) = \text{Dom}(S\mathcal{P}') \). We define the DIP \(S\mathcal{P} \sqcup S\mathcal{P}' \) by:

\[
|S\mathcal{P} \sqcup S\mathcal{P}'| = \{ x \rightarrow \pi'' \mid x \rightarrow \pi \in |S\mathcal{P}| \land x \rightarrow \pi' \in |S\mathcal{P}'| \land \pi' \sqcup \pi = \pi'' \}
\]

\[
\{S\mathcal{P} \sqcup S\mathcal{P}'\} = \{S\mathcal{P}\}
\]
declassifying terms

- A term is declassifying if its privacy level is lower than one of its arguments.
- Such terms will be subjected to specific rules in the declassified operational semantics.

Definition (Declassifying terms and assignments)

\[t = f(x_1, \ldots, x_n) \text{ is declassifying wrt } S\mathcal{P}, \text{ written } S\mathcal{P} \vdash f(x_1, \ldots, x_n) \downarrow \text{ if: } \]
\[\pi^{S\mathcal{P}}(t) \sqsubseteq \left(\bigsqcup_{i=1}^{n} \pi^{S\mathcal{P}}(t_i) \right) \]
Declassified evaluation

- \(\langle P, \mu, SP \rangle \xrightarrow{\mu_d} \langle P', \mu', SP' \rangle \)

- Declassifying assignment:

\[
SP \vdash f_{DIP}((\pi^{SP}(x), x) \downarrow \llbracket f(x) \rrbracket_{\mu_d} = v) \quad \langle f(\pi^{SP}(x), x), SP \rangle \leadsto^* \langle \pi, \overline{SP} f(\pi^{SP}(x), x) \rangle
\]

\[
\langle y := f(x), \mu, SP \rangle \xrightarrow{\mu_d} \langle \text{skip}, \mu[y := v], \overline{SP} f(\pi^{SP}(x), x) \rangle
\]
High/low bisimulation and DIPs

Definition (Bisimulation)

A π-bisimulation is a symmetric relation \mathcal{R} such that:

$$\langle P_1, S\mathcal{P}_1 \rangle \mathcal{R} \langle P_2, S\mathcal{P}_2 \rangle$$

$$\langle \mu_1, P_1, S\mathcal{P}_1 \rangle \xrightarrow{\mu_1}$$

$$\langle \mu'_1, P'_1, S\mathcal{P}'_1 \rangle$$

$$\mu_1 \sim_{\pi S\mathcal{P}_1 \sqcup S\mathcal{P}_2} \mu_2$$
Defintion (Bisimulation)

A π-bisimulation is a symmetric relation R such that:

$$\langle P_1, SP_1 \rangle R \langle P_2, SP_2 \rangle$$

$$\langle \mu_1, P_1, SP_1 \rangle \xrightarrow{\mu_1} \langle \mu'_1, P'_1, SP'_1 \rangle$$

$$\mu_1 \sim_{\pi} SP'_1 \sqcup SP'_2 \mu_2$$

$$\exists P'_2, SP'_2 \text{ and } \mu'_2 \text{ s.t. }$$

$$\langle \mu_2, P_2, SP_2 \rangle \xrightarrow{\mu_1}^{*} \langle \mu'_2, P'_2, SP'_2 \rangle$$

and $\mu'_1 \sim_{\pi} SP'_1 \sqcup SP'_2 \mu'_2$

and $\langle P'_1, SP'_1 \rangle R \langle P'_2, SP'_2 \rangle$
The union of two π-bisimulation is a π-bisimulation.
The biggest π-bisimulation is written \simeq and is the union of all π-bisimulation.
π-bisimulations are not reflexive in general...
Relaxing Non-Interference

Program safety w.r.t. DIP

- The union of two π-bisimulation is a π-bisimulation.
- The biggest π-bisimulation is written \simeq and is the union of all π-bisimulation.
- π-bisimulations are not reflexive in general...

$\langle SPY := PIN, \{PIN \rightarrow T, SPY \rightarrow \bot\} \rangle$ is not \bot-bisimilar to itself!
Program safety w.r.t. a DIP

- The union of two π-bisimulation is a π-bisimulation.
- The biggest π-bisimulation is written \simeq and is the union of all π-bisimulation.
- π-bisimulations are not reflexive in general...

$$\langle \textit{SPY} := \textit{PIN}, \{ \textit{PIN} \rightarrow \top, \textit{SPY} \rightarrow \bot \} \rangle$$ is not \bot-bisimilar to itself!

Definition (Safe program)

A program P is safe with relation DIP \mathcal{SP}, written $\mathcal{SP} \models P$, if for all privacy level π $\langle P, \mathcal{SP} \rangle \simeq^{\pi} \langle P, \mathcal{SP} \rangle$.
Plan

1 NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2 NI in an Imperative Setting

3 NI and concurrency

4 Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5 Conclusion
Abstract execution principle (1)
Abstract execution principle (1)

- Idea: to execute the program on \mathcal{L}.
- An abstract memory record associates variables with their privacy levels.
Abstract execution principle (1)

- Idea: to execute the program on L.
- An abstract memory record associates variables with their privacy levels.
- Record of the highest privacy level encountered in if-then-else and while guards to avoid indirect leaks, e.g.:

 $$\text{if } \text{PIN} = 0 \text{ then while } 0 \text{ do skip else skip; } SPY := 0$$

- Check assignments wrt SP and :

 $$x := f(\ldots) \text{ implies } \pi^{SP}(x) \subseteq (\pi^{SP}(f(\ldots)) \sqcup \pi_g)$$

 raises a failure if the inequality is not satisfied.
Abstract execution principle (2)

- Moreover evaluation of terms modify the DIP.
- Problem: it is not possible to merge DIPs resulting from the branches of an if-then-else construct.
Abstract execution principle (2)

- Moreover evaluation of terms modify the DIP.
- Problem: it is not possible to merge DIPs resulting from the branches of an if-then-else construct.
 \[\Rightarrow \] Creation of a DIP list recording DIP’s for each execution paths.
- Fixpoint problem for the while construct.
Abstract execution principle (2)

- Moreover evaluation of terms modify the DIP.
- Problem: it is not possible to merge DIPs resulting from the branches of an if-then-else construct.
 \[\Rightarrow \text{Creation of a DIP list recording DIP's for each execution paths.} \]
- Fixpoint problem for the while construct.
 \[\Rightarrow \text{Finite number of DIP lists.} \]
Abstract execution principle (2)

- Moreover evaluation of terms modify the DIP.
- Problem: it is not possible to merge DIPs resulting from the branches of an if-then-else construct.
 \[\Rightarrow\] Creation of a DIP list recording DIP’s for each execution paths.
- Fixpoint problem for the while construct.
 \[\Rightarrow\] Finite number of DIP lists.
- The abstract operational semantics is defined as a reduction on tuples made on set of couples \(\langle SP, \pi_1, \pi_2\rangle\) and programs.
- The result of an abstract execution is either a list of DIP or ♠.
Abstract Execution definition

\(F_i(\mathcal{L}, P, t) \) stands for the following formula:

\[
\{ \langle SP', (\pi'_1 \cap \pi^{SP}(t)), \pi'_2 \rangle \mid \forall \langle SP, \pi_1, \pi_2 \rangle \in \mathcal{L}. \\
\langle \{ \langle SP, (\pi_1 \sqcup \pi^{SP}(t)), \pi_2 \rangle \}, P \rangle \hookrightarrow \mathcal{L}'_{\mathcal{N}} \wedge \\
\langle SP', \pi'_1, \pi'_2 \rangle \in \mathcal{L}'_{\mathcal{N}} \}
\]

\(F_w(\mathcal{L}, P, t) \) stands for the following formula:

\[
\{ \langle SP', (\pi'_1 \cap \pi^{SP}(t)), \pi'_2 \rangle \mid \forall \langle SP, \pi_1, \pi_2 \rangle \in \mathcal{L}. \\
\langle \{ \langle SP, (\pi_1 \sqcup \pi^{SP}(t)), (\pi_2 \sqcup \pi^{SP}(t)) \rangle \}, P \rangle \hookrightarrow \mathcal{L}'_{\mathcal{N}} \wedge \\
\langle SP', \pi'_1, \pi'_2 \rangle \in \mathcal{L}'_{\mathcal{N}} \}
\]

\(G(\mathcal{L}, t) \) stands for the following formula:

\[
\forall \langle SP, \pi \rangle \in \mathcal{L}. \forall y \in b \downarrow SP. \pi \subseteq \pi^{SP}(y)
\]

F. Prost Frederic.Prost@ens-lyon.fr (Ecole Normale Supérieure de Lyon) Computer Science and Privacy Non Interference September 2015 69 / 78
Some rules

\[
\neg G(\mathcal{L}, b) \quad \frac{}{\langle \mathcal{L}, \text{if } b \text{ then } P_1 \text{ else } P_2 \rangle \mapsto \spadesuit} \quad \text{IFF} \quad \mapsto
\]

\[
\mathcal{F}_w(\mathcal{L}, P, b) \not\subseteq \mathcal{L} \quad \frac{}{\langle \mathcal{L} \cup \mathcal{F}_w(\mathcal{L}, P, b), \text{while } b \text{ do } P \rangle \mapsto \mathcal{L}' \quad G(\mathcal{S}P, b) \quad \text{WX} \quad \mapsto
\]

\[
\langle \mathcal{L}, \text{while } b \text{ do } P, \pi \rangle \mapsto \mathcal{L}'
\]

\[
\mathcal{F}_w(\mathcal{L}, P, b) \subseteq \mathcal{L} \quad \frac{}{G(\mathcal{S}P, b) \quad \text{WT} \quad \mapsto}
\]

\[
\langle \mathcal{L}, \text{while } b \text{ do } P \rangle \mapsto \mathcal{L}
\]

\[
\neg G(\mathcal{S}P, b) \quad \frac{}{\langle \mathcal{L}, \text{while } b \text{ do } P \rangle \mapsto \spadesuit} \quad \text{WF} \quad \mapsto
\]

\[
\neg G(\mathcal{S}P, b)
\]
Abstract execution results

Théorème

Let P be a program, and $S\mathcal{P}$ a DIP, then $\langle\{\langle S\mathcal{P}, \bot \rangle\}, P \rangle \mapsto^* \spadesuit$ or there exists L such that $\langle\{\langle S\mathcal{P}, \bot \rangle\}, P \rangle \mapsto^* L$.
Abstract execution results

Théorème

Let \(P \) be a program, and \(S\mathcal{P} \) a DIP, then \(\langle \{\langle S\mathcal{P}, \bot \rangle \}, P \rangle \hookrightarrow^* \spadesuit \) or there exists \(\mathcal{L} \) such that \(\langle \{\langle S\mathcal{P}, \bot \rangle \}, P \rangle \hookrightarrow^* \mathcal{L} \).

Theorem

\[\exists \mathcal{L}. (\langle \{\langle S\mathcal{P}, \bot \rangle \}, P \rangle \hookrightarrow^* \mathcal{L}) \implies S\mathcal{P} \models P \]
Abstract execution results

Théorème

Let P be a program, and SP a DIP, then $\langle \{ \langle SP, \bot \rangle \}, P \rangle \hookrightarrow^* \spadesuit$ or there exists L such that $\langle \{ \langle SP, \bot \rangle \}, P \rangle \hookrightarrow^* L$.

Theorem

\[\exists L. (\langle \{ \langle SP, \bot \rangle \}, P \rangle \hookrightarrow^* L) \implies SP \models P \]

- Converse implication does not hold:

 if $PIN = 0$ then $SPY := 1$ else $SPY := 1$

 this safe program raises a failure in the abstract operational semantics.
Plan

1. NI in a Purely Functional Setting
 - Pure Terms and Simple Types
 - Higher-order Types

2. NI in an Imperative Setting

3. NI and concurrency

4. Relaxing Non-Interference
 - Programming framework
 - Dynamic interference policy
 - Program safety w.r.t. DIP
 - Program Verification

5. Conclusion
Non-Interference is a very abstract and powerful, but strict, approach to privacy in programming languages.

It is very different from the traditional cryptographic approach and relies on completely different techniques: programming semantics.

There has been a lot of work in order to cope with different paradigms and subtle variations around the notion of strict non-interference.

Differential privacy is a relatively new way to approach non-interference. In a nutshell: the idea is to manipulate data of a data-base in such a way that statistical properties of interest are unchanged while having indistinguishability properties (kind of non-interference) insuring the privacy (e.g. [Dwork, 2008]).

Pruning simply typed lambda-terms.

The mathematical language AUTOMATH, its usage and some of its extensions (iria, versailles 1968).

Church, A. (1940).
A formulation of the simple theory of types.
Journal of Symbolic Logic, 5(1).

Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur.

Constructive natural deduction and its modest interpretation.

A static calculus of dependencies for the lambda-cube.
Bibliography V

Sort abstraction for static analyzes of mobile processes.

Enforcing dynamic interference policy.

Declassification: Dimensions and principles.