Cyclic scheduling: an introduction

Claire Hanen

Claire.Hanen@lip6.fr

Université Paris X Nanterre / LIP6 UPMC

Summary

- Definition
- Uniform precedence constraints

Feasibility
Periodic schedules
Earliest schedule

- Resource constraints

Periodicity and Patterns
Complexity
approximation
ILP formulations

- Perspectives

Definition

- A set of tasks \mathcal{T} to be repeated many times assumed infinite
- For $i \in \mathcal{T},\langle i, k\rangle$ denotes $k^{\text {th }}$ occurrence of i
- An infinite schedule σ defines:
- $\forall k \geq 0 t^{\sigma}(\langle i, k\rangle)$ starting time of $\langle i, k\rangle$
- Resources for each task execution

Optimizing

- Minimizing the average cycle time :

$$
A(\sigma)=\max _{i \in \mathcal{T}} A(\sigma, i)=\text { limsup }_{k \rightarrow+\infty} \frac{t^{\sigma}(<i, k>)}{k}
$$

- Maximizing the throughput:

$$
D(\sigma)=\frac{1}{A(\sigma)}
$$

- For a given average cycle time, minimizing the amount of resources per time units (ex: nb of processors, nb of registers,...)

Applications and models

- Implementing loops on parallel architectures
\rightarrow compiling, code generation
\rightarrow embedded applications
litterature on software pipelining and dataflow computations
- Mass production
\rightarrow Cyclic shop problems
\rightarrow Hoist scheduling problem.
litterature on cyclic scheduling in production systems
- Models of parallelism
\rightarrow timed Petri Nets
\rightarrow Graphs
\rightarrow Max + algebra
litterature on parametric paths, timed event graphs, Max +

Infinite schedule?

- Algorithms-> finite description
- Static schedule

Must be regular /time and resources

- Dynamic policy
examples: earliest schedule, regular priorities on resources assignment

Loop example

Assume arrays A, B, C, D, and that the processor can compute several instructions in parallel :

$$
\text { for } \mathrm{I}=2 \text { to } \mathrm{N} \text { do }
$$

$$
\begin{array}{lll}
B(I)=A(I-1)+1 & \text { task } 1 & <4, k-1>\text { precedes }<1, k> \\
C(I)=B(I)+5 & \text { task } 2 & <1, k>\text { precedes }<2, k> \\
D(I)=B(I-2) * D(I) & \text { task } 3 & <1, k-2>\text { precedes }<3, k> \\
A(I)=C(I-2)+D(I) & \text { task } 4 & <2, k-2>,<1, k>\text { precede }<2, k>
\end{array}
$$

Precedence constraints are uniforms: if $\langle i, k\rangle$ precedes $\langle j, l\rangle$ then for all integers $\delta,<i, k+\delta>$ precedes $<j, l+\delta>$

yclic scheduling with uniform precedenc

- A set \mathcal{T} of n generic tasks with processing times p_{1}, \ldots, p_{n}
- non reentrance: $\langle i, k>$ precedes $<i, k+1>\forall k \geq 1$
- A multi-graph $G=(\mathcal{T}, A)$ of uniform constraints
- For each arc $a \in A$,

A value called length $L(a) \in Z$ also mentioned as latency or delay
A value called height $H(a) \in \mathbb{Z}$ also called dependence distance

$$
\text { If } i=b(a) \text { et } j=e(a), \forall k \geq 1, t^{\sigma}(<i, k>)+L(a) \leq t^{\sigma}(<j, k+H(a)>
$$

Find an infinite feasible schedule minimizing the average cycle time.
Definition 1. The Length of path μ, denoted $L(\mu)=$ sum of arcs length. Height of μ, denoted by $H(\mu)=$ sum of arcs height.
Remark 1. Non-reentrance can be expressed with uniform constraints : arcs (i, i) with length p_{i} and height 1 .

Example

Negative length can be used to model deadlines :
$t^{\sigma}(<5, k>) \leq t^{\sigma}(<4, k>)+10$

Questions

- Feasibility
- Construction and properties of schedules.

Periodic schedules

Earliest schedule

- Performance

Feasibility

For any path μ from i to j,

$$
\forall k \geq \max (1,1-H(C)), \quad t^{\sigma}(<i, k>)+L(\mu) \leq t^{\sigma}(<j, k+H(\mu)>)
$$

For any circuit C of G, and task i in C :

$$
\forall k \geq \max (1,1-H(C)), \quad t^{\sigma}(<i, k>)+L(C) \leq t^{\sigma}(<i, k+H(C)>)
$$

Non reentrance \Rightarrow
Lemma 1. [Lee 05][Munier 06] If G is feasible then for any circuit C such that $H(C) \leq 0, L(C) \leq 0$. If $H \in \mathbb{N}$ this condition is sufficient [many authors] [Chretienne 85]

- If $H(C)>0, k=q H(C)+r$ then $\left.\left.t^{\sigma}(<i, k\rangle\right) \geq q L(C)+t^{\sigma}(<i, r\rangle\right)$.
- If $H(C)<0$ and $k=-q H(C)+r \quad$ then $\quad t^{\sigma}(<i, k>) \leq-q L(C)+t^{\sigma}(<i, r>)$

Lemma 2. If $H(C) \geq 0, \quad A(\sigma, i)=\limsup _{k \rightarrow+\infty} \frac{t^{\sigma}(<i, k>)}{k} \geq \frac{L(C)}{H(C)}$.
If $H(C)<0, \quad A(\sigma, i) \leq \frac{L(C)}{H(C)}$

Feasibility and performance bounds

For a circuit C the Index of C : $\alpha(C)=\frac{L(C)}{H(C)}$

- $\mathcal{C}^{+}(i)$ set of circuits C s.t. $i \in C$ and $H(C) \geq 0 . \quad \mathcal{C}^{+}=\cup_{i \in \mathcal{T}} \mathcal{C}^{+}(i)$
- $\mathcal{C}^{-}(i)$ set of circuits C s.t. $i \in C$ and $H(C)<0 . \quad \mathcal{C}^{-}=\cup_{i \in \mathcal{T}} \mathcal{C}^{-}(i)$

Corollary 1. If G is feasible then for any task i, and for any schedule σ

$$
\max _{C \in \mathcal{C}^{+}(i)} \alpha(C) \leq A(\sigma, i) \leq \min _{C \in \mathcal{C}^{-}(i)} \alpha(C)
$$

A critical circuit is a circuit $C^{*} \in \mathcal{C}^{+}$s.t $\alpha(C)$ is maximum : lower bound on $A(\sigma)$.

Periodic schedules

Definition 2. A schedule σ is periodic if each task i has a period w_{i} such that:

$$
t^{\sigma}(<i, k>)=t^{\sigma}(<i, 1>)+(k-1) w_{i}
$$

Let a be an arc from $b(a)$ to $e(a)$
$\forall k, \quad t^{\sigma}(<b(a), 1>)+(k-1) w_{b(a)}+L(a) \leq t^{\sigma}(<e(a), 1>)+(k-1) w_{e(a)}+H(a) w_{e(a)}$

$$
\Leftrightarrow t^{\sigma}(<e(a), 1>)-t^{\sigma}(<b(a), 1>) \geq L(a)-w_{e(a)} H(a)+(k-1)\left(w_{b(a)}-w_{e(a)}\right)
$$

Existence of a periodic schedule

Lemma 3. for any arc $a, w_{b(a)} \leq w_{e(a)}$.
We denote by C_{1}, \ldots, C_{q} the strong components of G.
Let $\alpha^{+}\left(C_{s}\right)=\max _{C \in C_{s}, H(C)>0} \alpha(C)$ and $\alpha^{-}\left(C_{s}\right)=\min _{C \in C_{s}, H(C)<0} \alpha(C)$
Corollary 2.

$$
\forall s, \forall i, j \in C_{s}, w_{i}=w_{j}=W_{s} \quad \text { and } \quad \alpha^{+}\left(C_{s}\right) \leq W_{s} \leq \alpha^{-}\left(C_{s}\right)
$$

Moreover, if there is an arc a s.t. $b(a) \in C_{s}, e(a) \in C_{s^{\prime}}$ then $W_{s} \leq W_{s^{\prime}}$

Example

- $C_{1}=\{1,2,3\}, C_{2}=\{4,5\}, C_{3}=\{6\}$
- $\alpha^{+}\left(C_{1}\right)=10, \alpha^{-}\left(C_{1}\right)=17, \quad \alpha^{+}\left(C_{2}\right)=7, \alpha^{-}\left(C_{2}\right)=11, \quad \alpha^{+}\left(C_{3}\right)=5$
- $10 \leq W_{1} \leq 17, \quad 7 \leq W_{2} \leq 11, \quad 5 \leq W_{3}$,
- $W_{3} \geq W_{2}, W_{3} \geq W_{1}$
- $W_{1}=10, W_{2}=7, W_{3}=10$. Notice that $W_{1}=W_{2}=W_{3}=10$ is also a solution.

Feasibility

Theorem 1. [Munier 06] G is feasible if and only if there exists a periodic schedule.

Idea: If no periodic schedule exists, build paths μ_{x} between i and j in G such that $H\left(\mu_{x}\right)=\mathrm{h}$ and $\lim _{x \rightarrow+\infty} L\left(\mu_{x}\right) \rightarrow+\infty$, which contradicts

$$
t^{\sigma}(<j, k>)-t^{\sigma}(<i, k+h>) \geq L\left(\mu_{x}\right)
$$

for some k.

Computation of a periodic schedule

For a strong connected graph G and a given W :

$$
\forall a, \quad t^{\sigma}(<e(a), 1>)-t^{\sigma}(<b(a), 1>) \geq L(a)-W \cdot H(a)
$$

- Let $V_{W}(a)=L(a)-W \cdot H(a)$
- If $\left(G, V_{W}\right)$ has positive circuits then infeasibility.
- otherwise $t^{\sigma}(<i, 1>)=$ longest path to i in $\left(G, V_{W}\right)$ is a solution.
- Bellman-Ford algorithm

Computation of critical circuits

[Dasdan et al 99]

- Polynomial algorithms:

Binary search on W: at each step check if $\left(G, V_{W}\right)$ has positive circuits $0\left(n m\left(\log n+\log \max _{a}(L(a), H(a))\right)\right)$ [Lawler 79][Gondran-Minoux 85]

Linear programming with primal dual approach $O\left(n^{2} m\right)$ [Burns 91]

- An efficient pseudo polynomial algorithm: Howard's algorithm[Cochet-Terrasson et al 98]
$W=$ lower bound
At each step check if G, V_{W}) has positive circuit C with breadth first search. If $H(C)<=0$ stop. Otherwise set $W=\alpha(C)$.
complexity $O(m . X), X$ product of degrees of nodes.

omputation of an optimal periodic schedu

- Compute the strong components of $G O(n+m)$
- Check feasibility for each component C_{s}, and the critical circuit value $\alpha_{s} . O\left(n m \log (n)+\log \left(V_{\max }\right)\right)$
- Compute the reduced graph of components. $O(n+m)$
- Sort the components by topological order. $O(n+m)$
- for each component C_{s}.
if C_{s} has no predecessor, set $W_{s}=\alpha_{s}$.
if $C_{x_{1}}, \ldots, C_{x_{r}}$ are predecessors of C_{s}. Let $\beta_{s}=\max _{i} W_{x_{i}}$
If $\alpha_{s} \geq \beta_{s}$ set $W_{s}=\alpha_{s}$.
otherwise check if ($C_{s}, V_{\beta_{s}}$) has some positive circuit. $O(n m)$
if so,infeasibility otherwise set $W_{s}=\beta_{s}$.
- Compute the longest paths from a dummy source node to any node i on G with on each component value $V_{W_{s}}$ and on each intermediate arc between $C_{s}, C_{s^{\prime}}$ value $V_{W_{s^{\prime}}} . O(n m)$
- $\left.t^{\sigma}(<i, 1\rangle\right)=$ longest path to i.

Example

Graph with $L-W_{s} H$ values:

A periodic schedule: period of $1,2,3,6$ is 10 , period of 4,5 is 7

Positive heights

The problem has been studied earlier [Chretienne 85][many authors]

Theorem 2. For any $w \geq \max _{C}$ circuit $\alpha(C)$ there is a periodic schedule, all tasks have period w.
No need to compute strong components.

K-periodic schedules

Definition 3. In a K-periodic schedule σ, a schedule of K_{i} occurrences of task i is repeated every W_{i} time units:

$$
\forall l \geq l_{0}, \quad t^{\sigma}\left(<i, l+K_{i}>\right)=t^{\sigma}(<i, l>)+W_{i}
$$

Lemma 4. The average cycle time of task i in a K-periodic schedule is $A(\sigma, i)=\frac{W_{i}}{K_{i}}$.
Un ordonnancement 2-périodique (pour chaque tâche).

1	3	4	1	7	3	4	1	3	4	1	7	3	4
2	5	6	2	5	6	7	2	5	6	2	5	6	7

Properties of the earliest schedule

[Romanovskii 67,Chretienne 85, Munier 06]
Theorem 3. If G is feasible, the earliest schedule σ^{*} is K-periodic and

$$
A\left(\sigma^{*}\right)=\max _{C \in \mathcal{C}^{+}} \alpha(C)
$$

After a transitory time, the earliest schedule becomes regular and its behavior is ruled by the critical circuit index.

Remark 2. K might be large \leq product of heights of critical circuits.

- Open questions

Length of the transitory time?
Exact measure of K.

Stability/boundedness

If $w<w^{\prime}$ then $b(a)$ produces pieces or results faster than $e(a)$.
Unstability
Moreover the iteration delay:

$$
D^{\sigma}(k)=\max _{i \in \mathcal{T}} t^{\sigma}(<i, k>)-\min _{i \in \mathcal{T}} t^{\sigma}(<i, k>) \rightarrow_{k \rightarrow+\infty}+\infty
$$

This might occur in earliest schedule and in periodic schedules for general uniform graphs.

Example

if task 4 has processing time 1 :

- There are 3 strong components $C_{1}=\{1,2,3\}, C_{2}=\{4\}, C_{3}=\{5,6,7\}$
- $\alpha\left(C_{1}\right)=3, \alpha\left(C_{2}\right)=1, \alpha\left(C_{3}\right)=5$
- The earliest schedule of $i \leq 4$ is $2-$ periodic with period 6.
- The earliest schedule of $\{5,6,7\}$ is 1 -periodic with period 5 .
- Unstable schedule
- Here a static 1-periodic schedule with period 5 can be built.

Cyclic problems with resources

- Complexity of a cyclic problem/ its non cyclic version.
- Tools for constructing periodic schedules: circuits and patterns Polynomial problems
- Are periodic schedules optimal?
- Decomposed scheduling: a general approach
- Approximation of decomposed scheduling
- ILP formulations

Complexity

Consider a problem resources \mid prec $\mid C_{\max }$ which is NP-hard.
A simple Reduction:

- Add two dummy nodes to G (source $s, \operatorname{sink} t$ with unit proce
- set $H(a)=0$ for all arcs in G and arcs from s and arcs to t.
- Add an arc from t to s with height 1 .
- Any schedule σ^{\prime} of G^{\prime} is a sequence of schedules of G.
- Its average cycle time $A\left(\sigma^{\prime}\right)$ is the mean of makespan of G schedules
- $A\left(\sigma^{\prime}\right) \leq B \Leftrightarrow C_{\max }(G) \leq B-2$

Corollary 3. P|uniform prec, $p_{i}=1 \mid A$, pre - assigned processors \mid uniform prec $\mid A$, cyclic job-shop with uniform constraints are NP-hard

Circuits

Consider a uniform graph $G=$ circuit, such that for any arc a $L(a)=p_{b(a)}$: usual precedence constraints.
Lemma 5. In any schedule of G no more than $H(G)$ tasks are performed in parallel.

Corollary 4. [Munier 91] The problem $P \mid$ circuit, $L(a)=p_{b(a)} \mid A$ is solvable in polynomial time.
Idea: if $H(G) \leq m$ then any schedule meets the resource constraint. If $H(G)>m$, then we can reduce the height of some arcs so that $H(G)=m$ without modifiying the lower bound on

$$
A(\sigma) \geq \max \left(\max _{i \in \mathcal{T}} p_{i}, \frac{\sum_{i \in \mathcal{T}} p_{i}}{m}\right)
$$

Patterns

Let σ be a periodic schedule with unique period w.

$$
t^{\sigma}(<i, k>)=t^{\sigma}(<i, 1>)+(k-1) w
$$

Definition 4. The Pattern of σ is defined by: $\pi^{\sigma}(i)=t^{\sigma}(\langle i, 1\rangle)$ modw. The iteration setting of σ is $\eta^{\sigma}(i) \in \mathbb{Z}$, s.t.

$$
t^{\sigma}(<i, 1>)=\pi^{\sigma}(i)+\eta^{\sigma}(i) w
$$

1	2			4	5	6		7		1		2		3		4
	4	5	6	7		1		2		3		4	5	6		7
			1	2			3	4	5	6		7		1		

1		2	
2	3		4
5	6	7	

Datterns

1	2		3 4 6 7		5	$\frac{6}{1}$	7			1		2		3		4	1			2	
	4	5					1	2		3		4	5	6		7	2		3	4	5
			1	2			3	4	5	6		7		1			5	6		7	

- The pattern defines the schedule of tasks in an interval $[k w,(k+1) w]$ for enough large k
- The iteration setting indicates which occurrences of tasks are involved in this interval
- In the interval $[k w,(k+1) w], i$ starts at $k w+\pi^{\sigma}(i)$ its occurrence $<i, k+1-\eta^{\sigma}(i)>$

Feasibility of a pattern

Question: Given a pattern π, and a period w is there an iteration setting η such that the uniform constraints are met by the periodic schedule?
For an arc $a, t(<e(a), 1>)-t(<b(a), 1>) \geq L(a)-w H(a)$.
Lemma 6. An iteration setting satisfies for any arc a

$$
\eta(e(a))-\eta(b(a)) \geq\left\lceil\frac{L(a)+\pi(b(a))-\pi(e(a))}{w}\right\rceil-H(a)=E_{w, \pi}(a)
$$

Lemma 7. An iteration setting exists iff $\left(G, E_{w, \pi}\right)$ has no positive circuit. can be checked in polynomial time

Polynomial problems

Corollary 5. if G has no other circuit than the non-reentrance loops, any pattern has an iteration setting.
Theorem 4. [Munier 91] $P \mid$ acyclic unif orm prec $\mid A$ is sovlable in polynomial time.
Idea: Consider tasks as independent, and schedule them on m processors using Mc-Naughton algorithm (preemptive scheduling). Use the schedule as a Pattern of a periodic schedule and compute the iteration setting.

Theorem 5. dedicated processors \mid acyclic uniform prec $\mid A$ is solvable in polynomial time. In particular non-reentrant job-shop or flow-shop.
Idea: schedule operations on each machine as independent. Set $W=C_{\max }$ (which is a lower bound on $A(\sigma)$ in this case). Use the schedule as a Pattern of a periodic schedule and compute the iteration setting.
[Robert, Legrand] also used similar ideas to build schedules for a broadcasting problem on a heterogeneous platform with net contentions.

Example

1		2		
2	3		4	5
5	6	7		

Optimality of periodic schedules?

In general, periodic schedules are not optimal schedules. Example: cyclic problem with two processors

1	3	4	1	7	3	4	1	3	4	1	7	3	4
2	5	6	2	5	6	7	2	5	6	2	5	6	7

However, periodic schedules are simple to implement and easier to compute.

ecomposed scheduling: a general approa

Also known as Decomposed software pipelining[Eisenbeis, Darte, Gasperoni, Schwiegelsohn, de dinechin, Munier,...]

- Build a non cyclic schedule S of \mathcal{T} that meets the resource constraints and eventually some precedence constraints.
- Consider this schedule as a pattern, and set $W=C_{\max }(S)$
- Build a feasible iteration setting for the pattern. (if possible)

OR

- Build an iteration setting.
- Deduce from the iteration setting precedence relations between tasks in a pattern
- Build a non cyclic schedule S of \mathcal{T} that meets the resource constraints and these precedence constraints.
- Consider this schedule as a pattern, and set $W=C_{\max }(S)$

Gasperoni-Schwiegelsohn algorithm

An algorithm for $P \mid$ uniform with $L(a)=p_{b(a)} \mid A$.

- Compute an optimal schedule σ^{∞} on infinitely many processors.
- Consider the pattern $\pi^{\sigma^{\infty}}$ and remove arcs a from G such that $\pi^{\sigma^{\infty}}(b(a))+p_{b(a)}>\pi^{\sigma^{\infty}}(e(a)) \rightarrow G^{\prime}$.
- Schedule G^{\prime} on the m processors according to a list scheduling algorithm \rightarrow schedule S.
- Set S as a pattern with $w=C_{\max }(S)$ and combine with the iteration setting of $\sigma^{\infty} \rightarrow$ periodic feasible schedule σ.

Example

Bounds

Theorem 6. [Gasperoni-Schwiegelsohn]

$$
A(\sigma) \leq\left(2-\frac{1}{m}\right) A\left(\sigma^{o p t}\right)+\max _{i \in \mathcal{T}} p_{i}
$$

[Darte et al] generalized the algorithm by choosing a convenient G^{\prime} using retiming.

Disjunctive constraints

Assume that two tasks i and j use the same resource: $\forall k, l, \quad$ either $t^{\sigma}(<i, k>)+p_{i} \leq t^{\sigma}(<j, l>)$ or $t^{\sigma}(<j, l>)+p_{j} \leq t^{\sigma}(<i, k>)$.

- If σ is periodic with period w,
- in time interval $[x w,(x+1) w)]$ there is only one occurrence $<i, u_{i}(x)>$.
- $<j, u_{i}(x)+h_{i j}>$ next occurrence of j.
- $<j, u_{i}(x)+h_{i j}-1>$ precedes $<i, u_{i}(x)>$.

Hence setting $h_{i j} \in \mathbb{Z}$ as a variable, the disjunctive constraints can be expressed as:

$$
\begin{cases}t^{\sigma}(<j, 1>)-t^{\sigma}(<i, 1>) & \geq p_{i}-w h_{i j} \\ t^{\sigma}(<i, 1>)-t^{\sigma}(<j, 1>) & \geq p_{j}-w h_{j i} \\ h_{i j}+h_{j i} & =1\end{cases}
$$

ILP model

General form of constraints:

$$
t^{\sigma}(<e(a), 1>)-t^{\sigma}(<b(a), 1>) \geq L(a)-w H(a)
$$

Heights might be either fixed or variables. Additional linear constraints on variable heights might be added.

Remark 3. For a fixed w, the constraint is linear.
Remark 4. Once disjunctive variables of this ILP are fixed, it remains a uniform graph scheduling problem.
Many problems with disjunctive resources (shop-problems, but also Hoist scheduling problems)[Roundy],[Brucker], [Levner et al] [Chu et al][Lei et al]can be formulated, for a fixed w as an mixed integer linear program.

Algorithms for disjunctive problems

- Branch and bound algorithms

For cyclic job-shop problems [Roundy,Hanen, Kampmeyer and Brücker]

For hoist scheduling[Lei and Wang, Chu and Proth]

- Metaheuristics [Kampmeyer and Brücker]

Some Open problems

- Transitory state of the earliest schedule.
- Complexity of the cyclic problem with unit lengths an 2 processors.
- How to use results on scheduling problems in their cyclic version?

Efficiency of Jackson algorithm for the 1-machine problem Specific list schedules for parallel machines problems.

- Defining regular dynamic policy and study their behaviour. Regularity of the schedule, performance bounds.

