Cyclic scheduling: an introduction

Claire Hanen

Claire.Hanen@lip6.fr

Université Paris X Nanterre / LIP6 UPMC

Summary

Definition

- Uniform precedence constraints Feasibility Periodic schedules Earliest schedule
- Resource constraints
 Periodicity and Patterns
 Complexity
 approximation
 ILP formulations
- Perspectives

Definition

- A set of tasks \mathcal{T} to be repeated many times assumed infinite
- For $i \in T$, < i, k > denotes k^{th} occurrence of i
- An infinite schedule σ defines:
- $\forall k \ge 0 \ t^{\sigma}(\langle i, k \rangle)$ starting time of $\langle i, k \rangle$
- Resources for each task execution

Optimizing

Minimizing the average cycle time :

$$A(\sigma) = \max_{i \in \mathcal{T}} A(\sigma, i) = limsup_{k \to +\infty} \frac{t^{\sigma}(\langle i, k \rangle)}{k}$$

Maximizing the throughput:

$$D(\sigma) = \frac{1}{A(\sigma)}$$

For a given average cycle time, minimizing the amount of resources per time units (ex: nb of processors, nb of registers,...)

Applications and models

Implementing loops on parallel architectures

- \rightarrow compiling, code generation
- \rightarrow embedded applications

litterature on software pipelining and dataflow computations

Mass production

 \rightarrow Cyclic shop problems

 \rightarrow Hoist scheduling problem.

litterature on cyclic scheduling in production systems

Models of parallelism

 \rightarrow timed Petri Nets

 $\rightarrow \text{Graphs}$

 \rightarrow Max + algebra

litterature on parametric paths, timed event graphs, Max +

Infinite schedule?

- Algorithms-> finite description
- Static schedule

Must be regular /time and resources

Dynamic policy

examples: earliest schedule, regular priorities on resources assignment

Loop example

Assume arrays A, B, C, D, and that the processor can compute several instructions in parallel :

 $\begin{array}{ll} \mbox{for I = 2 to N do} \\ B(I) = A(I-1) + 1 & \mbox{task 1} & <4, k-1 > \mbox{precedes} < 1, k > \\ C(I) = B(I) + 5 & \mbox{task 2} & <1, k > \mbox{precedes} < 2, k > \\ D(I) = B(I-2) * D(I) & \mbox{task 3} & <1, k-2 > \mbox{precedes} < 3, k > \\ A(I) = C(I-2) + D(I) & \mbox{task 4} & <2, k-2 >, <1, k > \mbox{precede} < 2, k > \\ \mbox{Precedence constraints are uniforms: if } if < i, k > \mbox{precedes} < j, l > \mbox{then for all integers } \delta, < i, k+\delta > \mbox{precedes} < j, l+\delta > \end{array}$

Cyclic scheduling with uniform precedence

- A set ${\mathcal T}$ of n generic tasks with processing times p_1,\ldots,p_n
- **non reentrance:** < i, k > precedes $< i, k + 1 > \forall k \ge 1$
- A multi-graph $G = (\mathcal{T}, A)$ of uniform constraints
- For each arc $a \in A$,

A value called length $L(a) \in Z$ also mentioned as latency or delay A value called height $H(a) \in \mathbb{Z}$ also called dependence distance

$$b(a)$$
 $(L(a), H(a))$ $e(a)$

If i = b(a) et j = e(a), $\forall k \ge 1$, $t^{\sigma}(\langle i, k \rangle) + L(a) \le t^{\sigma}(\langle j, k + H(a) \rangle)$

Find an infinite feasible schedule minimizing the average cycle time.

Definition 1. The Length of path μ , denoted $L(\mu) =$ sum of arcs length. Height of μ , denoted by $H(\mu) =$ sum of arcs height.

Remark 1. Non-reentrance can be expressed with uniform constraints : arcs (i, i) with length p_i and height 1.

Example

Negative length can be used to model deadlines : $t^{\sigma}(<5,k>) \leq t^{\sigma}(<4,k>) + 10$

Questions

Feasibility

- Construction and properties of schedules.
 Periodic schedules
 Earliest schedule
- Performance

Feasibility

For any path μ from *i* to *j*,

 $\forall k \ge \max(1, 1 - H(C)), \quad t^{\sigma}(\langle i, k \rangle) + L(\mu) \le t^{\sigma}(\langle j, k + H(\mu) \rangle)$

For any circuit C of G, and task i in C:

 $\forall k \ge \max(1, 1 - H(C)), \quad t^{\sigma}(\langle i, k \rangle) + L(C) \le t^{\sigma}(\langle i, k + H(C) \rangle)$

Non reentrance \Rightarrow

Lemma 1. [Lee 05][Munier 06] If G is feasible then for any circuit C such that $H(C) \le 0$, $L(C) \le 0$. If $H \in \mathbb{N}$ this condition is sufficient [many authors] [Chretienne 85]

 $\begin{array}{ll} & \text{If } H(C) > 0, \, k = qH(C) + r \quad \text{then} \quad t^{\sigma}(< i, k >) \geq qL(C) + t^{\sigma}(< i, r >). \\ & \text{If } H(C) < 0 \text{ and } k = -qH(C) + r \quad \text{then} \quad t^{\sigma}(< i, k >) \leq -qL(C) + t^{\sigma}(< i, r >) \\ & \text{Lemma 2. If } H(C) \geq 0, \quad A(\sigma, i) = \limsup_{k \to +\infty} \frac{t^{\sigma}(< i, k >)}{k} \geq \frac{L(C)}{H(C)}. \\ & \text{If } H(C) < 0, \quad A(\sigma, i) \leq \frac{L(C)}{H(C)} \end{array}$

Feasibility and performance bounds

For a circuit *C* the Index of *C*: $\alpha(C) = \frac{L(C)}{H(C)}$

Corollary 1. If G is feasible then for any task i, and for any schedule σ

$$\max_{C \in \mathcal{C}^+(i)} \alpha(C) \le A(\sigma, i) \le \min_{C \in \mathcal{C}^-(i)} \alpha(C)$$

A critical circuit is a circuit $C^* \in C^+$ s.t $\alpha(C)$ is maximum : lower bound on $A(\sigma)$.

Periodic schedules

Definition 2. A schedule σ is periodic if each task *i* has a period w_i such that:

$$t^{\sigma}(\langle i, k \rangle) = t^{\sigma}(\langle i, 1 \rangle) + (k-1)w_i$$

Let a be an arc from b(a) to e(a)

 $\forall k, \quad t^{\sigma}(\langle b(a), 1 \rangle) + (k-1)w_{b(a)} + L(a) \leq t^{\sigma}(\langle e(a), 1 \rangle) + (k-1)w_{e(a)} + H(a)w_{e(a)}$

$$\Leftrightarrow t^{\sigma}(\langle e(a), 1 \rangle) - t^{\sigma}(\langle b(a), 1 \rangle) \ge L(a) - w_{e(a)}H(a) + (k-1)(w_{b(a)} - w_{e(a)})$$

Existence of a periodic schedule

Lemma 3. for any arc a, $w_{b(a)} \leq w_{e(a)}$. We denote by C_1, \ldots, C_q the strong components of G. Let $\alpha^+(C_s) = \max_{C \in C_s, H(C) > 0} \alpha(C)$ and $\alpha^-(C_s) = \min_{C \in C_s, H(C) < 0} \alpha(C)$ Corollary 2.

$$\forall s, \forall i, j \in C_s, w_i = w_j = W_s \quad and \quad \alpha^+(C_s) \le W_s \le \alpha^-(C_s)$$

Moreover, if there is an arc a s.t. $b(a) \in C_s, e(a) \in C_{s'}$ then $W_s \leq W_{s'}$

Example

- $C_1 = \{1, 2, 3\}, C_2 = \{4, 5\}, C_3 = \{6\}$ $\alpha^+(C_1) = 10, \alpha^-(C_1) = 17, \quad \alpha^+(C_2) = 7, \alpha^-(C_2) = 11, \quad \alpha^+(C_3) = 5$ $10 \le W_1 \le 17, \quad 7 \le W_2 \le 11, \quad 5 \le W_3,$
- $W_1 = 10, W_2 = 7, W_3 = 10$. Notice that $W_1 = W_2 = W_3 = 10$ is also a solution.

Feasibility

Theorem 1. [Munier 06] G is feasible if and only if there exists a periodic schedule.

Idea : If no periodic schedule exists, build paths μ_x between i and j in G such that $H(\mu_x)$ = h and $\lim_{x \to +\infty} L(\mu_x) \to +\infty$, which contradicts

$$t^{\sigma}(\langle j, k \rangle) - t^{\sigma}(\langle i, k+h \rangle) \ge L(\mu_x)$$

for some k.

Computation of a periodic schedule

For a strong connected graph G and a given W:

 $\forall a, t^{\sigma}(\langle e(a), 1 \rangle) - t^{\sigma}(\langle b(a), 1 \rangle) \ge L(a) - W.H(a)$

• Let
$$V_W(a) = L(a) - W.H(a)$$

- If (G, V_W) has positive circuits then infeasibility.
- otherwise $t^{\sigma}(\langle i, 1 \rangle) = \text{longest path to } i \text{ in } (G, V_W) \text{ is a solution.}$
- Bellman-Ford algorithm

Computation of critical circuits

[Dasdan et al 99]

Polynomial algorithms :

Binary search on W: at each step check if (G, V_W) has positive circuits $0(nm(\log n + \log \max_a(L(a), H(a))))$ [Lawler 79][Gondran-Minoux 85] Linear programming with primal dual approach $O(n^2m)$ [Burns 91]

An efficient pseudo polynomial algorithm: Howard's algorithm[Cochet-Terrasson et al 98]

W =lower bound

At each step check if G, V_W) has positive circuit C with breadth first search. If $H(C) \le 0$ stop. Otherwise set $W = \alpha(C)$.

complexity O(m.X), X product of degrees of nodes.

omputation of an optimal periodic schedu

Compute the strong components of G O(n+m)

- Check feasibility for each component C_s , and the critical circuit value $\alpha_s.O(nm\log(n) + \log(V_{max}))$
- **Solution** Compute the reduced graph of components.O(n + m)
- Sort the components by topological order.O(n+m)
- for each component C_s .

if C_s has no predecessor, set $W_s = \alpha_s$. if C_{x_1}, \ldots, C_{x_r} are predecessors of C_s . Let $\beta_s = \max_i W_{x_i}$ If $\alpha_s \ge \beta_s$ set $W_s = \alpha_s$. otherwise check if (C_s, V_{β_s}) has some positive circuit.O(nm)

if so, infeasibility otherwise set $W_s = \beta_s$.

- Compute the longest paths from a dummy source node to any node *i* on *G* with on each component value V_{W_s} and on each intermediate arc between $C_s, C_{s'}$ value $V_{W_{s'}}$. O(nm)
- $t^{\sigma}(\langle i, 1 \rangle) = \text{longest path to } i.$

Example

Graph with $L - W_s H$ values:

A periodic schedule: period of 1,2,3,6 is 10, period of 4,5 is 7

Positive heights

The problem has been studied earlier [Chretienne 85][many authors]

Theorem 2. For any $w \ge \max_{C \ circuit} \alpha(C)$ there is a periodic schedule, all tasks have period w.

No need to compute strong components.

K-periodic schedules

Definition 3. In a *K*-periodic schedule σ , a schedule of K_i occurrences of task *i* is repeated every W_i time units:

$$\forall l \ge l_0, \quad t^{\sigma}(\langle i, l + K_i \rangle) = t^{\sigma}(\langle i, l \rangle) + W_i$$

Lemma 4. The average cycle time of task i in a K-periodic schedule is $A(\sigma,i) = \frac{W_i}{K_i}$.

Un ordonnancement 2-périodique (pour chaque tâche).

1	3	4	1	7	3	4	1	3	4	1	7	3	4
2	5	6	2	5	6	7	2	5	6	2	5	6	7

Properties of the earliest schedule

[Romanovskii 67, Chretienne 85, Munier 06]

Theorem 3. If G is feasible, the earliest schedule σ^* is K-periodic and

$$A(\sigma^*) = \max_{C \in \mathcal{C}^+} \alpha(C)$$

After a transitory time, the earliest schedule becomes regular and its behavior is ruled by the critical circuit index.

Remark 2. K might be large \leq product of heights of critical circuits.

Open questions

Length of the transitory time? Exact measure of *K*.

Stability/boundedness

If w < w' then b(a) produces pieces or results faster than e(a). Unstability

Moreover the iteration delay:

$$D^{\sigma}(k) = \max_{i \in \mathcal{T}} t^{\sigma}(\langle i, k \rangle) - \min_{i \in \mathcal{T}} t^{\sigma}(\langle i, k \rangle) \to_{k \to +\infty} +\infty$$

This might occur in earliest schedule and in periodic schedules for general uniform graphs.

Example

There are 3 strong components $C_1 = \{1, 2, 3\}, C_2 = \{4\}, C_3 = \{5, 6, 7\}$

Cyclic problems with resources

- Complexity of a cyclic problem/ its non cyclic version.
- Tools for constructing periodic schedules: circuits and patterns Polynomial problems
- Are periodic schedules optimal?
- Decomposed scheduling: a general approach
- Approximation of decomposed scheduling
- ILP formulations

Complexity

Consider a problem $resources|prec|C_{max}$ which is NP-hard. A simple Reduction:

- Add two dummy nodes to G (source s, sink t with unit proce
 - set H(a) = 0 for all arcs in G and arcs from s and arcs to t.
- Add an arc from t to s with height 1.
- Any schedule σ' of G' is a sequence of schedules of G.

Its average cycle time $A(\sigma')$ is the mean of makespan of G schedules

 $A(\sigma') \le B \Leftrightarrow C_{max}(G) \le B - 2$

Corollary 3. $P|uniform \, prec, p_i = 1|A, pre-assigned \, processors|uniform \, prec|A, cyclic job-shop with uniform constraints are NP-hard$

Circuits

Consider a uniform graph G =circuit, such that for any arc a $L(a) = p_{b(a)}$: usual precedence constraints.

Lemma 5. In any schedule of G no more than H(G) tasks are performed in parallel.

Corollary 4. [Munier 91] The problem $P|circuit, L(a) = p_{b(a)}|A$ is solvable in polynomial time.

Idea : if $H(G) \le m$ then any schedule meets the resource constraint. If H(G) > m, then we can reduce the height of some arcs so that H(G) = m without modifiying the lower bound on

$$A(\sigma) \ge \max(\max_{i \in \mathcal{T}} p_i, \frac{\sum_{i \in \mathcal{T}} p_i}{m})$$

Patterns

Let σ be a periodic schedule with unique period w.

$$t^{\sigma}(\langle i, k \rangle) = t^{\sigma}(\langle i, 1 \rangle) + (k-1)w$$

Definition 4. The Pattern of σ is defined by: $\pi^{\sigma}(i) = t^{\sigma}(\langle i, 1 \rangle) modw$. The *iteration setting* of σ is $\eta^{\sigma}(i) \in \mathbb{Z}$, s.t.

$$t^{\sigma}(\langle i, 1 \rangle) = \pi^{\sigma}(i) + \eta^{\sigma}(i)w$$

Patterns

- The pattern defines the schedule of tasks in an interval [kw, (k+1)w] for enough large k
- The iteration setting indicates which occurrences of tasks are involved in this interval
- In the interval [kw, (k+1)w], *i* starts at $kw + \pi^{\sigma}(i)$ its occurrence $< i, k+1 \eta^{\sigma}(i) >$

Feasibility of a pattern

Question: Given a pattern π , and a period w is there an iteration setting η such that the uniform constraints are met by the periodic schedule?

For an arc $a, t(< e(a), 1 >) - t(< b(a), 1 >) \ge L(a) - wH(a)$.

Lemma 6. An iteration setting satisfies for any arc \boldsymbol{a}

$$\eta(e(a)) - \eta(b(a)) \ge \left\lceil \frac{L(a) + \pi(b(a)) - \pi(e(a))}{w} \right\rceil - H(a) = E_{w,\pi}(a)$$

Lemma 7. An iteration setting exists iff $(G, E_{w,\pi})$ has no positive circuit. can be checked in polynomial time

Polynomial problems

Corollary 5. if G has no other circuit than the non-reentrance loops, any pattern has an iteration setting.

Theorem 4. [Munier 91] P|acyclic uniform prec|A is sovlable in polynomial time.

Idea: Consider tasks as independent, and schedule them on m processors using Mc-Naughton algorithm (preemptive scheduling). Use the schedule as a Pattern of a periodic schedule and compute the iteration setting.

Theorem 5. dedicated processors|acyclic uniform prec|A is solvable in polynomial time. In particular non-reentrant job-shop or flow-shop.

Idea: schedule operations on each machine as independent. Set $W = C_{max}$ (which is a lower bound on $A(\sigma)$ in this case). Use the schedule as a Pattern of a periodic schedule and compute the iteration setting.

[Robert, Legrand] also used similar ideas to build schedules for a broadcasting problem on a heterogeneous platform with net contentions.

Example

	1		2					
2		3		4	5			
5	6	7						

Optimality of periodic schedules?

In general, periodic schedules are not optimal schedules. Example: cyclic problem with two processors

However, periodic schedules are simple to implement and easier to -compute.

ecomposed scheduling: a general approa

Also known as Decomposed software pipelining[Eisenbeis, Darte, Gasperoni, Schwiegelsohn, de dinechin, Munier,...]

- Build a non cyclic schedule S of T that meets the resource constraints and eventually some precedence constraints.
- Consider this schedule as a pattern, and set $W = C_{max}(S)$
- Build a feasible iteration setting for the pattern. (if possible)
- OR
 - Build an iteration setting.
 - Deduce from the iteration setting precedence relations between tasks in a pattern
 - Build a non cyclic schedule S of T that meets the resource constraints and these precedence constraints.
 - Consider this schedule as a pattern, and set $W = C_{max}(S)$

Gasperoni-Schwiegelsohn algorithm

An algorithm for $P|uniform with L(a) = p_{b(a)}|A$.

- Compute an optimal schedule σ^{∞} on infinitely many processors.
- Consider the pattern $\pi^{\sigma^{\infty}}$ and remove arcs a from G such that $\pi^{\sigma^{\infty}}(b(a)) + p_{b(a)} > \pi^{\sigma^{\infty}}(e(a)) \to G'.$
- Schedule G' on the m processors according to a list scheduling algorithm \rightarrow schedule S.
- Set *S* as a pattern with $w = C_{max}(S)$ and combine with the iteration setting of $\sigma^{\infty} \rightarrow$ periodic feasible schedule σ .

Example

1 2 3 6 7 5 4

Schedule on 2 processors

1	2		3	1	2	2		1	2		3
6	7	5		6	7	5	4	6	7	5	4

G' has 3 arcs

periodic schedule with period 6

Bounds

Theorem 6. [Gasperoni-Schwiegelsohn]

$$A(\sigma) \le (2 - \frac{1}{m})A(\sigma^{opt}) + \max_{i \in \mathcal{T}} p_i$$

[Darte et al] generalized the algorithm by choosing a convenient G' using retiming.

Disjunctive constraints

Hence setting $h_{ij} \in \mathbb{Z}$ as a variable, the disjunctive constraints can be expressed as:

$$\begin{cases} t^{\sigma}(\langle j, 1 \rangle) - t^{\sigma}(\langle i, 1 \rangle) & \ge p_{i} - wh_{ij} \\ t^{\sigma}(\langle i, 1 \rangle) - t^{\sigma}(\langle j, 1 \rangle) & \ge p_{j} - wh_{ji} \\ h_{ij} + h_{ji} & = 1 \end{cases}$$

ILP model

General form of constraints:

$$t^{\sigma}(\langle e(a), 1 \rangle) - t^{\sigma}(\langle b(a), 1 \rangle) \ge L(a) - wH(a)$$

Heights might be either fixed or variables. Additional linear constraints on variable heights might be added.

Remark 3. For a fixed w, the constraint is linear.

Remark 4. Once disjunctive variables of this ILP are fixed, it remains a uniform graph scheduling problem.

Many problems with disjunctive resources (shop-problems, but also Hoist scheduling problems)[Roundy],[Brucker], [Levner et al] [Chu et al][Lei et al]can be formulated, for a fixed *w* as an mixed integer linear program.

Algorithms for disjunctive problems

Branch and bound algorithms For cyclic job-shop problems [Roundy,Hanen, Kampmeyer and Brücker] For hoist scheduling[Lei and Wang, Chu and Proth]

Metaheuristics [Kampmeyer and Brücker]

Some Open problems

- Transitory state of the earliest schedule.
- Complexity of the cyclic problem with unit lengths an 2 processors.
- How to use results on scheduling problems in their cyclic version?

Efficiency of Jackson algorithm for the 1-machine problem Specific list schedules for parallel machines problems.

Defining regular dynamic policy and study their behaviour. Regularity of the schedule, performance bounds.