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Definition

A set of tasks T to be repeated many times assumed
infinite

For i ∈ T , < i, k > denotes kth occurrence of i

An infinite schedule σ defines:

∀k ≥ 0 tσ(< i, k >) starting time of < i, k >

Resources for each task execution
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Optimizing

Minimizing the average cycle time :

A(σ) = max
i∈T

A(σ, i) = limsupk→ +∞
tσ(< i, k >)

k

Maximizing the throughput:

D(σ) =
1

A(σ)

For a given average cycle time, minimizing the amount of
resources per time units (ex: nb of processors, nb of
registers,...)
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Applications and models

Implementing loops on parallel architectures
→ compiling, code generation
→ embedded applications
litterature on software pipelining and dataflow computations

Mass production
→ Cyclic shop problems
→ Hoist scheduling problem.
litterature on cyclic scheduling in production systems

Models of parallelism
→ timed Petri Nets
→ Graphs
→ Max + algebra
litterature on parametric paths, timed event graphs, Max +
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Infinite schedule?

Algorithms-> finite description

Static schedule
Must be regular /time and resources

Dynamic policy
examples: earliest schedule, regular priorities on

resources assignment
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Loop example

Assume arrays A, B, C, D, and that the processor can compute several
instructions in parallel :

for I = 2 to N do

B(I) = A(I − 1) + 1 task 1 < 4, k − 1 > precedes < 1, k >

C(I) = B(I) + 5 task 2 < 1, k > precedes < 2, k >

D(I) = B(I − 2) ∗ D(I) task 3 < 1, k − 2 > precedes < 3, k >

A(I) = C(I − 2) + D(I) task 4 < 2, k − 2 >, < 1, k > precede < 2, k >

Precedence constraints are uniforms: if < i, k > precedes < j, l > then for
all integers δ, < i, k + δ > precedes < j, l + δ >
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Cyclic scheduling with uniform precedences

A set T of n generic tasks with processing times p1, . . . , pn

non reentrance: < i, k > precedes < i, k + 1 > ∀k ≥ 1

A multi-graph G = (T , A) of uniform constraints

For each arc a ∈ A,
A value called length L(a) ∈ Z also mentioned as latency or delay
A value called height H(a) ∈ Z also called dependence distance

b(a) e(a)

(L(a), H(a)) If i = b(a) et j = e(a), ∀k ≥ 1, tσ(< i, k >) + L(a) ≤ tσ(< j, k + H(a) >)

Find an infinite feasible schedule minimizing the average cycle time.

Definition 1. The Length of path µ, denoted L(µ) = sum of arcs length. Height of µ, denoted by H(µ) =

sum of arcs height.

Remark 1. Non-reentrance can be expressed with uniform constraints : arcs (i, i) with length pi and height 1.
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Example

Negative length can be used to model deadlines :
tσ(< 5, k >) ≤ tσ(< 4, k >) + 10
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Questions

Feasibility

Construction and properties of schedules.
Periodic schedules
Earliest schedule

Performance
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Feasibility

For any path µ from i to j,

∀k ≥ max(1, 1 − H(C)), tσ(< i, k >) + L(µ) ≤ tσ(< j, k + H(µ) >)

For any circuit C of G, and task i in C:

∀k ≥ max(1, 1 − H(C)), tσ(< i, k >) + L(C) ≤ tσ(< i, k + H(C) >)

Non reentrance ⇒

Lemma 1. [Lee 05][Munier 06] If G is feasible then for any circuit C such that H(C) ≤ 0, L(C) ≤ 0. If

H ∈ N this condition is sufficient [many authors] [Chretienne 85]

If H(C) > 0, k = qH(C) + r then tσ(< i, k >) ≥ qL(C) + tσ(< i, r >).

If H(C) < 0 and k = −qH(C) + r then tσ(< i, k >) ≤ −qL(C) + tσ(< i, r >)

Lemma 2. If H(C) ≥ 0, A(σ, i) = lim sup
k→+∞

tσ(< i, k >)

k
≥

L(C)

H(C)
.

If H(C) < 0, A(σ, i) ≤
L(C)

H(C)
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Feasibility and performance bounds

For a circuit C the Index of C: α(C) =
L(C)

H(C)

C+(i) set of circuits C s.t. i ∈ C and H(C) ≥ 0. C+ = ∪i∈T C
+(i)

C−(i) set of circuits C s.t. i ∈ C and H(C) < 0. C− = ∪i∈T C
−(i)

Corollary 1. If G is feasible then for any task i, and for any schedule σ

max
C∈C+(i)

α(C) ≤ A(σ, i) ≤ min
C∈C−(i)

α(C)

A critical circuit is a circuit C∗ ∈ C+ s.t α(C) is maximum : lower bound on
A(σ).
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Periodic schedules

Definition 2. A schedule σ is periodic if each task i has a period wi such that:

tσ(< i, k >) = tσ(< i, 1 >) + (k − 1)wi

Let a be an arc from b(a) to e(a)

∀k, tσ(< b(a), 1 >) + (k − 1)wb(a) + L(a) ≤ tσ(< e(a), 1 >) + (k − 1)we(a) + H(a)we(a)

⇔ tσ(< e(a), 1 >) − tσ(< b(a), 1 >) ≥ L(a) − we(a)H(a) + (k − 1)(wb(a) − we(a))
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Existence of a periodic schedule

Lemma 3. for any arc a, wb(a) ≤ we(a).

We denote by C1, . . . , Cq the strong components of G.

Let α+(Cs) = max
C∈Cs,H(C)>0

α(C) and α−(Cs) = min
C∈Cs,H(C)<0

α(C)

Corollary 2.

∀s,∀i, j ∈ Cs, wi = wj = Ws and α+(Cs) ≤ Ws ≤ α−(Cs)

Moreover, if there is an arc a s.t. b(a) ∈ Cs, e(a) ∈ Cs′ then Ws ≤ Ws′
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Example

C1 = {1, 2, 3}, C2 = {4, 5}, C3 = {6}

α+(C1) = 10, α−(C1) = 17, α+(C2) = 7, α−(C2) = 11, α+(C3) = 5

10 ≤ W1 ≤ 17, 7 ≤ W2 ≤ 11, 5 ≤ W3,

W3 ≥ W2, W3 ≥ W1

W1 = 10, W2 = 7, W3 = 10. Notice that W1 = W2 = W3 = 10 is also a solution.
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Feasibility

Theorem 1. [Munier 06] G is feasible if and only if there exists a periodic

schedule.

Idea : If no periodic schedule exists, build paths µx between i and j

in G such that H(µx)= h and lim
x→+∞

L(µx) → +∞, which contradicts

tσ(< j, k >) − tσ(< i, k + h >) ≥ L(µx)

for some k.
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Computation of a periodic schedule

For a strong connected graph G and a given W :

∀a, tσ(< e(a), 1 >) − tσ(< b(a), 1 >) ≥ L(a) − W.H(a)

Let VW (a) = L(a) − W.H(a)

If (G,VW ) has positive circuits then infeasibility.

otherwise tσ(< i, 1 >) = longest path to i in (G,VW ) is a

solution.

Bellman-Ford algorithm
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Computation of critical circuits

[Dasdan et al 99]

Polynomial algorithms :
Binary search on W: at each step check if (G, VW ) has positive circuits

0(nm(log n + log maxa(L(a), H(a)))) [Lawler 79][Gondran-Minoux 85]
Linear programming with primal dual approach O(n2m) [Burns 91]

An efficient pseudo polynomial algorithm: Howard’s algorithm[Cochet-Terrasson et al
98]

W = lower bound
At each step check if G, VW ) has positive circuit C with breadth first search. If

H(C) <= 0 stop. Otherwise set W = α(C).
complexity O(m.X), X product of degrees of nodes.
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Computation of an optimal periodic schedule

Compute the strong components of G O(n + m)

Check feasibility for each component Cs, and the critical circuit value
αs.O(nm log(n) + log(Vmax))

Compute the reduced graph of components.O(n + m)

Sort the components by topological order.O(n + m)

for each component Cs.
if Cs has no predecessor, set Ws = αs.
if Cx1

, . . . , Cxr
are predecessors of Cs. Let βs = maxi Wxi

If αs ≥ βs set Ws = αs.
otherwise check if (Cs, Vβs

) has some positive circuit.O(nm)

if so,infeasibility otherwise set Ws = βs.

Compute the longest paths from a dummy source node to any node i on G with on
each component value VWs

and on each intermediate arc between Cs, Cs′ value
VW

s′
. O(nm)

tσ(< i, 1 >) = longest path to i.

Cyclic scheduling for EPIT 2007 – p. 19/??



Example

Graph with L − WsH values: 3� 1 0 4� 7 5� 1 4
2� 1 01 23 4 56 8� 7 � 5 � 7

� 7 � 6 � 30 3
7 1 0 2 5

A periodic schedule: period of 1,2,3,6 is 10, period of 4,5 is 7
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Positive heights

The problem has been studied earlier [Chretienne 85][many

authors]

Theorem 2. For any w ≥ maxC circuit α(C) there is a periodic schedule, all

tasks have period w.

No need to compute strong components.
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K-periodic schedules

Definition 3. In a K-periodic schedule σ, a schedule of Ki occurrences of task i

is repeated every Wi time units:

∀l ≥ l0, tσ(< i, l + Ki >) = tσ(< i, l >) + Wi

Lemma 4. The average cycle time of task i in a K−periodic schedule is

A(σ, i) = Wi

Ki
.

Un ordonnancement 2-périodique (pour chaque tâche).
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Properties of the earliest schedule

[Romanovskii 67,Chretienne 85, Munier 06]

Theorem 3. If G is feasible, the earliest schedule σ∗ is K-periodic and

A(σ∗) = max
C∈C+

α(C)

After a transitory time, the earliest schedule becomes regular and

its behavior is ruled by the critical circuit index.

Remark 2. K might be large ≤ product of heights of critical circuits.

Open questions

Length of the transitory time?

Exact measure of K.
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Stability/boundedness

b(a)

cycle time w

e(a)

cycle time w′

(L(a), H(a))

If w < w′ then b(a) produces pieces or results faster than e(a).

Unstability

Moreover the iteration delay:

Dσ(k) = max
i∈T

tσ(< i, k >) − min
i∈T

tσ(< i, k >) →k→+∞ +∞

This might occur in earliest schedule and in periodic schedules for
general uniform graphs.
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Example

if task 4 has processing time 1:
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There are 3 strong components
C1 = {1, 2, 3}, C2 = {4}, C3 = {5, 6, 7}

α(C1) = 3, α(C2) = 1, α(C3) = 5

The earliest schedule of i ≤ 4 is
2−periodic with period 6.

The earliest schedule of {5, 6, 7} is
1−periodic with period 5.

Unstable schedule

Here a static 1-periodic schedule with pe-
riod 5 can be built.
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Cyclic problems with resources

Complexity of a cyclic problem/ its non cyclic version.

Tools for constructing periodic schedules: circuits and patterns

Polynomial problems

Are periodic schedules optimal?

Decomposed scheduling: a general approach

Approximation of decomposed scheduling

ILP formulations
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Complexity

Consider a problem resources|prec|Cmax which is NP-hard.
A simple Reduction:

b b

s t

precedence graph G

G

Add two dummy nodes to G (source s, sink t with unit processing

set H(a) = 0 for all arcs in G and arcs from s and arcs to t.

Add an arc from t to s with height 1.

Any schedule σ′ of G′ is a sequence of schedules of G.

Its average cycle time A(σ′) is the mean of makespan of G schedules

A(σ′) ≤ B ⇔ Cmax(G) ≤ B − 2

Corollary 3. P |uniform prec, pi = 1|A, pre − assigned processors|uniform prec|A, cyclic

job-shop with uniform constraints are NP-hard
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Circuits

Consider a uniform graph G =circuit, such that for any arc a

L(a) = pb(a): usual precedence constraints.

Lemma 5. In any schedule of G no more than H(G) tasks are performed in

parallel.

Corollary 4. [Munier 91] The problem P |circuit, L(a) = pb(a)|A is solvable in

polynomial time.

Idea : if H(G) ≤ m then any schedule meets the resource

constraint. If H(G) > m, then we can reduce the height of some

arcs so that H(G) = m without modifiying the lower bound on

A(σ) ≥ max(max
i∈T

pi,

∑

i∈T pi

m
)
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Patterns

Let σ be a periodic schedule with unique period w.

tσ(< i, k >) = tσ(< i, 1 >) + (k − 1)w

Definition 4. The Pattern of σ is defined by: πσ(i) = tσ(< i, 1 >)modw. The

iteration setting of σ is ησ(i) ∈ Z, s.t.

tσ(< i, 1 >) = πσ(i) + ησ(i)w
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Patterns
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The pattern defines the schedule of tasks in an interval
[kw, (k + 1)w] for enough large k

The iteration setting indicates which occurrences of tasks
are involved in this interval

In the interval [kw, (k + 1)w], i starts at kw + πσ(i) its
occurrence < i, k + 1 − ησ(i) >
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Feasibility of a pattern

Question: Given a pattern π,and a period w is there an iteration

setting η such that the uniform constraints are met by the periodic

schedule?

For an arc a, t(< e(a), 1 >) − t(< b(a), 1 >) ≥ L(a) − wH(a).

Lemma 6. An iteration setting satisfies for any arc a

η(e(a)) − η(b(a)) ≥

⌈

L(a) + π(b(a)) − π(e(a))

w

⌉

− H(a) = Ew,π(a)

Lemma 7. An iteration setting exists iff (G,Ew,π) has no positive circuit. can be

checked in polynomial time
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Polynomial problems

Corollary 5. if G has no other circuit than the non-reentrance loops, any pattern has an iteration setting.

Theorem 4. [Munier 91] P |acyclic uniform prec|A is sovlable in polynomial time.

Idea: Consider tasks as independent, and schedule them on m processors using
Mc-Naughton algorithm (preemptive scheduling). Use the schedule as a Pattern of a
periodic schedule and compute the iteration setting.

Theorem 5. dedicated processors|acyclic uniform prec|A is solvable in polynomial time. In

particular non-reentrant job-shop or flow-shop.

Idea: schedule operations on each machine as independent. Set W = Cmax (which is a
lower bound on A(σ) in this case). Use the schedule as a Pattern of a periodic schedule and
compute the iteration setting.

[Robert, Legrand] also used similar ideas to build schedules for a broadcasting problem on a

heterogeneous platform with net contentions.
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Example
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Optimality of periodic schedules?

In general, periodic schedules are not optimal schedules. Example:

cyclic problem with two processors
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However, periodic schedules are simple to implement and easier to
compute.
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Decomposed scheduling: a general approach

Also known as Decomposed software pipelining[Eisenbeis, Darte, Gasperoni,
Schwiegelsohn, de dinechin, Munier,...]

Build a non cyclic schedule S of T that meets the resource constraints and eventually
some precedence constraints.

Consider this schedule as a pattern, and set W = Cmax(S)

Build a feasible iteration setting for the pattern. (if possible)

OR

Build an iteration setting.

Deduce from the iteration setting precedence relations between tasks in a pattern

Build a non cyclic schedule S of T that meets the resource constraints and these
precedence constraints.

Consider this schedule as a pattern, and set W = Cmax(S)
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Gasperoni-Schwiegelsohn algorithm

An algorithm for P |uniform with L(a) = pb(a)|A.

Compute an optimal schedule σ∞ on infinitely many

processors.

Consider the pattern πσ∞

and remove arcs a from G such that

πσ∞

(b(a)) + pb(a) > πσ∞

(e(a)) → G′.

Schedule G′ on the m processors according to a list scheduling

algorithm → schedule S.

Set S as a pattern with w = Cmax(S) and combine with the

iteration setting of σ∞ → periodic feasible schedule σ.
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Example
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Bounds

Theorem 6. [Gasperoni-Schwiegelsohn]

A(σ) ≤ (2 −
1

m
)A(σopt) + max

i∈T
pi

[Darte et al] generalized the algorithm by choosing a
convenient G′ using retiming.

Cyclic scheduling for EPIT 2007 – p. 38/??



Disjunctive constraints

Assume that two tasks i and j use the same resource: ∀k, l, either
tσ(< i, k >) + pi ≤ tσ(< j, l >) or tσ(< j, l >) + pj ≤ tσ(< i, k >).

If σ is periodic with period w,

in time interval [xw, (x + 1)w)]

there is only one occurrence
< i, ui(x) >.

< j, ui(x) + hij > next
occurrence of j.

< j, ui(x) + hij − 1 > precedes
< i, ui(x) >.

< i, ui(x) >

< j, ui(x) + hij >< j, ui(x) + hij − 1 >

xw (x + 1)w

Hence setting hij ∈ Z as a variable, the disjunctive constraints can be expressed as:















tσ(< j, 1 >) − tσ(< i, 1 >) ≥ pi − whij

tσ(< i, 1 >) − tσ(< j, 1 >) ≥ pj − whji

hij + hji = 1
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ILP model

General form of constraints:

tσ(< e(a), 1 >) − tσ(< b(a), 1 >) ≥ L(a) − wH(a)

Heights might be either fixed or variables. Additional linear

constraints on variable heights might be added.

Remark 3. For a fixed w, the constraint is linear.

Remark 4. Once disjunctive variables of this ILP are fixed, it remains a uniform

graph scheduling problem.

Many problems with disjunctive resources (shop-problems, but also
Hoist scheduling problems)[Roundy],[Brucker], [Levner et al] [Chu
et al][Lei et al]can be formulated, for a fixed w as an mixed integer
linear program.
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Algorithms for disjunctive problems

Branch and bound algorithms

For cyclic job-shop problems [Roundy,Hanen, Kampmeyer

and Brücker]

For hoist scheduling[Lei and Wang, Chu and Proth]

Metaheuristics [Kampmeyer and Brücker]
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Some Open problems

Transitory state of the earliest schedule.

Complexity of the cyclic problem with unit lengths an 2

processors.

How to use results on scheduling problems in their cyclic

version?

Efficiency of Jackson algorithm for the 1-machine problem

Specific list schedules for parallel machines problems.

Defining regular dynamic policy and study their behaviour.

Regularity of the schedule, performance bounds.
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