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Definition
A set of tasks 7 to be repeated many times

Fori € T, < i, k > denotes k" occurrence of ;
An schedule ¢ defines:
Vk > 0t7(< i,k >) starting time of < ¢,k >

Resources for each task execution

-

Cyclic scheduling for EPIT 2007 — p. 3/~



Optimizing
Minimizing the average cycle time :

. . to(< i,k >)
A(o) = max A(o,1) = limsupg_ 1 oo .

Maximizing the throughput:

For a given average cycle time, minimizing the amount of
resources per time units (ex: nb of processors, nb of
registers,...)

-
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Applications and models
| .

Implementing loops on parallel architectures
— compiling, code generation
— embedded applications
litterature on software pipelining and dataflow computations

$® Mass production
— Cyclic shop problems
— Hoist scheduling problem.
litterature on cyclic scheduling in production systems

® Models of parallelism
— timed Petri Nets
— Graphs
— Max + algebra
litterature on parametric paths, timed event graphs, Max +

o -
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Infinite schedule?

- .

#® Algorithms-> finite description

# Static schedule
Must be regular /time and resources

#® Dynamic policy

examples: earliest schedule, regular priorities on
resources assignment

o -
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Loop example

=

Assume arrays A, B, C, D, and that the processor can compute several
Instructions in parallel :

forI=2to N do
B(I)=AI-1)+1 task 1 < 4,k—1> precedes < 1,k >
C(I)=B(I)+5 task 2 < 1,k > precedes < 2,k >
D(I)=B({I—-2)xD(I) task3 < 1,k—2> precedes< 3,k >

AIl)=C(I—-2)+D(I) task4d <2,k—2> <1,k > precede <2k >
Precedence constraints are uniforms: if < i, k > precedes < 5,1 > then for
all integers 6, < i,k + 6 > precedes < j,l + 6 >

o -
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yclic scheduling with uniform precedenc
o, o

® nonreentrance: < i,k > precedes < i,k +1>Vk > 1

A set 7 of n generic tasks with processing times p1,...,pn

® A multi-graph G = (7, A) of uniform constraints

® Foreacharcac A,
A value called length L(a) € Z
A value called height H(a) € Z

(L(a), H(a)) m-. If 2 = b(a) ety = e(a), Vk > 1, t0(< 1, k >) + L(a) < t0(< 7,k + H(a) >:

b(a) e(a) . o . L .
- —.® Find an infinite feasible schedule minimizing the average cycle time.

Definition 1.  The Length of path y, denoted L (1) = sum of arcs length. Height of i, denoted by H (1) =
sum of arcs height.

Remark 1. Non-reentrance can be expressed with uniform constraints : arcs (¢, ¢) with length p; and height 1.

o -
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Negative length can be used to model deadlines :
t7(< b,k >) <t?(<4,k>)+10

o -
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Questions

-

#® Feasibility

# Construction and properties of schedules.
Periodic schedules
Earliest schedule

® Performance

o -
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Feasibility
Eor any path p from 7 to 7, T

Vk > max(1,1 - H(C)), t7(<i,k>)+ L(p) <t7(<j,k+ H(p) >)
For any circuit C' of G, and task ¢ in C:
Vk > max(1,1 — H(C)), t°(<i,k>)+ L(C)<t°(<i,k+ H(C) >)

Non reentrance =

Lemma 1. [Lee O5][Munier 06] If G is feasible then for any circuit C' such that H(C') < 0, L(C') < 0. If
H € N this condition is sufficient [many authors] [Chretienne 85]

® fHC)>0,k=qH(C)+r then t7(<ik>)>qL(C)+t7(<i,r>).
® fHC)<0andk=—qH(C)+r then t°(<ik>) < —qL(C)+t7(<i,r>)

g y L
Lemma?2. IfH(C) >0, A(o,i)=limsup (<6 k>) > () :
L(C)

L|fH(C) <0, Ao,i) < HO) J
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Feasibility and performance bounds
B e o

For a circuit C the Index of C: a(C) = H(C)

® Ct(i)setofcircuits Cst.ie Cand H(C) > 0. Ct =U;erCT(7)
® C (i)setofcircuits C'st.ie Cand H(C) <0. C~ =U;erC (7)

Corollary 1. If (5 is feasible then for any task ¢, and for any schedule o

max «(C) < A(o,i) < min «(C)
cect (i) ceC— (i)

A critical circuit is a circuit C* € C* s.t o(C) is maximum : lower bound on
A(o).

o -
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Periodic schedules

. .

efinition 2. A schedule o is periodic if each task ¢ has a period w; such that:

t’(< i, k>)=t7(< 1,1 >)+ (k— Dw;
Let a be an arc from b(a) to e(a)

VEk, t7(<b(a),1>)+ (k—1wye) +La) <t7(<e(a),l >)+ (k- 1Dwe(q) + H(a)we(q)

& t7(<e(a),1>) —t7(< bla),1>) > L(a) — weq)H(a) + (K — 1)(wp(a) — We(a))

o -
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Existence of a periodic schedule

L .

We denote by (1, ..., C, the strong components of G.

Letat(C;) = max o(C)and a (Cy) = min  «(C)
CeCs,H(C)>0 CeCs,H(C)<0

emma 3. for any arc a, Wy(q) < We(q)-

Corollary 2.
Vs, Vi, j € Cs,w; =wj =W, and at(Cs) < W, < a (Cy)

Moreover, if there is an arc a s.t. b(a) € Cs,e(a) € Cy then Wy < Wy

o -
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(3 1)
(3,0) %( 12,-2) 5
20,-1
( ) (-5,-1) (-10,0)

(4,0) 6 (8.0)

(3.1) 3,1
(31/: (5,1)

C1 ={1,2,3},C2 = {4,5},C3 = {6}

at(C1) =10,a=(C1) =17, aT(C2)=7,a (C2) =11, at(C3)=5
100< Wy <17, 7< W3 <11, 5 < W3,

W3 > Wy, W3 > Wy

W1 =10, Wy = 7, W3 = 10. Notice that W; = Wy = W3 = 10 is also a solution.

-
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Feasibility
-

Theorem 1. [Munier 06] (5 is feasible if and only if there exists a periodic

=

schedule.

If no periodic schedule exists, build paths u, between i and j

in G such that H(u,)=h and lirf (2) — +00, which contradicts

t’(< g,k >)—t(<ik+h>)> L)

for some k.

o -
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Computation of a periodic schedule

=

fFor a strong connected graph G and a given W'
Va, t°(<e(a),l>)—t(<bla),1>)> L(a) — W.H(a)

® letViy(a) = L(a) — W.H(a)

°

If (G, Vi) has positive circuits then infeasibility.

® otherwise t?(< i,1 >) = longest path to 7 in (G, Vjy) is a
solution.

o -
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Computation of critical circuits
l7[Dasdan et al 99] T

® Polynomial algorithms :
Binary search on W: at each step check if (G, Vi) has positive circuits
0(nm(logn + log max,(L(a), H(a)))) [Lawler 79][Gondran-Minoux 85]
Linear programming with primal dual approach O(n?m) [Burns 91]

® An efficient pseudo polynomial algorithm: Howard'’s algorithm[Cochet-Terrasson et al
98]
W = lower bound
At each step check if G, Vi1 ) has positive circuit C' with breadth first search. If
H(C') <= 0 stop. Otherwise set W = «a(C).
complexity O(m.X), X product of degrees of nodes.

o -
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omputation of an optimal periodic sched

s

¥

L I I

-

Compute the strong components of G

Check feasibility for each component Cg, and the critical circuit value

Qg.
Compute the reduced graph of components.
Sort the components by topological order.

for each component Cs.

if C's has no predecessor, set W = «ss.

if Cyq,...,Cr, are predecessors of Cs. Let 35 = max; Wy,

If s > (s set Wy = as.

otherwise check if (Cs, V) has some positive circuit.

if so,infeasibility otherwise set Ws = [s.
Compute the longest paths from a dummy source node to any node ¢ on GG with on
each component value Vi, and on each intermediate arc between Cs, C/ value
VWS/ .

t?(< i,1 >) = longest path to 1.

-
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Example

Graph with L — W4 H values:

-7 -6
1 r/ : 2 @ 2 \5
N~ 4
“ 7 ) 1 5\6/8 \-10%
. ’
/ 14 !
-7
A periodic schedule: period of 1,2,3,6 is 10, period of 4,5is 7
1 1 1
2 2
3 3
4 4 4
5 5 5
6
10 20

-
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Positive heights
-

fThe problem has been studied earlier [Chretienne 85][many
authors]

Theorem 2. For any w = MaXc circuit a(C) there is a periodic schedule, all
tasks have period w.
No need to compute strong components.

o -
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K-periodic schedules

-

Definition 3. In a K -periodic schedule o, a schedule of K; occurrences of task ¢

=

is repeated every WV, time units:
Vi>ly, t9(<il+ K;>)=t7(<i,l >)+ W,

Lemma 4. The average cycle time of task 7 in a /X —periodic schedule is

A(o,1) = %‘

Un ordonnancement 2-péeriodique (pour chaque tache).

1314|1734 (1|3|4|1|7|3|4
2/5/6(2|5|6|7]2|5|6|2[5|6]7

o -
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Properties of the earliest schedule

-

[Romanovskii 67,Chretienne 85, Munier 06]

=

Theorem 3. If (5 is feasible, the earliest schedule o™ is K -periodic and

A(o™) = max a(C)

After a transitory time, the earliest schedule becomes regular and
its behavior is ruled by the critical circuit index.

Remark 2. K might be large < product of heights of critical circuits.

®» Open questions
Length of the transitory time?
Exact measure of K.

o -
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Stability/boundedness

cycletime w cycletime w’
(L(a), H(a))

If w < w' then b(a) produces pieces or results faster than e(a).

Unstability
Moreover the iteration delay:

D% (k) = maxt’(< i,k >) —mint’ (< i,k >) —p_ oo +00
€T €7

This might occur in earliest schedule and in periodic schedules for
general uniform graphs.

o -
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Example

- .

if task 4 has processing time 1: ® There are 3 strong components
C1 =41,2,3},Cq = {4},C3 = {5,6,7}

Oz(Cl) = 3,04(02) — 1,04(03) =95

The earliest schedule of 1 < 4 is
2—periodic with period 6.

The earliest schedule of {5,6,7} is
1—periodic with period 5.

Unstable schedule

Here a static 1-periodic schedule with pe-
riod 5 can be built.

o -

Cyclic scheduling for EPIT 2007 — p. 25/7



© o o @

Cyclic problems with resources

=

Complexity of a cyclic problem/ its non cyclic version.

Tools for constructing periodic schedules: circuits and patterns
Polynomial problems

Are periodic schedules optimal?
Decomposed scheduling: a general approach
Approximation of decomposed scheduling

ILP formulations

-
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Complexity
Donsider a problem resources|prec|Cy,q Which is NP-hard. T

precedence graph G

Add two dummy nodes to G (source s, sink t with unit proce
set H(a) = 0 for all arcs in G and arcs from s and arcs to t.

Add an arc from ¢ to s with height 1.

e o0 b

Any schedule ¢’ of G’ is a sequence of schedules of G.

® |ts average cycle time A(o’) is the mean of makespan of G schedules

Corollary 3.  Pluniform prec,p; = 1| A, pre — assigned processors|uni form prec|A, cyclic

job-shop with uniform constraints are NP-hard

o -
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Circuits

-

fConsider a uniform graph G =circuit, such that for any arc a
L(a) = py(q)- Usual precedence constraints.
Lemma 5. In any schedule of G no more than H (G) tasks are performed in
parallel.
Corollary 4. [Munier 91] The problem P|circuit, L(a) = py(q)|A is solvable in
polynomial time.
Idea : if H(G) < m then any schedule meets the resource

constraint. If H(G) > m, then we can reduce the height of some
arcs so that H(G) = m without modifiying the lower bound on

ZZET pi)

A(o) > max(max p;,
€T

o -
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Definition 4. The Pattern of o is defined by: 77 () = t°(< i, 1 >)modw. The

Patterns

et o be a periodic schedule with unique period w.

t’(< ik >)=t7(<i,1>)+ (k- Dw

iteration setting of o is 1% (i) € Z, s.t.

t°(<i,1>)=7%(i) + n° () w

-

-
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Patterns

#® The pattern defines the schedule of tasks in an interval
[kw, (k + 1)w] for enough large k

#® The iteration setting indicates which occurrences of tasks
are involved in this interval

# Intheinterval [kw, (k + 1)w], ¢ starts at kw + 7°(7) its
occurrence < i,k +1—n7(2) >

-
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Feasiblility of a pattern

-

Question: Given a pattern 7w,and a period w Is there an iteration
setting n such that the uniform constraints are met by the periodic
schedule?

For an arc a, t(< e(a),1 >) —t(< b(a),1 >) > L(a) —wH(a).

-

Lemma 6. An iteration setting satisfies for any arc a

L(a) +7(b(a)) — 7(e(a))

w

n(e(a)) — n(b(a)) > [ ] ~ H(a) = Eur(a)

Lemma 7. An iteration setting exists iff (G, Ey, ) has no positive circuit. can be

checked in polynomial time

o -
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Polynomial problems

Corollary 5. if G has no other circuit than the non-reentrance loops, any pattern has an iteration setting.
Theorem 4. [Munier 91] P|acyclic uni form prec|A is sovlable in polynomial time.

Idea: Consider tasks as independent, and schedule them on m processors using
Mc-Naughton algorithm (preemptive scheduling). Use the schedule as a Pattern of a
periodic schedule and compute the iteration setting.

Theorem 5. dedicated processors|acyclic uni form prec|A is solvable in polynomial time. In
particular non-reentrant job-shop or flow-shop.

|ldea: schedule operations on each machine as independent. Set W = C\nq2 (Which is a
lower bound on A(o) in this case). Use the schedule as a Pattern of a periodic schedule and
compute the iteration setting.

[Robert, Legrand] also used similar ideas to build schedules for a broadcasting problem on a

heterogeneous platform with net contentions.

o -
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1 2
2 3 415
5|6 7
5 |6 7 1 2 3 4
1 2 3 4| 5 |6 7
2 3 41 5 |6 7 1

-
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Optimality of periodic schedules?

-

fIn general, periodic schedules are not optimal schedules. Example:
cyclic problem with two processors

However, periodic schedules are simple to implement and easier to J
ompute.
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ecomposed scheduling: a general apprc
f [Eisenbeis, Darte, Gasperoni, T

Schwiegelsohn, de dinechin, Munier,...]

® Build a non cyclic schedule S of 7 that meets the resource constraints and eventually
some precedence constraints.

Consider this schedule as a pattern, and set W = Chq2(S)

Build a feasible iteration setting for the pattern. (if possible)

Build an iteration setting.

Deduce from the iteration setting precedence relations between tasks in a pattern

ool

Build a non cyclic schedule S of 7 that meets the resource constraints and these
precedence constraints.

® Consider this schedule as a pattern, and set W = Ci,42(S)

o -
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Gasperoni-Schwiegelsohn algorithm
| o

® Compute an optimal schedule ¢°° on infinitely many
Processors.

n algorithm for Pluniform with L(a) = pyq)|A.

® Consider the pattern 7° and remove arcs « from G such that
77 (b(@)) + poay > 7 (e(a) — G,

® Schedule G’ on the m processors according to a list scheduling
algorithm — schedule S.

® Set S as a pattern with w = C,,,...(5) and combine with the
iteration setting of ¢°° — periodic feasible schedule o.

o -
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2O 30 (‘D
N /2—\ | 1 1 | 1
\ ]
1.1) | "IN 3 2 | | 2 |
SR 3
(5 ) (11
(3,0) | ‘ é\\ E
2 AL [6] 6 6
&9 7 ] 7|
N
[1] 1] 2 |3
2 ] 6l 7 s[4
Schedule on 2 processors
[5]
6! 1] 2 Js[ 2] 2 J3]1] 2 |3
[ 7 ] o 7 15| |67 I5|4lel_7 |54
(' has 3 arcs periodic schedule with period 6

-
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Bounds
|

heorem 6. [Gasperoni-Schwiegelsohn]

1
< - — opt :
A(o) < (2 m)A(U ) + max p;

[Darte et al] generalized the algorithm by choosing a
convenient G’ using retiming.

o -
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Disjunctive constraints

Assume that two tasks ¢ and 5 use the same resource: Vk,l, either

t9(< 4,k >)+p <t9(< gl >) or t9(< gl >)+p; <t7(< ik >).

® |f 5 is periodic with period w,

® intimeinterval [zw, (z + 1)w)]
there is only one occurrence
< 1, U; (x) >.

o < g, u; () + hi; > next
occurrence of j.

® < jui(x)+ hy; —1 > precedes
< i, u;(x) >.

< gy ui(x) + hig 1

< i,ui(x) >

Tw (r + 1w

Hence setting h;; € Z as a variable, the disjunctive constraints can be expressed as:

hij + hj;

\

o

t7(< 4,1 >) —t7(<i,1 >)
¢ t7(<i,1>)—t9(< 5,1 >)

> p; — why;
> pj — why;
=1

-
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ILP model
-

eneral form of constraints:
t’(<e(a),1 >)—t’(< bla),1 >) > L(a) —wH(a)

Heights might be either fixed or variables. Additional linear
constraints on variable heights might be added.

Remark 3. For a fixed w, the constraint is linear.

Remark 4. Once disjunctive variables of this ILP are fixed, it remains a uniform
graph scheduling problem.

Many problems with disjunctive resources (shop-problems, but also
Hoist scheduling problems)[Roundy],[Brucker], [Levner et al] [Chu
et al][Lel et allcan be formulated, for a fixed w as an mixed integer
linear program.

o -
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Algorithms for disjunctive problems

- .

#® Branch and bound algorithms
For cyclic job-shop problems [Roundy,Hanen, Kampmeyer
and Brucker]
For hoist scheduling[Lel and Wang, Chu and Proth]

® Metaheuristics [Kampmeyer and Brlicker]

o -
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Some Open problems

Transitory state of the earliest schedule.

Complexity of the cyclic problem with unit lengths an 2
Processors.

How to use results on scheduling problems in their cyclic
version?

Efficiency of Jackson algorithm for the 1-machine problem
Specific list schedules for parallel machines problems.

Defining regular dynamic policy and study their behaviour.
Regularity of the schedule, performance bounds.

-
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