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Motivation

I Scientific computing : large needs in computation or storage
resources.

I Need to use systems with “several processors”:

I Parallel computers with shared/dis-
tributed memory

I Clusters

I Heterogeneous clusters

I Clusters of clusters

I Network of workstations

I The Grid

I Desktop Grids

I When modeling platform, communications modeling seems to
be the most controversial part.

I Two kinds of people produce communication models: those
who are concerned with scheduling and those who are concerned
with performance evaluation.

I All these models are imperfect and intractable.
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Part I

Platform Model
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Various Topologies Used in the Litterature
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UET-UCT

Hem. . . This one is mainly used by scheduling theoreticians to prove
that their problem is hard and to know whether there is some hope
to prove some clever result or not.
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“Hockney” Model

Hockney [Hoc94] proposed the following model for performance
evaluation of the Paragon. A message of size m from Pi to Pj

requires:
ti,j(m) = Li,j + m/Bi,j

In scheduling, there are three types of “corresponding” models:

I Communications are not “splitable” and each communication
k is associated to a communication time tk (accounting for
message size, latency, bandwidth, middleware, . . . ).

I Communications are “splitable” but latency is considered to be
negligible (linear divisible model):

ti,j(m) = m/Bi,j

I Communications are “splitable” and latency cannot be neglected
(linear divisible model):

ti,j(m) = Li,j + m/Bi,j
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LogP

The LogP model [CKP+96] is defined by 4 parameters:
I L is the network latency
I o is the middleware overhead (message splitting and packing,

buffer management, connection, . . . ) for a message of size w
I g is the gap (the minimum time between two packets commu-

nication) between two messages of size w
I P is the number of processors/modules
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LogGP & pLogP

The previous model works fine for short messages. However, many
parallel machines have special support for long messages, hence a
higher bandwidth. LogGP [AISS97] is an extension of LogP:
G captures the bandwidth for long messages:

short messages 2o + L +
⌈

m
w

⌉
·max(o, g)

long messages 2o + L + (m− 1)G
There is no fundamental difference. . .

OK, it works for small and large messages. Does it work for average-
size messages ? pLogP [KBV00] is an extension of LogP when L, o
and g depends on the message size m. They also have introduced
a distinction between os and or. This is more and more precise but
concurency is still not taken into account.
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Bandwidth as a Function of Message Size

With the Hockney model: m
L+m/B .
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What About TCP-based Networks?

The previous models work fine for parallel machines. Most networks
use TCP that has fancy flow-control mechanism and slow start. Is
it valid to use affine model for such networks?
The answer seems to be yes but latency and bandwidth parameters
have to be carefully measured [LQDB05].

I Probing for m = 1b and m = 1Mb leads to bad results.

I The whole middleware layers should be benchmarked (theoret-
ical latency is useless because of middleware, theoretical band-
width is useless because of middleware and latency).

The slow-start does not seem to be too harmful.
Most people forget that the round-trip time has a huge impact on
the bandwidth.
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Multi-ports

I A given processor can communicate with as many other pro-
cessors as he wishes without any degradation.

I This model is widely used by scheduling theoreticians (think
about all DAG with commmunications scheduling problems) to
prove that their problem is hard and to know whether there is
some hope to prove some clever result or not.
Some theoreticians feel like this model is borderline, especially
when allowing duplication or when trying to design algorithms
with super tight approximation ratios [Yves Robert 01–??].

Frankly, such a model is totally unrealistic.

I Using MPI and synchronous communica-
tions, it may not be an issue. However,
with multi-core, multi-processor machines,
it cannot be ignored. . .

Multi-port

1 1

1

A

CB
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Bounded Multi-port

I Assume now that we have threads or multi-core processors.

We can write that sum of the throughputs of all communi-
cations (incomming and outgoing). Such a model is OK for
wide-area communications [HP04].

I Remember, the bounds due to the round-trip-time must not be
forgotten!

Multi-port (β)

β/2 β/2

β/2

A

CB
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Single-port (Pure)

I A process can communicate with only one other process at a
time. This constraint is generally written as a constraint on the
sum of communication times and is thus rather easy to use in
a scheduling context (even though it complexifies problems).

I This model makes sense when using non-threaded versions of
communication libraries (e.g., MPI). As soon as you’re allowed
to use threads, bounded-multiport seems a more reasonnable
option (both for performance and scheduling complexity).

1-port (pure)

1/3

1/3

1/3

A

CB
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Single-port (Full-Duplex)

At a given time, a process can be engaged in at most one emission
and one reception. This constraint is generally written as two con-
straints: one on the sum of incomming communication times and
one on the sum of outgoing communication times.

1-port (full duplex)

1/2

1/2

1/2

A

CB
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Single-port (Full-Duplex)

This model somehow makes sense when using networks like Myrinet
that have few multiplexing units and with protocols without control
flow [Mar07].

Even if it does not model well complex situations, such a model is
not harmfull.
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Fluid Modeling

When using TCP-based networks, it is generally reasonnable to use
flows to model bandwidth sharing [MR99, Low03].

∀l ∈ L,∑
r∈R s.t. l∈r

ρr 6 cl

Income Maximization maximize
∑
r∈R

ρr

Max-Min Fairness maximize min
r∈R

ρr

ATM

Proportional Fairness maximize
∑
r∈R

log(ρr)

TCP Vegas

Potential Delay Minimization minimize
∑
r∈R

1
ρr

Some weird function minimize
∑
r∈R

arctan(ρr)

TCP Reno
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Flows Extensions

I Note that this model is a multi-port model with capacity-constraints
(like in the previous bounded multi-port).

I When latencies are large, using multiple connections enables to
get more bandwidth. As a matter of fact, there is very few to
loose in using multiple connections. . .

I Therefore many people enforce a sometimes artificial (but less
intrusive) bound on the maximum number of connections per
link [Wag05, MYCR06].
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Remind This is a Model, Hence Imperfect

I The previous sharing models are nice but you generally do not
know other flows. . .

I Communications use the memory bus and hence interfere with
computations. Taking such interferences into account may be-
come more and more important with multi-core architectures.

I Interference between communications are sometimes. . . surprising.

Modeling is an art. You have to know your platform and your ap-
plication to know what is negligeable and what is important. Even
if your model is imperfect, you may still derive interesting results.
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Part II

Scheduling Case Study
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Context: Distributed Heterogeneous Platforms

Scheduling divisible load on various architectures [Rob, BGMR96,
Bea05, Yan07].
Sources of problems

I Point to point communication model (homogeneous/heterogeneous,
with or without latency,. . . )

I Concurrency impact.
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Seismic Tomography of the Earth

I Model of the inner structure
of the Earth

I The model is validated by comparing the propagation time of
a seismic wave in the model to the actual propagation time.

I Set of all seismic events of the year 1999: 817101
I Original program written for a parallel computer:

if (rank = ROOT)
raydata ← read n lines from data file;

MPI Scatter(raydata, n/P, ..., rbuff, ...,
ROOT, MPI COMM WORLD);

compute work(rbuff);
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Applications Covered by The Divisible Loads Model

Applications made of a very (very) large number of fine grain com-
putations.

Computation time proportional to the size of the data to be pro-
cessed.

Independent computations: neither synchronizations nor communi-
cations.
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Star-like Network
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I The links between the master and the workers have different
characteristics.

I The workers have different computational power.

I Communications from the master to the workers can be done
in parallel.
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with αi ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: αiWtotalwi.

I Time needed to send a unit-message from P1 to Pi: ci.
Communication time on Pi: αiWtotalci.
Multi-port model: P1 can send messages in parallel to all work-
ers.
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“Optimization” Problem

If all communications start in parallel at time 0, the completion time
Ti of processor Pi is equal to:

Ti = αiWtotalci + αiWtotalwi

The makespan T of a load distribution is thus equal to:

max
i

αiWtotal(ci + wi) = T

Therefore this problem is really
trivial as we just need to note
that αi = T/(Wtotal(ci+wi)) and∑

i αj = 1 to get T .
Hence, we minimize the makespan
by setting:

αi =
1∑

j
ci+wi
cj+wj

P3 P4 P5P0 P1 P2
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Latencies: just for fun

Let’s assume that the time needed to send a message of size αi from
P1 to Pi is now equal to:

Li + ci × αi

Therefore in the optimal solution: forall i such that αi > 0, Li +
αiWtotal × (ci + wi) = T .
So just sort the processor by increasing latency and “fill” the Wtotal

units of fluid load (the “density” of one unit of load on Pi being
equal to ci + wi).

P3 P4 P5P0 P1 P2
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: c.
One-port model: P1 sends a single message at a time, all pro-
cessors communicate at the same speed with the master.
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Equations

For processor Pi (with c1 = 0 and cj = c otherwise):

Ti =
i∑

j=1

αjWtotal.cj + αiWtotal.wi

T = max
16i6p

 i∑
j=1

αjWtotal.cj + αiWtotal.wi



We look for a data distribution α1, ..., αp which minimizes T .
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Properties of Load-Balancing

Lemma 1.

In an optimal solution, all processors end their processing at the
same time.
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Demonstration of Lemma 1

Two workers i and i + 1 with Ti < Ti+1.

0

P2

P3

P4

P1

temps

fin

We decrease αi+1 by ε.
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Demonstration of Lemma 1

Two workers i and i + 1 with Ti < Ti+1.

0
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fin

We increase αi by ε.

A. Legrand (CNRS) INRIA-MESCAL On the Impact of Platform Models Divisible Workload 38 / 108



Demonstration of Lemma 1

Two workers i and i + 1 with Ti < Ti+1.

0

P2

P3

P4

P1

temps

fin

We increase αi by ε.

A. Legrand (CNRS) INRIA-MESCAL On the Impact of Platform Models Divisible Workload 38 / 108



Demonstration of Lemma 1

Two workers i and i + 1 with Ti < Ti+1.

0

P2

P3

P4

P1

temps

fin

The communication time for the following processors is unchanged.
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Demonstration of Lemma 1

Two workers i and i + 1 with Ti < Ti+1.

0

P2

P3

P4

P1

temps

fin

We end up with a better solution !
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Property for the Resource Selection

Lemma 2.

In an optimal solution all processors work.

Demonstration: this is just a corollary of lemma 1...
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Resolution

T = α1Wtotalw1.

T = α2(c + w2)Wtotal. Therefore α2 = w1
c+w2

α1.

T = (α2c + α3(c + w3))Wtotal. Therefore α3 = w2
c+w3

α2.

αi = wi−1

c+wi
αi−1 for i > 2.∑n

i=1 αi = 1.

α1

(
1 +

w1

c + w2
+ ... +

j∏
k=2

wk−1

c + wk
+ ...

)
= 1
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)
= 1
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Impact of the Order of Communications

How important is the influence of the ordering of the processor on
the solution ?

?
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No Impact of The Order of the Communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(c + wi)Wtotal = T . Therefore αi = 1
c+wi

T
Wtotal

.

Processor Pi+1: αicWtotal + αi+1(c + wi+1)Wtotal = T .
Thus αi+1 = 1

c+wi+1
( T

Wtotal
− αic) = wi

(c+wi)(c+wi+1)
T

Wtotal
.

Processors Pi and Pi+1:

αi + αi+1 =
c + wi + wi+1

(c + wi)(c + wi+1)
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Choice of the Master Processor

We compare processors P1 and P2.

Processor P1: α1w1Wtotal = T . Then, α1 = 1
w1

T
Wtotal

.

Processor P2: α2(c + w2)Wtotal = T . Thus, α2 = 1
c+w2

T
Wtotal

.

Total volume processed:

α1 + α2 =
c + w1 + w2

w1(c + w2)
=

c + w1 + w2

cw1 + w1w2

Minimal when w1 < w2.
Master = the most powerfull processor (for computations).
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Conclusion

I Closed-form expressions for the execution time and the distri-
bution of data.

I Choice of the master.

I The ordering of the processors has no impact.

I All processors take part in the work.
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Outline

5 Scheduling Divisible Workload
Star-like Network Under the Multi-port Model
Bus-like Network
Star-like Network Under the One-Port Model
Multi-round algorithms

6 Iterative Algorithms

7 Data Redistribution
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Star-like Network
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I The links between the master and the workers have different
characteristics.

I The workers have different computational power.
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni = Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: ci.
One-port model: P1 sends a single message at a time.
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Star Network and Linear Cost Model

Goal : maximize the number of processed tasks within a time-bound
Tf :

∑
αi.

Lemma 3.

In any optimal solution of the StarLinear problem, all workers
participate in the computation, and all processors finish computing
simultaneously.

Lemma 4.

An optimal ordering for the StarLinear problem is obtained by
serving the workers in the ordering of non decreasing link capacities
ci.
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Sketch of the Proof of Lemma 3

Two steps :

I All workers participate in
the computation. . .

otherwise
it would not be optimal.

I All processors finish their
work at the same time.

Maximize
∑

βi,
subject to{

LB(i) ∀i, βi > 0
UB(i) ∀i,

∑i
k=1 βkck + βiwi 6 Tf
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Sketch of the Proof of Lemma 4

The proof is based on the comparison of the amount of work that is
performed by the first two workers, and then proceeds by induction.

T

P1

P2

t(A)

α
(A)
1 w1α

(A)
1 c1

α
(A)
2 w2α

(A)
2 c2

T

P1

P2

t(B)

α
(B)
2 c2 α

(B)
2 w2

α
(B)
1 c1 α

(B)
1 w1

(A) P1 starts before P2 (B) P2 starts before P1

t(A) = t(B), (1)

and

(α(A)
1 + α

(A)
2 )− (α(B)

1 + α
(B)
2 ) =

T (c2 − c1)
(c1 + w1)(c2 + w2)

. (2)
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Conclusion

I The processors must be ordered by decreasing bandwidths

I All processors are working

I All processors end their work at the same time

I Formulas for the execution time and the distribution of data

A. Legrand (CNRS) INRIA-MESCAL On the Impact of Platform Models Divisible Workload 51 / 108



Outline

5 Scheduling Divisible Workload
Star-like Network Under the Multi-port Model
Bus-like Network
Star-like Network Under the One-Port Model
Multi-round algorithms

6 Iterative Algorithms

7 Data Redistribution
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One-round vs. Multi-round

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α1g α2g αpg

Pp

P2

P1

Network

One round

; long idle-times

R0 R1 Rk

Pp

P2

P1

Network

Multi-round

Efficient when Wtotal large

Intuition: start with small rounds, then increase chunks.
Problems:

I linear communication model leads to absurd solution

I resource selection

I number of rounds

I size of each round
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni = Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a message of size αi P1 to Pi: Li +
ci × αi.
One-port model: P1 sends and receives a single message at a
time.
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Complexity

Definition: One round, ∀i, ci = 0.

Given Wtotal, p workers, (Pi)16i6p, (Li)16i6p, and a rational number
T > 0, and assuming that bandwidths are infinite, is it possible to
compute all Wtotal load units within T time units?

Theorem 1.

The problem with one-round and infinite bandwidths is NP-
complete.

What is the complexity of the general problem with finite bandwidths
and several rounds ?

The general problem is NP-hard, but does not appear to be in NP
(no polynomial bound on the number of activations).
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Fixed activation sequence

Hypotheses

1 Number of activations : Nact;

2 Whether Pi is the processor used during activation j : χ
(j)
i

Minimize T,
under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k 6 Nact,∀l :

 k∑
j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

+
Nact∑
j=k

χ
(j)
l α

(j)
l wl 6 T

∀i, j : α
(j)
i > 0

(3)

Can be solved in polynomial time.
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Fixed number of activations

Minimize T,
under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k 6 Nact,∀l :

 k∑
j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

+
Nact∑
j=k

χ
(j)
l α

(j)
l wl 6 T

∀k 6 Nact :
p∑

i=1

χ
(k)
i 6 1

∀i, j : χ
(j)
i ∈ {0, 1}

∀i, j : α
(j)
i > 0

(4)

Exact but exponential (branch-and-bound algorithms).
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Uniform Multi-Round

In a round: all workers have same
computation time

Geometrical increase of rounds
size

No idle time in communications:

.

.

.

.

.

.

Transfer

Compute

Transfer

Compute

Transfer

Compute

Worker 1

Worker 2

round j

TA

time

Transfer
Worker i

round j + 2round j + 1

TB T
C

Li

Worker p

α
(j+1)
1 ciα

(j)
1 ci

α
(j)
1 w1

α
(j)
i ci

Compute

α
(j)
p cp

α
(j)
i wi = α

(j)
1 w1

α
(j+1)
i ci

α
(j+1)
p cp

α
(j)
p wp = α

(j)
1 w1

α
(j)
i wi =

p∑
k=1

(Lk + α
(j+1)
k ck).

Heuristic processor selection: by decreasing bandwidths

No guarantee. . .
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Periodic Schedule

Tp

Ln αncn Ln αncn Ln αncn

..
.

α1w1

α2w2

α3w3

αnwn

α1c1
α1w1

α2w2

α3w3

αnwn

α1w1

α2w2

α3w3

αnwn

α1c1 α1c1

L2 L2 L2α2c2 α2c2 α2c2

L3 L3 L3α3c3 α3c3 α3c3

L1 L1 L1

Compute

Transfer

Compute

Transfer

Compute

Transfer

Compute

Transfer

How to choose Tp? Which resources to select?
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With no Overlap (1/4)

Equations

I Divide total execution time T into k periods of duration Tp.

I I ⊂ {1, . . . , p} participating processors.

I Bandwidth limitation:∑
i∈I

(Li + αici) 6 Tp.

I No overlap:

∀i ∈ I, Li + αi(ci + wi) 6 Tp.
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With no Overlap (2/4)

Normalization

I βi average number of tasks processed by Pi during one time
unit.

I Linear program:

Maximize
∑p

i=1 βi{
∀i ∈ I, βi(ci + wi) 6 1− Li

Tp∑
i∈I βici 6 1−

P
i∈I Li

Tp

.

Relaxed version

Maximize
∑p

i=1 xi ∀1 6 i 6 p, xi(ci + wi) 6 1−∑p
i=1 xici 6 1−

Pp
i=1 Li

Tp

.
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With no Overlap (3/4)

Bandwidth-centric solution

I Sort: c1 6 c2 6 . . . 6 cp.

I Let q be the largest index so that
∑q

i=1
ci

ci+wi
6 1.

I If q < p, ε = 1−
∑q

i=1
ci

ci+wi
.

I Optimal solution to relaxed program:

∀1 6 i 6 q, xi =
1−

Pp
i=1 Li

Tp

ci + wi

and (if q < p):

xq+1 =
(

1−
∑p

i=1 Li

Tp

)(
ε

cq+1

)
,

and xq+2 = xq+3 = . . . = xp = 0.
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With no Overlap (4/4)

Asymptotic optimality

I Let Tp =
√

T ∗max and αi = xiTp for all i.

I Then T 6 T ∗max + O(
√

T ∗max).
I Closed-form expressions for resource selection and task assign-

ment provided by the algorithm.
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With Overlap

Key points

I Still sort resources according to the ci.

I Greedily select resources until the sum of the ratios ci
wi(

instead of ci
ci+wi

)
exceeds 1.
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Conclusion

I NP-hardness comes from the one-port model and latencies.

I The problem is however rather easy to approximate. Rough
solutions are way enough.

I Communications are much more important than computations.
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The Context: Distributed Heterogeneous Platforms

How to embed a ring in a complex network [LRRV04].
Sources of problems

I Heterogeneity of processors (computational power, memory,
etc.)

I Heterogeneity of communications links.

I Irregularity of interconnection network.
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Targeted Applications: Iterative Algorithms

I A set of data (typically, a matrix)
I Structure of the algorithms:

1 Each processor performs a computation on its chunk of data
2 Each processor exchange the “border” of its chunk of data with

its neighbor processors
3 We go back at Step 1

Question: how can we efficiently execute such an algorithm on such
a platform?
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The Questions

I Which processors should be used ?

I What amount of data should we give them ?

I How do we cut the set of data ?
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First of All, a Simplification: Slicing the Data

I Data: a 2-D array

P1 P2

P4P3

I Unidimensional cutting into vertical slices
I Consequences:

1 Borders and neighbors are easily defined
2 Constant volume of data exchanged between neighbors: Dc

3 Processors are virtually organized into a ring
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Notations

I Processors: P1, ..., Pp

I Processor Pi executes a unit task in a time wi

I Overall amount of work Dw;
Share of Pi: αi.Dw processed in a time αi.Dw.wi

(αi > 0,
∑

j αj = 1)

I Cost of a unit-size communication from Pi to Pj : ci,j

I Cost of a sending from Pi to its successor in the ring: Dc.ci,succ(i)
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Communications: 1-Port Model (Full-Duplex)

A processor can:

I send at most one message at any time;

I receive at most one message at any time;

I send and receive a message simultaneously.
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Objective

1 Select q processors among p

2 Order them into a ring

3 Distribute the data among them

So as to minimize:

max
16i6p

I{i}[αi.Dw.wi + Dc.(ci,pred(i) + ci,succ(i))]

Where I{i}[x] = x if Pi participates in the computation, and 0
otherwise
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Special Hypotheses

1 There exists a communication link between any two processors

2 All links have the same capacity
(∃c,∀i, j ci,j = c)
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Consequences

I Either the most powerful processor performs all the work, or all
the processors participate

I If all processors participate, all end their share of work simulta-
neously

(∃τ, αi.Dw.wi = τ , so 1 =
∑

i
τ

Dw.wi
)

I Time of the optimal solution:

Tstep = min

{
Dw.wmin, Dw.

1∑
i

1
wi

+ 2.Dc.c

}
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Special hypothesis

1 There exists a communication link between any two processors
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All the Processors Participate: Study (1)

time

Dc.c1,5

Dc.c1,2

Dc.c2,1

Dc.c2,3

Dc.c3,2

Dc.c4,3

Dc.c4,5

Dc.c5,4

Dc.c5,1

α5.Dw.w5

P1 P2 P3 P4 P5

α4.Dw.w4
Dc.c3,4

α3.Dw.w3

α2.Dw.w2

α1.Dw.w1

processors

All processors end simultaneously
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All the Processors Participate: Study (2)

I All processors end simultaneously

Tstep = αi.Dw.wi + Dc.(ci,succ(i) + ci,pred(i))

I

p∑
i=1

αi = 1 ⇒
p∑

i=1

Tstep −Dc.(ci,succ(i) + ci,pred(i))
Dw.wi

= 1. Thus

Tstep

Dw.wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

where wcumul = 1P
i

1
wi
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All the Processors Participate: Interpretation

Tstep

Dw.wcumul
= 1 +

Dc

Dw

p∑
i=1

ci,succ(i) + ci,pred(i)

wi

Tstep is minimal when

p∑
i=1

ci,succ(i) + ci,pred(i)

wi
is minimal

Look for an hamiltonian cycle of minimal weight in a graph where
the edge from Pi to Pj has a weight of di,j = ci,j

wi
+ cj,i

wj

NP-complete problem
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All the Processors Participate: Linear Program

Minimize
∑p

i=1

∑p
j=1 di,j .xi,j ,

satisfying the (in)equations
(1)

∑p
j=1 xi,j = 1 1 6 i 6 p

(2)
∑p

i=1 xi,j = 1 1 6 j 6 p
(3) xi,j ∈ {0, 1} 1 6 i, j 6 p
(4) ui − uj + p.xi,j 6 p− 1 2 6 i, j 6 p, i 6= j
(5) ui integer, ui > 0 2 6 i 6 p

xi,j = 1 if, and only if, the edge from Pi to Pj is used
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General Case: Linear program

Best ring made of q processors

Minimize T satisfying the (in)equations8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

(1) xi,j ∈ {0, 1} 1 6 i, j 6 p
(2)

Pp
i=1 xi,j 6 1 1 6 j 6 p

(3)
Pp

i=1

Pp
j=1 xi,j = q

(4)
Pp

i=1 xi,j =
Pp

i=1 xj,i 1 6 j 6 p

(5)
Pp

i=1 αi = 1
(6) αi 6

Pp
j=1 xi,j 1 6 i 6 p

(7) αi.wi + Dc
Dw

Pp
j=1(xi,jci,j + xj,icj,i) 6 T 1 6 i 6 p

(8)
Pp

i=1 yi = 1
(9) − p.yi − p.yj + ui − uj + q.xi,j 6 q − 1 1 6 i, j 6 p, i 6= j
(10) yi ∈ {0, 1} 1 6 i 6 p
(11) ui integer, ui > 0 1 6 i 6 p
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Linear Programming

I Problems with rational variables: can be solved in polynomial
time (in the size of the problem).

I Problems with integer variables: solved in exponential time in
the worst case.

I No relaxation in rationals seems possible here. . .
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And, in Practice ?

All processors participate. One can use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan’s one)

No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible until a dozen of processors. . .

2 Greedy heuristic: initially we take the best pair of processors;
for a given ring we try to insert any unused processor in between
any pair of neighbor processors in the ring. . .
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New Difficulty: Dommunication Links Sharing

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

We must take communication link sharing into account.
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New Notations

I A set of communications links: e1, ..., en

I Bandwidth of link em: bem

I There is a path Si from Pi to Psucc(i) in the network

I Si uses a fraction si,m of the bandwidth bem of link em

I Pi needs a time Dc.
1

minem∈Si si,m
to send to its successor a

message of size Dc

I Constraints on the bandwidth of em:
∑

16i6p

si,m 6 bem

I Symmetrically, there is a path Pi from Pi to Ppred(i) in the
network, which uses a fraction pi,m of the bandwidth bem of
link em
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Toy Example: Choosing the Ring

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

I 7 processors and 8 bidirectional communications links

I We choose a ring of 5 processors:
P1 → P2 → P3 → P4 → P5 (we use neither Q, nor R)
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Toy Example: Choosing the Paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, we use the links a and b: S1 = {a, b}.
From P2 to P1, we use the links b, g and h: P2 = {b, g, h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}
From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}
From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f}
From P4: to P5, S4 = {f, b, g} and to P3, P4 = {e, d}
From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f}
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Toy Example: Bandwidth Sharing

From P1 to P2 we use links a and b: c1,2 = 1
min(s1,a,s1,b)

.

From P1 to P5 we use the link h: c1,5 = 1
p1,h

.

Set of all sharing constraints:
Lien a: s1,a 6 ba

Lien b: s1,b + s4,b + p2,b + p5,b 6 bb

Lien c: s2,c 6 bc

Lien d: s2,d + s3,d + p3,d + p4,d 6 bd

Lien e: s3,e + p3,e + p4,e 6 be

Lien f : s4,f + p3,f + p5,f 6 bf

Lien g: s4,g + p2,g + p5,g 6 bg

Lien h: s5,h + p1,h + p2,h 6 bh
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Toy Example: Final Quadratic System

Minimize max16i65 (αi.Dw.wi + Dc.(ci,i−1 + ci,i+1)) under the constraints8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

P5
i=1 αi = 1

s1,a 6 ba s1,b + s4,b + p2,b + p5,b 6 bb s2,c 6 bc

s2,d + s3,d + p3,d + p4,d 6 bd s3,e + p3,e + p4,e 6 be s4,f + p3,f + p5,f 6 bf

s4,g + p2,g + p5,g 6 bg s5,h + p1,h + p2,h 6 bh

s1,a.c1,2 > 1 s1,b.c1,2 > 1 p1,h.c1,5 > 1
s2,c.c2,3 > 1 s2,d.c2,3 > 1 p2,b.c2,1 > 1
p2,g.c2,1 > 1 p2,h.c2,1 > 1 s3,d.c3,4 > 1
s3,e.c3,4 > 1 p3,d.c3,2 > 1 p3,e.c3,2 > 1
p3,f .c3,2 > 1 s4,f .c4,5 > 1 s4,b.c4,5 > 1
s4,g.c4,5 > 1 p4,e.c4,3 > 1 p4,d.c4,3 > 1
s5,h.c5,1 > 1 p5,g.c5,4 > 1 p5,b.c5,4 > 1
p5,f .c5,4 > 1
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Toy Example: Conclusion

The problem sums up to a quadratic system if

1 The processors are selected;

2 The processors are ordered into a ring;

3 The communication paths between the processors are known.

In other words: a quadratic system if the ring is known.

If the ring is known:

I Complete graph: closed-form expression;

I General graph: quadratic system.
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And, in Practice ?

We adapt our greedy heuristic:

1 Initially: best pair of processors
2 For each processor Pk (not already included in the ring)

I For each pair (Pi, Pj) of neighbors in the ring

1 We build the graph of the unused bandwidths
(Without considering the paths between Pi and Pj)

2 We compute the shortest paths (in terms of bandwidth) be-
tween Pk and Pi and Pj

3 We evaluate the solution

3 We keep the best solution found at step 2 and we start again

+ refinements (max-min fairness, quadratic solving).
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Is This Meaningful ?

I No guarantee, neither theoretical, nor practical
I Simple solution:

1 we build the complete graph whose edges are labeled with the
bandwidths of the best communication paths

2 we apply the heuristic for complete graphs
3 we allocate the bandwidths
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Example: an Actual Platform (Lyon)

moby canaria

mryi0 popc0 sci0

Hub

Switch

sci3

sci2

sci4

sci5
sci6

sci1
myri1

myri2

Hub

router backbone
routlhpc

Topology

P0 P1 P2 P3 P4 P5 P6 P7 P8

0.0206 0.0206 0.0206 0.0206 0.0291 0.0206 0.0087 0.0206 0.0206

P9 P10 P11 P12 P13 P14 P15 P16

0.0206 0.0206 0.0206 0.0291 0.0451 0 0 0

Processors processing times (in seconds par megaflop)
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Results

First heuristic building the ring without taking link sharing into ac-
count

Second heuristic taking into account link sharing (and with quadratic
programing)

Ratio Dc/Dw H1 H2 Gain

0.64 0.008738 (1) 0.008738 (1) 0%

0.064 0.018837 (13) 0.006639 (14) 64.75%

0.0064 0.003819 (13) 0.001975 (14) 48.28%

Ratio Dc/Dw H1 H2 Gain

0.64 0.005825 (1) 0.005825 (1) 0 %

0.064 0.027919 (8) 0.004865 (6) 82.57%

0.0064 0.007218 (13) 0.001608 (8) 77.72%

Table: Tstep/Dw for each heuristic on Lyon’s and Strasbourg’s platforms
(the numbers in parentheses show the size of the rings built).

A. Legrand (CNRS) INRIA-MESCAL On the Impact of Platform Models Iterative Algorithms 98 / 108



Conclusion

Even though this is a very basic application, it illustrates many dif-
ficulties encountered when:

I Processors have different characteristics

I Communications links have different characteristics

I There is an irregular interconnection network with complex
bandwidth sharing issues.

We need to use a realistic model of networks... Even though a more
realistic model leads to a much more complicated problem, this is
worth the effort as derived solutions are more efficient in practice.
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Outline

5 Scheduling Divisible Workload

6 Iterative Algorithms

7 Data Redistribution
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A Data Redistribution Problem

When coupling code, data often have to be redistributed from one
cluster to another. Using “Brute force” is generally not a good
idea [Wag05].

100Mb/s 100Mb/s

200Mb/s

Non-cooperative: Cmax = 2.5
Optimal: Cmax = 2
The bottleneck moves ; resource
waste

Moreover, opening dozens of connections at the same time is gen-
erally very intrusive for other users and often leads to performance
degradation.
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Modeling

Input
I b1 is the bandwidth of the sending cluster
I b2 is the bandwidth of the receiving cluster
I bb is the bandwidth of the backbone
I β is the latency of communications
I The redistribution is modeled by a bipartite graph G =

(V1, V2,m, E). m(v1, v2) is the amount of data to trans-
fer from v1 to v2.

A given processor can communicate with at most one processor
at a time. Therefore we try to decompose our redistribution as
a set of synchronous communication steps.

Output We look for a set D of h matching M1 = (E1,m1), . . . ,Mh =
(Eh,mh) such that:

∀(v1, v2) ∈ E : m(v1, v2) =
h∑

l=1

ml(v1, v2)
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Modeling

Objective function The time needed for a communication step Ml is
equal to. . .

It is unclear. It depends on the bandwidth sharing.
This is why the problem has been modeled in a different way.
Let’s do it one more time!

Let us denote by w(v1, v2) the minimum communication time to
transfer m(v1, v2) from v1 to v2.

w(v1, v2) =
m(v1, v2)

min(b1, b2, bb)

The maximum number of flows that can be sent at full speed is
bounded by:

k =
⌈

bb

min(b1, b2, bb)

⌉
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K-Preemptive Bipartite Scheduling

Input

I β is the latency of communications
I The redistribution is modeled by a bipartite graph G =

(V1, V2, w, E). w(v1, v2) is the time required to transfer
data from v1 to v2.

I At most k simultaneous communications can be done.

Output We look for a set D of h matching M1 = (E1, w1), . . . ,Mh =
(Eh, wh) such that:

∀(v1, v2) ∈ E : w(v1, v2) =
h∑

l=1

wl(v1, v2)

and
∀l : |El| 6 k
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K-Preemptive Bipartite Scheduling

Objective function The time needed for a communication step Ml

is equal to
c(Ml) = max

e∈E
wl(e) + β

Therefore, the cost of a distribution D is

c(D) =
h∑

l=1

wl(v1, v2) = hβ +
h∑

l=1

max
e∈E

wl(e)

There are two difficulties:

I The trade-off between the number of steps and the latency.

I We look for bounded-size matchings.

PBS is the exact same problem where the bound on the size of
matchings is removed.
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A few results on the KPBS complexity

I KPBS is strong NP-hard.

I PBS cannot be approximated with a ratio smaller than 7
6 .

I PBS can be approximated with a ratio 2− 1
β+1 .

I KPBS can be approximated with a ratio 8
3 .
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Getting Rid of Annoying Constraints

I The k bound is somehow artificial but is due to the 1-port
model.

I By getting rid of the latencies, you get a polynomial fractionnal
matching problem (if you have understood the previous talk
that used linear programing and ellipsoid, you should see why).

I With a few “standard tricks” you can even introduce release
dates and optimize the maximum weighted flow instead of the
makespan. . .

I However, taking the whole topology into account is more tricky.

I Indeed, under a bounded multiport model, the problem is trivial.
I However, if you want to keep the 1-port constraint, you need

some matching with non-uniform bandwidth allocation, which
seems to be more tricky.

Note there are also problems for which the latency is not an issue
but where the hardness really comes from the bound on the number
of simulataneous connections [MYCR06].
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Conclusion

Ensure that all parts of your modeling are mandatory.

Maybe if k is large in practice and your latencies can be somehow
overlapped, then they may not be worth being considered.
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