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Traditional scheduling

Models:

I Applications:
task graphs

I Computing platforms:
homogeneous or heterogeneous processors
interconnexion network with or without
congestion

C = A×B

D = C−1

V = DT · YX = D ·X

Objectives:

I allocation alloc(T ): processor computing task T

I schedule σ(T ): starting time of T .

I optimal makespan

Results:

I NP-hard problem even for independent tasks

I approximation algorithms (list heuristics)
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Design of efficient schedules

I Approximation algorithm
example: 3/2-approximation

optimal: 2 seconds ; 3 seconds
optimal: 2 hours ; 3 hours

I Asymptotically optimal algorithm
example: Topt + O(1)

optimal: 2 seconds ; 5 minutes + 2 seconds
optimal: 2 hours ; 2 hours + 5 minutes
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Example
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Time for computingTime for computing

one task in Cone task in C

Time for sending Time for sending 

one task from A to Bone task from A to B

A is the root of the tree;A is the root of the tree;

all tasks start at Aall tasks start at A
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Example

A computeA compute
A sendA send

B receiveB receive
B computeB compute

C receiveC receive
C computeC compute

C sendC send

D receiveD receive
D computeD compute

11 22 33

StartupStartup
RepeatedRepeated

patternpattern
CleanClean--upup

SteadySteady--state: 7 tasks every 6 time unitsstate: 7 tasks every 6 time units
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Outline

Steady-State Scheduling
Packet routing
Problem formulation
Problem solving in the general case
Simplification in the bidirectional case
Moving to general task graphs
Collective communications

Towards distributed scheduling
Limits of static steady-state scheduling
Dynamic scheduling for independent tasks
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Packet routing without fixed routing

P2

P1

P3

P5

P4

40 2 6

I nc collections of packets to
be routed

I packets of a same collection
may follow different paths

I nk,l: total number of
packets to be routed from k
to l

I rule: one edge cannot carry
two packets at the same
time

I nk,l
i,j : total number of packets routed from k to l and crossing

edge (i, j)
I Congestion:

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j Cmax = maxi,j Ci,j
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Equations (1/2)

1. Initialization ∑
j|(k,j)∈A

nk,l
k,j = nk,l

2. Reception ∑
i|(i,l)∈A

nk,l
i,l = nk,l

3. Conservation law∑
i|(i,j)∈A

nk,l
i,j =

∑
i|(j,i)∈A

nk,l
j,i ∀(k, l), j 6= k, j 6= l
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Equations (2/2)

4. Congestion

Ci,j =
∑

(k,l)|nk,l>0

nk,l
i,j

5. Objective function

Cmax ≥ Ci,j , ∀i, j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution. In
practice use Maple, Mupad, lp-solve,. . .

Solution:
number of messages nk,l

i,j of each edge to minimize total congestion
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Routing algorithm

1. Computing optimal solution Cmax of previous linear program

2. Consider periods of length Ω (to be defined later)

3. During each time-interval [pΩ, (p + 1)Ω], follow the optimal
solution: edge (i, j) forwards:

mk,l
i,j =

⌊
nk,l

i,jΩ
Cmax

⌋
packets that go from k to l.

(if available)

4. number of such periods:

⌈
Cmax

Ω

⌉
5. After time-step

T ≡
⌈

Cmax

Ω

⌉
Ω ≤ Cmax + Ω

sequentially process M residual packets in no longer than ML
time-steps, where L is the maximum length of a simple path
in the network
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Feasibility

∑
(k,l)

mk,l
i,j ≤

∑
(k,l)

nk,l
i,jΩ

Cmax
=

Ci,jΩ
Cmax

≤ Ω
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Makespan

I Define Ω as Ω =
√

Cmaxnc.

I Total number of packets still inside network at time-step T is
at most

2|A|
√

Cmaxnc + |A|nc

I Makespan:

Cmax ≤ C∗ ≤ Cmax+
√

Cmaxnc+2|A|
√

Cmaxnc|V |+|A|nc|V |

C∗ = Cmax + O(
√

Cmax)
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Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik

Rationale Maximize throughput (total load executed per period)

Simplicity Relaxation of makespan minimization problem

I Ignore initialization and clean-up phases
I Precise ordering/allocation of tasks/messages not needed
I Characterize resource activity during each time-unit:

- which (rational) fraction of time is spent computing for
which application?
- which (rational) fraction of time is spent receiving or
sending to which neighbor?

Efficiency Periodic schedule, described in compact form

Adaptability Dynamically record observed performance during
current period, and inject this information to compute optimal
schedule for next period
⇒ react on the fly to resource availability variations
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Packet routing
Problem formulation
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Towards distributed scheduling
Limits of static steady-state scheduling
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Platform model

Parameters
I computing speed: wi

computation time of n tasks: n× wi

I communication speed cj,k

communication time of n tasks: n× cj,k.

Interactions
I full communication/computation overlap
I Bidirectional 1-port model:

I while Pj sends a message to Pk

I Pj cannot send other messages
I Pk cannot receive other messages

I Unidirectional 1-port model:
I while Pj sends a message to Pk

I Pj and Pk cannot send or receive

1

1

1

1
10

2

2 1

10
P3

P2 P4
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Application model

Steady-state scheduling applies to different
problems:

I independent tasks,

I task graphs (DAGs)

I communications (broadcast. . . )

steady-state version of these problems:

I series (large collection) of independent
tasks

I series of identical DAGs

I series of broadcasts
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Allocations and independent sets

Problem to solve Execute a series of DAGs on
this platform. Optimize the throughput.

Allocation An allocation describes where is
executed one DAG of this series: pair of
mapping π : {nodes of the DAG} →
{nodes of the platform}
and σ : {edges of the DAG} →
{paths of the platform}

Independent pattern Set of operations
(communication and computation) which
can be done simultaneously according to
the model.
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Defining a schedule

A schedule is described by:

I a set of allocations Aa with weights αa

“ in a period, allocation Aa is used during αa seconds”

I a set of independent patterns Pp with weights βs

“ in a period, pattern Pp is used during βp seconds”

Definition of the throughput:
∑

a

αa
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Building a schedule

I a set of allocations Aa with weights αa

I a set of independent patterns Pp with weights βp

with some conditions:

I total time for independent patterns is at most period length:∑
p

βp ≤ 1

I each resource utilization time in the allocation is less than
resource availability in the independent patterns:

∀r,
∑
Aa3r

αa ≤
∑
Pp3r

βp

Theorem.

These conditions are sufficient to build a periodic schedule.
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Building a schedule – example

input: allocation and patterns

1. build allocation spots in patterns: one period

2. avoid fractional number of messages (× PPCM)

3. enforce precedence among several periods

1
8
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P2 P4

P3

+
1
16


P1

P2 P4

P3
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1
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This construction is always possible.
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General formulation

Find αa, βp

Maximize ρ =
∑

a

αa



∑
p

βp ≤ 1

∀r,
∑
Aa3r

αa ≤
∑
Pp3r

βp

αa, βp ≥ 0

Some limitations. . .

I there is an exponential number of variables (and constraints)

I a solution is a priori not described in polynomial space:
the problem does not belong to NP
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Outline

Steady-State Scheduling
Packet routing
Problem formulation
Problem solving in the general case
Simplification in the bidirectional case
Moving to general task graphs
Collective communications

Towards distributed scheduling
Limits of static steady-state scheduling
Dynamic scheduling for independent tasks
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Existence of a compact solution

Theorem.

For each solution x of the optimization problem, there exists a
solution y of same throughput, described in polynomial space.

In particular,

I y has at most n non-zero variables
(n=number of non-trivial constraints in the linear program),

I we can restrict ourselves to a problem in NP.

Sketch of proof:

I consider a point P at a vertex of the polyhedron

I P is solution of a sub-system of the constraints matrix, mostly
composed of trivial constraints xi ≥ 0

I p has a lot of variables equal to 0
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Solving the linear program

(P) :
Maximize cT ·X{

A ·X ≤ b

X ≥ 0

⇐⇒ (D) :
Minimize bT · U{

AT · U ≥ c

U ≥ 0

optimization ⇐= separation

Theorem.

Given the polyhedron of (D) described by a separation oracle,
there exists a polynomial algorithm which

I finds a solution for the primal problem, or

I proves that the problem has no solution.
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Separation oracle for the dual

(D) :

Minimize bT · U

U ≥ 0

∀ allocation Aa

∑
r∈Aa

Ur/speed(r) ≥ U0

∀ pattern Pp

∑
r∈Pp

Ur ≤ U1

I one variable Ur per resource (processor/link) (+ variable U0)

I three types of constraints:

1. positive constraints: easy to check
2. check only for the allocation with the minimum weight
3. check only for the pattern with the maximum weight

Solve the dual ⇐⇒
{

find an allocation with minimum weight
find a pattern with maximum weight
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Back to the example: Master-Slave

I Find a minimum-weight allocation:
⇔ find a minimum weight path in a graph obtained from the
platform graph

I Find a maximum-weight pattern:

unidirectional model with overlap:
I find a maximum-weight matching in the graph

bidirectional model with overlap:
I find a maximum-weight in a bipartite graph (duplicate

nodes)

⇒ we can solve the Master-Slave problem for both communication
models
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Simplification in the bidirectional case 1/2

Primal linear program:

Maximize ρ =
∑

a

αa



∑
p

βp ≤ 1

∀r,
∑
Aa3r

αa ≤
∑
Pp3r

βp

αa, βp ≥ 0

Independent patterns for communications in the bidirectional
one-port model: matchings in the bipartite graph constructed from
the platform graph

Theorem.

König’s theorem for bipartite graphs We can decompose GB in a
weighted sum of matchings of total weight ≤ δmax
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Linear program in the bidirectional case

I bound the weighted degree (in and out) of each node in the
linear program

I suppress the patterns from the linear program
(and use König’s theorem to extract them)

Maximise ρ =
∑

a

αa

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

∀ CPU r,
X

Aa3r

αa ≤ 1

∀ link r = (i, j),
X

Aa3r

αa ≤ Ti,j

X
j

Ti,j ≤ 1 (outgoing communications)

X
i

Ti,j ≤ 1 (incoming communications)

αa, βp ≥ 0

We still have a big number of allocations, but. . .
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Towards a compact linear program

To go further, we need to specify to an operation:
I Back to the Master-Slave example

I Suppress allocations in the linear program

I Use activity variables (close to Bertsimas packet routing)

I Build allocations from the solution of the linear program
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Activity variables

cons(Pi, Tk): average number of tasks of type Tk processed by Pi

every time-unit

∀Pi,∀Tk ∈ VA, 0 ≤ cons(Pi, Tk)× wi,k ≤ 1

sent(Pi → Pj , ek,l): average number of files of type ek,l sent from
Pi to Pj every time-unit

∀Pi, Pj , 0 ≤ sent(Pi → Pj , ek,l)× (datak,l × ci,j) ≤ 1
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Steady-state equations

One-port for outgoing communications Pi sends messages to its
neighbors sequentially

∀Pi,
∑

Pi→Pj

∑
ek,l∈EA

(
sent(Pi → Pj , ek,l)× datak,l × ci,j

)
≤ 1

One-port for incoming communications Pi receives messages
sequentially

∀Pi,
∑

Pj→Pi

∑
ek,l∈EA

(
sent(Pj → Pi, ek,l)× datak,l × cj,i

)
≤ 1

Overlap Computations and communications take place
simultaneously

∀Pi,
∑

Tk∈VA

cons(Pi, Tk)× wi,k ≤ 1
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Conservation law

Consider a processor Pi and an edge ek,l of the application graph:

Files of type ek,l received:
∑

Pj→Pi

sent(Pj → Pi, ek,l)

Files of type ek,l generated: cons(Pi, Tk)
Files of type ek,l consumed: cons(Pi, Tl)

Files of type ek,l sent:
∑

Pi→Pj

sent(Pi → Pj , ek,l)

In steady state:

∀Pi,∀ek,l : Tk → Tl ∈ EA,∑
Pj→Pi

sent(Pj → Pi, ek,l) + cons(Pi, Tk) =

∑
Pi→Pj

sent(Pi → Pj , ek,l) + cons(Pi, Tl)



34/ 65

Upper bound for the throughput

Maximize ρ =
∑p

i=1 cons(Pi, Tend),
under the constraints

(1a) ∀Pi,∀Tk ∈ VA, 0 ≤ cons(Pi, Tk)× wi,k ≤ 1
(1b) ∀Pi, Pj , 0 ≤ sent(Pi → Pj , ek,l)× (datak,l × ci,j) ≤ 1

(1c) ∀Pi,
∑

Pi→Pj

∑
ek,l∈EA

(
sent(Pi → Pj , ek,l)× datak,l × ci,j

)
≤ 1

(1d) ∀Pi,
∑

Pj→Pi

∑
ek,l∈EA

(
sent(Pj → Pi, ek,l)× datak,l × cj,i

)
≤ 1

(1e) ∀Pi,
∑

Tk∈VA

cons(Pi, Tk)× wi,k ≤ 1

(1f) ∀Pi,∀ek,l ∈ EA : Tk → Tl,∑
Pj→Pi

sent(Pj → Pi, ek,l) + cons(Pi, Tk) =

∑
Pi→Pj

sent(Pi → Pj , ek,l) + cons(Pi, Tl)

How to extract allocations?
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Back to the example

Computations

cons(Pi, T1)
P1 0.025
P2 0.125
P3 0.125
P4 0.250

Total 21 tasks / 40 seconds

Communications

0.125

0.250

0.125
0.250

0.125 0.25

0.375

P1 P3

P4P2

sent(Pi → Pj , ek,l)
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Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1 : 0.025

P1 : 0.525

P1 : 0.525

P1 → P2 : 0.125
P1 → P3 : 0.375

P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

Tbegin

T1

Tend

Tbegin

T1

Tend
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Steady state = superposition of several allocations

A3 : 0.125

P1

P1 → P3

P3

P3 → P1

P1

P1 : 0.375

P1 → P3 : 0.375
P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.125

P3 : 0.125
P4 : 0.250

P1 : 0.375

Tbegin

T1

Tend

Tbegin

T1

Tend



36/ 65
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Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations
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Decomposition into a set of allocations (2/2)
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Then we need patterns to orchestrate communications.
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Communication graph

A5 : 0.25

A4 : 0.25

A2 : 0.25

A3 : 0.25

A3 : 0.25

A5 : 0.25

A4 : 0.25

0.25
A5

A5
0.25

0.25 A2

0.25 A4

0.25

A4

P1

P2 P3

P3

Fraction of time spent transferring some ek,l file from Pi to Pj for
a given allocation
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One-port constraints = matching

0.25
A5

0.25
A2

0.25
A5

0.25
A4 A4

0.25A2

0.25

A5 : 0.25

A5 : 0.25

A4 : 0.25

A4 : 0.25

A3 : 0.25

A3 : 0.25
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Decomposition into matchings (edge coloring)

 0.25
A5

0.25
A2

0.25
A5

0.25
A4 A4

0.25A2

0.25

A5 : 0.25

A5 : 0.25

A4 : 0.25
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A3 : 0.25

A3 : 0.25
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Cyclic scheduling achieving optimal throughput
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P2 → P3

P3 → P2

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {
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Outline

Steady-State Scheduling
Packet routing
Problem formulation
Problem solving in the general case
Simplification in the bidirectional case
Moving to general task graphs
Collective communications

Towards distributed scheduling
Limits of static steady-state scheduling
Dynamic scheduling for independent tasks
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Moving to general task graphs

What if there are dependencies?

Application graph

Platform graph

forget about dependencies
consider only activities

}
⇒ false solution!

In fact:

I NP-hard problem in the general case

I polynomial algorithm for bounded dependency depth
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Collective communications

Collective communications: communications between more than 2
machines

In the assumption of steady-state: pipelined communications
; a large number of messages follow the same scheme

broadcast: scatter:

multicast: reduce:
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Collective communications – Results

operation allocations complexity

broadcast spanning tree polynomial
scatter set of paths polynomial
gossip set of paths polynomial
reduce reduce tree polynomial

multicast Steiner tree NP-hard
parallel prefix parallel prefix tree NP-hard

For polynomial operations, we can derive an efficient approach to
solve the problem under the bidirectional one-port model.
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Steady state scheduling: good news and bad news

, Steady state scheduling: throughput maximization is much
easier that makespan minimization and still realistic

, One-port model: first step towards designing realistic
scheduling heuristics (other realistic models have been
proposed in this context)

, Steady-state circumvents complexity of scheduling problems
. . . while deriving efficient (often asymptotically optimal)
scheduling algorithms

/ Memory constraints, latency, period size may be large...

/ Need to acquire a good knowledge of the platform graph
(ENV, Alnem, NWS...)

/ Taking into account changes in resource performances is still
difficult: build super-steps and recompute optimal solution at
the end of each super-step...
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Dynamic platforms

On large scale distributed systems:

I resource performances may change over time (resource
sharing, node may appear and disappear)

I impossible to maintain a coherent snapshot of the platform at
a given node and recompute optimal solution

I using fully greedy dynamic scheduling algorithms is known to
lead to bad results

I inject some static knowledge into dynamic schedulers

Taking dynamic performances into account

Need for decentralized and robust scheduling algorithms based on
static knowledge
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What do robust and dynamic mean?

Need for metrics in order to analyze algorithms

Robust
I If ρopt(t) denotes the optimal throughput for platform at time

t and T (N) denotes the time to process N tasks using
proposed scheduling algorithm

I The objective is

N∫ T (N)

t=0
ρopt(t)dt

−→N−→+∞ 1

Decentralized

at any time step, a node makes its decisions according to

I its state (local memory)

I the states of its immediate neighbors
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Fluid relaxation (cont’d!)

I Throughput maximization
I concentrate on steady state
I define activity variables
I then, rebuild allocations and schedule

I Dynamic platforms:
I put tasks in different queues
I define potential functions associated to those queues
I let tasks move ”by themselves” from high to low potentials
I areas where tasks are processed quickly will become low

potential areas (tasks being removed)
I areas where tasks are processed slowly will become high

potential areas
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Example: scheduling independent tasks

For the sake of simplicity, we will assume that

I that ρmin = min ρopt(t) is known

I and we will prove that(
N

T (N)

)
≥ ρmin.

I We will also assume that the platform graph is a tree

(In fact, with more care and using a slightly different
communication model, we could prove

N ≥
T (N)∑
i=0

min
t∈[i;i+1]

ρopt(t)

for general platform graphs.)
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Queues (1)

Credits

based on an algorithm for multi-commodity flows (Awerbuch
Leighton)

Queues at slave nodes
I each node Pi stores non

processed tasks in N queues,
where N denotes the children
of Pi.

I each node Pi has a queue for
incoming tasks (from its parent
node)

I we introduce a fictitious
processing neighbor node
P comp

i .

PComp
i

Pi
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Queues (2)

Queues at master node
I the master node is split into

two parts (upper, lower).

I the upper master node holds a
regular buffer and an overflow
buffer

I the overflow buffer holds tasks
that do not fit in the regular
buffer

I the lower Master node works
like any other node

Regular Buffer: REGm

rmPMaster

P comp
Master

Overflow Buffer: OVm
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Framework

Queues and potential functions:

I Each queue (regular or overflow) is associated with an
increasing (with the size of the queue) potential function

I The potential of an edge is the sum of queue potentials at the
tail and head of the edge.

I The potential of a node is the sum of the potential of its
outgoing edges.

I Nodes try to minimize their potential, given resource
constraints (both processing power and 1-port).

I Thus, tasks go from high potential to low potential.
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Potential functions

Potential functions at master node:

I The potential associated to the
overflow buffer of size OVm is
σ(OVm) = OVmαeαQ.

I The potential associated to the
regular buffer of size REGm is
Φ(REGm) = eαREGm .

I where α is a constant (depending on
the network and the expected
throughput) and Q is the maximal
size of the regular buffer.

Regular Buffer: REGm

rmPMaster

P comp
Master

Overflow Buffer: OVm
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Potential functions

Potential functions at regular nodes:

I The potential associated to a regular
buffer of size s is
Φ(s) = eαs.

I The potential associated to the edge
(P0, Pi) is
Φ(P0, P1) = eαsi + eαri .

I The potential associated to the node
P0 is

s3

r0
scomp

rcomp

r3

s1

r1
r2

s2

P0

P comp
0

Φ(P0) =
∑

i

(eαsi + eαri) + eαsComp + eαrComp
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Overall Algorithm

Time is divided in rounds, each round consists in 4 steps.

Phase 1: At upper master node, add (1− ε)ρmin units of tasks to
the overflow queue. Then move as many tasks as possible from
the overflow queue to the regular queue (given maximum height
constraint)

Phase 2: At Pi, push flow across edges so as to minimize the
potential of Pi without violating capacity constraints for each
edge.

Phase 3: At P comp
i , empty the sink queue rcomp

Phase 4: Re-balance each node Pi, so that the queues at Pi have
same size.
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Phase 2 detailed

How to minimize potential at Pi:

I The potential associated to the node
P0 is
Φ(P0) =

∑
i (e

αsi + eαri)
+ eαsComp + eαrComp .

I Satisfying processing constraints is
easy: do not send more than w0

tasks.

f1 f2
f3

s3

s2

s1

P0

r0

r2

r1
r3

rcomp

scomp

P comp
0

I Satisfying 1 port constraint:

Minimize
∑

i

(
eα(si−fi) + eα(ri+fi)

)
{

fi ≥ 0 (directed edge)∑
fici ≤ 1 (one port constraint)

Convex optimization problem, the fi’s can be determined using
Karush-Kuhn-Tucker conditions.
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Potential analysis during one round

I Phase 1: At upper master node, add
(1− ε)ρmin units of tasks to the overflow
queue. Then move as many tasks as possible
from the overflow queue to the regular queue
(given maximum height constraint)

I Phase 2: At Pi, push flow across edges so as
to minimize the potential of Pi without
violating capacity constraints for each edge.

I Phase 3: At P comp
i , empty the sink queue

rcomp

I Phase 4: Re-balance each node Pi, so that
the queues at Pi have same size.

↗

↘

↘

↘

Potential ↗ during phase 1 can be evaluated easily
Potential ↘ during phases 2-4 strongly depends on local queue
sizes. . .
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Potential analysis during one round

Sketch of the proof: Analyzing directly potential decrease during
phase 2 is difficult, but

I we know that there exists a solution with throughput ρmin

I since potential minimization is optimal (given resource
constraint) during Phase 2

I =⇒ the potential decrease during Phase 2 is at least the
potential decrease that would be induced by the solution with
throughput ρmin

I the potential decrease that would be induced by the solution
with throughput ρmin can be determined easily

=⇒ we get a lower bound for potential decrease during Phase 2
(and neglect potential decreases during Phases 3-4)
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Sketch of the proof (end!)

I Using above technique, we can prove that the overall
potential remains bounded

I =⇒ the overall number of non-processed tasks in the network
remains bounded

I Since we inject (1− ε)ρmin tasks at each round, this means
that almost all tasks have been processed

=⇒ the overall throughput is optimal
(almost, due to ε, that can be chosen arbitrarily small)
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Small example – convergence

source

P1

P2

P3

P5P4
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link (P3 → P5)
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step

I independent tasks

I no result files sent back to source
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Conclusion on dynamic solutions

I Deriving efficient dynamic solutions for unstable environments
is still a wide area of research

I For the very simple problem we looked at (independent tasks
on a tree):

I how to determine the minimal throughput (one solution may
be to look at queue sizes)?

I how to move from fractional task numbers to actual tasks
(consider larger rounds and round results)?

I what happens if performances change during one round, and
things get de-synchronized?

I But we feel that, using such solutions, it is possible to achieve
much better results than with purely dynamic schedulers

, Still plenty of work!
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