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Examples of Job Scheduling

Processor scheduling
Jobs are executed on a CPU in a 
multitasking operating system. 
Users submit jobs to web servers 
and receive results after some time.
Users submit batch computing jobs 
to a parallel processor.

Bandwidth scheduling
Users call other persons and need 
bandwidth for some period of time. 

Airport gate scheduling
Airlines require gates for their flights 
at an airport.

Repair crew scheduling
Customer request the repair of their 
devices. 

http://www.airport-technology.com/projects/frankfurt/index.html
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Job Properties

Independent jobs
No known precedence constraints 

Difference to task scheduling

Atomic jobs
No job stages

Difference to job shop scheduling

Batch jobs
No deadlines or due dates

Difference to deadline scheduling

pj processing time of job j
rj release date of job j earliest starting time

importance of the job
parallelism of the job

wj weight of job j
mj size of job j
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Machine Environments

1: single machine 
Many job scheduling problems are easy.

Pm: m parallel identical machines
Every job requires the same processing time on each machine.
Use of machine eligibility constraints Mj if job j can only be 
executed on a subset of machines

Airport gate scheduling: wide and narrow body airplanes

Qm: m uniformly related machines
The machines have different speeds vi that are valid for all jobs.
In deterministic scheduling, results for Pm and Qm are related.
In online scheduling, there are significant differences between Pm
and Qm.

Rm: m unrelated machines
Each job has a different processing time on each machine.
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Restrictions and Constraints

Release dates rj
Parallelism mj

Fixed parallelism: mj machines must be available during the whole 
processing of the job.
Malleable jobs: The number of allocated machines can change 
before or during the processing of the job.

Preemption
The processing of a job can be interrupted and continued on 
another machine.
Gang scheduling: The processing of a job must be continued on 
the same machines.

Machine eligibility constraints Mj
Breakdown of machines 

m(t): time dependent availability

rarely discussed 
in the literature



7

Objective Functions

Completion time of job j: Cj

Owner oriented:
Makespan: Cmax =max (C1 ,...,Cn )

completion time of the last job in the system
Utilization Ut: Average ratio of busy machines to all machines in the 
interval (0,t] for some time t.

User oriented:
Total completion time: Σ Cj

Total weighted completion time: Σ wj Cj

Total weighted waiting time: Σ wj ( Cj –pj – rj ) = Σ wj Cj – Σ wj (pj+rj)
Total weighted flow time: Σ wj ( Cj – rj ) = Σ wj Cj – Σ wj rj

Regular objective functions:
non decreasing in C1 ,...,Cn

const.
const.
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Workload Classification

Deterministic scheduling problems
All problem parameters are available at time 0.
Optimal algorithms, 
Simple individual approximation algorithms
Polynomial time approximation schemes

Online scheduling problems
Parameters of job j are unknown until rj (submission over time).
pj is unknown Cj (nonclairvoyant scheduling).
Competitive analysis

Stochastic scheduling
Known distribution of job parameters
Randomized algorithms

Workload based scheduling
An algorithm is parameterized to achieve a good solution for a 
given workload. 



9

No machine is kept idle while a job is waiting for processing.
An optimal schedule need not be nondelay!

Example: 1 | | Σ wj Cj

jobs 1 2
pj 1 3
rj 1 0
wj 2 1

0 5

12 Σ wj Cj=11

Nondelay schedule

1 2 Σ wj Cj=9

Optimal schedule

Nondelay (Greedy) Schedule
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Complexity Hierarchy

Some problems are special cases of other problems:
Notation:   α1 | β1 | γ1   ∝ (reduces to)   α2 | β2 | γ2

Examples:
1 || Σ Cj ∝ 1 || Σ wj Cj  ∝ Pm || Σ wj Cj  ∝ Pm | mj | Σ wj Cj 

prmp

0Pm

1

brkdwn

0

Mj

0

mj

1

wj

1

rj

0

Σwj Cj

ΣCj

Rm

Qm
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1 || Σ wj Cj

1 || Σ wj Cj is easy and can be solved by sorting all jobs in 
decreasing Smith order wj/pj (weighted shortest 
processing time first (WSPT) rule, Smith, 1956).

Nondelay schedule
Proof by contradiction and localization: 
If the WSPT rule is violated then it is violated by a pair of 
neighboring task h and k.

S1: Σ wj Cj = ...+ wh(t+ph) + wk(t + ph + pk)

h
t

k

S2: Σ wj Cj = ...+ wk(t+pk) + wh(t + pk + ph)

k h

S1-S2: 
wk ph – wh pk > 0

wk/pk > wh/ph
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Other Single Machine Problems

Every nondelay schedule has 
optimal makespan and 
optimal utilization for any interval starting at time 0.

WSPT requires knowledge of the processing times
No direct application to nonclairvoyant scheduling

1 | prmp | Σ Cj is easy.
The online nonclairvoyant version (Round Robin) has a 
competitive factor of 2-2/(n+1) (Motwani, Phillips, Torng,1994).

1 | rj ,prmp | Σ Cj is easy. 
The online, clairvoyant version is easy.

1 | rj | Σ Cj is strongly NP hard.
1 | rj ,prmp | Σ wj Cj is strongly NP hard.

The WSRPT (remaining processing time) rule is not optimal.
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Optimal versus Approximation

1 | rj ,prmp | Σ wj (Cj-rj) and 1 | rj ,prmp | Σ wj Cj

Same optimal solution
Larger approximation factor for 1 | rj ,prmp | Σ wj (Cj-rj).
No constant approximation factor for the total flowtime objective 
(Kellerer, Tautenhahn, Wöginger, 1999)
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Approximation Algorithms

1 | rj | Σ Cj
Approximation factor e/(e-1)=1.58 (Chekuri, Motwani, Natarajan, 
Stein, 2001)
Clairvoyant online scheduling: competitive factor 2 (Hoogeveen, 
Vestjens,1996)

1 | rj | Σ wjCj
Approximation factor 1.6853 (Goemans, Queyranne, Schulz, 
Skutella, Wang, 2002)
Clairvoyant online scheduling: competitive factor 2 (Anderson, 
Potts, 2004)  

1 | rj ,prmp | Σ wj Cj
Approximation factor 1.3333, 
Randomized online algorithm with the competitive factor 1.3333
WSPT online algorithm with competitive factor 2 (all results: 
Schulz, Skutella, 2002)
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Pm and Makespan with mj=1

A scheduling problem for parallel machines consists of 2 
steps:

Allocation of jobs to machines
Generating a sequence of the jobs on a machine

A minimal makespan represents a balanced load on the 
machines if no single job dominates the schedule.

Preemption may improve a schedule even if all jobs are 
released at the same time.

Optimal schedules for parallel identical machines are 
nondelay.
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Pm || Cmax

Pm || Cmax is strongly NP-hard (Garey, Johnson 1979).
Approximation algorithm: Longest processing time first 
(LPT) rule (Graham, 1966)

Whenever a machine is free, the longest job among those not yet 
processed is put on this machine.

Tight approximation factor:

The optimal schedule Cmax(OPT) is not necessarily known but a 
simple lower bound can be used:

3m
1

3
4

(OPT)C
(LPT)C

max
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∑
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≥
n

1j
jmax p

m
1(OPT)C
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LPT Proof (1)

If the claim is not true, then there is a counterexample 
with the smallest number n of jobs.
The shortest job n in this counterexample is the last job to 
start processing (LPT) and the last job to finish 
processing.

If n is not the last job to finish processing then deletion of n does 
not change Cmax (LPT) while Cmax (OPT) cannot increase.
A counter example with n – 1 jobs

Under LPT, job n starts at time Cmax(LPT)-pn.
In time interval [0, Cmax(LPT) – pn], all machines are busy.
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LPT Proof (2)
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At most two jobs are scheduled on each machine.
For such a problem, LPT is optimal.
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A Worst Case Example for LPT

4 parallel machines: P4||Cmax

Cmax(OPT) = 12 =7+5 = 6+6 = 4+4+4
Cmax(LPT) = 15 = 11+4=(4/3 -1/(3·4))·12

jobs 1 2 3 4 5 6 7 8 9
5 5 4 4 46 6pj 7 7

7

7

4

6

4

6

5

5

4
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List Scheduling

LPT requires knowledge of the processing times.
No direct application to nonclairvoyant scheduling

Arbitrary nondelay schedule (List Scheduling, Graham, 
1966)

Tight approximation factor: m
12

(OPT)C
(LIST)C

max

max −≤

1 1 1 1 1
6

1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

Cmax(LIST)=11

6
11 1 1 1 1
11 1 1 1 1
11 1 1 1 1
11 1 1 1 1
11 1 1 1 1

Cmax(OPT)=6
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Online Transformation

Let A be an algorithm for a job scheduling problem without 
release dates and with

Then there is an algorithm A’ for the corresponding online 
job scheduling problem with 

(Shmoys, Wein, Williamson, 1995) 

k
(OPT)C
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Transformation Proof

S0: Jobs available at time 0=F-1=F-2

F0=Cmax(A,S0)
Si+1: Jobs released in (Fi-1,Fi]
Fi=Cmax(A,Si) such that no job from Si starts before Fi-1.
Assume that all jobs in Si are released at time Fi-2

Cmax(OPT) cannot increase while Cmax(A’) remains unchanged.

Proof

)A'(Ck2F maxi ⋅<

)A'(Ck)S A,(CkFFF maximax1-ii2-i ⋅=⋅≤−+

)A'(Ck)S A,(CkFFFFF max1-imax2-i1-i3-i2-i1-i ⋅<⋅≤−+≤−
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List Scheduling Extensions

The List scheduling bound 2-1/m also applies to Pm|rj|Cmax
(Hall, Shmoys, 1989).
Online extension of List scheduling to parallel jobs: 

No machine is kept idle while there is at least one job waiting and 
there are enough machines idle to start this job (nondelay).

The List scheduling bound 2-1/m also applies to 
Pm|mj|Cmax (Feldmann, Sgall, Teng, 1994).
The List scheduling bound 2-1/m also applies to 
Pm|mj,rj|Cmax (Naroska, Schwiegelshohn, 2002).

2-1/m is a competitive factor for the corresponding online 
nonclairvoyant scheduling problem.
Proof by induction on the number of different release dates
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Pm | mj | Cmax Proof

The bound holds if during the whole schedule there is 
no interval with at least m/2 idle machines.

The sum of machines used in any two intervals is larger 
than m unless the jobs executed in one interval are a 
subset of the jobs executed in the other interval.
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Makespan with Preemptions

Pm |prmp| Cmax is easy.
Transformation of a nonpreemptive single machine schedule in a 
preemptive parallel schedule (McNaughton, 1959)

The single machine schedule is split into at most m schedules of
length Cmax(OPT).
Each schedule is executed on a different machine.
There are at most m-1 preemptions.

Pm |rj, prmp| Cmax is easy.
Longest remaining processing time algorithm.
Clairvoyant online scheduling

Competitive factor 1 for allocation as late as possible.
Competitive factor e/(e-1)=1.58 for allocation of machine slots at 
submission time (Chen, van Vliet, Wöginger, 1995)

Nonclairvoyant online scheduling: same competitive factor 2-1/m 
as for the nonpreemptive case (Shmoys, Wein Williamson, 1995)
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Utilization

Utilization Ut is closely related to the makespan Cmax if 
t=Cmax.

In online job scheduling problems, there is no last submitted job.
Ut with t being the actual time is better suited than the makespan
objective.

Pm |rj| Ut
Nonclairvoyant online scheduling: tight competitive factor for any 
nondelay schedule 1.3333 (Hussein, Schwiegelshohn, 2006)
Proof by induction on the different release dates.

2

U2(LIST)=0.75

1
1

U2(OPT)=1

11
2
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time

machines

Interval without
idle machinest2

t1

Utilization Proof (1)

Transformation of the job system
Reduction of the release dates
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time

machines

Interval without
idle machines

Transformation of the job system
Splitting of jobs
The system only contains short and long jobs.

All long jobs start at the end of an interval.

Utilization Proof (2)
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time

machines machines
Interval without
idle machines

Transformation of the job system
Modification of jobs with earlier release dates

Optimal scheduleNondelay schedule

Utilization Proof (3)
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Utilization Proof (4)

If all long jobs of a transformed job system start at their 
release date, then the utilization is maximal for all t and 
the equal priority completion time is minimal.

time

machines

short jobs

long jobs

long jobs from
earlier release
dates
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Utilization Proof (5)

r

tσ

Optimal schedule 

r

Nondelay schedule S

tσ
τr

τr

tk

kt
r

tσ

Optimal schedule

r

Nondelay schedule S

tσ

τk

τr
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Pm | rj,mj | Ut

Parallel jobs may cause intermediate idle time even if all 
jobs are released at time 0.
Nonclairvoyant online scheduling: 

Competitive factor → m in the worst case 
Competitive factor → 2 if the actual time >> max{pj}

2 4 6
1 3 5

U5(LIST)=0.2+0.16ε

1
2
3
4
5

U5(OPT)=1

6

Jobs 1 2 3 4 5 6
pj 1+ε 1+ε 1+ε 1+ε 1 5
rj 0 1 2 3 4 0
mj 1 1 1 1 1 5
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Pm | rj,mj,prmp | Ut

Here, preemption of parallel jobs is based on gang 
scheduling.

All allocated machines concurrently start, interrupt, resume, and 
complete the execution of a parallel job.
There is no migration or change of parallelism. 

Nonclairvoyant online scheduling: competitive factor 4 
(Schwiegelshohn, Yahyapour, 2000)

2
1

3

U3(A)=7/15

1
4

1
44

U3(OPT)=14/15

2
1

4

3
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Pm || ΣCj

Pm || ΣCj is easy.
Shortest processing time (SPT) (Conway, Maxwell, Miller, 1967)
Single machine proof:

Σ Cj=n p(1)+ (n-1) p(2) + … 2 p(n-1) + p(n)
p(1) ≤ p(2) ≤ p(3) ≤ ..... ≤ p(n-1) ≤ p(n) must hold for an optimal schedule.

Parallel identical machines proof:
Dummy jobs with processing time 0 are added until n is a multiple of m.
The sum of the completion time has n additive terms with one coefficient 
each: m coefficients with value n/m

m coefficients with value n/m – 1 
:

m coefficients with value 1
If there is one coefficient h>n/m then there must be a coefficient k<n/m. 
Then we replace h with k+1 and obtain a smaller ΣCj .

Pm |prmp| ΣCj is easy (Shortest remaining processing time).
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Pm || ΣwjCj

Pm || ΣwjCj is strongly NP-hard.
The WSPT algorithm has a tight approximation factor of 1.207 
(Kawaguchi, Kyan, 1986)
It is sufficient to consider instances where all jobs have the same 
ratio wj/pj.
Proof by induction on the number of different ratios.

J is the set of all jobs with the largest ratio in an instance I.
The weights of all jobs in J are multiplied by a positive factor ε <1 
such that those jobs now have the second largest ratio.
This produces instance I’.
The WSPT order is still valid.
The WSPT schedule remains unchanged.
The optimal schedule may change.
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Different Ratios

Induction Proof
ΣwjCj(WSPT,I’)≤λ･ΣwjCj(OPT,I’) (induction assumption)
x: contribution of all jobs in J to ΣwjCj(WSPT,I)
y: contribution of all jobs not in J to ΣwjCj(WSPT,I)
x’: contribution of all jobs in J to ΣwjCj(OPT,I)
y’: contribution of all jobs not in J to ΣwjCj(OPT,I)
x≤λ･x’ (induction assumption)
ΣwjCj(WSPT,I)= x+y and ΣwjCj(WSPT,I’)=ε･x+y, 
ΣwjCj(OPT,I)=x’+y’ and ΣwjCj(OPT,I’)≤ε･x’+y’
y≤λ･y’ → ΣwjCj(WSPT,I)≤λ･ΣwjCj(OPT,I) 
y>λ･y’ → λ･x’y>x･λ･y’ → x’/y’>x/y → x’y-xy’>0 → x’y-xy’>ε(x’y-xy’)
ΣwjCj(WSPT,I’)･ΣwjCj(OPT,I) =(ε･x+y)(x’+y’)>(ε･x’+y’)(x+y)≥
ΣwjCj(OPT,I’)･ΣwjCj(WSPT,I)
ΣwjCj(WSPT,I)≤λ･ΣwjCj(OPT,I) 

Assumption: wj=pj holds for all jobs j.
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WSPT Proof (1)

time

machines

Transformation of the job system
Splitting of job j into jobs j1 and j2.
The system only contains short and long jobs.

All long jobs start at the end of busy interval in the list schedule.
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WSPT Proof (2)

Single machine without intermediate idle time
wj=pj holds for all jobs.
∑wjCj(S)=∑wjCj(OPT)= 0.5((∑pj)2+∑pj

2)
Proof by induction on the number of jobs

( )( ) ( )
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WSPT Proof (3)

Equalization of the long jobs
Assumption of a continuous model (fraction of machines)
k long jobs with different processing times are transformed into
n(k) jobs with the same processing time p(k) such that 
∑pj=n(k)･p(k) and ∑pj

2=n(k)･(p(k))2 hold.
p(k)= ∑pj

2/ ∑pj and n(k)= (∑pj)2/ ∑pj
2

Then we have k≥n(k) for reasons of convexity.

machines

time

machines
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WSPT Proof (4)

machines

time

machines

Modification of the job system
Partitioning of the long jobs into two groups
Equalization of the both groups separately
The maximum completion time of the small jobs decreases due to 
the large rectangle.
The jobs of the small rectangle are rearranged.
New equalization of the large rectangle
Determination of the size of the large rectangle
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Release Dates

Pm |rj| ΣCj

Approximation factor 2
Clairvoyant, randomized online scheduling: competitive factor 2

Pm |rj,prmp| ΣCj

Approximation factor 2
Clairvoyant, randomized online scheduling: competitive factor 2

Pm |rj| ΣwjCj

Approximation factor 2
Clairvoyant, randomized online scheduling: competitive factor 2

Pm |rj,prmp| ΣwjCj

Approximation factor 2
Clairvoyant, randomized online scheduling: competitive factor 2 
(all results Schulz, Skutella, 2002)
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Parallel Jobs

Pm |mj,prmp| ΣwjCj
Use of gang scheduling without any task migration
Approximation factor 2.37 (Schwiegelshohn, 2004)

Pm |mj,prmp| ΣCj
Nonclairvoyant approximation factor 2-2/(n+1) if all jobs are 
malleable with linear speedup (Deng, Gu, Brecht, Lu, 2000).

Pm |mj| ΣwjCj
Approximation factor 7.11 (Schwiegelshohn, 2004)
Approximation factor 2 if mj≤0.5m holds for all jobs (Turek et al., 
1994)

Pm |mj| ΣCj
Approximation factor 2 if the jobs are malleable without 
superlinear speedup (Turek et al., 1994)
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Online Problems

Pm |mj,rj,prmp| ΣwjCj

Nonclairvoyant online scheduling with gang scheduling and 
wj=mj･pj: competitive factor 3.562 (Schwiegelshohn, Yahyapour, 
2000)

wj=mj･pj guarantees that no job is preferred over another job 
regardless of its resource consumption as all jobs have the same
(extended) Smith ratio.
All jobs are started in order of their arrival (FCFS).
Any job started after a job j can increase the flow time Cj-rj by at most 
a factor of 2

Clairvoyant online scheduling with malleable jobs and linear 
speedup:

Competitive factor 12+ε for a deterministic algorithm
Competitive factor 8.67 for a randomized algorithm (both results
Chakrabarti et al.,1996)
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MPP Problem

Machine model
Massively parallel processor (MPP): m parallel identical machines

Job model
Multiple independent users
Nonclairvoyant (unknown processing time pj ) with estimates
Online (submission over time rj )
Fixed degree of parallelism mj during the whole processing
No preemption

Objective
Machine utilization
Average weighted response time (AWRT): pj･mj･(Cj-rj )
Based on user groups 
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Algorithmic Approach

Reordering of the waiting queue
Parameters of jobs in the waiting queue
Actual time
Scheduling situations: weekdays daytime (8am – 6pm), 
weekdays nighttime (6pm – 8am), weekends

Selected sorting criteria
Selected objective

Consideration of 2 user groups: 10 AWRT1+ 4 AWRT2

Parameter training with Evolution Strategies
Recorded workloads and simulations
Workload scaling for comparison

Waiting queue
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Workloads and User Groups

Identifier CTC KTH LANL SDSC 00 SDSC 95 SDSC 96

Machine SP2 SP2 CM-5 SP2 SP2 SP2

Period 06/26/96 –
05/31/97

09/23/96 –
08/29/97

04/10/94 –
09/24/96

04/28/98 –
04/30/00

12/29/94 –
12/30/95

12/27/95 –
12/31/96

Processors (m) 1024 1024 1024 1024 1024 1024

Jobs (n) 136471 167375 201378 310745 131762 66185

Workload scaling

User Group 1 2 3 4 5

RCu/RC > 8% 2 – 8 % 1 – 2 % 0.1 – 1 % < 0.1 %

User group definition
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Sorting Criteria

Training of parameters wi, Ki, a, b with Evolution Strategies
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CTC Training and CTC Workload
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AWRT 1 AWRT 2

AWRT 3 AWRT 4 AWRT 5

Method AWRT 1 AWRT 2 AWRT 3 AWRT 4 AWRT 5 UTIL

GREEDY 52755.80 s 61947.65 s 56275.18 s 54017.23 s 35085.84 s 66.99 %

EASY 59681.28 s 64976.07 s 50317.47 s 46120.02 s 31855.68 s 66.99 %
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CTC Training and All Workloads
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Some workloads are similar (CTC, LANL).
Some workloads are significantly different (CTC, KTH).
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Results in CTC Paretofront
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Results in SDSC 95 Paretofront
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Conclusion

Most deterministic job scheduling problems are NP hard.
Approximation algorithms

Polynomial time approximation schemes 
Simple algorithms

Complete problem knowledge is rare in practice.
Online algorithms

Competitive analysis
Stochastic scheduling

Randomized algorithms 

Challenges
Partial information

Recorded workloads
User estimates 

Scheduling objectives and constraints
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