

UNIVERSITY DORTMUND

ROBOTICS RESEARCH INSTITUTE INFORMATION TECHNOLOGY

Job Scheduling

Uwe Schwiegelshohn

EPIT 2007, June 5 Ordonnancement

Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

3

Examples of Job Scheduling

Processor scheduling

- Jobs are executed on a CPU in a multitasking operating system.
- Users submit jobs to web servers and receive results after some time.
- Users submit batch computing jobs to a parallel processor.

Bandwidth scheduling

- Users call other persons and need bandwidth for some period of time.
- Airport gate scheduling
 - Airlines require gates for their flights at an airport.
- Repair crew scheduling
 - Customer request the repair of their devices.

Independent jobs

- No known precedence constraints
 - Difference to task scheduling
- Atomic jobs
 - No job stages
 - Difference to job shop scheduling
- Batch jobs
 - No deadlines or due dates
 - Difference to deadline scheduling

p _j	processing time of job j	
r _j	release date of job j	earliest starting time
w _j	weight of job j	importance of the job
m _j	size of job j	parallelism of the job

Machine Environments

- 1: single machine
 - Many job scheduling problems are easy.

P_m: m parallel identical machines

- Every job requires the same processing time on each machine.
- Use of machine eligibility constraints M_j if job j can only be executed on a subset of machines
 - Airport gate scheduling: wide and narrow body airplanes
- Q_m: m uniformly related machines
 - \rightarrow The machines have different speeds v_i that are valid for all jobs.
 - In deterministic scheduling, results for P_m and Q_m are related.
 - In online scheduling, there are significant differences between P_m and Q_m.
- R_m: m unrelated machines
 - Each job has a different processing time on each machine.

Release dates r_i

Parallelism m_i

- Fixed parallelism: m_j machines must be available during the whole processing of the job.
- Malleable jobs: The number of allocated machines can change before or during the processing of the job.

Preemption

- The processing of a job can be interrupted and continued on another machine.
- Gang scheduling: The processing of a job must be continued on the same machines.
- Machine eligibility constraints M_i
- Breakdown of machines
 - m(t): time dependent availability

rarely discussed in the literature

Objective Functions

Completion time of job j: C_j

Owner oriented:

- → Makespan: C_{max} = max (C₁,...,C_n)
 - completion time of the last job in the system
- Utilization U_t: Average ratio of busy machines to all machines in the interval (0,t] for some time t.

User oriented:

- Total completion time: ΣC_j
- Total weighted completion time: Σ w_j C_j
- → Total weighted waiting time: $\Sigma w_j (C_j p_j r_j) = \Sigma w_j C_j \Sigma w_j (p_j + r_j)$
- → Total weighted flow time: $\Sigma w_j (C_j r_j) = \Sigma w_j C_j \Sigma w_j r_j$ const.
- Regular objective functions:
 - ➡ non decreasing in C₁,...,C_n

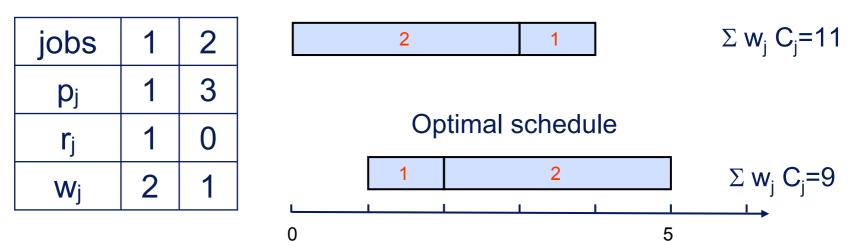
const.

- Deterministic scheduling problems
 - All problem parameters are available at time 0.
 - Optimal algorithms,
 - Simple individual approximation algorithms
 - Polynomial time approximation schemes
- Online scheduling problems
 - Parameters of job j are unknown until r_i (submission over time).
 - \rightarrow p_j is unknown C_j (nonclairvoyant scheduling).
 - Competitive analysis
- Stochastic scheduling
 - Known distribution of job parameters
 - Randomized algorithms
- Workload based scheduling
 - An algorithm is parameterized to achieve a good solution for a given workload.

No machine is kept idle while a job is waiting for processing. An optimal schedule need not be nondelay!

Example: $1 \mid \sum w_j C_j$

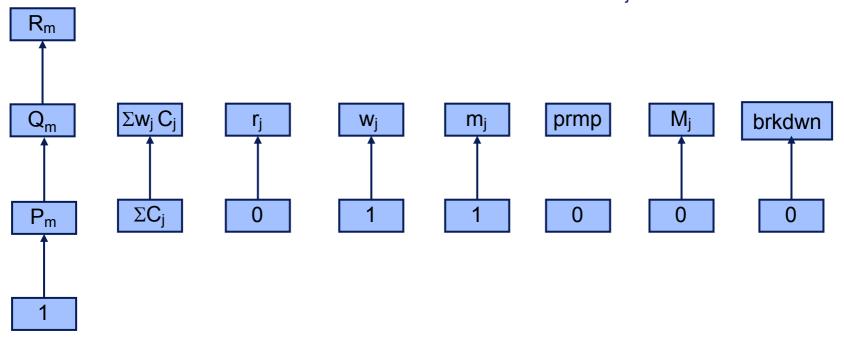
Nondelay schedule



Some problems are special cases of other problems: Notation: $\alpha_1 | \beta_1 | \gamma_1 \propto (\text{reduces to}) | \alpha_2 | \beta_2 | \gamma_2$

Examples:

 $1 \parallel \Sigma \ C_j \propto 1 \parallel \Sigma \ w_j \ C_j \propto P_m \parallel \Sigma \ w_j \ C_j \propto P_m \mid m_j \mid \Sigma \ w_j \ C_j$



Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

- 1 || Σ w_j C_j is easy and can be solved by sorting all jobs in decreasing Smith order w_j/p_j (weighted shortest processing time first (WSPT) rule, Smith, 1956).
 - Nondelay schedule
 - Proof by contradiction and localization:

If the WSPT rule is violated then it is violated by a pair of neighboring task h and k.

$$S_1: \Sigma w_i C_i = ... + w_h(t+p_h) + w_k(t+p_h+p_k)$$

 $S_2: \Sigma w_j C_j = ... + w_k(t+p_k) + w_h(t+p_k+p_h)$

- Every nondelay schedule has
 - optimal makespan and
 - optimal utilization for any interval starting at time 0.
- WSPT requires knowledge of the processing times
 - No direct application to nonclairvoyant scheduling
- 1 | prmp | ΣC_j is easy.
 - The online nonclairvoyant version (Round Robin) has a competitive factor of 2-2/(n+1) (Motwani, Phillips, Torng, 1994).
- 1 | r_j , prmp | ΣC_j is easy.
 - The online, clairvoyant version is easy.
- $1 | r_j | \Sigma C_j$ is strongly NP hard.
- **1** | r_j , prmp | Σ w_j C_j is strongly NP hard.
 - The WSRPT (remaining processing time) rule is not optimal.

- 1 | r_j , prmp | Σ w_j (C_j- r_j) and 1 | r_j , prmp | Σ w_j C_j
 - Same optimal solution
 - → Larger approximation factor for $1 | r_j$, prmp | $\Sigma w_j (C_j-r_j)$.
 - No constant approximation factor for the total flowtime objective (Kellerer, Tautenhahn, Wöginger, 1999)

$$\frac{\sum_{i} w_{j} \cdot (C_{j}(S) - r_{j})}{\sum_{i} w_{j} \cdot C_{j}(OPT) - r_{j}} = \frac{\sum_{i} w_{j} \cdot C_{j}(S)}{\sum_{i} w_{j} \cdot C_{j}(OPT)} \sum_{i} w_{j} \cdot (C_{j}(OPT) - r_{j}) + \left(\frac{\sum_{i} w_{j} \cdot C_{j}(S)}{\sum_{i} w_{j} \cdot C_{j}(OPT)} - 1\right) \sum_{i} w_{j} \cdot r_{j} = \frac{\sum_{i} w_{j} \cdot C_{j}(S)}{\sum_{i} w_{j} \cdot C_{j}(OPT)} + \left(\frac{\sum_{i} w_{j} \cdot C_{j}(S)}{\sum_{i} w_{j} \cdot C_{j}(OPT)} - 1\right) \cdot \frac{\sum_{i} w_{j} \cdot r_{j}}{\sum_{i} w_{j} \cdot C_{j}(OPT)} = \frac{\sum_{i} w_{i} \cdot C_{j}(S)}{\sum_{i} w_{j} \cdot C_{j}(OPT)} + \left(\frac{\sum_{i} w_{j} \cdot C_{j}(S)}{\sum_{i} w_{j} \cdot C_{j}(OPT)} - 1\right) \cdot \frac{\sum_{i} w_{j} \cdot r_{j}}{\sum_{i} w_{j} \cdot C_{j}(OPT)} = 1$$

Approximation Algorithms

- $\blacksquare 1 | r_j | \Sigma C_j$
 - Approximation factor e/(e-1)=1.58 (Chekuri, Motwani, Natarajan, Stein, 2001)
 - Clairvoyant online scheduling: competitive factor 2 (Hoogeveen, Vestjens, 1996)
- $\blacksquare 1 | \mathbf{r}_j | \Sigma \mathbf{w}_j \mathbf{C}_j$
 - Approximation factor 1.6853 (Goemans, Queyranne, Schulz, Skutella, Wang, 2002)
 - Clairvoyant online scheduling: competitive factor 2 (Anderson, Potts, 2004)
- **1** | r_j , prmp | Σ w_j C_j
 - Approximation factor 1.3333,
 - Randomized online algorithm with the competitive factor 1.3333
 - WSPT online algorithm with competitive factor 2 (all results: Schulz, Skutella, 2002)

Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

- A scheduling problem for parallel machines consists of 2 steps:
 - Allocation of jobs to machines
 - Generating a sequence of the jobs on a machine
- A minimal makespan represents a balanced load on the machines if no single job dominates the schedule.

$$C_{\max}(OPT \ge \max\left\{\max\left\{p_{j}\right\}, \frac{1}{m} \cdot \sum p_{j}\right\}\right)$$

Preemption may improve a schedule even if all jobs are released at the same time.

$$C_{\max}(OPT) = \max\left\{\max\left\{p_{j}\right\}, \frac{1}{m} \cdot \sum p_{j}\right\}$$

Optimal schedules for parallel identical machines are nondelay.

- P_m || C_{max} is strongly NP-hard (Garey, Johnson 1979).
- Approximation algorithm: Longest processing time first (LPT) rule (Graham, 1966)
 - Whenever a machine is free, the longest job among those not yet processed is put on this machine.

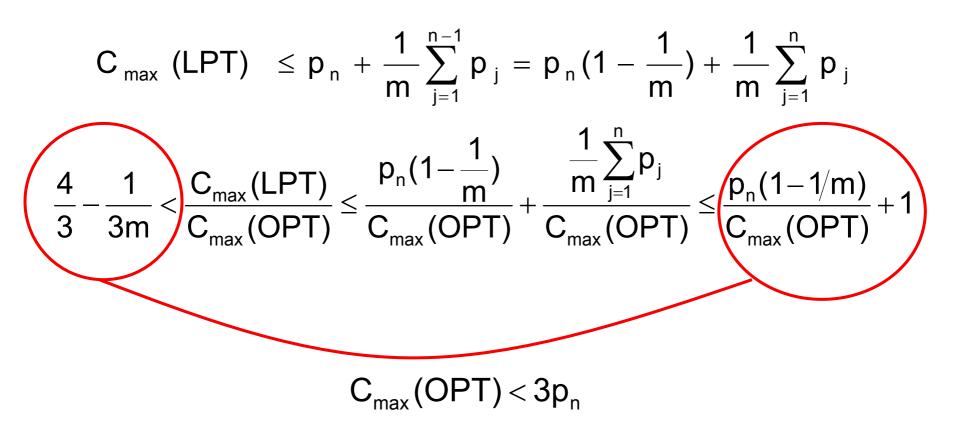
➡ Tight approximation factor:
$$\frac{C_{max}(LPT)}{C_{max}(OPT)} \le \frac{4}{3} - \frac{1}{3m}$$

The optimal schedule C_{max}(OPT) is not necessarily known but a simple lower bound can be used:

$$C_{max}(OPT) \ge \frac{1}{m} \sum_{j=1}^{n} p_j$$

- If the claim is not true, then there is a counterexample with the smallest number n of jobs.
- The shortest job n in this counterexample is the last job to start processing (LPT) and the last job to finish processing.
 - If n is not the last job to finish processing then deletion of n does not change C_{max} (LPT) while C_{max} (OPT) cannot increase.
 - A counter example with n − 1 jobs
- Under LPT, job n starts at time $C_{max}(LPT)-p_n$.
 - → In time interval [0, $C_{max}(LPT) p_n$], all machines are busy.

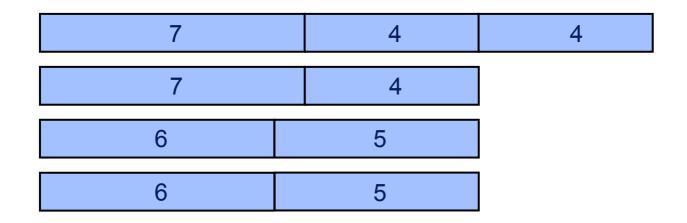
$$C_{max}(LPT) - p_n \le \frac{1}{m} \sum_{j=1}^{n-1} p_j$$



At most two jobs are scheduled on each machine. For such a problem, LPT is optimal.

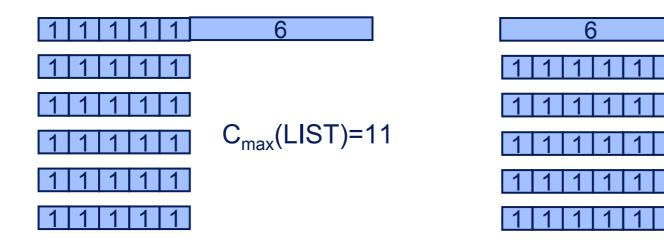
jobs	1	2	3	4	5	6	7	8	9
pj	7	7	6	6	5	5	4	4	4

- 4 parallel machines: P4||C_{max}
- $C_{max}(OPT) = 12 = 7 + 5 = 6 + 6 = 4 + 4 + 4$
- $C_{max}(LPT) = 15 = 11+4=(4/3 1/(3 \cdot 4)) \cdot 12$



- LPT requires knowledge of the processing times.
 - No direct application to nonclairvoyant scheduling
- Arbitrary nondelay schedule (List Scheduling, Graham, 1966)
 - Tight approximation factor:

$$\frac{C_{max} (LIST)}{C_{max} (OPT)} \le 2 - \frac{1}{m}$$



Online Transformation

Let A be an algorithm for a job scheduling problem without release dates and with

$$\frac{C_{\max}(A)}{C_{\max}(OPT)} \le k$$

Then there is an algorithm A' for the corresponding online job scheduling problem with

$$\frac{C_{\max}(A')}{C_{\max}(OPT)} \le 2k$$

(Shmoys, Wein, Williamson, 1995)

Transformation Proof

- S_0 : Jobs available at time $0=F_{-1}=F_{-2}$
- $\blacksquare F_0 = C_{\max}(A, S_0)$
- S_{i+1}: Jobs released in (F_{i-1},F_i]
- $F_i = C_{max}(A, S_i)$ such that no job from S_i starts before F_{i-1} .
- Assume that all jobs in S_i are released at time F_{i-2}

C_{max}(OPT) cannot increase while C_{max}(A') remains unchanged.
 Proof

$$\begin{split} F_{i-2} + F_i - F_{i-1} &\leq k \cdot C_{max}(A, S_i) = k \cdot C_{max}(A') \\ F_{i-1} - F_{i-2} &\leq F_{i-3} + F_{i-1} - F_{i-2} \leq k \cdot C_{max}(A, S_{i-1}) < k \cdot C_{max}(A') \\ F_i &< 2k \cdot C_{max}(A') \end{split}$$

- The List scheduling bound 2-1/m also applies to P_m|r_j|C_{max} (Hall, Shmoys, 1989).
- Online extension of List scheduling to parallel jobs:
 - No machine is kept idle while there is at least one job waiting and there are enough machines idle to start this job (nondelay).
- The List scheduling bound 2-1/m also applies to P_m|m_j|C_{max} (Feldmann, Sgall, Teng, 1994).
- The List scheduling bound 2-1/m also applies to $P_m|m_j,r_j|C_{max}$ (Naroska, Schwiegelshohn, 2002).
 - 2-1/m is a competitive factor for the corresponding online nonclairvoyant scheduling problem.
 - Proof by induction on the number of different release dates

 $P_m | m_j | C_{max} Proof$

The bound holds if during the whole schedule there is no interval with at least m/2 idle machines.

$$C_{\max}(OPT) \ge \frac{1}{m} \sum m_{j} \cdot p_{j} \ge \frac{m+1}{2m} \cdot C_{\max}(S) \ge \frac{m}{2m-1} \cdot C_{\max}(S) = \frac{1}{2-\frac{1}{m}} \cdot C_{\max}(S)$$

The sum of machines used in any two intervals is larger than m unless the jobs executed in one interval are a subset of the jobs executed in the other interval.

$$C_{\max}(S) \le \max\left\{ \left(2 - \frac{1}{m}\right) \cdot \sum m_{j} \cdot p_{j}, \left(2 - \frac{1}{m}\right) \cdot \max\left\{p_{j}\right\} \right\}$$

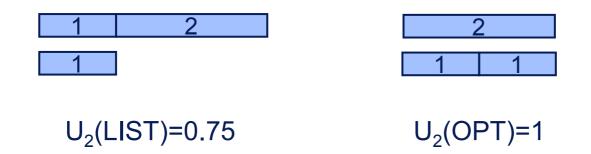
P_m |prmp| C_{max} is easy.

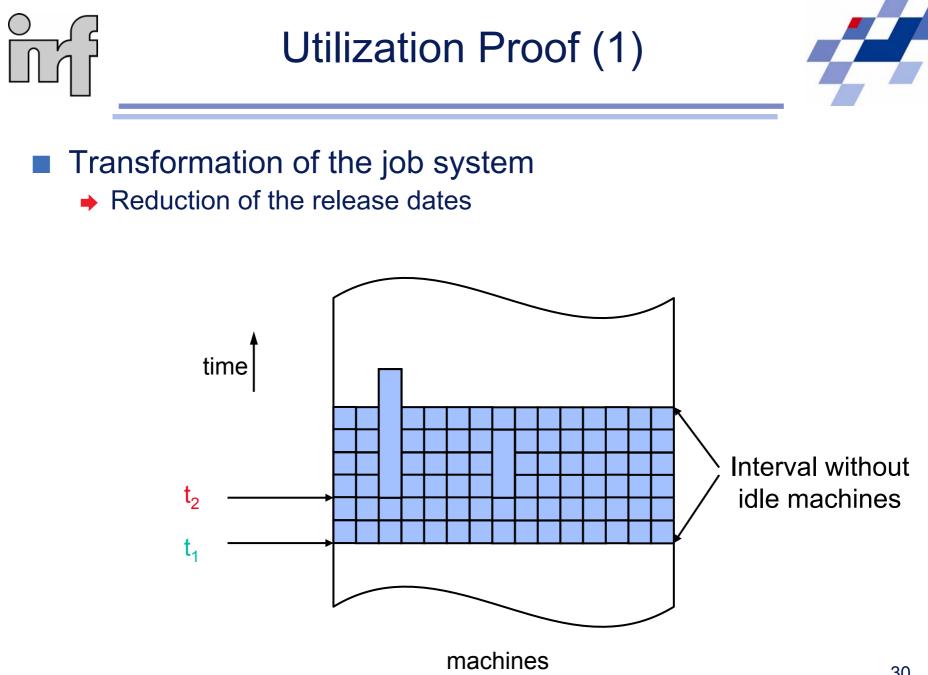
- Transformation of a nonpreemptive single machine schedule in a preemptive parallel schedule (McNaughton, 1959)
 - The single machine schedule is split into at most m schedules of length C_{max}(OPT).
 - Each schedule is executed on a different machine.
 - There are at most m-1 preemptions.
- $P_m | r_j$, prmp| C_{max} is easy.
 - Longest remaining processing time algorithm.
 - Clairvoyant online scheduling
 - Competitive factor 1 for allocation as late as possible.
 - Competitive factor e/(e-1)=1.58 for allocation of machine slots at submission time (Chen, van Vliet, Wöginger, 1995)
 - Nonclairvoyant online scheduling: same competitive factor 2-1/m as for the nonpreemptive case (Shmoys, Wein Williamson, 1995)

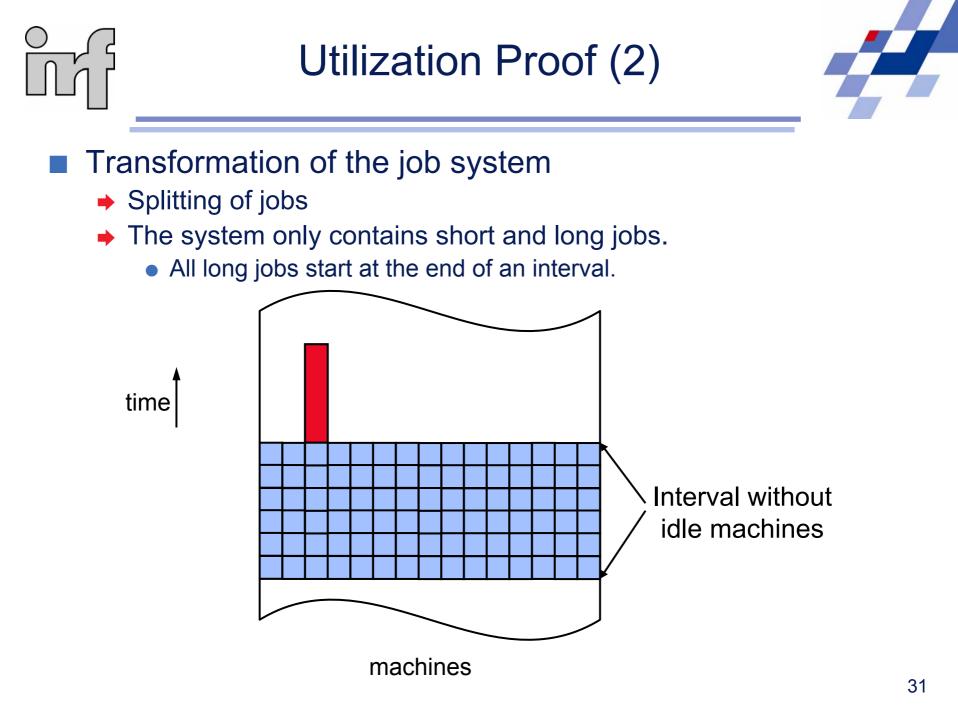
Content of the Lecture

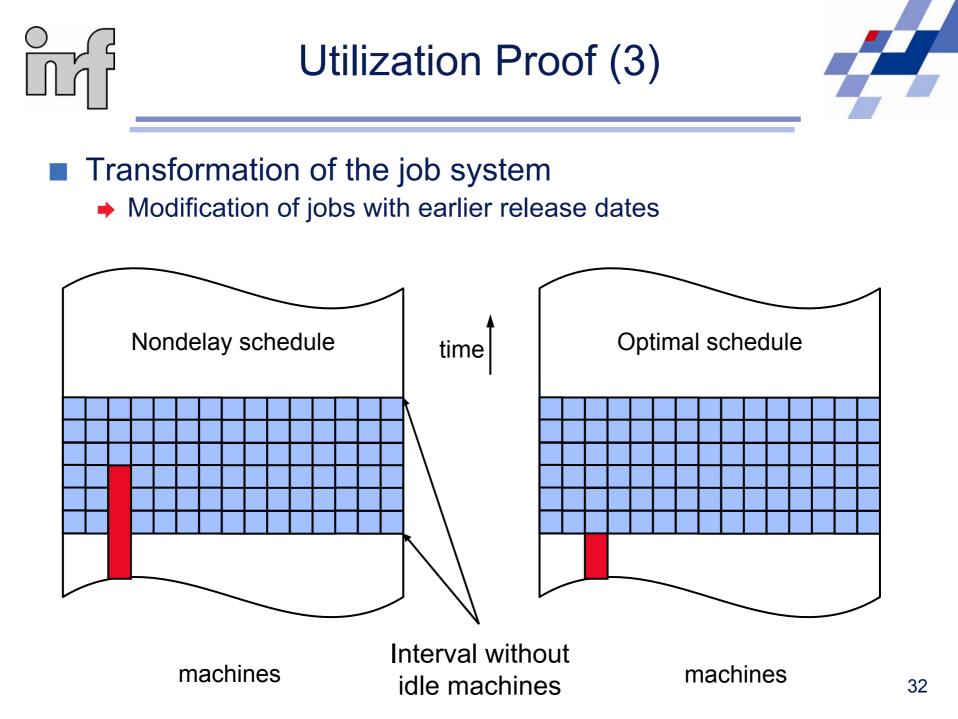
- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

- Utilization U_t is closely related to the makespan C_{max} if t=C_{max}.
 - ➡ In online job scheduling problems, there is no last submitted job.
 - U_t with t being the actual time is better suited than the makespan objective.
- $\blacksquare P_m |r_j| U_t$
 - Nonclairvoyant online scheduling: tight competitive factor for any nondelay schedule 1.3333 (Hussein, Schwiegelshohn, 2006)
 - Proof by induction on the different release dates.

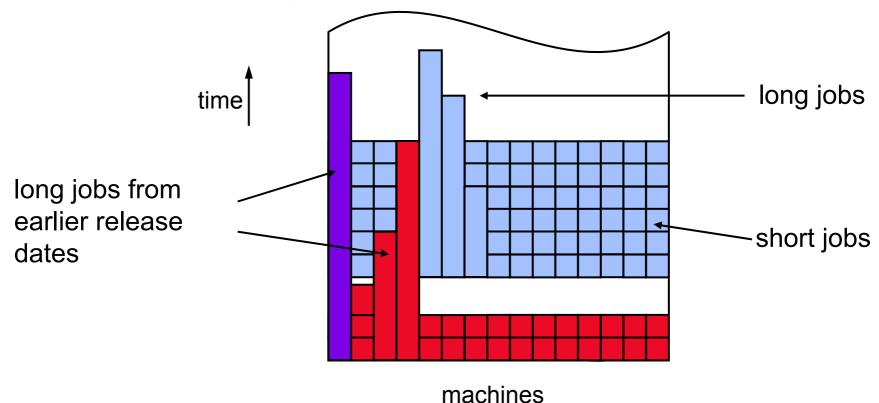


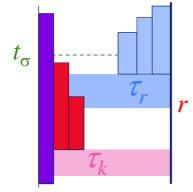




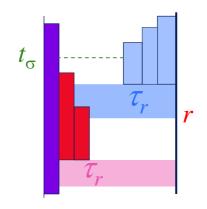


If all long jobs of a transformed job system start at their release date, then the utilization is maximal for all t and the equal priority completion time is minimal.

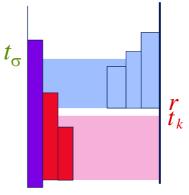




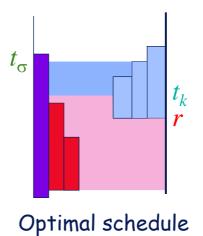
Nondelay schedule S



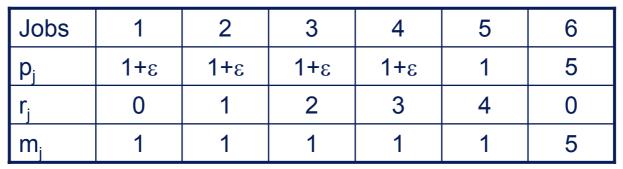
Nondelay schedule S

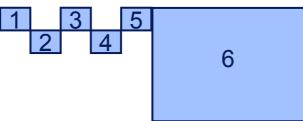


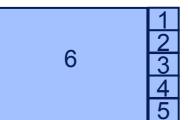
Optimal schedule



- Parallel jobs may cause intermediate idle time even if all jobs are released at time 0.
- Nonclairvoyant online scheduling:
 - \blacklozenge Competitive factor \rightarrow m in the worst case
 - Competitive factor \rightarrow 2 if the actual time >> max{p_i}



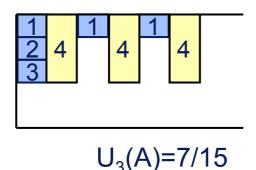


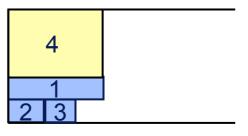


U₅(LIST)=0.2+0.16ε

U₅(OPT)=1

- Here, preemption of parallel jobs is based on gang scheduling.
 - All allocated machines concurrently start, interrupt, resume, and complete the execution of a parallel job.
 - There is no migration or change of parallelism.
- Nonclairvoyant online scheduling: competitive factor 4 (Schwiegelshohn, Yahyapour, 2000)





U₃(OPT)=14/15

Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

$P_m || \Sigma C_j$

• $P_m || \Sigma C_j$ is easy.

- Shortest processing time (SPT) (Conway, Maxwell, Miller, 1967)
- Single machine proof:
 - $\Sigma C_j = n p_{(1)} + (n-1) p_{(2)} + ... 2 p_{(n-1)} + p_{(n)}$
 - $p_{(1)} \le p_{(2)} \le p_{(3)} \le \dots \le p_{(n-1)} \le p_{(n)}$ must hold for an optimal schedule.
- Parallel identical machines proof:
 - Dummy jobs with processing time 0 are added until n is a multiple of m.
 - The sum of the completion time has n additive terms with one coefficient each: m coefficients with value n/m m coefficients with value n/m – 1

m coefficients with value 1

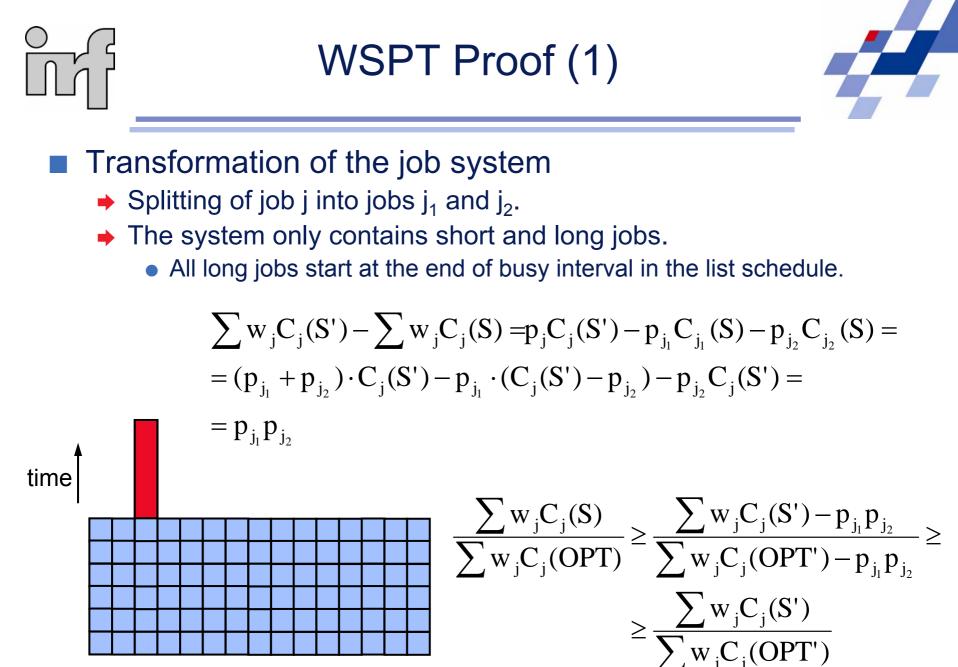
- If there is one coefficient h>n/m then there must be a coefficient k<n/m.
- Then we replace h with k+1 and obtain a smaller ΣC_j .

P_m $|prmp| \Sigma C_j$ is easy (Shortest remaining processing time).

• $P_m || \Sigma w_i C_j$ is strongly NP-hard.

- The WSPT algorithm has a tight approximation factor of 1.207 (Kawaguchi, Kyan, 1986)
- It is sufficient to consider instances where all jobs have the same ratio w_i/p_i.
- Proof by induction on the number of different ratios.
 - *J* is the set of all jobs with the largest ratio in an instance I.
 - The weights of all jobs in *J* are multiplied by a positive factor ε <1 such that those jobs now have the second largest ratio.
 - This produces instance I'.
 - The WSPT order is still valid.
 - The WSPT schedule remains unchanged.
 - The optimal schedule may change.

- y: contribution of all jobs not in J to $\Sigma w_j C_j (WSPT, I)$
- → x': contribution of all jobs in J to $\Sigma w_i C_j$ (OPT,I)
- y': contribution of all jobs not in J to $\Sigma w_i C_j$ (OPT,I)
- → $x \le \lambda \cdot x'$ (induction assumption)
- → $\Sigma w_j C_j (WSPT, I) = x + y$ and $\Sigma w_j C_j (WSPT, I') = \varepsilon \cdot x + y$,
- → $\Sigma w_j C_j (OPT,I) = x' + y'$ and $\Sigma w_j C_j (OPT,I') \le \varepsilon x' + y'$
- → $y \leq \lambda \cdot y' \rightarrow \Sigma w_j C_j (WSPT, I) \leq \lambda \cdot \Sigma w_j C_j (OPT, I)$
- $\Rightarrow y > \lambda \cdot y' \rightarrow \lambda \cdot x'y > x \cdot \lambda \cdot y' \rightarrow x'/y' > x/y \rightarrow x'y xy' > 0 \rightarrow x'y xy' > \varepsilon(x'y xy')$
- → $\Sigma w_j C_j (WSPT,I') \cdot \Sigma w_j C_j (OPT,I) = (\varepsilon \cdot x+y)(x'+y') > (\varepsilon \cdot x'+y')(x+y) ≥ \Sigma w_j C_j (OPT,I') \cdot \Sigma w_j C_j (WSPT,I)$
- → $\Sigma w_j C_j (WSPT, I) \leq \lambda \Sigma w_j C_j (OPT, I)$
- Assumption: w_i=p_i holds for all jobs j.



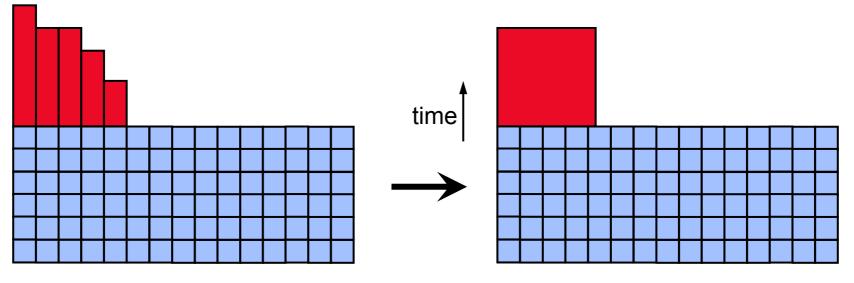
- Single machine without intermediate idle time
 - → w_i=p_i holds for all jobs.
 - $\sum w_j C_j(S) = \sum w_j C_j(OPT) = 0.5((\sum p_j)^2 + \sum p_j^2)$
 - Proof by induction on the number of jobs

$$\sum w_{j}C_{j}(S) = \frac{1}{2} \left(\left(\sum p_{j} \right)^{2} + \sum p_{j}^{2} \right) + p_{j'}(p_{j'} + \sum p_{j}) = \frac{1}{2} \left(\left(\sum p_{j} \right)^{2} + 2p_{j'} \sum p_{j} + p_{j'}^{2} \right) + \frac{1}{2} \left(\sum p_{j}^{2} + p_{j'}^{2} \right)$$

WSPT Proof (3)

Equalization of the long jobs

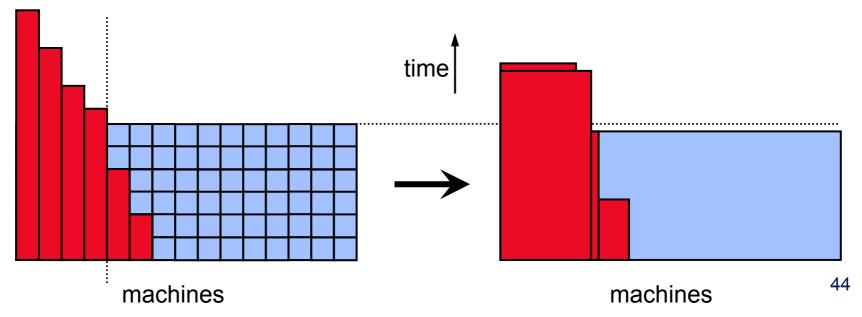
- Assumption of a continuous model (fraction of machines)
- k long jobs with different processing times are transformed into n(k) jobs with the same processing time p(k) such that ∑p_j=n(k) · p(k) and ∑p_j²=n(k) · (p(k))² hold.
- → $p(k) = \sum p_j^2 / \sum p_j$ and $n(k) = (\sum p_j)^2 / \sum p_j^2$
- → Then we have $k \ge n(k)$ for reasons of convexity.



WSPT Proof (4)

Modification of the job system

- Partitioning of the long jobs into two groups
- Equalization of the both groups separately
- The maximum completion time of the small jobs decreases due to the large rectangle.
- ➡ The jobs of the small rectangle are rearranged.
- New equalization of the large rectangle
- Determination of the size of the large rectangle



$\blacksquare \mathsf{P}_{\mathsf{m}} |\mathsf{r}_{\mathsf{j}}| \Sigma \mathsf{C}_{\mathsf{j}}$

- Approximation factor 2
- Clairvoyant, randomized online scheduling: competitive factor 2
- $\blacksquare P_m | \mathbf{r}_j, prmp | \Sigma \mathbf{C}_j$
 - Approximation factor 2
 - Clairvoyant, randomized online scheduling: competitive factor 2

$\blacksquare P_m |\mathbf{r}_j| \Sigma \mathbf{w}_j \mathbf{C}_j$

- Approximation factor 2
- Clairvoyant, randomized online scheduling: competitive factor 2
- $\blacksquare P_m | \mathbf{r}_j, prmp | \Sigma \mathbf{w}_j \mathbf{C}_j$
 - Approximation factor 2
 - Clairvoyant, randomized online scheduling: competitive factor 2 (all results Schulz, Skutella, 2002)

- $\blacksquare P_m | m_j, prmp | \Sigma w_j C_j$
 - Use of gang scheduling without any task migration
 - Approximation factor 2.37 (Schwiegelshohn, 2004)
- $\blacksquare P_m | m_j, prmp | \Sigma C_j$
 - Nonclairvoyant approximation factor 2-2/(n+1) if all jobs are malleable with linear speedup (Deng, Gu, Brecht, Lu, 2000).

$\blacksquare P_m |m_j| \Sigma w_j C_j$

- Approximation factor 7.11 (Schwiegelshohn, 2004)
- Approximation factor 2 if m_j≤0.5m holds for all jobs (Turek et al., 1994)
- $\blacksquare P_m |m_j| \Sigma C_j$
 - Approximation factor 2 if the jobs are malleable without superlinear speedup (Turek et al., 1994)

$\blacksquare P_m | m_j, r_j, prmp | \Sigma w_j C_j$

- Nonclairvoyant online scheduling with gang scheduling and w_j=m_j·p_j: competitive factor 3.562 (Schwiegelshohn, Yahyapour, 2000)
 - w_j=m_j · p_j guarantees that no job is preferred over another job regardless of its resource consumption as all jobs have the same (extended) Smith ratio.
 - All jobs are started in order of their arrival (FCFS).
 - Any job started after a job j can increase the flow time C_j-r_j by at most a factor of 2
- Clairvoyant online scheduling with malleable jobs and linear speedup:
 - Competitive factor 12+ ϵ for a deterministic algorithm
 - Competitive factor 8.67 for a randomized algorithm (both results Chakrabarti et al., 1996)

Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

MPP Problem

Machine model

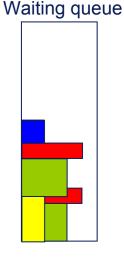
- → Massively parallel processor (MPP): m parallel identical machines
- Job model
 - Multiple independent users
 - Nonclairvoyant (unknown processing time p_i) with estimates
 - Online (submission over time r_j)
 - Fixed degree of parallelism m_i during the whole processing
 - No preemption

Objective

- Machine utilization
- Average weighted response time (AWRT): p_i · m_i · (C_i-r_i)
- Based on user groups

Reordering of the waiting queue

- Parameters of jobs in the waiting queue
- Actual time
- Scheduling situations: weekdays daytime (8am 6pm), weekdays nighttime (6pm – 8am), weekends
- Selected sorting criteria
- Selected objective
 - Consideration of 2 user groups: 10 AWRT₁+ 4 AWRT₂
- Parameter training with Evolution Strategies
 - Recorded workloads and simulations
 - Workload scaling for comparison



Workloads and User Groups

User Group	1	2	3	4	5
RC _u /RC	> 8%	2 – 8 %	1 – 2 %	0.1 – 1 %	< 0.1 %

User group definition

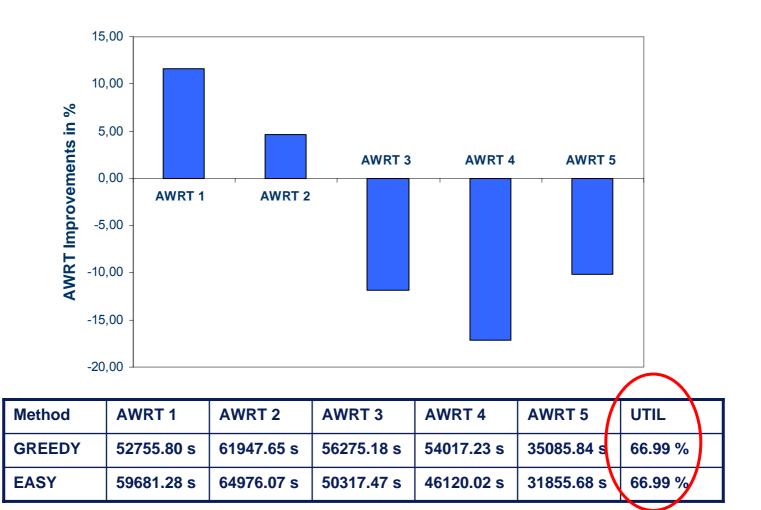
Identifier	СТС	КТН	LANL	SDSC 00	SDSC 95	SDSC 96	
Machine	SP2	SP2	CM-5	SP2	SP2	SP2	
Period	06/26/96 – 05/31/97	09/23/96 – 08/29/97	04/10/94 – 09/24/96	04/28/98 – 04/30/00	12/29/94 – 12/30/95	12/27/95 – 12/31/96	
Processors (m)	1024	1024	1024	1024	1024	1024	\triangleright
Jobs (<i>n</i>)	136471	167375	201378	310745	131762	66185	

Workload scaling

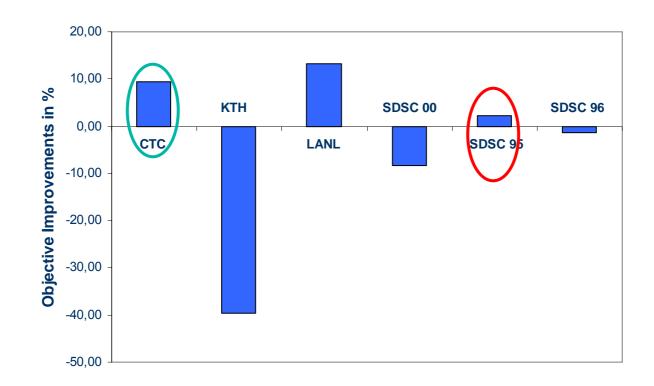
Sorting Criteria

$$\begin{split} f_{1}(Job) &= \sum_{i=1}^{|Groups|} w_{i} \cdot \left(K_{i} + a \cdot \frac{waitTime}{requestedTime} + b \cdot \frac{requestedTime}{processors} \right) \\ f_{2}(Job) &= \sum_{i=1}^{|Groups|} w_{i} \cdot \left(K_{i} + a \cdot waitTime + b \cdot \frac{requestedTime}{processors} \right) \\ f_{3}(Job) &= \sum_{i=1}^{|Groups|} w_{i} \cdot \left(K_{i} + a \cdot \frac{waitTime}{requestedTime \cdot processors} \right) \\ f_{4}(Job) &= \sum_{i=1}^{|Groups|} w_{i} \cdot \left(K_{i} + a \cdot waitTime + b \cdot requestedTime \cdot processors \right) \end{split}$$

Training of parameters w_i, K_i, a, b with Evolution Strategies

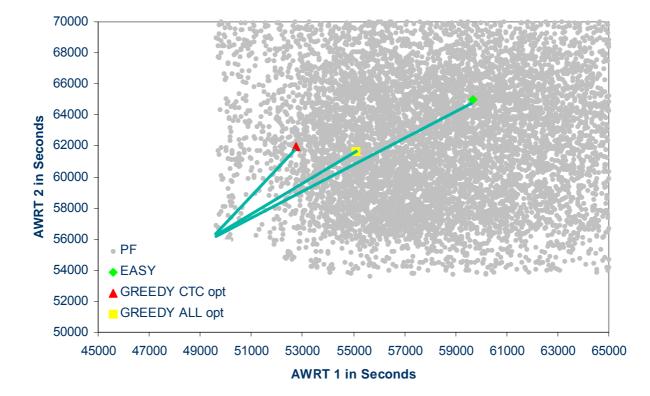


CTC Training and All Workloads

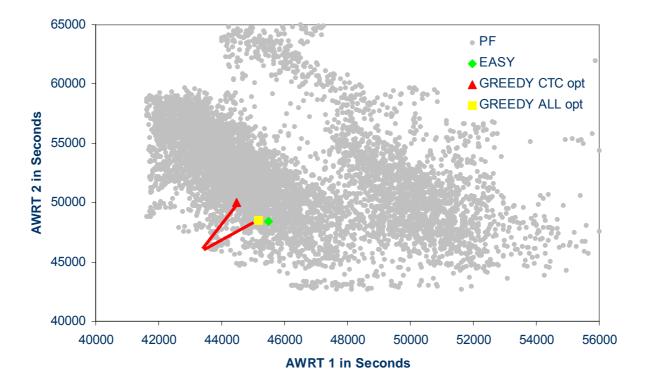


- Some workloads are similar (CTC, LANL).
- Some workloads are significantly different (CTC, KTH).

Results in CTC Paretofront



Results in SDSC 95 Paretofront



Most deterministic job scheduling problems are NP hard.

- Approximation algorithms
 - Polynomial time approximation schemes
 - Simple algorithms
- Complete problem knowledge is rare in practice.
 - Online algorithms
 - Competitive analysis
 - Stochastic scheduling
 - Randomized algorithms
- Challenges
 - Partial information
 - Recorded workloads
 - User estimates
 - Scheduling objectives and constraints