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A preliminary story

Once upon a time two friends who want to gather some friends to
share their interest for a topic (music, swimming, yoga or
whatever) in a nice resort on the french riviera.

Official story :
Two senior researchers of a well-known Institut want to gather
some colleagues and young researchers to disseminate the most
recent scientific results on scheduling theory in a thematic school
in the frame of the National Council of Research...
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A preliminary story

The duration is 5 days.
They first selected some pairs (topic,speaker). Some are more
popular than others (good topic with good speaker, but also bad
topic with good speaker, etc.).
As they have to pay for the equipments for the whole week, they
must determine the best repartition of talks for attracting the
maximum number of participants.
Available time slots are not evenly distributed in the week (it is
better to deliver a talk wenesday morning before the banquet
instead of monday early morning when many participants are not
still arrived or friday afternoon when most people already left...
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Users and organizers point of view

The participants are very busy people, thus, they want to come the
minimum time and attend the maximum of good talks.
The participants want to maximize the number of good pairs
(topic,speaker) (they have payed for !).

The organizers want to maximize the number of participants in
each lecture.

Denis Trystram, Grenoble University Multi-criteria scheduling



Introduction
Basics on classical scheduling

multi-objective scheduling
One step further

Fairness
Alternative approach

Conclusion

bi-criteria problem

This is a typical bi-criteria assignment problem.
It is easy to find a good solution for each criterion, however, it is
not always satisfactory for the other...

Multi-objective optimization is a rather new topic which motivates
a lot of people.
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Optimizing one objective has been widely studied for many
combinatorial problems including scheduling.

Scheduling is a problem that has many variants.
The most popular objective is the makespan which is informally
defined as the time of the last finishing task (completion time) of
an application represented by a precedence task graph.
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Notations
Single objective scheduling problem

Traditional scheduling – Framework

Application a weighted DAG G = (V ,E )

V = set of tasks (indexed from 1 to n)
E = dependency relations
pi = computational cost of task i (execution
time)
c(i , j) = communication cost (data sent from
task i to j)

Platform Set of m processors (identical, uniform, dedicated, ...)

Schedule

σ(i) = date to start the execution of task i
π(i) = processor assigned to it
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Notations
Single objective scheduling problem

Traditional scheduling – Constraints

Data dependencies If (i , j) ∈ E then

if π(i) = π(j) then σ(i) + pi ≤ σ(j)
if π(i) 6= π(j) then σ(i) + pi + c(i , j) ≤ σ(j)

Resource constraints

π(i) = π(j) ⇒ [σ(i), σ(i) + pi [
⋂

[σ(j), σ(j) + pj [= ∅
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Notations
Single objective scheduling problem

Traditional scheduling – Objective functions

Completion time of task i : Ci = σ(i) + pi

Makespan or total execution time (the most studied one)

Cmax(σ) = max
i∈V

(Ci )

Other classical objectives : Sum of completion times (minsum)
With arrival times : maximum flow or sum flow
Stretch
Tardiness
Fairness
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Notations
Single objective scheduling problem

Single objective problem

Scheduling Problem.

Determine σ : when and where the computational units (tasks) will
be executed.

Theorem

Minimizing the makespan (basic problem) is NP-Hard [Ullman75]

Solutions may be obtained by exact methods, purely heuristic
methods, or approximation methods.
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Notations
Single objective scheduling problem

Solving the single objective problem

Let us recall briefly the various possible ways for solving the
problem :

Single Objective Problem (time, quality)

Greedy Heuristic
Exact Solutions

Meta_Heuristic
Approximation 

Algorithms?
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Notations
Single objective scheduling problem

Approximation algorithms

See the lecture of Jean-Claude Konig.
Problems are classified by approximation classes (FPTAS, PTAS,
APX).

Well-established techniques since years.
We focus on ρ-approximation algorithms. In particular,
dual-approximation [Hochbaum].
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Pareto optimality
Solving the multi-objective scheduling problem

Introduction

Today, there is an increasing interest in considering a big variety of
criteria. Taking into account the diversity of points of view is a
recent challenge.
In the jungle of criteria, the tendency is to imagine his own criteria
which would not be considered usually.
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Previous works

Cmax and tardy jobs [Hoogeven 1995].

Web access problem (tri criteria) [Papadimitriou in FOCS
2000]. Selection of Web sites for sources of an information.
Three objectives : access time, cost and success probability.

Cmax versus minsum for Parallel jobs in computational grids.

Not linear criteria : Reliability or Energy versus performance.

Fairness [Agnetis 2004].
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Philosophical discusssion

Make clear first that that multi-objective problem is an
optimization problem, and not really a decision one.

The central problem here is the trade-off between all feasible
solutions. There are a lot of ”good” solutions...

Property

The only reasonable answer is to give all the good solutions.
Determining one of them is external to the optimization.

Good solutions are Pareto optimal solutions.
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Solving the multi-objective scheduling problem

Definition

Definition.

A solution is Pareto optimal iif no solution is as good as it is for all
the objectives and is better for at least one objective.
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min(C1,C2)
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Dominated solutions
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Pareto optimal points and curve
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Pareto optimality
Solving the multi-objective scheduling problem

Complexity (1)

The theoretical framework on multi-objectives in recent, and thus,
the domain lacks of concepts, tools, etc..

For instance, how to define the complexity classes in
multi-objective optimization ? Some tentatives like [T’Kindt
2004].
Similarly for approximation classes.

Denis Trystram, Grenoble University Multi-criteria scheduling



Introduction
Basics on classical scheduling

multi-objective scheduling
One step further

Fairness
Alternative approach

Conclusion

Pareto optimality
Solving the multi-objective scheduling problem

Complexity (1)

The theoretical framework on multi-objectives in recent, and thus,
the domain lacks of concepts, tools, etc..
For instance, how to define the complexity classes in
multi-objective optimization ? Some tentatives like [T’Kindt
2004].

Similarly for approximation classes.

Denis Trystram, Grenoble University Multi-criteria scheduling



Introduction
Basics on classical scheduling

multi-objective scheduling
One step further

Fairness
Alternative approach

Conclusion

Pareto optimality
Solving the multi-objective scheduling problem

Complexity (1)

The theoretical framework on multi-objectives in recent, and thus,
the domain lacks of concepts, tools, etc..
For instance, how to define the complexity classes in
multi-objective optimization ? Some tentatives like [T’Kindt
2004].
Similarly for approximation classes.

Denis Trystram, Grenoble University Multi-criteria scheduling



Introduction
Basics on classical scheduling

multi-objective scheduling
One step further

Fairness
Alternative approach

Conclusion

Pareto optimality
Solving the multi-objective scheduling problem

Complexity (2)

Two easy single objective problems can lead to a hard bi-objective
problem :

Let consider two sets of independent jobs J1 and J2 to schedule on
1 machine. The single objective problem is to minimize the
minsum over each set Ji (i = 1, 2).
The solution is easy by SPT (Shortest Processing Time) list
algorithm.
The bi-objective problem is to minimize the minsum on both sets.
The idea of the proof is to show that the decision of the problem is
NP-hard (given a pair of values, deciding if there is at least one
point which is better than this pair).
Remark that we can easily check if a given solution of the
bi-objective problem is optimal (by SPT).
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Complexity (3)

What is the size of the optimum of an optimization problem ?

Single objective problems : usually, only one value of the
solution

multi-objective problems : exponential number of solutions
(or even infinite number of solutions). Sometimes, there are
only a few solutions...

It is linked to the cardinality of the Pareto curve.
For instance, the cardinality of the curve on the previous example
is exponential. Remark that even if the cardinal of the curve is
polynomial, the problem can be hard...
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Overview of the existing approaches

Just observe.

Aggregation (linear or convex) of objectives. How to do it ?
Remark that we implicitly take position while aggregating.
The solution is Pareto optimal but we obtain only those on
the convex hull (and not all these points).

Change some objectives into constraints. Popular in Linear
Programming.

Hierarchy between objectives : give them different priorities

True multi-objective analysis : find approximations.

Summarize : We focus on the last approach, remark that it is not
contradictory with the others.
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Preliminary about minsum and Cmax

7 8 9 91 2

max
i

(Ci ) = 9∑
i

Ci = 24

max
i

(Ci ) = 9∑
i

Ci = 12
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A first case study : related objectives (1)

Preliminary remark : Cmax seems to be ”easier” than
∑

Ci (but it
is not).
1 machine scheduling and independent tasks : SPT (Shortest
Processing Time) is polynomial for

∑
Ci All compact schedules are

optimal ones for Cmax .
For any fixed m, SPT is optimal for

∑
Ci (argument : total order

on the starting times).
and Cmax is NP-complete (reduction form Partition).
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A first case study : related objectives (2)

Remark : the principle of list algorithms is to select jobs. Thus, it
is easy to mix the choices.
The idea here is that there is the same variable behind both
objectives. Thus, we can design ”good” greedy algorithms in
optimizing one objective while controlling the impact on the other.
The degradation will be controlled locally.
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A first static scheme

Stein and Wein have proposed a nice bi-objective construction by
combining two known algorithm (one for each objective).

More precisely :

(minsum,makespan) guarantee

Let r and r ′ the approximation ratio of scheduling algorithms A
and A’ on m machines relatively to minsum and Cmax for parallel

moldable tasks.
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Stein and Wein’s algorithm
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Analysis

Property

The previous algorithm is a (2r , 2r ′)-approximation.

Cmax is multiplied by a factor 2 (by construction) leading to
2r ′-approximation.
minsum is also no more than twice the minsum of the initial
algorithm.
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Application

Property.

Let us apply the previous scheme to the best known existing
algorithms.

It leads to (8.53)-approximation of minsum and
3
2 -approximation for Cmax .

We can refine the previous scheme by cutting before 3
2C ∗

max : at
t 3

2C ∗
max (t ≤ 1).
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Summary
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A dynamic scheme

Problem

We consider :

independent moldable tasks

identical processors

fully connected

objective function : makespan and minsum

Now, let us describe a dynamic scheme.
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Preliminary definition

ρ-MSWP

A ρ-approximation algorithm solving the Maximum Scheduled
Weight Problem (MSWP) takes as input :

a set of weighted jobs

a deadline D

Selects some jobs, and produces :

a schedule of length ρD

with as much weight as the optimal schedule does in D units
of time.
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We improved an execution scheme presented by [Hall et al. 96] :

Algorithm

find the smallest possible
execution time tmin

make a box of size 2ρtmin

fill the box with as much
weight as possible (with a
ρ-MSWP algorithm)

double the size of the box
and continue
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Pareto optimality
Solving the multi-objective scheduling problem

Improvements

1 off-line

2 better ρ-MSWP algorithm

3 parameter α

(makespan ;minsum) guaranty(
α

α−1ρ; α2

α−1ρ
)
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Pareto optimality
Solving the multi-objective scheduling problem

This scheme can be used in several cases, depending on the
underlying ρ-MSWP algorithm :

rigid parallel tasks

moldable tasks

hierarchical moldable tasks

We may also use it in an on-line setting
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Links with Game Theory

Setting the problem

Let us consider several users of a computational grid.
Each one has his-her own criterion :

minimum completion time

10 percents of the jobs completed as soon as possible

all results no later than 2 days

etc..
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Informal discussion

The Pareto optimal solutions are not all equivalent for the agents.
This is not our problem and we have no tool for comparing the
pairs (Cmax, minsum).

We restrict the presentation to bi-objective problems.
Each objective is associated to a ”agent” (a player who can not
take any decision).
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Setting of the problem

We need a ”tool” for comparing the solutions between them : this
is the Utility function.
It reflects a preference relation for ordering the solutions for each
agent.

Let �i denote the reference relation between solutions (pairs of
values of objectives) for i .

Definition.

Utility for i (or playoff) ui (i = 1, 2) is an application which
verifies : ui (a) ≥ ui (b) iif a �i b
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Fair solution

Is the notion of utility enough ?
Hard for the previous (Cmax ,minsum) problem. It is possible to
order all local solutions, but the ordering is only ordinal and not
cardinal.

We restrict the analysis to optimization problems with the same
objective applied on several (here 2) sub-sets (see Agnetis for more
details).
Fair solutions are defined by a principle of transfer between Pareto
optimal solutions.
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Example (Agnetis)

2 agents (blue and red) aiming at minimizing minsum on their own
subset of jobs.
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General Conclusion

Increasing interest for the multi-objective analysis.
Much harder problem which still lacks of tools.

After the break, let us present another view on the fairness : Cake
division.
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