Divisible load theory

Frédéric Vivien

e-mail: Frederic.Vivien@inria.fr

October 2, 2013

Overview

- The context
- 2 Bus-like network: classical resolution
- 3 Bus-like network: resolution under the divisible load model
- 4 Star-like network
- Multi-round algorithms
- 6 Conclusion

Overview

- 1 The context
- 2 Bus-like network: classical resolution
- Bus-like network: resolution under the divisible load model
- 4 Star-like network
- Multi-round algorithms
- 6 Conclusion

Context of the study

- Scientific computing: large needs in computation or storage resources.
- ▶ Need to use systems with "several processors":
 - Parallel computers with shared memory.
 - Parallel computers with distributed memory.
 - Clusters.
 - Heterogeneous clusters.
 - ► Clusters of clusters.
 - ► Network of workstations.
 - ► The Grid.
- Problematic: to take into account the heterogeneity at the algorithmic level.

New platforms, new problems

Execution platforms: Distributed heterogeneous platforms (network of workstations, clusters, clusters of clusters, grids, etc.)

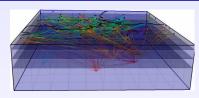
New sources of problems

- Heterogeneity of processors (computational power, memory, etc.)
- Heterogeneity of communications links.
- Irregularity of interconnection network.
- Non dedicated platforms.

We need to adapt our algorithmic approaches and our scheduling strategies: new objectives, new models, etc.

An example of application: seismic tomography of the Earth

 Model of the inner structure of the Earth



- ▶ The model is validated by comparing the propagation time of a seismic wave in the model to the actual propagation time.
- ▶ Set of all seismic events of the year 1999: 817, 101
- Original program written for a parallel computer:

Applications covered by the divisible load model

Applications made of a very (very) large number of fine grain computations.

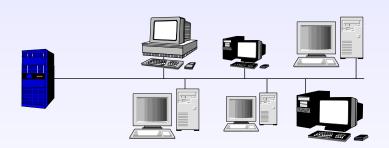
Computation time proportional to the size of the data to be processed.

Independent computations: neither synchronizations nor communications.

Overview

- 1 The context
- 2 Bus-like network: classical resolution
- Bus-like network: resolution under the divisible load model
- 4 Star-like network
- Multi-round algorithms
- 6 Conclusion

Bus-like network



- ► The links between the master and the slaves all have the same characteristics.
- ▶ The slave have different computation power.

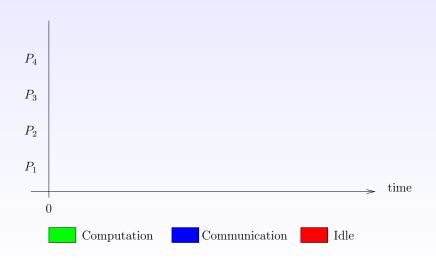
▶ A set P_1 , ..., P_p of processors

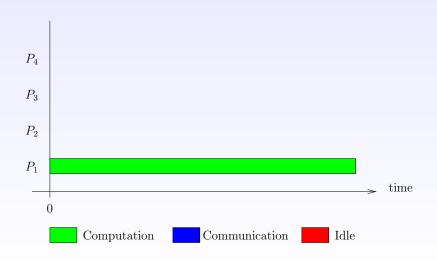
- ▶ A set P_1 , ..., P_p of processors
- $ightharpoonup P_1$ is the master processor: initially, it holds all the data.

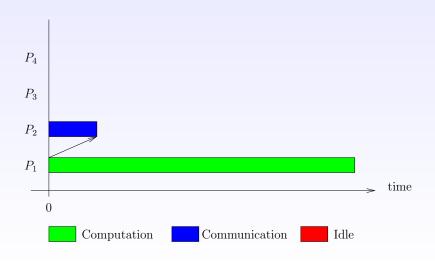
- ▶ A set P_1 , ..., P_p of processors
- $ightharpoonup P_1$ is the master processor: initially, it holds all the data.
- ▶ The overall amount of work: W_{total} .

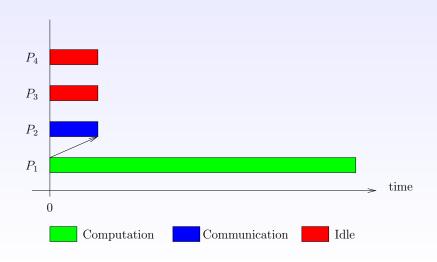
- ▶ A set P_1 , ..., P_p of processors
- $ightharpoonup P_1$ is the master processor: initially, it holds all the data.
- ▶ The overall amount of work: W_{total} .
- ▶ Processor P_i receives an amount of work: $n_i \in \mathbb{N}$ with $\sum_i n_i = W_{\mathsf{total}}$. Length of a unit-size work on processor P_i : w_i . Computation time on P_i : $n_i w_i$.

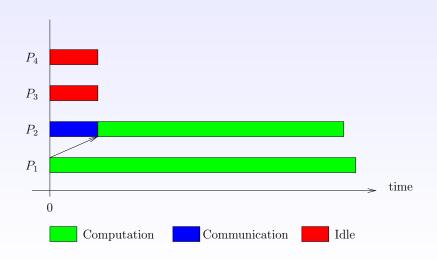
- ▶ A set P_1 , ..., P_p of processors
- $ightharpoonup P_1$ is the master processor: initially, it holds all the data.
- ▶ The overall amount of work: W_{total} .
- ▶ Processor P_i receives an amount of work: $n_i \in \mathbb{N}$ with $\sum_i n_i = W_{\mathsf{total}}$. Length of a unit-size work on processor P_i : w_i . Computation time on P_i : $n_i w_i$.
- ► Time needed to send a unit-message from P₁ to P_i: c. One-port bus: P₁ sends a single message at a time over the bus, all processors communicate at the same speed with the master.

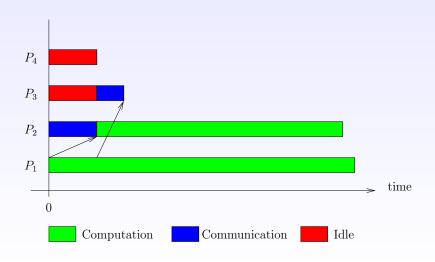


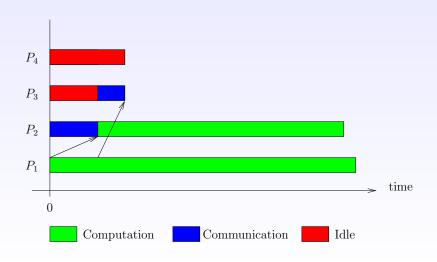


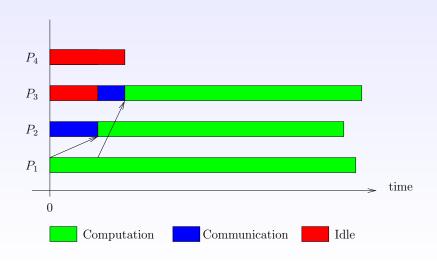


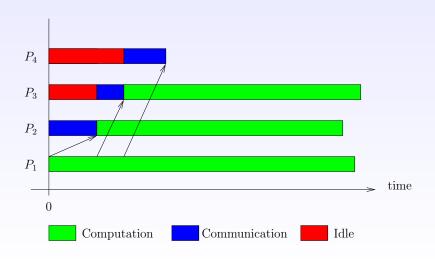


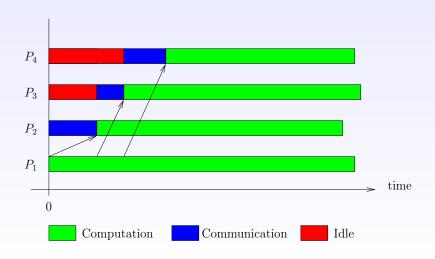


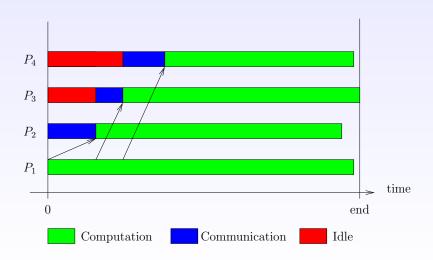












▶ The master sends its chunk of n_i data to processor P_i in a single sending.

- ▶ The master sends its chunk of n_i data to processor P_i in a single sending.
- ▶ The master sends their data to the processors, serving one processor at a time, in the order P_2 , ..., P_p .

- ▶ The master sends its chunk of n_i data to processor P_i in a single sending.
- ▶ The master sends their data to the processors, serving one processor at a time, in the order P_2 , ..., P_p .
- ▶ During this time the master processes its n_1 data.

- ▶ The master sends its chunk of n_i data to processor P_i in a single sending.
- ▶ The master sends their data to the processors, serving one processor at a time, in the order P_2 , ..., P_p .
- ▶ During this time the master processes its n_1 data.
- ► A slave does not start the processing of its data before it has received all of them.

 P_1 : $T_1 = n_1.w_1$

- P_1 : $T_1 = n_1.w_1$
- P_2 : $T_2 = n_2.c + n_2.w_2$

- P_1 : $T_1 = n_1.w_1$
- P_2 : $T_2 = n_2.c + n_2.w_2$
- $P_3: T_3 = (n_2.c + n_3.c) + n_3.w_3$

$$P_1$$
: $T_1 = n_1.w_1$

$$P_2$$
: $T_2 = n_2.c + n_2.w_2$

$$P_3$$
: $T_3 = (n_2.c + n_3.c) + n_3.w_3$

$$ightharpoonup P_i$$
: $T_i = \sum_{j=2}^i n_j.c + n_i.w_i$ for $i \ge 2$

- P_1 : $T_1 = n_1.w_1$
- P_2 : $T_2 = n_2.c + n_2.w_2$
- P_3 : $T_3 = (n_2.c + n_3.c) + n_3.w_3$
- ▶ P_i : $T_i = \sum_{j=2}^{i} n_j.c + n_i.w_i$ for $i \ge 2$
- ▶ P_i : $T_i = \sum_{j=1}^i n_j.c_j + n_i.w_i$ for $i \ge 1$ with $c_1 = 0$ and $c_j = c$ otherwise.

Execution time

$$T = \max_{1 \le i \le p} \left(\sum_{j=1}^{i} n_j \cdot c_j + n_i \cdot w_i \right)$$

We look for a data distribution n_1 , ..., n_p which minimizes T.

Execution time: rewriting

$$T = \max \left(n_1.c_1 + n_1.w_1, \max_{2 \le i \le p} \left(\sum_{j=1}^{i} n_j.c_j + n_i.w_i \right) \right)$$

$$T = n_1.c_1 + \max\left(n_1.w_1, \max_{2 \le i \le p} \left(\sum_{j=2}^{i} n_j.c_j + n_i.w_i\right)\right)$$

An optimal solution for the distribution of W_{total} data over p processors is obtained by distributing n_1 data to processor P_1 and then optimally distributing $W_{\mathsf{total}} - n_1$ data over processors P_2 to P_p .

Algorithm

```
1: solution[0, p] \leftarrow cons(0, NIL); cost[0, p] \leftarrow 0
 2: for d \leftarrow 1 to W_{\text{total}} do
 3: solution[d, p] \leftarrow cons(d, NIL)
 4:
        cost[d, p] \leftarrow d \cdot c_p + d \cdot w_p
 5: for i \leftarrow p-1 downto 1 do
        solution[0, i] \leftarrow cons(0, solution[0, i + 1])
 6:
 7:
       cost[0,i] \leftarrow 0
 8:
        for d \leftarrow 1 to W_{\text{total}} do
 9:
            (sol, min) \leftarrow (0, cost[d, i+1])
10:
           for e \leftarrow 1 to d do
               m \leftarrow e \cdot c_i + \max(e \cdot w_i, cost[d - e, i + 1])
11:
12:
               if m < min then
13:
                   (sol, min) \leftarrow (e, m)
14:
            solution[d, i] \leftarrow cons(sol, solution[d - sol, i + 1])
15:
            cost[d, i] \leftarrow min
16: return (solution[W_{total}, 1], cost[W_{total}, 1])
```

Complexity

Theorical complexity

$$O(W_{\mathsf{total}}^2 \cdot p)$$

Complexity in practice

If $W_{\rm total}=817,101$ and p=16, on a Pentium III running at 933 MHz: more than two days... (in 2002) (Optimized version ran in 6 minutes.)

Disadvantages

Cost

Solution is not reusable

Solution is only partial

We do not need the solution to be so precise

Overview

- 1 The context
- 2 Bus-like network: classical resolution
- 3 Bus-like network: resolution under the divisible load model
- 4 Star-like network
- Multi-round algorithms
- 6 Conclusion

Notation

- ▶ A set P_1 , ..., P_p of processors
- $ightharpoonup P_1$ is the master processor: initially, it holds all the data.
- ▶ The overall amount of work: W_{total} .
- ▶ Processor P_i receives an amount of work $\alpha_i W_{\text{total}}$ with $\alpha_i W_{\text{total}} \in \mathbb{Q}$ and $\sum_i \alpha_i = 1$. Length of a unit-size work on processor P_i : w_i . Computation time on P_i : $\alpha_i W_{\text{total}} w_i$.
- ► Time needed to send a unit-message from P₁ to P_i: c. One-port model: P₁ sends a single message at a time, all processors communicate at the same speed with the master.

Equations

For processor P_i (with $c_1 = 0$ and $c_j = c$ otherwise):

$$T_i = \sum_{j=1}^{i} \alpha_j W_{\mathsf{total}}.c_j + \alpha_i W_{\mathsf{total}}.w_i$$

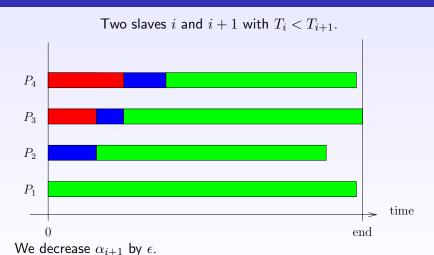
$$T = \max_{1 \leq i \leq p} \left(\sum_{j=1}^{i} \alpha_j W_{\mathsf{total}}.c_j + \alpha_i W_{\mathsf{total}}.w_i \right)$$

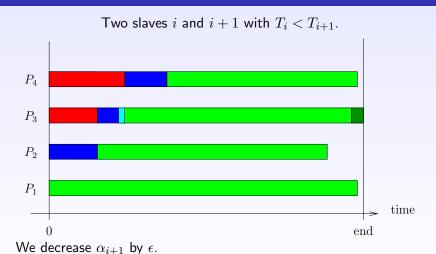
We look for a data distribution $\alpha_1, ..., \alpha_p$ which minimizes T.

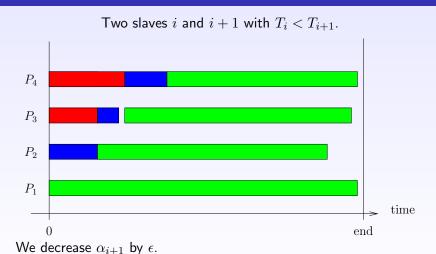
Properties of load-balancing

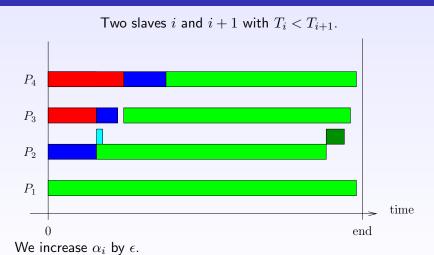
Lemma

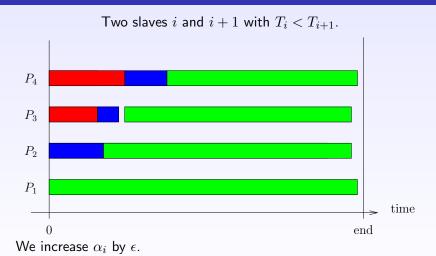
In an optimal solution, all processors end their processing at the same time.

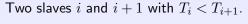


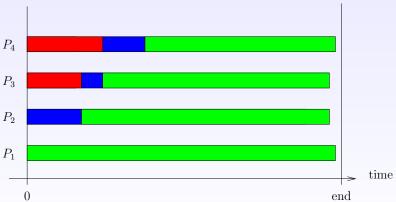




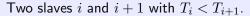


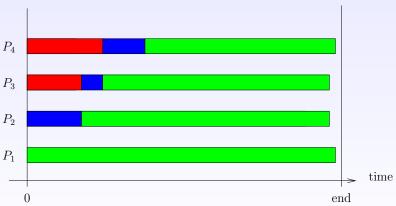






The communication time for the following processors is unchanged.





We end up with a better solution!

Demonstration of lemma 1 (continuation and conclusion)

▶ Ideal: $T'_i = T'_{i+1}$. We choose ϵ such that:

$$\begin{split} (\alpha_i + \epsilon) W_{\mathsf{total}}(c + w_i) = \\ (\alpha_i + \epsilon) W_{\mathsf{total}} c + (\alpha_{i+1} - \epsilon) W_{\mathsf{total}}(c + w_{i+1}) \end{split}$$

- ▶ The master stops before the slaves: absurde.
- ▶ The master stops after the slaves: we decrease P_1 by ϵ .

Property for the selection of ressources

Lemma

In an optimal solution all processors work.

Property for the selection of ressources

Lemma

In an optimal solution all processors work.

Demonstration: this is just a corollary of lemma 1...

$$T = \alpha_1 W_{\mathsf{total}} w_1.$$

$$T = \alpha_1 W_{\mathsf{total}} w_1.$$

$$T = \alpha_2(c+w_2)W_{\mathsf{total}}.$$
 Therefore $\alpha_2 = \frac{w_1}{c+w_2}\alpha_1.$

$$T = \alpha_1 W_{\mathsf{total}} w_1.$$

$$T=lpha_2(c+w_2)W_{\mathsf{total}}.$$
 Therefore $lpha_2=rac{w_1}{c+w_2}lpha_1.$

$$T=(\alpha_2 c + \alpha_3 (c+w_3))W_{\rm total}.$$
 Therefore $\alpha_3=\frac{w_2}{c+w_3}\alpha_2.$

$$\begin{split} T &= \alpha_1 W_{\mathsf{total}} w_1. \\ T &= \alpha_2 (c + w_2) W_{\mathsf{total}}. \text{ Therefore } \alpha_2 = \frac{w_1}{c + w_2} \alpha_1. \\ T &= (\alpha_2 c + \alpha_3 (c + w_3)) W_{\mathsf{total}}. \text{ Therefore } \alpha_3 = \frac{w_2}{c + w_3} \alpha_2. \\ \alpha_i &= \frac{w_{i-1}}{c + w_i} \alpha_{i-1} \text{ for } i \geq 2. \end{split}$$

 $\sum_{i=1}^{n} \alpha_i = 1.$

$$T=lpha_1W_{ ext{total}}w_1.$$

$$T=lpha_2(c+w_2)W_{ ext{total}}. ext{ Therefore } lpha_2=rac{w_1}{c+w_2}lpha_1.$$

$$T=(lpha_2c+lpha_3(c+w_3))W_{ ext{total}}. ext{ Therefore } lpha_3=rac{w_2}{c+w_3}lpha_2.$$

$$lpha_i=rac{w_{i-1}}{c+w_i}lpha_{i-1} ext{ for } i\geq 2.$$

$$T = \alpha_1 W_{\mathsf{total}} w_1.$$

$$T=lpha_2(c+w_2)W_{\mathsf{total}}.$$
 Therefore $lpha_2=rac{w_1}{c+w_2}lpha_1.$

$$T=(\alpha_2 c + \alpha_3 (c+w_3))W_{\rm total}.$$
 Therefore $\alpha_3=\frac{w_2}{c+w_3}\alpha_2.$

$$\alpha_i = \tfrac{w_{i-1}}{c+w_i}\alpha_{i-1} \text{ for } i \geq 2.$$

$$\sum_{i=1}^{n} \alpha_i = 1.$$

$$\alpha_1 \left(1 + \frac{w_1}{c + w_2} + \dots + \prod_{k=2}^j \frac{w_{k-1}}{c + w_k} + \dots \right) = 1$$

Impact of the order of communications

How important is the influence of the ordering of the processor on the solution ?

?

Processor
$$P_i$$
: $\alpha_i(c+w_i)W_{\text{total}} = T$. Therefore $\alpha_i = \frac{1}{c+w_i}\frac{T}{W_{\text{total}}}$.

Processor
$$P_i$$
: $\alpha_i(c+w_i)W_{\text{total}} = T$. Therefore $\alpha_i = \frac{1}{c+w_i}\frac{T}{W_{\text{total}}}$.

Processor
$$P_{i+1}$$
: $\alpha_i c W_{\mathsf{total}} + \alpha_{i+1} (c + w_{i+1}) W_{\mathsf{total}} = T$.

Processor
$$P_i$$
: $\alpha_i(c+w_i)W_{\text{total}} = T$. Therefore $\alpha_i = \frac{1}{c+w_i}\frac{T}{W_{\text{total}}}$.

$$\begin{array}{l} \textbf{Processor} \ P_{i+1} \textbf{:} \ \alpha_i c W_{\mathsf{total}} + \alpha_{i+1} (c+w_{i+1}) W_{\mathsf{total}} = T. \\ \mathsf{Thus} \ \alpha_{i+1} = \frac{1}{c+w_{i+1}} (\frac{T}{W_{\mathsf{total}}} - \alpha_i c) = \frac{w_i}{(c+w_i)(c+w_{i+1})} \frac{T}{W_{\mathsf{total}}}. \end{array}$$

Volume processed by processors P_i and P_{i+1} during a time T.

Processor
$$P_i$$
: $\alpha_i(c+w_i)W_{\text{total}} = T$. Therefore $\alpha_i = \frac{1}{c+w_i}\frac{T}{W_{\text{total}}}$.

$$\begin{array}{l} \textbf{Processor} \ P_{i+1} \textbf{:} \ \alpha_i c W_{\mathsf{total}} + \alpha_{i+1} (c+w_{i+1}) W_{\mathsf{total}} = T. \\ \mathsf{Thus} \ \alpha_{i+1} = \frac{1}{c+w_{i+1}} (\frac{T}{W_{\mathsf{total}}} - \alpha_i c) = \frac{w_i}{(c+w_i)(c+w_{i+1})} \frac{T}{W_{\mathsf{total}}}. \end{array}$$

Processors P_i and P_{i+1} :

$$\alpha_i + \alpha_{i+1} = \frac{c + w_i + w_{i+1}}{(c + w_i)(c + w_{i+1})}$$

We compare processors P_1 and P_2 .

We compare processors P_1 and P_2 .

Processor P_1 : $\alpha_1 w_1 W_{\text{total}} = T$. Then, $\alpha_1 = \frac{1}{w_1} \frac{T}{W_{\text{total}}}$.

We compare processors P_1 and P_2 .

Processor
$$P_1$$
: $\alpha_1 w_1 W_{\text{total}} = T$. Then, $\alpha_1 = \frac{1}{w_1} \frac{T}{W_{\text{total}}}$.

Processor
$$P_2$$
: $\alpha_2(c+w_2)W_{\rm total}=T.$ Thus, $\alpha_2=\frac{1}{c+w_2}\frac{T}{W_{\rm total}}.$

We compare processors P_1 and P_2 .

Processor P_1 : $\alpha_1 w_1 W_{\text{total}} = T$. Then, $\alpha_1 = \frac{1}{w_1} \frac{T}{W_{\text{total}}}$.

Processor P_2 : $\alpha_2(c+w_2)W_{\text{total}} = T$. Thus, $\alpha_2 = \frac{1}{c+w_2}\frac{T}{W_{\text{total}}}$.

Total volume processed:

$$\alpha_1 + \alpha_2 = \frac{c + w_1 + w_2}{w_1(c + w_2)} = \frac{c + w_1 + w_2}{cw_1 + w_1w_2}$$

We compare processors P_1 and P_2 .

Processor P_1 : $\alpha_1 w_1 W_{\text{total}} = T$. Then, $\alpha_1 = \frac{1}{w_1} \frac{T}{W_{\text{total}}}$.

Processor P_2 : $\alpha_2(c+w_2)W_{\text{total}} = T$. Thus, $\alpha_2 = \frac{1}{c+w_2}\frac{T}{W_{\text{total}}}$.

Total volume processed:

$$\alpha_1 + \alpha_2 = \frac{c + w_1 + w_2}{w_1(c + w_2)} = \frac{c + w_1 + w_2}{cw_1 + w_1w_2}$$

Minimal when $w_1 < w_2$.

Master = the most powerfull processor (for computations).

Conclusion

Closed-form expressions for the execution time and the distribution of data.

Choice of the master.

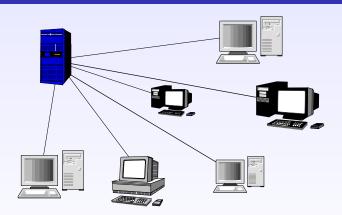
▶ The ordering of the processors has no impact.

▶ All processors take part in the work.

Overview

- 1 The context
- 2 Bus-like network: classical resolution
- 3 Bus-like network: resolution under the divisible load model
- 4 Star-like network
- Multi-round algorithms
- Conclusion

Star-like network



- ► The links between the master and the slaves have *different* characteristics.
- ▶ The slaves have different computational power.

Notation

- ▶ A set P_1 , ..., P_p of processors
- $ightharpoonup P_1$ is the master processor: initially, it holds all the data.
- ▶ The overall amount of work: W_{total} .
- ▶ Processor P_i receives an amount of work $\alpha_i W_{\mathsf{total}}$ with $\sum_i n_i = W_{\mathsf{total}}$ with $\alpha_i W_{\mathsf{total}} \in \mathbb{Q}$ and $\sum_i \alpha_i = 1$. Length of a unit-size work on processor P_i : w_i . Computation time on P_i : $n_i w_i$.
- ▶ Time needed to send a unit-message from P_1 to P_i : c_i . One-port model: P_1 sends a *single* message at a time.

?

Volume processed by processors P_i and P_{i+1} during a time T.

Processor P_i : $\alpha_i(c_i + w_i)W_{\text{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\text{total}}}$.

Processor
$$P_i$$
: $\alpha_i(c_i + w_i)W_{\text{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\text{total}}}$.

Processor
$$P_{i+1}$$
: $\alpha_i c_i W_{\text{total}} + \alpha_{i+1} (c_{i+1} + w_{i+1}) W_{\text{total}} = T$.

Processor
$$P_i$$
: $\alpha_i(c_i + w_i)W_{\text{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\text{total}}}$.

$$\begin{array}{l} \textbf{Processor} \ P_{i+1} \textbf{:} \ \alpha_i c_i W_{\mathsf{total}} + \alpha_{i+1} (c_{i+1} + w_{i+1}) W_{\mathsf{total}} = T. \\ \mathsf{Thus,} \ \alpha_{i+1} = \frac{1}{c_{i+1} + w_{i+1}} (1 - \frac{c_i}{c_i + w_i}) \frac{T}{W_{\mathsf{total}}} = \frac{w_i}{(c_i + w_i)(c_{i+1} + w_{i+1})} \frac{T}{W_{\mathsf{total}}}. \end{array}$$

Processor
$$P_i$$
: $\alpha_i(c_i + w_i)W_{\text{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\text{total}}}$.

$$\begin{array}{l} \textbf{Processor} \ P_{i+1} \textbf{:} \ \alpha_i c_i W_{\mathsf{total}} + \alpha_{i+1} (c_{i+1} + w_{i+1}) W_{\mathsf{total}} = T. \\ \mathsf{Thus,} \ \alpha_{i+1} = \frac{1}{c_{i+1} + w_{i+1}} (1 - \frac{c_i}{c_i + w_i}) \frac{T}{W_{\mathsf{total}}} = \frac{w_i}{(c_i + w_i)(c_{i+1} + w_{i+1})} \frac{T}{W_{\mathsf{total}}}. \end{array}$$

Volume processed:
$$\alpha_i + \alpha_{i+1} = \frac{c_{i+1} + w_i + w_{i+1}}{(c_i + w_i)(c_{i+1} + w_{i+1})}$$

Processor
$$P_i$$
: $\alpha_i(c_i + w_i)W_{\text{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\text{total}}}$.

$$\begin{array}{ll} \textbf{Processor} \ P_{i+1} \text{:} \ \alpha_i c_i W_{\mathsf{total}} + \alpha_{i+1} (c_{i+1} + w_{i+1}) W_{\mathsf{total}} = T. \\ \mathsf{Thus,} \ \alpha_{i+1} = \frac{1}{c_{i+1} + w_{i+1}} (1 - \frac{c_i}{c_i + w_i}) \frac{T}{W_{\mathsf{total}}} = \frac{w_i}{(c_i + w_i)(c_{i+1} + w_{i+1})} \frac{T}{W_{\mathsf{total}}}. \end{array}$$

Volume processed:
$$\alpha_i + \alpha_{i+1} = \frac{c_{i+1} + w_i + w_{i+1}}{(c_i + w_i)(c_{i+1} + w_{i+1})}$$

Communication time:
$$\alpha_i c_i + \alpha_{i+1} c_{i+1} = \frac{c_i c_{i+1} + c_{i+1} w_i + c_i w_{i+1}}{(c_i + w_i)(c_{i+1} + w_{i+1})}$$

Volume processed by processors P_i and P_{i+1} during a time T.

Processor
$$P_i$$
: $\alpha_i(c_i + w_i)W_{\text{total}} = T$. Thus, $\alpha_i = \frac{1}{c_i + w_i} \frac{T}{W_{\text{total}}}$.

$$\begin{array}{l} \textbf{Processor} \ P_{i+1} \textbf{:} \ \alpha_i c_i W_{\mathsf{total}} + \alpha_{i+1} (c_{i+1} + w_{i+1}) W_{\mathsf{total}} = T. \\ \mathsf{Thus,} \ \alpha_{i+1} = \frac{1}{c_{i+1} + w_{i+1}} (1 - \frac{c_i}{c_i + w_i}) \frac{T}{W_{\mathsf{total}}} = \frac{w_i}{(c_i + w_i)(c_{i+1} + w_{i+1})} \frac{T}{W_{\mathsf{total}}}. \end{array}$$

Volume processed:
$$\alpha_i + \alpha_{i+1} = \frac{c_{i+1} + w_i + w_{i+1}}{(c_i + w_i)(c_{i+1} + w_{i+1})}$$

Communication time:
$$\alpha_i c_i + \alpha_{i+1} c_{i+1} = \frac{c_i c_{i+1} + c_{i+1} w_i + c_i w_{i+1}}{(c_i + w_i)(c_{i+1} + w_{i+1})}$$

Processors must be served by decreasing bandwidths.

Ressource selection

Lemma

In an optimal solution, all processors work.

We take an optimal solution. Let P_k be a processor which does not receive any work: we put it last in the processor ordering and we give it a fraction α_k such that $\alpha_k(c_k+w_k)W_{\rm total}$ is equal to the processing time of the last processor which received some work.

We take an optimal solution. Let P_k be a processor which does not receive any work: we put it last in the processor ordering and we give it a fraction α_k such that $\alpha_k(c_k+w_k)W_{\rm total}$ is equal to the processing time of the last processor which received some work.

Why should we put this processor last?

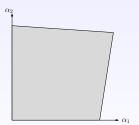
Load-balancing property

Lemma

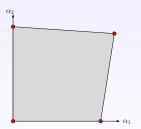
In an optimal solution, all processors end at the same time.

```
\begin{aligned} & \text{Minimize } T, \\ & \text{Subject to} \\ & \left\{ \begin{array}{l} \sum_{i=1}^{n} \alpha_i \geq 1 \\ \forall i, & \alpha_i \geq 0 \\ \forall i, & \sum_{k=1}^{i} \alpha_k c_k + \alpha_i w_i \leq T \end{array} \right. \end{aligned}
```

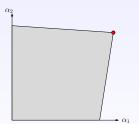
MINIMIZE
$$T$$
, SUBJECT TO
$$\begin{cases} \sum_{i=1}^{n} \alpha_i \ge 1 \\ \forall i, & \alpha_i \ge 0 \\ \forall i, & \sum_{k=1}^{i} \alpha_k c_k + \alpha_i w_i \le T \end{cases}$$



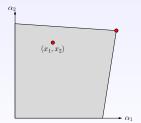
MINIMIZE
$$T$$
, SUBJECT TO
$$\begin{cases} & \sum_{i=1}^{n} \alpha_i \ge 1 \\ \forall i, & \alpha_i \ge 0 \\ \forall i, & \sum_{k=1}^{i} \alpha_k c_k + \alpha_i w_i \le T \end{cases}$$



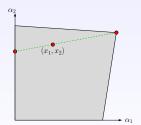
MINIMIZE
$$T$$
, SUBJECT TO
$$\begin{cases} \sum_{i=1}^{n} \alpha_i \ge 1 \\ \forall i, & \alpha_i \ge 0 \\ \forall i, & \sum_{k=1}^{i} \alpha_k c_k + \alpha_i w_i \le T \end{cases}$$



MINIMIZE
$$T$$
, SUBJECT TO
$$\begin{cases} & \sum_{i=1}^{n} \alpha_i \ge 1 \\ \forall i, & \alpha_i \ge 0 \\ \forall i, & \sum_{k=1}^{i} \alpha_k c_k + \alpha_i w_i \le T \end{cases}$$



MINIMIZE
$$T$$
, SUBJECT TO
$$\begin{cases} & \sum_{i=1}^{n} \alpha_i \ge 1 \\ \forall i, & \alpha_i \ge 0 \\ \forall i, & \sum_{k=1}^{i} \alpha_k c_k + \alpha_i w_i \le T \end{cases}$$



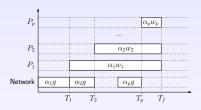
Conclusion

- ▶ The processors must be ordered by decreasing bandwidths
- ► All processors are working
- ▶ All processors end their work at the same time
- ▶ Formulas for the execution time and the distribution of data

Overview

- 1 The context
- 2 Bus-like network: classical resolution
- Bus-like network: resolution under the divisible load model
- 4 Star-like network
- Multi-round algorithms
- Conclusion

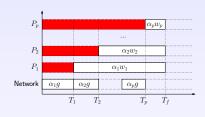
One round vs. multi-round

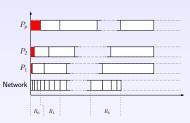


One round

Multi-round

One round vs. multi-round





One round

Multi-round

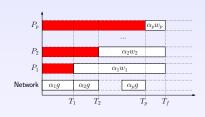
→ long idle-times

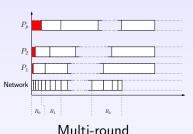
Efficient when W_{total} large

Intuition: start with small rounds, then increase chunks.

Problems:

One round vs. multi-round





One round

Efficient when W_{total} large

 \sim long idle-times

Intuition: start with small rounds, then increase chunks.

Problems:

- ▶ linear communication model leads to absurd solution
- resource selection
- number of rounds
- size of each round

Notations

- ▶ A set P_1 , ..., P_p of processors
- $ightharpoonup P_1$ is the master processor: initially, it holds all the data.
- ▶ The overall amount of work: W_{total} .
- ▶ Processor P_i receives an amount of work $\alpha_i W_{\mathsf{total}}$ with $\sum_i n_i = W_{\mathsf{total}}$ with $\alpha_i W_{\mathsf{total}} \in \mathbb{Q}$ and $\sum_i \alpha_i = 1$. Length of a unit-size work on processor P_i : w_i . Computation time on P_i : $n_i w_i$.
- ▶ Time needed to send a message of size α_i P_1 to P_i : $L_i + c_i \times \alpha_i$.
 - One-port model: P_1 sends and receives a *single* message at a time.

Complexity

Definition (One round, $\forall i, c_i = 0$)

Given W_{total} , p workers, $(P_i)_{1 \leq i \leq p}$, $(L_i)_{1 \leq i \leq p}$, and a rational number $T \geq 0$, and assuming that bandwidths are infinite, is it possible to compute all W_{total} load units within T time units?

Theorem

The problem with one-round and infinite bandwidths is NP-complete.

Complexity

Definition (One round, $\forall i, c_i = 0$)

Given W_{total} , p workers, $(P_i)_{1 \leq i \leq p}$, $(L_i)_{1 \leq i \leq p}$, and a rational number $T \geq 0$, and assuming that bandwidths are infinite, is it possible to compute all W_{total} load units within T time units?

Theorem

The problem with one-round and infinite bandwidths is NP-complete.

What is the complexity of the general problem with finite bandwidths and several rounds?

The general problem is NP-hard, but does not appear to be in NP (no polynomial bound on the number of activations).

Fixed activation sequence

Hypotheses

- **1** Number of activations: N_{act} ;
- ② Whether P_i is **the** processor used during activation j: $\chi_i^{(j)}$

Minimize T, under the constraints

$$\begin{cases} \sum_{j=1}^{N_{\text{act}}} \sum_{i=1}^{p} \chi_{i}^{(j)} \alpha_{i}^{(j)} = W_{\text{total}} \\ \forall k \leq N_{\text{act}}, \forall l : \left(\sum_{j=1}^{k} \sum_{i=1}^{p} \chi_{i}^{(j)} (L_{i} + \alpha_{i}^{(j)} c_{i}) \right) + \sum_{j=k}^{N_{\text{act}}} \chi_{l}^{(j)} \alpha_{l}^{(j)} w_{l} \leq T \\ \forall i, j : \alpha_{i}^{(j)} \geq 0 \end{cases}$$

Can be solved in polynomial time.

Fixed number of activations

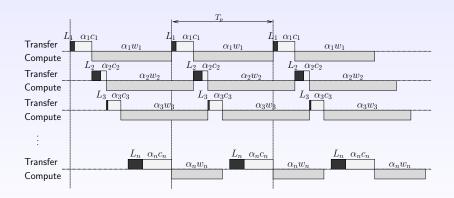
Minimize T, under the constraints

$$\begin{cases} \sum_{j=1}^{N_{\text{act}}} \sum_{i=1}^{p} \chi_{i}^{(j)} \alpha_{i}^{(j)} = W_{\text{total}} \\ \forall k \leq N_{\text{act}}, \forall l : \left(\sum_{j=1}^{k} \sum_{i=1}^{p} \chi_{i}^{(j)} (L_{i} + \alpha_{i}^{(j)} c_{i})\right) + \sum_{j=k}^{N_{\text{act}}} \chi_{l}^{(j)} \alpha_{l}^{(j)} w_{l} \leq T \\ \forall k \leq N_{\text{act}} : \sum_{i=1}^{p} \chi_{i}^{(k)} \leq 1 \\ \forall i, j : \chi_{i}^{(j)} \in \{0, 1\} \\ \forall i, j : \alpha_{i}^{(j)} \geq 0 \end{cases}$$

Exact but exponential

Can lead to branch-and-bound algorithms

Periodic schedule



How to choose T_p ? Which resources to select?

Equations

▶ Divide total execution time T into k periods of duration T_p .

Equations

- ▶ Divide total execution time T into k periods of duration T_p .
- ▶ $\mathcal{I} \subset \{1, \dots, p\}$ participating processors.

Equations

- ▶ Divide total execution time T into k periods of duration T_p .
- ▶ $\mathcal{I} \subset \{1, \dots, p\}$ participating processors.
- Bandwidth limitation:

$$\sum_{i \in \mathcal{I}} (L_i + \alpha_i c_i) \le T_p.$$

Equations

- ▶ Divide total execution time T into k periods of duration T_p .
- ▶ $\mathcal{I} \subset \{1, \dots, p\}$ participating processors.
- Bandwidth limitation:

$$\sum_{i \in \mathcal{I}} (L_i + \alpha_i c_i) \le T_p.$$

▶ No overlap:

$$\forall i \in \mathcal{I}, \quad L_i + \alpha_i(c_i + w_i) \leq T_p.$$

Normalization

 $ightharpoonup eta_i$ average number of tasks processed by P_i during one time unit.

Normalization

 $ightharpoonup eta_i$ average number of tasks processed by P_i during one time unit.

Normalization

 \blacktriangleright β_i average number of tasks processed by P_i during one time unit.

$$\text{Relaxed version } \begin{cases} \text{MAXIMIZE} \sum_{i=1}^p x_i \\ \forall 1 \leq i \leq p, \quad x_i(c_i + w_i) \leq 1 - \frac{L_i}{T_p} \\ \sum_{i=1}^p x_i c_i \leq 1 - \frac{\sum_{i=1}^p L_i}{T_p} \end{cases}$$

Normalization

 \blacktriangleright β_i average number of tasks processed by P_i during one time unit.

$$\text{Relaxed version } \begin{cases} \text{MAXIMIZE } \sum_{i=1}^p x_i \\ \forall 1 \leq i \leq p, \quad x_i(c_i + w_i) \leq 1 - \frac{\sum_{i=1}^p L_i}{T_p} \\ \sum_{i=1}^p x_i c_i \leq 1 - \frac{\sum_{i=1}^p L_i}{T_p} \end{cases}$$

Bandwidth-centric solution

- ▶ Sort: $c_1 \leq c_2 \leq \ldots \leq c_p$.
- ▶ Let q be the largest index so that $\sum_{i=1}^{q} \frac{c_i}{c_i + w_i} \leq 1$.
- If q < p, $\epsilon = 1 \sum_{i=1}^{q} \frac{c_i}{c_i + w_i}$.
- Optimal solution to relaxed program:

$$\forall 1 \le i \le q, \quad x_i = \frac{1 - \frac{\sum_{i=1}^p L_i}{T_p}}{c_i + w_i}$$

and (if q < p):

$$x_{q+1} = \left(1 - \frac{\sum_{i=1}^{p} L_i}{T_p}\right) \left(\frac{\epsilon}{c_{q+1}}\right),$$

and $x_{q+2} = x_{q+3} = \ldots = x_p = 0$.

Asymptotic optimality

▶ Let $T_p = \sqrt{T_{\max}^*}$ and $\alpha_i = x_i T_p$ for all i.

Asymptotic optimality

- ▶ Let $T_p = \sqrt{T_{\max}^*}$ and $\alpha_i = x_i T_p$ for all i.
- ▶ Then $T \leq T_{\text{max}}^* + O(\sqrt{T_{\text{max}}^*})$.

Asymptotic optimality

- ▶ Let $T_p = \sqrt{T_{\max}^*}$ and $\alpha_i = x_i T_p$ for all i.
- ▶ Then $T \leq T_{\text{max}}^* + O(\sqrt{T_{\text{max}}^*})$.
- Closed-form expressions for resource selection and task assignment provided by the algorithm.

Overview

- 1 The context
- 2 Bus-like network: classical resolution
- Bus-like network: resolution under the divisible load model
- 4 Star-like network
- Multi-round algorithms
- **6** Conclusion

What should be remembered?

▶ Underlying principle: we may not need the optimal solution; approximated solutions may be as good and far easier to achieve

 Communications costs may play a far bigger role in designing solutions than computation costs