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Platform

Platform: heterogeneous and distributed:

I processors with different capabilities;

I communication links of different characteristics.



Applications

Application made of a very (very) large number of tasks, the tasks
can be clustered into a finite number of types, all tasks of a same
type having the same characteristics.

Bag-of-tasks applications, parameter sweep applications, etc.



Principle

When we have a very large number of identical tasks to execute,
we can imagine that, after some initiation phase, we will reach a
(long) steady-state, before a termination phase.

If the steady-state is long enough, the initiation and termination
phases will be negligible.
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The problem

Problem: sending a set of message flows.

In a communication network, several flow of packets must be
dispatched, each packet flow must be sent from a source to a
destination, while following a given path linking the source to the
destination.



Notations

I (V,A) a directed graph, representing the communication
network.

I A set of nc flows which must be dispatched.

I The k-th flow is denoted (sk, tk, Pk, nk), where
I sk is the source of packets;
I tk is the destination;
I Pk is the path to be followed;

We denote by ak,i the i-th edge in the path Pk.
I nk is the number of packets in the flow.



Hypotheses

I A packet goes through an edge A in a unit of time.

I At a given time, a single packet traverses a given edge.



Objective

We must decide which packet must go through a given edge at a
given time, in order to minimize the overall execution time.



Lower bound on the duration of schedules

We call congestion of edge a ∈ A, and we denote by Ca, the total
number of packets which go through edge a:

Ca =
∑

k | a∈Pk

nk Cmax = max
a

Ca

Cmax is a lower bound on the execution time of any schedule.
C∗ ≥ Cmax

A “fluid” (fractional) resolution of our problem will give us a
solution which executes in a time Cmax.
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Fluidified (fractional) version: notations

Principle:

I we do not look for an integral solution but for a rational one.

I nk,i(t) (fractional) number of packets waiting at the entrance
of the i-th edge of the k-th path, at time t.

I Tk,i(t) is the overall time used by the edge ak,i for packets of
the k-th flow, during the interval of time [0; t].



Fluidified (fractional) version: writing the equations

1 Initiating the communications

nk,1(t) = nk − Tk,1(t), for each k

2 Conservation law

nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k

3 Resource constraints∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A, ∀t2 ≥ t1 ≥ 0

4 Objective

Minimize Cfrac =

∫ ∞
0

1

∑
k,i

nk,i(t)

 dt
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Lower bound
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I At any time t,
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j=1

nk,j(t) = nk − Tk,i(t)

I For each edge a:∑
(k,i)|ak,i=a

i∑
j=1

nk,j(t) =
∑

(k,i)|ak,i=a

nk −
∑

(k,i)|ak,i=a

Tk,i(t) ≥ Ca − t

As long as t < Ca, there are packets in the system.

Therefore, Cfrac ≥ maxaCa = Cmax
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A candidate solution

For t ≤ Cmax

I Tk,i(t) =
nk
Cmax

t, for each k and i.

I nk,1(t) = nk − Tk,1(t) = nk −
nk
Cmax

t = nk

(
1− t

Cmax

)
, ∀k

I nk,i(t) = 0, for each k and i ≥ 2.

For t ≥ Cmax

I Tk,i(t) = nk
I nk,i(t) = 0

This solution is a schedule of makespan Cmax. We still have to
show that it is feasible.
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Checking the solution (for t ≤ Cmax)

1 nk,1(t) = nk − Tk,1(t), for each k
Satisfied by definition.

2 nk,i+1(t) = Tk,i(t)− Tk,i+1(t), for each k
Tk,i(t)− Tk,i+1(t) = nk

Cmax
t− nk

Cmax
t = 0 = nk,i+1(t)

3

∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) ≤ t2 − t1,∀a ∈ A,∀t2 ≥ t1 ≥ 0∑
(k,i) | ak,i=a

Tk,i(t2)− Tk,i(t1) =
∑

(k,i) | ak,i=a

nk
Cmax

(t2 − t1) =

Ca
Cmax

(t2 − t1) ≤ t2 − t1
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Definition of a round

I Ω ≈ duration of a round (will be defined later).

I mk: number of packets of k-th flow distributed in a single
round.

mk =

⌈
nkΩ

Cmax

⌉
.

I Da =
∑

(k,i)|ak,i=a 1 = |{k|a ∈ Pk}|

Dmax = max
a

Da ≤ nc

I Period of the schedule: Ω +Dmax.
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Schedule

During the time interval [j(Ω +Dmax); (j + 1)(Ω +Dmax)]:

The link a forwards mk packets of the k-th flow if there exists
i such that ak,i = a.

The link a remains idle for a duration of:

Ω +Dmax −
∑

(k,i)|ak,i=a

mk

(If less than mk packets are waiting in the entrance of a at
time j(Ω +Dmax), a forwards what is available and remains
idle longer.)
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Feasibility of the schedule

∑
(k,i)|ak,i=a

mk=
∑

(k,i)|ak,i=a

⌈
nkΩ

Cmax

⌉

≤
∑

(k,i)|ak,i=a

(
nkΩ

Cmax
+ 1

)

≤ Ca
Cmax

Ω +Da

≤ Ω +Dmax



Behavior of the sources

I Nk,i(t): number of packets of the k-th flow waiting at the
entrance of the i-th edge, at time t.

I ak,1 sends mk packets during [0,Ω +Dmax].
Nk,1(Ω +Dmax) = nk −mk

I ak,1 sends mk packets during [Ω +Dmax, 2(Ω +Dmax)].
Nk,1(2(Ω +Dmax)) = nk − 2mk

I We let T =

⌈
Cmax

Ω

⌉
(Ω +Dmax)

Nk,1(T ) ≤ nk −
T

Ω +Dmax
mk ≤ nk −

nkΩ

Cmax

Cmax

Ω
= 0



Propagation delay

I ak,1 sends mk packets during [0,Ω +Dmax].
Nk,1(Ω +Dmax) = nk −mk Nk,2(Ω +Dmax) = mk

Nk,i≥3(Ω +Dmax) = 0

I ak,1 sends mk packets during [Ω +Dmax, 2(Ω +Dmax)].
Nk,1(2(Ω +Dmax)) = nk − 2mk Nk,2(2(Ω +Dmax)) = mk

Nk,3(2(Ω +Dmax)) = mk Nk,i≥4(2(Ω +Dmax)) = 0

I The delay between the time a packet traverses the first edge of
the path Pk and the time it traverses its last edge is, at worst:

(|Pk| − 1)(Ω +Dmax)
We let L = maxk |Pk|.



Makespan of the schedule

Ctotal ≤ T + (L− 1)(Ω +Dmax)

=

⌈
Cmax

Ω

⌉
(Ω +Dmax) + (L− 1)(Ω +Dmax)

≤
(
Cmax

Ω
+ 1

)
(Ω +Dmax) + (L− 1)(Ω +Dmax)

= Cmax + LDmax +
DmaxCmax

Ω
+ LΩ

The upper bound is minimized by Ω =

√
DmaxCmax

L

Ctotal ≤ Cmax + 2
√
CmaxDmaxL+DmaxL



Asymptotic optimality

Cmax ≤ C∗ ≤ Ctotal ≤ Cmax + 2
√
CmaxDmaxL+DmaxL

1 ≤ Ctotal

Cmax
≤ 1 + 2

√
DmaxL

Cmax
+
DmaxL

Cmax

With Ω =

√
DmaxCmax

L



Resources needed

∑
(k,i)|ak,i=a,k≥2

mk ≤
∑

(k,i)|ak,i=a,k≥2

(
nk
Cmax

√
DmaxCmax

L
+ 1

)

≤
√
DmaxCmax

L
+Dmax



Conclusion

I We forget the initiation and termination phases

I Rational resolution of the steady-state
I Round whose size is the square-root of the solution:

I Each round “loses” a constant amount of time
I The sum of the waisted times increases less quickly than the

schedule
I Buffers of size the square-root of the solution
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Packet routing without fixed path

P3

P5

P4

P2

P1

640 2

I nc collections of packets to
be routed

I packets of a same collection
may follow different paths

I nk,l: total number of
packets to be routed from k
to l

I rule: one edge cannot carry
two packets at the same
time

I nk,li,j : total number of packets routed from k to l and crossing
edge (i, j)

I Congestion: Ci,j =
∑

(k,l)|nk,l>0

nk,li,j ; Cmax = maxi,j Ci,j
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Packet routing without fixed path

P2

P1

P3

P5

P4

I nc collections of packets to
be routed

I packets of a same collection
may follow different paths

I nk,l: total number of
packets to be routed from k
to l

I rule: one edge cannot carry
two packets at the same
time

I nk,li,j : total number of packets routed from k to l and crossing
edge (i, j)

I Congestion: Ci,j =
∑

(k,l)|nk,l>0

nk,li,j ; Cmax = maxi,j Ci,j



Equations (1/2)

1 Initialization ∑
j|(k,j)∈A

nk,lk,j = nk,l

2 Reception ∑
i|(i,l)∈A

nk,li,l = nk,l

3 Conservation law∑
i|(i,j)∈A

nk,li,j =
∑

i|(j,i)∈A

nk,lj,i ∀(k, l), j 6= k, j 6= l



Equations (2/2)

4 Congestion

Ci,j =
∑

(k,l)|nk,l>0

nk,li,j

5 Objective function

Cmax ≥ Ci,j , ∀i, j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution.

Solution:
number of messages nk,li,j on each edge to minimize congestion



Routing algorithm

1 Computing optimal solution Cmax of previous linear program
2 Consider periods of length Ω (to be defined later)
3 During each time-interval [pΩ, (p+ 1)Ω], follow the optimal

solution: edge (i, j) forwards:

mk,l
i,j =

⌊
nk,li,jΩ

Cmax

⌋
packets that go from k to l.

(if available)

4 number of such periods:

⌈
Cmax

Ω

⌉
5 After time-step

T ≡
⌈
Cmax

Ω

⌉
Ω ≤ Cmax + Ω

sequentially process M residual packets; this takes no longer
than ML time-steps, where L is the maximum length of a
simple path in the network



Feasibility

∑
(k,l)

mk,l
i,j ≤

∑
(k,l)

nk,li,jΩ

Cmax
=
Ci,jΩ

Cmax
≤ Ω



Makespan

I Define Ω as Ω =
√
Cmaxnc.

I Total number of packets still inside network at time-step T is
at most

2|A|
√
Cmaxnc + |A|nc

I Makespan:

Cmax ≤ C∗ ≤ Cmax+
√
Cmaxnc+2|A|

√
Cmaxnc|V |+|A|nc|V |

C∗ = Cmax +O(
√
Cmax)
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√
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Steady-state scheduling

Background Approach pioneered by Bertsimas and Gamarnik

Rationale Maximize throughput (total load executed per
period)

Simplicity Relaxation of makespan minimization problem

I Ignore initialization and clean-up phases
I Precise ordering/allocation of tasks/messages

not needed
I Characterize resource activity during each

time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent
receiving or sending to which neighbor?

Efficiency Periodic schedule, described in compact form



Overview

1 The context

2 Routing packets with fixed communication routes

3 Resolution of the “fluidified” problem

4 Building a schedule

5 Packet routing without fixed path

6 Bags of sequential applications



Application graph

n problem instances P(1),P(2), . . . ,P(n), where n is large

Each problem corresponds to a copy of the same task graph
GA = (VA, EA), the application graph

Tbegin et Tend are fictitious tasks, used to model the scattering of
input files and the gathering of output files



Application graph

n problem instances P(1),P(2), . . . ,P(n), where n is large
Each problem corresponds to a copy of the same task graph
GA = (VA, EA), the application graph

T1

Tbegin

Tend

Tbegin et Tend are fictitious tasks, used to model the scattering of
input files and the gathering of output files



Platform graph

Target platform represented by platform graph GP = (VP , EP )

1

1 10

1

1

P4P2

P1 P3

Edge Pi → Pj is labeled with ci,j : time needed to send a
unit-length message from Pi to Pj

Communication model: full overlap, one-port for incoming and
outgoing messages



Computations and communications

Pi requires wi,k time-units to process task Tk
(k ∈ {begin, 1, end}).

2

2

0

0

4
T1

Tend

Tbegin
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Edge ek,l : Tk → Tl in GA is labeled with datak,l: data volume
generated by Tk and used by Tl
Transfer time of a file ek,l from Pi to Pj : datak,l × ci,j



Definitions

Allocation An allocation is a pair of mappings: π : VA 7→ VP
and σ : EA 7→ {paths in GP }

Schedule A schedule associated to an allocation (π, σ) is a pair
of mappings: tπ : VA 7→ R and application
tσ : EA × EP 7→ R, satisfying to:

I precedence constraints
I resource constraints on processors
I resource constraints on network links
I one-port constraints



Activity variables

cons(Pi, Tk): average number of tasks of type Tk processed by Pi
every time-unit

∀Pi, ∀Tk ∈ VA, 0 ≤ cons(Pi, Tk)× wi,k ≤ 1

sent(Pi → Pj , ek,l): average number of files of type ek,l sent from
Pi to Pj every time-unit

∀Pi, Pj , 0 ≤ sent(Pi → Pj , ek,l)× (datak,l × ci,j) ≤ 1



Steady-state equations

1 One-port for outgoing communications. Pi sends messages to
its neighbors sequentially

∀Pi,
∑
Pi→Pj

∑
ek,l∈EA

(
sent(Pi → Pj , ek,l)× datak,l × ci,j

)
≤ 1

2 One-port for ingoing communications. Pi receives messages
sequentially

∀Pi,
∑
Pj→Pi

∑
ek,l∈EA

(
sent(Pj → Pi, ek,l)× datak,l × cj,i

)
≤ 1

3 Overlap. Computations and communications take place
simultaneously

∀Pi,
∑
Tk∈VA

cons(Pi, Tk)× wi,k ≤ 1



Conservation law

Consider a processor Pi and an edge ek,l of the application graph:

Files of type ek,l received:
∑
Pj→Pi

sent(Pj → Pi, ek,l)

Files of type ek,l generated: cons(Pi, Tk)

Files of type ek,l consumed: cons(Pi, Tl)

Files of type ek,l sent:
∑
Pi→Pj

sent(Pi → Pj , ek,l)

In steady state:

∀Pi, ∀ek,l : Tk → Tl ∈ EA,∑
Pj→Pi

sent(Pj → Pi, ek,l) + cons(Pi, Tk) =

∑
Pi→Pj

sent(Pi → Pj , ek,l) + cons(Pi, Tl)



Upper bound for the throughput

Maximize ρ =
∑p

i=1 cons(Pi, Tend),
under the constraints

(1a) ∀Pi,∀Tk ∈ VA, 0 ≤ cons(Pi, Tk)× wi,k ≤ 1

(1b) ∀Pi, Pj , 0 ≤ sent(Pi → Pj , ek,l)× (datak,l × ci,j) ≤ 1

(1c) ∀Pi,
∑

Pi→Pj

∑
ek,l∈EA

(
sent(Pi → Pj , ek,l)× datak,l × ci,j

)
≤ 1

(1d) ∀Pi,
∑

Pj→Pi

∑
ek,l∈EA

(
sent(Pj → Pi, ek,l)× datak,l × cj,i

)
≤ 1

(1e) ∀Pi,
∑

Tk∈VA

cons(Pi, Tk)× wi,k ≤ 1

(1f) ∀Pi,∀ek,l ∈ EA : Tk → Tl,∑
Pj→Pi

sent(Pj → Pi, ek,l) + cons(Pi, Tk) =

∑
Pi→Pj

sent(Pi → Pj , ek,l) + cons(Pi, Tl)

How to design a schedule achieving this throughput?



Back to the example

Computations

cons(Pi, T1)

P1 0.025
P2 0.125
P3 0.125
P4 0.250

Total 21 tasks / 40 seconds

Communications

0.250

0.125

0.250

0.125 0.25

0.375

0.125

P2

P1

P4

P3

sent(Pi → Pj , ek,l)



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P3 → P1 : 0.250

P2 : 0.125
P3 : 0.125

P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125 P2 → P1 : 0.250

P4 : 0.250
P1 : 0.025

P1 : 0.525

P1 : 0.525

P1 → P2 : 0.125
P1 → P3 : 0.375

Tbegin

T1

Tbegin

Tend

T1

Tend



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1

P2 : 0.125 P4 : 0.250

P4 → P3 : 0.125
P3 → P1 : 0.250
P2 → P1 : 0.250

P3 : 0.125P1 : 0.025

P1 : 0.525

P1 : 0.525

P1 → P2 : 0.125
P1 → P3 : 0.375

P3 → P4 : 0.250

P4 → P2 : 0.125

Tbegin

T1

Tbegin

Tend

T1

Tend



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1

P1

P4 : 0.250

P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125P1 : 0.025

P1 : 0.525

P1 : 0.525

P1 → P2 : 0.125
P1 → P3 : 0.375

P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

Tbegin

T1

Tbegin

Tend

T1

Tend



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1

P1

P1

P3 → P4 : 0.250

P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

P1 : 0.025

P1 : 0.525

P1 : 0.525

P1 → P2 : 0.125
P1 → P3 : 0.375

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250

Tbegin

T1

Tbegin

Tend

T1

Tend



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

A1 : 0.025

P1

P1

P1P1 : 0.525

P1 : 0.525

P1 → P2 : 0.125
P1 → P3 : 0.375

P3 → P4 : 0.250

P4 → P2 : 0.125

P1 : 0.025

P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

P4 → P3 : 0.125
P3 → P1 : 0.250

Tbegin

T1

Tbegin

Tend

T1

Tend



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1 : 0.500

P1 → P2 : 0.125 P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250

P1 → P3 : 0.375

P2 : 0.125 P4 : 0.250

P2 → P1 : 0.250

P1 : 0.500

P3 : 0.125

Tend

T1

Tbegin

Tend

T1

Tbegin



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1

P4 → P3 : 0.125

P1 : 0.500

P1 → P2 : 0.125 P3 → P4 : 0.250

P4 → P2 : 0.125 P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

P1 : 0.500

P1 → P3 : 0.375

Tend

Tbegin

T1

Tend

Tbegin

T1



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P2 → P1

P1

P3 : 0.125
P4 : 0.250

P4 → P2 : 0.125 P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125

P1 : 0.500

P1 → P2 : 0.125 P3 → P4 : 0.250

P4 → P3 : 0.125

P1 → P3 : 0.375

P1 : 0.500

T1

Tend Tend

T1

Tbegin Tbegin



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P2

P2 → P1

P1

P1 → P3 : 0.375

P1 : 0.500

P1 → P2 : 0.125 P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

P1 : 0.500

Tbegin

T1

Tend

Tbegin

T1

Tend



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1 → P2

P2

P2 → P1

P1

P3 → P4 : 0.250

P1 : 0.500

P1 → P2 : 0.125

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

P1 : 0.500

P1 → P3 : 0.375

T1

TbeginTbegin

T1

Tend Tend



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

P1

P1 → P2

P2

P2 → P1

P1

P3 → P4 : 0.250

P1 : 0.500

P1 → P2 : 0.125

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.250

P2 : 0.125
P3 : 0.125
P4 : 0.250

P1 : 0.500

P1 → P3 : 0.375

T1

Tend

TbeginTbegin

T1

Tend



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

A2 : 0.125

P1

P1 → P2

P2

P2 → P1

P1P1 : 0.500

P2 : 0.125
P3 : 0.125
P4 : 0.250

P1 → P3 : 0.375

P1 : 0.500

P1 → P2 : 0.125 P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.250

Tbegin

Tend

T1

Tend

T1

Tbegin



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

A3 : 0.125

P1

P1 → P3

P3

P3 → P1

P1

P3 → P4 : 0.250

P1 : 0.375

P1 → P3 : 0.375

P4 → P2 : 0.125
P4 → P3 : 0.125

P3 → P1 : 0.250
P2 → P1 : 0.125

P3 : 0.125
P4 : 0.250

P1 : 0.375

Tbegin

Tend

T1

Tbegin

T1

Tend



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

A4 : 0.125

P1

P1 → P3

P3 → P4

P4

P4 → P2

P2 → P1

P1

P2 → P1 : 0.125

P4 : 0.250

P1 : 0.250

P1 → P3 : 0.250

P3 → P1 : 0.125

P1 : 0.250

P3 → P4 : 0.250

P4 → P2 : 0.125
P4 → P3 : 0.125

Tend

T1

Tbegin

Tend

T1

Tbegin



Decomposition into a set of allocations (1/2)

Steady state = superposition of several allocations

A5 : 0.125

P1

P1 → P3

P3 → P4

P4

P4 → P3

P3 → P1

P1

P4 → P3 : 0.125

P1 : 0.125

P3 → P4 : 0.125

P3 → P1 : 0.125

P4 : 0.125

P1 : 0.125

P1 → P3 : 0.125

Tbegin

Tend

T1

Tend

T1

Tbegin



Decomposition into a set of allocations (2/2)

A5

0.025 0.125 0.125

A3A2A1 A4

0.125 0.125

P2 → P1

P1 → P3 → P4

P4 → P2 → P1

P1 → P3 → P4

P4 → P3 → P1

P1 → P3

P3 → P1

P1 → P2

P1

P4

P1

P1

P2

P1 P1

P3

P1P1

P1

P1

P4

P1

P1

TendTend Tend Tend

Tbegin Tbegin

T1

TbeginTbegin

T1 T1

Tbegin

T1

Tend

T1

This decomposition is always possible
How to orchestrate these allocations?
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Communication graph

A5

A5
0.25

0.25 A2

0.25 A4

0.25

A4

A5 : 0.25

A4 : 0.25

A2 : 0.25

A3 : 0.25

A3 : 0.25

A5 : 0.25

A4 : 0.25

0.25

P2

P3

P3

P1

Fraction of time spent transferring some ek,l file from Pi to Pj for
a given allocation



One-port constraints = matching

A5A4
0.25

0.25
A2

0.25
A5

0.25 0.25
A4A2

A5 : 0.25

0.25

A5 : 0.25

A4 : 0.25

A3 : 0.25

A4 : 0.25

A3 : 0.25



Edge coloring (decomposition into matchings)

 A5A4
0.25

0.25
A2

0.25
A5

0.25 0.25
A4A2

A5 : 0.25

0.25

A5 : 0.25

A4 : 0.25

A3 : 0.25

A4 : 0.25

A3 : 0.25

 = 1
4 ×


A4

A3

A3


︸ ︷︷ ︸

χ1

+1
4 ×


A4

A5


︸ ︷︷ ︸

χ2

+

1
4 ×

 A4

A5

A2


︸ ︷︷ ︸

χ3

+1
4 ×

 A5
A2
A4 A5


︸ ︷︷ ︸

χ4

This decomposition is always possible



Cyclic scheduling achieving optimal throughput

{

P1

P2

P4

P3 → P2

P2 → P3

P4 → P3

P3 → P4

P1 → P2

P4 → P2

P2 → P4

P3 → P1

P1 → P3

P2 → P1

0 40 80 120 160
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Cyclic scheduling achieving optimal throughput

A5A4A3A2

P1 → P2

A1

P2 → P1
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Asymptotically optimal schedule

I The technique used in the example is
I general
I polynomial

I The resulting schedule is asymptotically optimal: within T
time-steps, it differs from the optimal schedule by a constant
number of tasks (independent of T )



Extensions to collections of general task graphs

I More difficult but possible

I Maximizing throughput NP-hard /
I Most application DAGs have polynomial number of joins
⇒ polynomial solution ,
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