J Sched (2009) 12: 489-500
DOI 10.1007/s10951-009-0123-y

Power-aware scheduling for makespan and flow

David P. Bunde

Published online: 29 July 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider offline scheduling algorithms that in-
corporate speed scaling to address the bicriteria problem
of minimizing energy consumption and a scheduling met-
ric. For makespan, we give a linear-time algorithm to com-
pute all non-dominated solutions for the general uniproces-
sor problem and a fast arbitrarily-good approximation for
multiprocessor problems when every job requires the same
amount of work. We also show that the multiprocessor
problem becomes NP-hard when jobs can require different
amounts of work.

For total flow, we show that the optimal flow correspond-
ing to a particular energy budget cannot be exactly com-
puted on a machine supporting exact real arithmetic, includ-
ing the extraction of roots. This hardness result holds even
when scheduling equal-work jobs on a uniprocessor. We do,
however, extend previous work by Pruhs et al. to give an
arbitrarily-good approximation for scheduling equal-work
jobs on a multiprocessor.

Keywords Power-aware scheduling - Dynamic voltage
scaling - Speed scaling - Makespan - Total flow

1 Introduction

Power consumption is becoming a major issue in computer
systems. This is most obvious for battery-powered systems

A preliminary version of this work was presented at the 18th ACM
Symposium on Parallelism in Algorithms and Architectures (Bunde
2006).

Partially supported by NSF grant CCR 0093348.

D.P. Bunde ()
Department of Computer Science, Knox College, Galesburh, USA
e-mail: dbunde @knox.edu

such as laptops because processor power consumption has
been growing much more quickly than battery capacity.
Even systems that do not rely on batteries have to deal with
power consumption since nearly all the energy consumed
by a processor is released as heat. The heat generated by
modern processors is becoming harder to dissipate and is
particularly problematic when large numbers of them are in
close proximity, such as in a supercomputer or a server farm.
The importance of the power problem has led to a great deal
of research on reducing processor power consumption; see
overviews by Mudge (2001), Brooks et al. (2000), and Ti-
wari et al. (1998). We focus on the technique dynamic volt-
age scaling, which allows the processor to enter low-voltage
states. Reducing the voltage reduces power consumption,
but also forces a reduction in clock frequency so the proces-
sor runs more slowly. For this reason, dynamic voltage scal-
ing is also called frequency scaling and speed scaling.

This paper considers how to schedule processors with dy-
namic voltage scaling so that the scheduling algorithm deter-
mines how fast to run the processor in addition to choosing
a job to run. In classical scheduling problems, the input is
a series of n jobs Ji, Ja, ..., J,. Each job J; has a release
time r;, the earliest time it can run, and a processing time
pi, the amount of time it takes to complete. With dynamic
voltage scaling, the processing time depends on the sched-
ule so instead each job J; comes with a work requirement
w;. We use piA to denote the processing time of job J; in
schedule A. A processor running continuously at speed o
completes o units of work per unit of time so job J; would
have processing time w; /o . In general, a processor’s speed
is a function of time and the amount of work it completes is
the integral of this function over time. This paper considers
offline scheduling, meaning the algorithm receives all the in-
put together. This is in contrast to online scheduling, where
the algorithm learns about each job at its release time.

@ Springer

mailto:dbunde@knox.edu

490

J Sched (2009) 12: 489-500

To measure schedule quality, we use two classic metrics.
Let Sl.A and Cl.A denote the start and completion times of job
Ji in schedule A. Most of the paper focuses on minimizing
the schedule’s makespan, max; C iA, the completion time of
the last job. We also consider fotal flow, the sum over all
jobs of C l.A —r;, the time between the release and completion
times of job J;.

Either of these metrics can be improved by using more
energy to speed up the last job so the goals of low en-
ergy consumption and high schedule quality are in opposi-
tion. Thus, power-aware scheduling is a bicriteria optimiza-
tion problem and our goal becomes finding non-dominated
schedules (also called Pareto optimal schedules), such that
no schedule can both be better and use less energy. A com-
mon approach to bicriteria problems is to fix one of the para-
meters. In power-aware scheduling, this gives two interest-
ing special cases. If we fix energy, we get the laptop prob-
lem, which asks “What is the best schedule achievable using
a particular energy budget?” Fixing schedule quality gives
the server problem, which asks “What is the least energy
required to achieve a desired level of performance?”

To calculate the energy consumed by a schedule, we need
a function relating speed to power; the energy consumption
is then the integral of power over time. Actual implemen-
tations of dynamic voltage scaling give a list of speeds at
which the processor can run. For example, the AMD Athlon
64 can run at 2000, 1800, or 800 MHz (Advanced Micro
Devices 2004). Since the first work on power-aware sched-
uling algorithms (Weiser et al. 1994), however, researchers
have assumed that the processor can run at an arbitrary speed
within some range. The justification for allowing a contin-
uous range of speeds is twofold. First, choosing the speed
from a continuous range is an approximation for a processor
with a large number of possible speeds. Second, a continu-
ous range of possible clock speeds is observed by individ-
uals who use special motherboards to overclock their com-
puters.

Most power-aware scheduling algorithms use the model
proposed by Yao et al. (1995), in which the processor can
run at any non-negative speed and power = speed” for some
constant « > 1. In this model, the energy required to run job
J; at speed o is w;o®~! since the running time is w;/o.
This relationship between power and speed comes from an
approximation of a system’s switching loss, the energy con-
sumed by logic gates switching values. The so-called cube-
root rule for this term suggests the value o« = 3 (Brooks et
al. 2000).

Most of our results hold in generalizations of the model
power = speed”. Specifically, we consider continuous power
functions that are convex or strictly convex, as well as dis-
crete power functions. A function is convex if the line seg-
ment between any two points on its curve lies on or above
the curve. A function is strictly convex if the line segment

@ Springer

lies strictly above the curve except at its endpoints. The
power function power = speed® is convex when o = 1 and
strictly convex when « > 1. Throughout, we assume that
running at speed O requires no energy. The power consump-
tion of real processors includes a component that is inde-
pendent of the processing speed, but this overhead can be
deducted from the energy budget given to our algorithm.
This paper considers both uniprocessor and multiproces-
sor scheduling. In the multiprocessor setting, we assume
that the processors have a shared energy supply. This cor-
responds to scheduling a laptop with a multi-core processor
or a server farm concerned only about total energy consump-
tion and not the consumption of each machine separately.

Results
lowing:

Our results in power-aware scheduling are the fol-

e For uniprocessor makespan, we give an algorithm to find
all non-dominated schedules. Its running time is linear
once the jobs are sorted by arrival time. This algorithm
works even for discrete power functions.

e We show that there is no exact algorithm for uniproces-
sor total flow using exact real arithmetic, including the
extraction of kth roots. This holds even with equal-work
jobs.

e For a large class of reasonable scheduling metrics, we
show how to extend uniprocessor algorithms to the mul-
tiprocessor setting with equal-work jobs. Using this tech-
nique, we give arbitrarily-good approximations for multi-
processor makespan of equal-work jobs and multiproces-
sor total flow of equal-work jobs.

e We prove that multiprocessor makespan is NP-hard if jobs
require different amounts of work, even if all jobs arrive
at the same time.

For the problems we consider, reordering jobs does not
change solution quality. Thus, our results hold whether or
not the scheduler can use preemption, pausing a job mid-
execution and resuming it later. Our multiprocessor results
assume that jobs cannot migrate between processors, how-
ever.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 gives the uniprocessor al-
gorithm for makespan. Section 4 shows that total flow can-
not be exactly minimized. Section 5 extends the uniproces-
sor results to give multiprocessor algorithms for equal-work
jobs and shows that general multiprocessor makespan is
NP-hard. Finally, Sect. 6 discusses future work.

2 Related work

The area of power-aware scheduling has recently attracted
a lot of interest. Therefore, we restrict our discussion of re-
lated work to include only the most closely-related results,

J Sched (2009) 12: 489-500

491

focusing on those that minimize makespan or total flow.
For a discussion of other metrics and other power-reduction
techniques in scheduling, we refer the reader to the survey
of Irani and Pruhs (2005). Similar problems have also been
studied for industrial and commercial applications under the
name controllable processing times. In these applications,
instead of allocating power to speed up a processor, jobs are
sped up by allocating resources like manpower, money, or
fuel. See Shabtay and Steiner (2007) for a survey of these re-
sults. Most of them use models with a different power func-
tion or without release times, but some relevant work is cited
below.

Minimizing makespan The work most closely related to
ours is due to Uysal-Biyikoglu et al. (2002), who consider
the problem of minimizing the energy of wireless transmis-
sions. The only assumption required by their algorithms is
that the power function is continuous and strictly convex.
They give a quadratic-time algorithm to solve the server
version for makespan. Thus, our algorithm represents an
improvement by running faster, working for more general
power functions, and finding all non-dominated schedules
rather than just solving the server problem.

Several variations of the wireless transmission problem
have also been studied. E1 Gamal et al. (2002) consider the
possibility of packets with different power functions. They
give an iterative algorithm that converges to an optimal so-
lution. They also show how to extend their algorithm to han-
dle the case when the buffer used to store active packets
has bounded size and the case when packets have individ-
ual deadlines. Keslassy et al. (2003) claim a non-iterative
algorithm for packets with different power functions and in-
dividual deadlines when the inverse of the power function’s
derivative can be represented in closed form. (Their paper
gives the algorithm, but only a sketch of the proof of cor-
rectness.)

Another transmission scheduling problem, though one
that does not correspond to a processor scheduling problem,
is to schedule multiple transmitters. If only one transmitter
can operate at a time, another extension of the iterative al-
gorithm of Uysal-Biyikoglu et al. (2002) converges to the
optimal solution. In general, however, there may be a better
solution in which transmitters sometimes deliberately inter-
fere with each other. Uysal-Biyikoglu and EI Gamal (2004)
give an iterative algorithm to find this solution.

Shabtay and Kaspi (2006) prove that the multiprocessor
problem is NP-hard when the time to complete job J; is
(wi/xi)k where k is a constant and x; is the amount of re-
source allocated to job J;, with)" x; bounded. Our proof of
the NP-hardness of general multiprocessor scheduling is es-
sentially the same as theirs, with the minor observation that
the argument works for all strictly convex power functions.
When the processing time of job J; is (w;/x;)* and all jobs

arrive at the same time, Shabtay and Kaspi (2006) also give
algorithms for multiprocessor scheduling if the jobs are al-
ready assigned to processors or preemption is allowed.

Shakhlevich and Strusevich (2006) study a variation in
which all jobs run at the same speed, which corresponds to
buying a faster processor. They give an algorithm with run-
ning time O (nlogn) to minimize the sum of makespan and
processor cost in this setting. They also consider problems
where the release times can be made earlier (at a cost) and
individual processing times can be reduced at a cost linear
in the amount of time saved. For this power function, the
same authors give an O (nlogn) time algorithm to solve the
uniprocessor bicriteria problem (Shakhlevich and Strusevich
2005). They give a similar algorithm for the parallel bicrite-
ria problem without release times.

In the processor scheduling literature, the work most
closely related to the algorithms in this paper is due
Pruhs et al. (2005). They consider the laptop problem ver-
sion of minimizing makespan for jobs having precedence
constraints where all jobs are released immediately and
power = speed®. Their main observation, which they call
the power equality, is that the sum of the powers of the
machines is constant over time in the optimal schedule.
They use binary search to determine this value and then
reduce the problem to scheduling on related fixed-speed
machines. Previously-known (Chudak and Shmoys 1997,
Chekuri and Bender, 2001) approximations for the related
fixed-speed machine problem then give an O (log!'*%/% m)-
approximation for power-aware makespan. This technique
cannot be applied in our setting because the power equality
does not hold for jobs with release dates.

Minimizing the makespan of tasks with precedence con-
straints has also been studied in the context of project
management. Speed scaling is possible when additional re-
sources can be used to shorten some of the tasks. Pinedo,
(2005) gives heuristics for some variations of this problem.

Minimizing flow time Power-aware schedule to minimize
total flow time was first studied by Pruhs et al. (2004), who
consider scheduling equal-work jobs on a uniprocessor. In
this setting, they observe that jobs can be run in order of
release time and then prove the following relationships be-
tween the speed of each job in the optimal solution:

Theorem 1 (Pruhs et al. 2004) Let Ji, Ja, ..., J, be equal-
work jobs ordered by release time. In the schedule OPT
minimizing total flow time for a given energy budget where
power = speed®, the speed o; of job J; (fori # n) obeys the
following:

° IfCiOPT <Tit1, then o; = 0y.
. IfCiOPT > rit1, then o' = o | + oy
° IfClQPT =Triy1, then o <o < Giof&-l +ol.

@ Springer

492

J Sched (2009) 12: 489-500

These relationships, together with observations about
when the schedule changes configuration, give an algorithm
based on binary search that finds an arbitrarily-good approx-
imation for either the laptop or the server problem.

The algorithm of Pruhs et al. (2004) actually gives more
than the schedule for a single energy budget. It can be used
to plot the exact trade-off between total flow time and en-
ergy consumption for optimal schedules in which the third
relationship of Theorem 1 does not hold. Their paper (Pruhs
et al. 2004) includes such a plot with gaps where this rela-
tionship holds, i.e. where the optimal solution has one job
completing exactly as another is released. Our impossibility
result in Sect. 4 shows that the difficulty caused by the third
relationship cannot be avoided.

Albers and Fujiwara (2006) propose a variation with the
objective of minimizing the sum of energy consumption and
total flow. When power = speed®, they show that every on-
line nonpreemptive algorithm is £2 (n!~1/%)-competitive us-
ing an input instance where a short job arrives once the al-
gorithm starts a long job. Their main result is an online algo-
rithm for the special case of equal-work jobs whose compet-
itive ratio is at most 8.3e(1 + ¢)¥, where ¢ = (1 ++/5)/2 ~
1.618 is the Golden Ratio. This competitive ratio is con-
stant for fixed «, but very large; for o = 3, its value is
approximately 405. They also give an arbitrarily-good ap-
proximation for the offline problem with equal-work jobs
and suggest another possible online algorithm. Bansal et al.
(2007) analyze this suggested online algorithm using a po-
tential function and show it is 4-competitive. They also show
that a related algorithm has competitive ratio around 20 for
weighted jobs.

Other related works ~ We conclude the discussion of related
work by mentioning a couple of papers on minimizing the
energy consumption of jobs with deadlines that have simi-
larities to our work.

Although most work on power-aware scheduling as-
sumes a continuous power function, we are not the first to
consider discrete power functions. Chen et al. (2005) show
that minimizing energy consumption in this setting while
meeting all deadlines is NP-hard, but give approximations
for some special cases.

In addition, Albers et al. (Albers et al. 2007) give a tech-
nique similar to our extension of uniprocessor algorithms
to the multiprocessor setting that works for jobs with dead-
lines. Their specific result is briefly described in Sect. 5.

3 Makespan scheduling on a uniprocessor
Our first result is an algorithm to find all non-dominated
schedules for uniprocessor power-aware makespan. We be-

gin by solving the laptop problem for an energy budget E
with a strictly-convex power function.

@ Springer

3.1 Algorithm for laptop problem

To find an optimal solution, we establish properties it must
satisfy. Our first property allows us to fix the order in which
jobs are run. To simplify notation, we assume the jobs are
indexedsothatr; <rp <r3<...<r,.

Lemma 2 There is an optimal solution that runs jobs in
order of their release times.

Proof We show that any schedule can be modified to run
jobs in order of their release times without changing the
energy consumption or makespan. If schedule A is not in
this form, then A runs some job J; followed immediately
by some job J; with j < i. We change the schedule by
starting job J; at time SiA and starting job J; after job J;
completes at time SIA + p;‘. The speed of each job is the
same as in schedule A so the energy consumption is un-
changed. The interval of time when jobs J; and J; are
running is also unchanged so the transformation does not
affect makespan. The resulting schedule A’ is legal since
each job starts no earlier than its release time. In particular,
rj§ri§Sl.A:S;‘/andr,‘§SiA<SlA/. O

The second property of optimal schedules is due to Yao
et al. (1995), who observed that the optimal schedule does
not change speed during a job or energy could be saved by
running that job at its average speed.

Lemma 3 (Yao et al. 1995) If the power function is strictly
convex and OPT is an optimal schedule, then OPT runs each
job at a single speed.

This follows from the convexity of the power function
and holds even if the number of speed changes can be infi-
nite; it can be shown using Jensen’s Inequality (cf. Rudin,
1987, p. 62). We use aiA to denote the speed of job J; in
schedule A, omitting the schedule when it is clear from con-
text.

The third property is that optimal schedules do not in-
clude idle time.

Lemma 4 [f the power function is strictly convex and OPT
is an optimal schedule, then OPT is not idle between the
release of job J1 and the completion of all jobs.

Proof Suppose to the contrary that OPT includes some idle
time. If OPT is idle before running its first job, modify the
schedule to run job J; during this idle time in addition to
whenever job J; runs during OPT. Otherwise, there is a job
J; running before the idle time. In this case, slow down a job
J;i so that it completes at the end of the idle time. In either
case, our modification means some job runs more slowly.

J Sched (2009) 12: 489-500

493

This change saves energy, which can be used to speed up
the last job and lower the makespan, contradicting the opti-
mality of OPT. (]

Stating the next property requires a definition. A block is
a maximal substring of jobs such that each job except the
last finishes after the arrival of its successor. For brevity, we
denote a block with the indices of its first and last jobs. Thus,
the block with jobs J;, Jiy1,...,Jj—1,J; is block (i, j).
The fourth property is the analog of Lemma 3 for blocks.

Lemma 5 If the power function is strictly convex and B is
the set of jobs belonging to a block of an optimal schedule
OPT then OPT runs every job in B at the same speed.

To prove this lemma, we use a procedure that we call
speed swapping. To use this procedure, we specify two jobs,
Ji and Jj, plus a value € > 0 corresponding to an amount
of work. The procedure modifies the schedule by swapping
the speed at which € work of each job is run. Specifically,
it runs € work from job J; at speed o; and € work from
job J; at speed o;. Any jobs running between jobs J; and
Jj have their start and completion times adjusted so that
each job starts at the completion of its predecessor. In or-
der to use speed swapping, we must argue that this sliding
does not cause any job to start before its release time. Once
we prove this, however, speed swapping gives us a way to
change the schedule without affecting either the makespan
or the total energy consumption; neither is changed since the
modified schedule has the same amount of work running at
each speed. In particular, using speed swapping on an opti-
mal schedule gives another optimal schedule.

Using this property of speed swapping, we prove Lem-
ma 5 by contradiction.

Proof of Lemma 5 1If the lemma does not hold, we can find
two adjacent jobs, J; and J;, in the same block of OPT with
o; # 0. Let € be a positive number less than the amount of
work remaining in job J; at time r;. Construct a new sched-
ule by speed swapping € work between jobs J; and J;. By
our choice of €, the new schedule does not violate any re-
lease times. As discussed above, it is another optimal sched-
ule. This contradicts Lemma 3 since job J; does not run at a
constant speed. U

Lemma 5 shows that speed is a property of blocks. In fact,
if we know how an optimal schedule satisfying Lemma 2
divides jobs into blocks, we can compute the speed of each
block. The definition of a block and Lemma 4 mean that
block (i, j) starts at time r;. Similarly, block (i, j) completes
at time 741 unless it is the last block. Thus, any block (i, j)
other than the last runs at speed (Zizi wi)/(rji1 —1i). To
compute the speed of the last block, we subtract the energy

used by all the other blocks from the energy budget E. We
choose the speed of the last block to exactly use the remain-
ing energy.

Using the first four properties, we can use dynamic pro-
gramming to compute the optimal schedule. Specifically,
we fill in a table T, where T[i] (1 <i < n) is the min-
imum energy needed to complete jobs Ji, ..., J; by time
ri+1. Each T[i] is computed as the minimum over j < i
of T[j] and the cost of block (j + 1,i). Once this table
is filled, the minimum makespan is the earliest time block
(j 4+ 1,n) that can be completed using energy E — T[j]
over all possible values of j. The only subtlety is that not
all blocks are possible; unit-work jobs released at times 0
and 90 cannot be a single block completing at time 100
since the implied block speed of 100/2 = 50 causes the
first job to complete before the second is released. To avoid
considering illegal blocks, we calculate a maximum speed
m;, jy for each possible block (i, j) using the relationship
m, jy =min{m j_1), Zi:i wk/(rj+1—r;)}. Blocks whose
speed exceeds their maximum are treated as having infinite
cost when computing table entries.

A careful implementation of this algorithm runs in O (n?)
time. To obtain a faster algorithm, we establish the following
additional property:

Lemma 6 If the power function is strictly convex and OPT
is an optimal schedule, then the block speeds in OPT are
non-decreasing.

Proof Suppose to the contrary that OPT runs a block faster
than the block following it. Let J; be the job run at the end of
the faster block and job J; be the job beginning the slower
block. We create a new schedule by speed swapping between
jobs J; and J;, choosing € to be less than the work of either
job. The modified schedule is valid since the only start time
modified is that of job J;, which starts later than in OPT.
(This is where we use that the earlier block is faster since
otherwise the new schedule speeds up job J; and finishes it
before r;.) Thus, we have created an optimal schedule that
runs jobs J; and J; at two speeds, contradicting Lemma 3. [J

It turns out that, for any level of energy consumption,
only one schedule has all of the properties attributed to an
optimal schedule in Lemmas 2-6. We state this result with
the additional property that the last job runs as fast as possi-
ble. This property means that the energy consumption is the
energy budget and also makes the lemma useful for power
functions that are not strictly convex.

Lemma 7 If the power function is strictly convex, there is
a unique schedule having the following properties for any
energy budget:

1. Jobs are run in order of release time.

@ Springer

494

J Sched (2009) 12: 489-500

2. Each job runs at a single speed.

3. The processor is not idle between the release of job Ji
and the completion of job J,,.

4. Jobs in each block run at the same speed.

. The block speeds are non-decreasing.

6. The last block runs at the fastest speed allowed by the
remaining energy.

W

If the power function is convex, distinct schedules with these
properties have the same blocks except that the last block of
the higher-makespan schedule is the union of more than one
block of the lower-makespan schedule.

Proof Suppose that A and B are different schedules with the
listed properties and consuming the same amount of energy.
With property 6, each schedule is determined by its blocks,
so A and B must have different blocks. Without loss of gen-
erality, suppose the first difference occurs when job J; is the
last job in its block for schedule A but not for schedule B.
We claim that every job indexed at least i runs slower and
finishes later in schedule B than in schedule A.

First, we show this holds for job J;. Job J; ends its block
in schedule A but not in schedule B, so CiB >riy] = CZA.
Since each schedule begins the block containing job J; at
the same time and runs the same jobs before job J;, job J;
runs slower in schedule B than schedule A.

Now we assume that the claim holds for jobs indexed be-
low j and consider job J;. Since each job J;, ..., J; fin-
ishes no earlier than its successor’s release time in schedule
A, each finishes after its successor’s release time in schedule
B. Thus, none of these jobs ends a block in schedule B and
schedule B places jobs J; and J; in the same block, which
implies o]B = O'iB . Speed is non-decreasing in schedule A,
SO o,.A < oA, Therefore o8 = crl.B < ol.A < O'jA, so job J;j
runs slower in schedule B than in schedule A. Job J; also
finishes later because job J;_; finishing later implies that
job J; starts later.

If the power function is strictly convex, then energy con-
sumption increases with speed and our claim implies that
schedule B uses less energy than schedule A, a contradic-
tion; so there must not be two such schedules. Even if the
power function is not strictly convex, the claim means that
B has higher makespan than A. In addition, we argued above
that schedule B places job J; in the last block. Thus, the last
block of schedule B contains at least two blocks of schedule
A, the one ending with job J; and the one starting with job
Jiv1. O

Because only an optimal schedule has the listed proper-
ties if the power function is strictly convex, we can solve the
laptop problem by finding a schedule with all of them. For
this task, we give the following algorithm IncMerge, which
incrementally adds the jobs to a list L of blocks:

@ Springer

IncMerge(list of jobs Jy, Ja, ..., J, sorted by release time)

1 L< ¢

2 fori < 1ton

3 create block B consisting of job J;

4 while L is nonempty and
speed(B) < speed(last(L))

5 remove last(L)

6 add its jobs to B

7 add B toend of L

The resulting schedule has the desired properties by con-
struction. To see that IncMerge can run in linear time, we
need two observations. First, the speed of each block can be
computed in constant time if prefix sums of the work are
precomputed (in O (n) time) and the amount of energy re-
maining is updated each time the list L is changed. Second,
the loop in lines 4-6 takes O(n) time total since each job
ceases to be the first job of a block only once.

We also note that IncMerge has desirable numerical prop-
erties for the special case when power = speed® for inte-
gral «, which includes systems obeying the cube-root rule
(o = 3). Specifically, the test in line 4 can be performed
with rational arithmetic. The speed of a block other than the
last is rational because its speed is its work over its duration
(both integers). The energy used by one of these blocks is
also rational since it is the product of the block’s work and
its speed to the (o — 1)st power. This means that the energy
of the last block is also rational since it is the energy budget
(an integer) minus the sum of energies used by other blocks.
Computing the speed of the last block would require taking
a root of this energy, but that can be avoided for line 4 by
instead comparing speed to the (o — 1)st. (Computing a root
is still necessary to find the achieved makespan since this
depends on the actual speed of the last block.)

3.2 Finding all non-dominated schedules

A slight modification of IncMerge finds all non-dominated
schedules. Intuitively, the modified algorithm enumerates
all optimal configurations (i.e. ways to break the jobs into
blocks) by starting with an “infinite” energy budget and
gradually lowering it. To start this process, run IncMerge
as above, but omit the merging step for the last job, essen-
tially assuming the energy budget is large enough that the
last job runs faster than its predecessor. To find each subse-
quent configuration change, calculate the energy budget at
which the last two blocks merge. Until this value, only the
last block changes speed. Thus, we can easily find the re-
lationship between makespan and energy consumption for
a single configuration and the curve of all non-dominated
schedules is constructed by combining these. The curve for
an instance with three jobs and power = speed? is plotted in
Fig. 1. The configuration changes occur at energy 8 and 17,
but they are not readily identifiable from the figure because

J Sched (2009) 12: 489-500

495

9.25

8.25

Makespan

7.25

| |

6 11 16 21
Energy

6.25

Fig.1 Makespan as a function of energy in non-dominated schedules,
for instance with r{ =0, w; =5, =5, wp =2,r3 =6, w3 = 1, and
power = speed3

1st derivative of makespan

-0.8 L L
6 11 16 21

Energy

Fig. 2 First derivative of makespan as a function of energy in
non-dominated schedules, for instance with rj =0, w; =5, rn =5,
wy =2,r3 =06, w3 =1, and power = speed3

o
)
(9

<

[\
T
1

015 .

e
—
T
1

0.05 [7

0 ' E——

6 11 16 21
Energy

2nd derivative of makespan

Fig. 3 Second derivative of makespan as a function of energy in
non-dominated schedules, for instance with rj =0, w; =5, rn =5,
wy =2,r3 =06, w3z =1, and power = speed3

makespan is a continuous function of energy and its first
derivative is also continuous. Higher derivatives are discon-
tinuous at the configuration changes. Figures 2 and 3 show
the first and second derivatives.

3.3 More general power functions

Now we show that algorithm IncMerge also works for more
general power functions. We first extend it to power func-
tions that are continuous and convex, but not strictly con-
vex. Again, we begin by establishing the properties listed in
Lemma 7.

Lemma 8 If the power function is convex, there is an opti-
mal solution with the properties listed in Lemma 7.

Proof We begin with properties that follow trivially from
our earlier discussion. We may assume jobs run in order of
their release times (Property 1) since the proof of Lemma 2
does not assume anything about the power function. Each
job can be made to run at a single speed (Property 2) by
setting its speed to the average speed as in the proof of
Lemma 3. Since the power function is convex, this does
not increase energy consumption. Similarly, we can remove
idle time (Property 3) by slowing jobs as in the proof of
Lemma 4. Again, this does not increase energy consump-
tion. In addition, any optimal solution runs its last block as
quickly as possible (Property 6).

Establishing the other two properties is a bit more com-
plicated. For each, we give a procedure to modify the sched-
ule until the desired property holds while maintaining the
existing properties. We use a variation of speed swapping
that simultaneously speeds up one job and slows down an-
other so that the makespan and total energy are unchanged.
This can be achieved by using the previous type of speed
swapping and then setting all work to run at its job’s aver-
age speed.

We first make every job in a block run at the same speed
(Property 4). Examine the jobs one at a time in execution
order. Let J denote the job currently being examined. If J
runs faster than the average speed for its block, speed-swap
between it and one or more slower jobs in the block to bring
its speed down to the average without raising the speed of
the slower jobs above the average. This change does not
start any job before its release since J lengthens by the to-
tal amount other jobs are shortened. If J runs slower than
average, speed-swap with a job in the block that runs faster
than average. Swap until either of the jobs runs at the aver-
age speed or some job between the swapping pair starts at its
release time. (The second condition prevents the new sched-
ule from violating release times.) If the faster job reaches
the average speed, select another fast job to continue speed
swapping. If the start time of some job reaches its release
time, split the block at that point and recompute the average
speed of each block. This process terminates because each
pair of jobs is involved in a speed swap at most once be-
tween block splits and the number of block splits is at most
n—1.

@ Springer

496

J Sched (2009) 12: 489-500

Next, we adjust the schedule so that the block speeds are
non-decreasing (Property 5). Whenever we have adjacent
blocks where the first runs faster, we speed-swap, slowing
every job in the earlier block and accelerating every job in
the later block until all run at the same speed. This merges
that pair of blocks. Again, the process terminates because
each pair of jobs speed-swaps at most once between block
merges and there can be at most n — 1 merges. (]

Now we are ready to show that IncMerge finds an optimal
solution for all convex power functions.

Theorem 9 IncMerge finds an optimal solution for all con-
tinuous convex power functions.

Proof For brevity, let IncMerge denote the schedule out-
put by algorithm IncMerge. Suppose to the contrary that
OPT is an optimal schedule satisfying Lemma 2 with lower
makespan than IncMerge. By Lemma 8, we may assume
that OPT has the properties listed in Lemma 7. Then, by
Lemma 7, IncMerge and OPT have the same blocks except
that the jobs in IncMerge’s last block form several blocks
in OPT. Consider one of these blocks (i, j) that is not last
in OPT. The jobs of block (7, j) run faster in OPT than
in IncMerge since they finish before r;;1 in OPT, but not
in IncMerge. Since IncMerge runs its last block as quickly
as allowed by the available energy, OPT uses more energy
for jobs J;, ..., J; than IncMerge. Thus, OPT has less en-
ergy available for its last block than these same jobs use
in IncMerge and must therefore run them no faster than
IncMerge runs its last block. Since earlier block (i, j) ran
faster than the last block of IncMerge, this contradicts the
property that block speeds are non-decreasing. O

Our next extension is relatively minor, to convex power
functions with a maximum possible speed. This does not af-
fect the algorithm other than making it impossible to im-
prove the makespan beyond the value achieved when the
speed of the last block runs at its maximum speed.

Our final extension is to discrete power functions, those
with only a finite number of possible speeds. To use
IncMerge with such a power function, convert the power
function into a piecewise linear power function by drawing
segments between all points and taking the lower hull of the
result, i.e. those points having the smallest power consump-
tion for a given speed. The speed/power values on a segment
are linear combinations of the endpoints and can be achieved
by switching the processor speed between the values of the
endpoints. The resulting power function is convex with a
maximum possible speed, which we have already shown to
be solvable by IncMerge.

@ Springer

4 Impossibility of exactly minimizing total flow time

We have completely solved uniprocessor power-aware
makespan by showing how to compute all non-dominated
schedules, forming a curve such as in Fig. 1. We have al-
ready observed that the analogous figure from previous work
on total flow time was plotted with gaps where the optimal
configuration involves one job completing exactly as an-
other is released. We now show that these gaps cannot be
filled exactly.

Theorem 10 If power = speed®, there is no exact algorithm
to minimize total flow time for a given energy budget using
exact real arithmetic, including the extraction of roots, even
on a uniprocessor with equal-work jobs.

Proof We show that a particular instance cannot be solved
exactly. Let jobs J; and J, arrive at time O and job J3 ar-
rive at time 1, each requiring one unit of work. We seek the
minimum-flow schedule using 9 units of energy. Again, we
use o; to denote the speed of job J;. Thus,

of +05+0i=09. (1

For energy budgets between approximately 8.43 and ap-
proximately 11.54, the optimal solution finishes job J» at
time 1. Therefore,

1 1

—+—=1 ()
o1 [ep)

and Theorem 1 gives us that
of =03 +0j3. 3)

Substituting (2) into (1) and (3), followed by algebraic ma-
nipulation gives

2037 — 1203 +60,° + 1080, — 15905 — 7380,
+ 241509 — 102605 — 594005 4 121500
— 1044905 + 43740, — 729 =0.

According to the GAP system (GAP Group 2006), the Ga-
lois group of this polynomial is not solvable. This implies
the theorem by a standard result in Galois theory (cf. Dum-
mit and Foote 1991, p. 542). O

This proof is based on an argument by Bajaj (1988) for
an unrelated problem.

Since an arbitrarily-good approximation algorithm is
known for total flow time, one interpretation of Theorem 10
is that exact solutions do not have a nice representation even
allowing radicals. For most applications, the approximation
is sufficient since finite precision is the normal state of af-
fairs in computer science. Only an exact algorithm such as
IncMerge can give closed-form solutions suitable for sym-
bolic computation, however.

J Sched (2009) 12: 489-500

497

5 Multiprocessor scheduling

Now we consider power-aware scheduling on a multiproces-
sor where all the processors use a shared energy supply. Note
that we restrict our attention to jobs that only run on a sin-
gle processor (serial jobs). This corresponds to scheduling a
computer with a multi-core processor or a server farm con-
cerned only about total energy consumption and not the con-
sumption of each machine separately. Except where explic-
itly stated otherwise, the results in this section assume that
the power function is strictly convex. Recall that we assume
jobs cannot migrate between processors during execution.

5.1 Distributing jobs to processors

We begin by showing how to assign equal-work jobs to
processors for scheduling metrics having two properties.
A metric is symmetric if it is not changed by permuting
the job completion times. A metric is non-decreasing if it
does not decrease when any job’s completion time increases.
Both makespan and total flow time have these properties, but
some metrics do not. For example, total weighted flow time
is not symmetric.

To prove our results, we need some notation. For sched-
ule A and job J;, let proc? (i) denote the index of the proces-
sor running job J; and succ? (i) denote the index of the job
run after J; on processor proc” (i). Also, let after (i) denote
the portion of the schedule running on processor proc® (i)
after the completion of job J;, i.e. the jobs running after job
Ji together with their start and completion times. We omit
the superscript when the schedule is clear from context.

We begin by observing that job start times and comple-
tion times occur in the same order.

Lemma 11 If OPT is an optimal schedule for equal-work
Jjobs under a symmetric non-decreasing metric, then Sl.oPT <
S?PT implies CiOPT < C?PT.

Proof Suppose to the contrary that SioPT < S?PT and
CiOP TS C;)P T Clearly, jobs J; and J 7 must run on different
machines. We create a new schedule OPT’ from OPT. All
jobs on machines other than proc(i) and proc(j) are sched-
uled exactly the same as are those that run before jobs J; and
Jj. We set the completion time of job J; in OPT’ to C?PT

and the completion time of job J; in OPT to CiOPT. We
also switch the suffixes of jobs following these two, i.e. run
after(i) on processor proc(j) and run after(j) on proces-
sor proc(i). Job J; still has positive processing time since
SI.OPT/ = SioPT < S;)PT < C?PT = CiOPT/. (The processing
time of job J; increases so it is also positive.) Thus, OPT’ is
a valid schedule. The metric values for OPT and OPT’ are
the same since this change only swaps the completion times
of jobs J; and J;.

We complete the proof by showing that OPT’ uses less
energy than OPT. Since the power function is strictly con-
vex, it suffices to show that both jobs have longer processing
time in OPT’ than job J; did in OPT. Job J; ends later so
its processing time is clearly longer. Job J; also has longer
processing time since runs throughout the time OPT runs
job J;, but starts earlier. O

Using Lemma 11, we prove that an optimal solution ex-
ists with the jobs placed in cyclic order, i.e. job J; runs on
processor (i mod m) + 1.

Theorem 12 There is an optimal schedule for equal-work
jobs under any symmetric non-decreasing metric with the
jobs placed in cyclic order.

Proof We can place job J; on processor 1 without loss of
generality. We complete the proof by giving a procedure to
extend the prefix of jobs placed in cyclic order. Let OPT
be an optimal schedule that places jobs Ji, J2, ..., Ji—1 in
cyclic order, but not job J;. To simplify notation, we cre-
ate dummy jobs J_(m_l), J_(m_z), ..., Jo, with job]—(m—i)
assigned to processor i. By assumption, succ(i — m) # i.
Let J, be the job preceding job J;, i.e. the job such that
succ(p) = i. Since the first i — 1 jobs are placed in cyclic
order, if we assume (without loss of generality) that jobs
starting at the same time finish in order of increasing index,
then Lemma 11 implies that C P_Pnf <C SP T,

To complete the proof, we consider 3 cases. In each, we
use OPT to create an optimal schedule assigning job J; to
processor (i mod m) 4+ 1, contradicting the definition of .

Case 1. Suppose no job follows job J;_,,. We modify the
schedule by moving after(p) to follow J;_,, on processor
(i mod m) + 1. Since C?fr}: < C[(,)PT and after(p) was able
to follow job J,, it can also follow job J; . The result-
ing schedule has the same metric value and uses the same
energy, so it is also optimal.

Case 2. Suppose J;_,, is not the last job assigned to
processor proc(i — m) and CSPT < Tsucc(i—m)- We extend
the cyclic order by swapping after(p) and after(i — m).
This does not change the amount of energy used. To show
that it gives a valid schedule, we need to show that jobs
Jp and J;_,, complete before after(i — m) and after(p).
Job J, ends by time SS?]ECT(Z._m) by the assumption that
CI(,)pT < Tsucc(i—m)- Job Ji_,, ends by time SS;ECT(,;)
comt < 9Pt

Case 3. Suppose J;_,, is not the last job assigned to
processor proc(i — m) and C,?PT > Fsucc(i—m)- 10 this case,
we swap the jobs Jsyce(i—m) and Jsuee(p) = Ji, but leave the
schedules the same. In other words, we run job Jgucc(i—m)
from time S[.OPT to time Cl.OPT on processor proc(p) and
we run job J; from time SOFT to time COFT = on proces-

succ(k) succ(k)
sor proc(k). The schedules have the same metric value and

since

@ Springer

498

J Sched (2009) 12: 489-500

each uses the same amount of energy. To show that we
have created a valid schedule, we need to show that jobs
Jsucei—m) and J; are each released by the start time of

the other. Job Jgycc(i—m) Was released by time Sl.oPT since
C[(,)PT > Isucc(i—m)- JOb J; was released by time Sscl’llch(l.fm)

since r; < Fsuce(i—m)- (Recall that a job with index greater
than i follows job J;_p, SO ri < Fsucc(i—m)-) O

A simpler proof suffices if we specify the makespan met-
ric since then an optimal schedule has no idle time. Thus,
Tsucc(i—m) < Cl.OEE < ClOPT and case 2 is eliminated.

Note that Albers et al. (2007) use a similar idea (dis-
covered independently) for scheduling jobs with deadlines.
Specifically, they show that placing equal-work jobs in
cyclic order allows deadline feasibility with minimum en-
ergy when the deadlines have the property that ; < r; im-
plies that the deadline of job J; is no later than the deadline
of job J; for all i and j. Their result is not implied by ours
since deadline feasibility is not symmetric, but the proof has
a similar flavor.

5.2 Multiprocessor algorithms

Once the jobs are assigned to processors, we can use slight
modifications of IncMerge and the total flow time algorithm
of Pruhs et al. (2004). In order to do this, we make the fol-
lowing simple observations that relate the schedules on each
processor:

1. For makespan, each processor must finish its last job at
the same time or slowing the processors that finish early
would save energy.

2. For total flow time, each processor runs its last job at the
same speed or running them at the average speed would
save energy.

For makespan, the resulting algorithm begins by running
IncMerge separately on each processor up to the point of de-
termining the speed of the last block. These last blocks must
end at the same time and exactly consume the remaining
energy. Next, the algorithm determines the completion time
of these blocks (i.e. the makespan); how, we describe be-
low. From this, the speed of each last block is calculated. If
the non-decreasing speed property is violated on any proces-
sor, the last two blocks on that processor are merged as in
IncMerge and the makespan is recomputed. Once no change
is needed, the resulting makespan is returned.

It remains to explain how the algorithm determines the
makespan for a given block structure. For each last block,
we have a starting time and an amount of work. We need to
solve for the time ¢ at which these blocks end. The speed of
each last block has the form

work

“

t — start_time

@ Springer

The energy of each last block is computed from these
speeds. The resulting values are summed and set equal to
the remaining energy. The tricky part is then to solve this
equation for ¢, but a binary search style algorithm can find
an arbitrarily-good approximation in a number of steps log-
arithmic in the reciprocal of the desired accuracy (expressed
as a percent error). Let L denote this reciprocal; then the en-
ergy used with a particular value of ¢ is evaluated O (log L)
times for each candidate block structure.

The exact runtime of this algorithm depends on how fast
a job’s energy consumption can be computed from its speed.
For power = speed”, solving for the energy used with a par-
ticular value of 7 takes O (m?) time since the equation gets
a term of the form shown in (4) from each processor; mul-
tiplying to get rid of the denominators creates 1 term with
m factors and m terms with m — 1 factors. Finding these
roots takes O (nm?log L) since there can be n changes to
the block structure. This aspect of the algorithm takes the
longest, so its overall runtime is also O (nm?log L).

Although an exact algorithm would be preferable to an
arbitrarily-good approximation, the multiprocessor make-
span cannot be exactly solved in general, even with exact
real arithmetic and the ability to take roots. Consider an in-
stance on five processors consisting of jobs Ji—Js where
ri =1 — 1 and each job requires one unit of work. Let
power = speed”. Following the algorithm above, each job
gets it own processor and the energy used is

SR
;t—ﬂrl'

If the energy budget is 1, solving for the makespan is equiv-
alent to finding a root of

119 — 207 + 16518 — 72017 + 1733¢° — 19807 — 255¢*
+ 36401 — 44241% + 2400t — 576 = 0.

As in the proof of Theorem 10, GAP reports that the Galois
group of this polynomial is not solvable so there is no exact
algorithm for the multiprocessor makespan.

Next we give our multiprocessor extension of the Pruhs
et al. (2004) algorithm for total flow when power = speed”.
The uniprocessor algorithm is based on finding whether
each job should finish before, after, or exactly at the release
time of its successor. We call an assignment of these rela-
tionships to each job a configuration of the jobs. For a given
configuration, Theorem 1 relates the speed of each job to the
speed of the last job and allows us to find the flow to within
an arbitrarily-small error. To find the correct configuration,
the algorithm starts by assuming an sufficiently-large energy
budget so that each job finishes before its successor’s arrival.
Then, the algorithm gradually lowers the speed of the last
job, detecting each configuration change as it occurs. This

J Sched (2009) 12: 489-500

499

algorithm takes 0 (n? log L) time, where L is the recipro-
cal of the desired accuracy. For a multiprocessor problem,
the job energies on a single processor are related as in the
uniprocessor setting. Since the last job on each processor
runs at the same speed, the jobs speeds are actually related
between processors as well. In fact, the equations relating
the speed of each job are identical to those that would occur
if every processor’s jobs ran on a single processor with idle
periods separating the jobs assigned to different processors.
Since assigning the jobs to processors takes only linear time,
the multiprocessor algorithm takes the same O (n”logL)
time as the uniprocessor version.

5.3 Hardness for jobs requiring different amount of work

Theorem 12 allows us to solve multiprocessor makespan for
equal-work jobs. Unfortunately, the general problem is NP-
hard.

Theorem 13 The laptop problem is NP-hard for nonpre-
emptive multiprocessor makespan, even if all jobs arrive at
the same time.

As stated previously, this result was proven by Shab-
tay and Kaspi (2006) when the time to complete job J; is
(wi/xi)k, where k is a constant and x; is the amount of re-
source devoted to job J;, with > x; bounded. Our proof is
essentially the same as theirs; we include it for complete-
ness.

Proof of Theorem 13 We give a reduction from the
NP-complete problem PARTITION (Garey and Johnson
1979):

PARTITION: Given a multiset A = {ay, a3, ...,a,},
does there exist a partition of A into A; and A, such

that Za,-eAl a; = ZaieAz a;?

Let B=Y)"_,a;. We assume B is even since otherwise
no partition exists. We create a scheduling problem from
an instance of PARTITION by creating a job J; for each g;
with r; =0 and w; = a;. Then we ask whether a 2-processor
schedule exists with makespan B/2 and a power budget al-
lowing work B to run at speed 1.

From a partition, we can create a schedule where each
processor runs the jobs corresponding to one of the A; at
speed 1. For the other direction, the convexity of the power
function implies that all jobs run at speed 1 so the work must
be partitioned between the processors. O

Pruhs et al. (2005) observed that the special case of all
jobs arriving together has a PTAS based on a load balanc-
ing algorithm of Alon et al. (1997) that approximately min-
imizes the L, norm of loads.

6 Discussion

The study of power-aware scheduling algorithms began only
recently so there are many possible directions for future
work. We are particularly interested in online algorithms.
Our results on the structure of optimal solutions may help
with this task, but the problem seems quite difficult. If the
algorithm cannot know when the last job has arrived, it must
balance the need to run quickly to minimize makespan if
no other jobs arrive against the need to conserve energy in
case more jobs do arrive. One solution is to follow the direc-
tion of Albers and Fujiwara (2006) and Bansal et al. (2007),
minimizing makespan plus energy consumption rather than
makespan alone.

Another open problem is how to handle jobs with dif-
ferent work requirements while minimizing multiprocessor
makespan. Theorem 13 shows that finding an exact solution
is NP-hard, but this does not rule out the existence of a high-
quality approximation algorithm. As mentioned above, there
is a PTAS based on load balancing when all jobs arrive to-
gether. It would be interesting to see if the ideas behind this
PTAS can be adapted to take release times into consider-
ation. Alternately, it would be interesting to show that the
problem is strongly NP-hard.

We would also like to find an approximation for uni-
processor power-aware scheduling to minimize total flow
time when the jobs have different work requirements. It is
not hard to show that the relationships of Theorem 1 hold
even in this case. Preemptions can also be incorporated with
the preempted job taking the role of job J;41 in the second
relationship of that theorem. Thus, the problem reduces to
finding the optimal configuration.

We would also like to see theoretical research using mod-
els that more closely resemble real systems. The most obvi-
ous change is to use discrete power functions, which we did
in this paper. Imposing minimum and/or maximum speeds
is one way to partially incorporate this aspect of real sys-
tems without going all the way to the discrete case. Another
feature of real systems is that slowing down the processor
has less effect on memory-bound sections of code since part
of the running time is caused by memory latency. There is
already some simulation-based work attempting to exploit
this phenomenon (Xie et al. 2003). Finally, real systems in-
cur overhead to switch speeds because the processor must
stop while the voltage is changing. This overhead is fairly
small, but discourages algorithms requiring frequent speed
changes.

Acknowledgements We thank Jeff Erickson for introducing us to
the work of Bajaj (Bajaj 1988) on using Galois theory to prove hard-
ness results. We also benefited from comments made by the anonymous
referees and from discussions with Erin Chambers, Dan Cranston,
Sariel Har-Peled, Steuard Jensen, and Andrew Leahy.

@ Springer

500

J Sched (2009) 12: 489-500

References

Advanced Micro Devices. (2004). AMD Athlon 64 processor
power and thermal data sheet (version 3.43), October 2004.
http://www.amd.com/us-en/assets/content_type/white_papers_
and_tech_docs/30430.pdf.

Albers, S., & Fujiwara, H. (2006). Energy-efficient algorithms for flow
time minimization. In Proceedings of the 23rd international sym-
posium on theoretical aspects of computer science (pp. 621-633).

Albers, S., Miiller, F., & Schmelzer, S. (2007). Speed scaling on paral-
lel processors. In Proceedings of the 19th annual ACM symposium
on parallelism in algorithms and architectures (pp. 289-298).

Alon, N., Azar, Y., Woeginger, G. J., & Yadid, T. (1997). Approxi-
mation schemes for scheduling. In Proceedings of the 8th annual
ACM-SIAM symposium on discrete algorithms (pp. 493-500).

Bajaj, C. (1988). The algebraic degree of geometric optimization prob-
lems. Discrete Comput. Geom., 3, 177-191.

Bansal, N., Pruhs, K., & Stein, C. (2007). Speed scaling for weighted
flow time. In Proceedings of the 18th annual ACM-SIAM sympo-
sium on discrete algorithms (pp. 805-813).

Brooks, D. M., Bose, P., Schuster, S. E., Jacobson, H., Kudva, P. N.,
Buyuktosunoglu, A., Wellman, J.-D., Zyuban, V., Gupta, M., &
Cook, P. W. (2000). Power-aware microarchitecture: Design and
modeling challenges for next-generation microprocessors. [EEE
Micro, 20(6), 26-44.

Bunde, D. P. (2006). Power-aware scheduling for makespan and flow.
In Proceedings of the 18th annual ACM symposium on paral-
lelism in algorithms and architectures (pp. 190-196).

Chekuri, C., & Bender, M. A. (2001). An efficient approximation algo-
rithm for minimizing makespan on uniformly related machines.
Journal of Algorithms, 41, 212-224.

Chen, J.-J., Kuo, T.-W., & Lu, H.-I. (2005). Power-saving scheduling
for weakly dynamic voltage scaling devices. In Lecture notes in
computer science: Vol. 3608. Proceedings of the 9th workshop on
algorithms and data structures (pp. 338-349). Berlin: Springer.

Chudak, F. A., & Shmoys, D. B. (1997). Approximation algorithms
for precedence-constrained scheduling problems on parallel ma-
chines that run at different speeds. In Proceedings of the Sth
annual ACM-SIAM symposium on discrete algorithms (pp. 581—
590).

Dummit, D. S., & Foote, R. M. (1991). Abstract algebra. Englewood
Cliffs: Prentice-Hall.

El Gamal, A., Nair, C., Prabhakar, B., Uysal-Biyikoglu, E., & Za-
hedi, S. (2002). Energy-efficient scheduling of packet transmis-
sions over wireless networks. In Proceedings of the IEEE INFO-
COM (pp. 1773-1782).

GAP Group. (2006). GAP system for computational discrete algebra.
http://turnbull.mcs.st-and.ac.uk/~gap/ (viewed January 2006).

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability:
A guide to the theory of NP-completeness. New York: Freeman.

Irani, S., & Pruhs, K. R. (2005). Algorithmic problems in power man-
agement. SIGACT News, 32(2), 63-76.

@ Springer

Keslassy, 1., Kodialam, M., & Lakshman, T. V. (2003). Faster algo-
rithms for minimum-energy scheduling of wireless data transmis-
sions. In Proceedings of the modeling and optimization in mobile,
ad hoc and wireless networks.

Mudge, T. (2001). Power: A first-class architectural design constraint.
Computer, 34(4), 52-58.

Pinedo, M. L. (2005). Planning and scheduling in manufacturing
and services. Springer series in operations research. New York:
Springer.

Pruhs, K., Uthaisombut, P., & Woeginger, G. (2004). Getting the best
response for your erg. In Lecture notes in computer science: Vol.
3111. Proceedings of the 9th Scandinavian workshop on algo-
rithm theory (pp. 14-25). Berlin: Springer.

Pruhs, K., van Stee, R., & Uthaisombut, P. (2005). Speed scaling of
tasks with precedence constraints. In Lecture notes in computer
science: Vol. 3879. Proceedings of the 3rd workshop on approxi-
mation and online algorithms (pp. 307-319). Berlin: Springer.

Rudin, W. (1987). Real and complex analysis (3rd ed.) New York:
McGraw-Hill.

Shabtay, D., & Kaspi, M. (2006). Parallel machine scheduling with a
convex resource consumption function. European Journal of Op-
erational Research, 173, 92-107.

Shabtay, D., & Steiner, G. (2007). A survey of scheduling with con-
trollable processing times. Discrete Applied Mathematics, 155,
1643-1666.

Shakhlevich, N. V., & Strusevich, V. A. (2005). Pre-emptive scheduling
problems with controllable processing times. Journal of Schedul-
ing, 8(3), 233-253.

Shakhlevich, N. V., & Strusevich, V. A. (2006). Single machine sched-
uling with controllable release and processing parameters. Dis-
crete Applied Mathematics, 154, 2178-2199.

Tiwari, V., Singh, D., Rajgopal, S., Mehta, G., Patel, R., & Baez, F.
(1998). Reducing power in high-performance microprocessors. In
Proceedings of the 35th ACM/IEEE design automation conference
(pp. 732-737).

Uysal-Biyikoglu, E., & El Gamal, A. (2004). On adaptive transmission
for energy efficiency in wireless data networks. IEEE Transac-
tions on Information Theory, 50(12), 3081-3094.

Uysal-Biyikoglu, E., Prabhakar, B., & El Gamal, A. (2002). Energy-
efficient packet transmission over a wireless link. IEEE/ACM
Transactions on Networking, 10(4), 487-499.

Weiser, M., Welch, B., Demers, A., & Shenker, S. (1994). Scheduling
for reduced CPU energy. In Proceedings of the 1st symposium on
operating systems design and implementation (pp. 13-23).

Xie, F., Martonosi, M., & Malik, S. (2003). Compile-time dynamic
voltage scaling settings: Opportunities and limits. In Proceedings
of the 2003 ACM SIGPLAN conference on programming language
design and implementation (pp. 49-62).

Yao, F.,, Demers, A., & Shenker, S. (1995). A scheduling model for
reduced CPU energy. In Proceedings of the 36th symposium on
Sfoundations of computer science (pp. 374-382).

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
http://turnbull.mcs.st-and.ac.uk/~gap/

	Power-aware scheduling for makespan and flow
	Abstract
	Introduction
	Results

	Related work
	Minimizing makespan
	Minimizing flow time
	Other related works

	Makespan scheduling on a uniprocessor
	Algorithm for laptop problem
	Finding all non-dominated schedules
	More general power functions

	Impossibility of exactly minimizing total flow time
	Multiprocessor scheduling
	Distributing jobs to processors
	Multiprocessor algorithms
	Hardness for jobs requiring different amount of work

	Discussion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

