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Abstract—Multiple applications that execute concurrently on heterogeneous platforms compete for CPU and network resources. In

this paper, we consider the problem of scheduling applications to ensure fair and efficient execution on a distributed network of

processors. We limit our study to the case where communication is restricted to a tree embedded in the network, and the applications

consist of a large number of independent tasks (Bags of Tasks) that originate at the tree’s root. The tasks of a given application all have

the same computation and communication requirements, but these requirements can vary for different applications. The goal of

scheduling is to maximize the throughput of each application while ensuring a fair sharing of resources between applications. We can

find the optimal asymptotic rates by solving a linear programming problem that expresses all necessary problem constraints, and we

show how to construct a periodic schedule from any linear program solution. For single-level trees, the solution is characterized by

processing tasks with larger communication-to-computation ratios at children with larger bandwidths. For multilevel trees, this

approach requires global knowledge of all application and platform parameters. For large-scale platforms, such global coordination by

a centralized scheduler may be unrealistic. Thus, we also investigate decentralized schedulers that use only local information at each

participating resource. We assess their performance via simulation and compare to an optimal centralized solution obtained via linear

programming. The best of our decentralized heuristics achieves the same performance on about 2/3 of our test cases but is far worse

in a few cases. Although our results are based on simple assumptions and do not explore all parameters (such as the maximum

number of tasks that can be held on a node), they provide insight into the important question of fairly and optimally scheduling

heterogeneous applications on heterogeneous grids.

Index Terms—Parallel computing, scheduling, multiple applications, bag of tasks, resource sharing, fairness, throughput.
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1 INTRODUCTION

IN this paper, we consider the problem of scheduling
multiple applications that are executed concurrently and,

hence, that compete for CPU and network resources. The
target computing platform is a heterogeneous network of
computers structured either as a star network (a one-level
rooted tree) or a multilevel rooted tree. In both cases, we
assume full heterogeneity of the resources, both for CPU
speeds and link bandwidths.

Each application consists of a large collection of

independent equally sized tasks, and all tasks originate at

the tree’s root. This scenario is somewhat similar to that

addressed by existing systems. For instance, BOINC [1] is a

centralized scheduler that distributes tasks for participating

applications such as SETI@home, ClimatePrediction.NET,

and Einstein@Home. The applications can be very different
in nature, for example, files to be processed, images to be
analyzed, or matrices to be manipulated. Consequently, we
assume each application has an associated communication-to-
computation ratio (CCR) for all of its tasks. This ratio proves
to be an important parameter in the scheduling process.

The scheduling problem is to maintain a balanced
execution of all applications while using the computational
and communication resources of the system effectively to
maximize the throughput �ðkÞ of each application (the
average number of tasks of application Ak, 1 � k � K,

processed per time unit). For each application, the root node
must decide which workers (that is, which subtree) the
tasks are sent to. For multilevel trees, each nonleaf worker
must make similar decisions: which tasks to compute
locally and which to forward to workers further down in
the tree. The scheduler must also ensure a fair management

of the resources. If all tasks were equally important, the
scheduler should aim to process the same number of tasks
for each application. We could generalize this by allowing
each application Ak to be assigned a priority weight wðkÞ that
quantifies its relative value. For instance, if wð1Þ ¼ 3 and

wð2Þ ¼ 1, the scheduler should try to ensure that three tasks
of A1 are executed for each task of A2. However, we avoid
using weights in the following to simplify the presentation.1

We will consider both centralized and decentralized
schedulers. For smaller platforms, it may be realistic to

698 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 5, MAY 2008

. O. Beaumont is with Laboratoire LaBRI, CNRS-INRIA, domaine
Universitaire, 351 cours de la Libération, 33405 Talence, France.
E-mail: Olivier.Beaumont@labri.fr.

. L. Carter and J. Ferrante are with the Department of Computer Science and
Engineering, University of California, San Diego, 9800 Gilman Drive,
Mail Code 0404, La Jolla, CA 92093-0404.
E-mail: {carter, ferrante}@cs.ucsd.edu.

. A. Legrand is with CNRS, Laboratoire LIG, 51 Avenue Jean Kuntzmann,
38330 Montbonnot St., Martin, France. E-mail: Arnaud.Legrand@imag.fr.

. L. Marchal and Y. Robert are with Laboratoire LIP, ENS LYON, CNRS-
INRIA, �Ecole Normale Supérieure de Lyon, 46 allee d;Italie, F-69364 Lyon
Cedex 07, France. E-mail: {Loris.Marchal, Yves.Robert}@ens-lyon.fr.

Manuscript received 30 June 2006; revised 7 May 2007; accepted 5 June 2007;
published online 27 July 2007.
Recommended for acceptance by D. Trystram.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0174-0606.
Digital Object Identifier no. 10.1109/TPDS.2007.70747.

1. All results can be easily extended when adding weights: simply
replace �ðkÞ by �ðkÞ

wðkÞ
. See [2] for further details.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society



assume a centralized scheduler, which makes its decisions
based upon complete and reliable knowledge of all
application and platform parameters. With such knowledge
at our disposal, we are able to determine an optimal
schedule, that is, a schedule that maximizes the fair
throughput asymptotically. This is done by formulating
all constraints into a linear programming problem and
using the solution to construct a periodic schedule. Except
during the (fixed-length) start-up and clean-up periods, no
schedule can have a higher throughput. For single-level
rooted trees, we provide an interesting characterization of
the optimal solution: applications with a larger CCR should
be processed by the workers with larger bandwidths,
independently of the CCRs of the workers.

For large-scale platforms, particularly ones in which
resource availability changes over time, a centralized
scheduler may be undesirable. Only local information such
as the current capacity (CPU speed and link bandwidth) of
a processor’s neighbors is likely to be available. One major
goal of this paper is to investigate whether decentralized
scheduling algorithms can reach an optimal throughput or
at least achieve a significant fraction of it. We provide
several decentralized heuristics that rely exclusively on
local information to make scheduling decisions. The key
underlying principles of these heuristics come from our
characterization of the optimal solution for star networks:
give priority to high-bandwidth children and assign them
tasks of larger CCRs. We evaluate the decentralized
heuristics through extensive simulations using SimGrid [3]
and use a centralized algorithm (guided by the linear
program solution) as a reference basis.

The rest of the paper is organized as follows: Section 2 is
devoted to an overview of related work. In Section 3, we
state precisely the scheduling problem under consideration,
with all application and platform parameters, and discuss
the objective function used afterward. Section 4 explains
how to analytically compute the best solution, using a linear
programming approach, and characterizes the solution for
single-level trees. Section 5 is then a discussion on the
design of several decentralized scheduling heuristics,
whereas Section 6 provides an experimental comparison
of these heuristics. Finally, we state some concluding
remarks in Section 7.

2 RELATED WORK

We classify related research in three main areas:

2.1 Bag-of-Tasks Scheduling on Computational
Grids

Bag-of-Tasks applications are parallel applications whose
tasks are all independent. This framework is motivated by
problems that are addressed by collaborative computing
efforts such as SETI@home [4], factoring large numbers [5],
the Mersenne prime search [6], and those distributed
computing problems organized by companies such as
Entropia [7]. One can argue that Bag-of-Tasks applications
are most suited for computational grids, because commu-
nication can easily become a bottleneck for tightly coupled
parallel applications.

Condor [8] and APST [9], [10] are one of the first projects
providing specific support for such applications. Condor
was initially conceived for campus-wide networks [8] but
has been extended to run on grids [11]. Whereas APST is
user centric and does not handle multiple applications,
Condor is system centric. Those two projects are designed
for standard grids, but more recent and active projects like
OurGrid [12] and BOINC [1] target more distributed
architectures like desktop grids. BOINC [1] is a centralized
scheduler that distributes tasks for participating applica-
tions such as SETI@home, ClimatePrediction.NET, and
Einstein@Home. The set of resources is thus very large,
whereas the set of applications is small and very controlled.
OurGrid is a Brazilian project that encourages people to
donate their computing resources while maintaining the
symmetry between consumers and providers. Whereas
APST, Condor, and BOINC all rely on a centralized
scheduler and may suffer from scalability issues, OurGrid
is the only framework we know of where scheduling is
done in a fully distributed way, following the peer-to-peer
approach.

However, all these projects generally focus on designing
and providing a working infrastructure, and they do not
provide any analysis of scheduling techniques suited to
such environments.

2.2 Steady-State Scheduling

Because the number of tasks to be executed on the
computing platform is expected to be very large (otherwise,
why deploy the corresponding application on a distributed
platform?), it makes sense to focus on steady-state optimiza-
tion problems rather than on standard makespan minimiza-
tion problems. Minimizing the makespan, that is, the total
execution time, is an NP-hard problem in most practical
situations [13], [14], [15], whereas it turns out that the
optimal steady state can often be characterized very
efficiently, with low-degree polynomial complexity.

The steady-state approach has been pioneered by
Bertsimas and Gamarnik [16]. It has been used successfully
in many situations [17]. In particular, steady-state schedul-
ing has been used to schedule independent tasks on
heterogeneous tree-overlay networks [18], [19]. This is the
same problem dealt with in the present paper but restricted
to a single application. Bandwidth-centric scheduling is
introduced in [18], and extensive experiments are reported
in [20]. Autonomous protocols for bandwidth-centric
scheduling are investigated by Carter et al. [21]. Such
distributed autonomous protocols have been obtained only
on tree platforms. That is why in the current more complex
context, we restrict our study to tree platforms. The steady-
state approach has also been used by Hong and Prasanna
[22] who extend the work in [18] to deploy a divisible
workload on a heterogeneous platform. However, to the
best of our knowledge, the steady-state scheduling ap-
proach has never been used in a multiple-application
context.

2.3 Fairness

In a multiuser environment, resources have to be fairly
shared between users. This issue becomes more and more
critical as the size of the system increases. There is actually a
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large gap between what is known on the theoretical side in
game theory and what is implemented in practical Bag-of-
Tasks scheduling environments. In most practical environ-
ments, some fairness is ensured through the use of hand-
tuned priorities or reciprocation-based economy [23].
Market-inspired economy and an auction-based mechanism
could also be used. However, in most existing work related
to fairness in grid environments, the mechanism is not
based on clear definitions of the fairness criteria.

Fairness is yet a classical criterion in network bandwidth
allocation. Optimizing the sum of the throughputs is known
as maximizing the throughput or profit of a network.
Optimizing this kind of objective is natural for an access
provider who receives an amount of money proportional to
the throughput that he/she is able to provide and who wants
to maximize his/her profit. However, this criterion is known
to be unfair and can lead to starvation. That is why in
Section 3.4, we choose to maximize the minimum of �ðkÞ

rather than the sum. This criterion is known in the literature as
max-min and is intuitively fair since all throughputs are
computed to be as close as possible from each other. Between
these two extremes, other criteria can be found (for example,
proportional fairness that maximizes

P
logð�ðkÞÞ and minimum

potential delay that minimizes
P

1
�ðkÞ

). In fact, all these criteria
(profit, proportional fairness, and minimum potential delay)
amount to maximizing the arithmetic, geometric, and
harmonic mean of the throughput [24]. It is well known in
the networking community [25] that max-min fairness is
generally achieved by explicit rate calculation (for example,
in ATM networks) and rather hard to achieve in a fully
decentralized way. Nevertheless, fully distributed algo-
rithms are known to realize proportional fairness (such as
some variants of TCP). Adapting such algorithms to Bag-of-
Tasks scheduling environments seems challenging as both
communications and computations are involved.

3 FRAMEWORK AND MODELS

In this section, we clarify the assumptions underlying our
work; although they are overly simplistic, we believe
nevertheless that they provide insight into the important
question of how to optimally and fairly schedule hetero-
geneous applications on heterogeneous grids.

3.1 Platform Model

The target computing platform is either a single-level tree
(also called a star network) or an arbitrary tree. The processor
at the root of the tree is denoted P0. There are P additional
“worker nodes” P1; P2; . . . ; PP ; each worker Pu has a single
parent PpðuÞ, and the link between Pu and its parent has
bandwidth bu. We assume a linear-cost communication
model; hence, it takes X=bu time units to send a message of
size X from PpðuÞ to Pu. For the sake of simplicity, we ignore
processor-task affinities; instead, we assume that only the
number of floating-point operations per second (cu for
processor Pu) determines the application execution speed.

There are several scenarios for the operation of the
processors. In this paper, we concentrate on the full-overlap
single-port model [26], [27]. In this model, a processor node
can simultaneously receive data from one of its neighbors,
perform some (independent) computation, and send data to

one of its neighbors. At any given time, there are at most

two communications involving a given processor, one sent

and the other received.

3.2 Application Model

We consider K applications, Ak, 1 � k � K. The root node

P0 initially holds all the input data necessary for each

application Ak. Each application is composed of a set of

independent equally sized tasks. We can think of each Ak as

a bag of tasks, and the tasks are files that require some

processing. A task of application Ak is called a task of type k.

We assume that one can express the computational

requirements of tasks as a number of floating-point

operations, and we let cðkÞ be the amount of computation

(in floating-point operations) required to process a task of

type k. Similarly, bðkÞ is the size (in bytes) of (the file

associated to) a task of type k. We assume that the only

communication required is outward from the root, that is,

that the amount of data returned by the worker is

negligible. Our results are equally applicable to the scenario

in which the input to each task is negligible but the output

is large. Note that our notations use subscripts for platform

resources (bandwidth bu and CPU speed cu) and super-

scripts for application parameters (bytes bðkÞ and floating-

point operations cðkÞ).

3.3 Steady-State Scheduling

If each application had an unlimited supply of tasks, each

application should aim at maximizing its average number

of task processed per time unit (the throughput). When the

number of tasks is very large, optimizing the steady-state

throughput enables to derive periodic asymptotically

optimal schedules for the makespan [18], [19]. In our setting

where each application has a very large number of tasks, we

should thus try to optimize the steady-state throughput of

each application.

More formally, for a given infinite schedule, we can

define N ðkÞðtÞ the number of tasks of type k processed in

time interval ½0; t�. The throughput for application k of such

a schedule is defined as �ðkÞ ¼ lim inft!1
NðkÞðtÞ

t . Similarly,

we can define

. �ðkÞu as the average number of tasks of type k
executed by Pu per time unit and

. sentðkÞu!v as the average the number of tasks of type k
received by Pv from Pu per time unit.

We will see in Section 4.1 that the �ðkÞu ’s and the sentðkÞu!v’s

are linked by linear equations and satisfy linear constraints,

which enables the derivation of upper bounds on the

throughput. It is possible to build a periodic schedule, that is,

a schedule that repeatedly begins and ends in the same state

(see [18] and [19] for more details), from the values of �ðkÞu
and sentðkÞu!v returned by the linear program.

The throughput achieved by this periodic schedule for

each application k is optimal. In other words, when the

number of tasks per application is large, this approach

enables circumventing the NP-completeness of the makespan

optimization problem while deriving efficient schedules.
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3.4 Objective Function

In this section, we present a few game-theoretic notions and

how they translate to our context. This helps us to correctly

define a metric to optimize in our setting. Game theory

provides a general framework to model situations where

many users compete for resources. Each user (in our

context, each application) is characterized by a utility

function uk defined on ð�ðkÞp Þ1�k�K;1�p�P , where K is the

number of applications, and P is the number of computing

resources. A variety of possible utility functions are shown

in Fig. 1; in the rest of the article, we focus on linear utility

functions:

ukð�Þ ¼
X
p

�ðkÞp ¼ �ðkÞ:

Our goal is to find scheduling strategies such that the

utility of each user is maximized. However, as these users

may compete for the same resources, it is generally not

possible to simultaneously maximize the utility of each

user. Instead, we employ a utility set U :

U ¼ fðu1ð�Þ; . . . ; uKð�ÞÞj� is feasibleg:

For tree-shaped platforms, the set of constraints on �ðkÞu is

a set of linear inequalities (as seen later in Section 4.1), and

we know that the utility set is thus a convex polyhedron.

Using the same techniques as in [28], [17], and [29], one can

show for general platforms that the utility set is also a

convex polyhedron, as illustrated in Fig. 2.
Fig. 2a corresponds to the typical situation where two

applications are competing on a single node:

�ð1Þ � cð1Þ þ �ð2Þ � cð2Þ � cu �ð1Þ � 0;
�ð1Þ � bð1Þ þ �ð2Þ � bð2Þ � bu �ð2Þ � 0:

�
In a multiuser context, optimality is not defined as simply

as in the single-user context, and it is common to use Pareto

optimality, defined as follows:

Definition 1 (Pareto optimality). e� is Pareto optimal if and
only if

8�; 9i; uið�Þ > uið~�Þ ) 9j; ujð�Þ < ujð~�Þ:

In other words, e� is Pareto optimal if it is impossible to
strictly increase the utility of a user without strictly
decreasing that of another. For example, in Fig. 2a, all
points on the rightmost boundaries are Pareto optimal,
whereas in Fig. 2b, only the rightmost point is Pareto
optimal. Any Pareto-optimal point is thus a priori as worth
of interest as any other Pareto-optimal point. Defining
fairness can be seen as defining a criterion for choosing
among Pareto-optimal points.

One of the most common fairness criterion is the well-
known max-min fairness strategy [30], [25]. For a given
allocation �, there is an application k whose utility is smaller
than the other ones. A max-min fair allocation is such that this
smaller utility is as large as possible. Such a criterion is thus
more reasonably fair than, for example, trying to maximize
the sum of utilities (also known as social optimum). Indeed,
with such a criterion, some applications may receive nothing
at all (for example, in Fig. 2d). Moreover, by using a weighted
throughput, any Pareto-optimal point is a max-min fair point
for a given set of weights. We will thus focus in the following
on max-min fairness:

Maximize min
k
�ðkÞ:

In Fig. 2a, the minimum of the�ðkÞ’s is maximized at a point
where all the �ðkÞ’s have the same value. One can easily check
that the only Pareto-optimal point in Fig. 2b is also the point
such that the minimum of the �ðkÞ’s is maximized. However,
one can also check that the points such that the �ðkÞ’s all have
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Fig. 1. Examples of utility functions. (a) Linear utility function. (b) Voice-

over-IP utility function. (c) Threshold utility function. (d) Price-accounting

utility function.

Fig. 2. A few examples of utility sets. The dotted lines are isolines of

ð�ð1Þ; �ð2ÞÞ ! minð�ð1Þ; �ð2ÞÞ, and the bold lines represent Pareto

optimal points. (a) Conflict on a worker. (b) Synergy. (c) Independency.

(d) Typical utility set for a tree.



the same value are not efficient, which corresponds to the
well-known fact that giving the same thing to each user is not
always a good option. In fact, the shape of this utility set is
rather uncommon and corresponds to a situation where there
is a synergy between both users. Such situations may occur
with caching mechanisms, for example, but cannot occur in
our framework because all coefficients of the linear con-
straints are positive.

One may then wonder whether in our context, max-min
optimal solutions are always such that the throughputs of
all applications are the same or not. We will see now that
this is true on trees but does not hold on general platforms.
The utility set in Fig. 2c is typical of the case where two
applications originate from different locations and where
one of them can only use a limited area of the network (due
to a very high CCR and a small connectivity to the network,
for example). In such case, it may be possible to increase the
throughput of the application with a lower ratio (�ð2Þ here)
without decreasing the throughput of the higher one (�ð1Þ

here). However, if both applications start using the same
resources, the throughput of one application can only
increase at the expense of the throughput of another
application. It is important to note that many different
points maximize the minimum of the throughputs (all
points belonging to U and to the lowest isoline of
minð�ð1Þ; �ð2ÞÞ). However, only one of them is of interest
(that is, Pareto optimal). It is well known in the network
community (see, for example, [30] and [25]) that max-min
fairness should be recursively defined in this case: the first
minimum should be maximized, then the second should be
maximized, and so on.

Such situations cannot occur on tree-shaped platforms as
applications originate from the same location and thus
always compete on the same set of resources. Note that this
result does not only hold for the mentioned full-overlap
single-port model but applies to any situation where
applications originate from the same location. That is why
in the rest of this article, we can search for solutions where
all application throughputs are equal. However, in a more
general situation, we should look for Pareto-optimal
allocations, and the previous stopping condition could not
be used anymore.

4 COMPUTING THE OPTIMAL SOLUTION

In this section, we show how to describe the optimal
throughput using a linear programming formulation. For
star networks, we give a nice characterization of the
solution, which will guide the design of some heuristics in
Section 5.

4.1 Linear Programming Solution

A summary of our notation is given as follows:

. P0 is the root processor, and PpðuÞ is the parent of
node Pu for u 6¼ 0.

. �ðuÞ is the set of indices of the children of node Pu.

. Node Pu can compute cu floating-point operations
per time unit, and if u 6¼ 0, it can receive bu bytes
from its parent PpðuÞ.

. Each task of type k involves bðkÞ bytes and cðkÞ

floating-point operations.

The linear programming formulation in (1) allows us to
solve for the following variables:

. �ðkÞu , the average number of tasks of type k executed
by Pu per time unit on the whole platform,

. �ðkÞ, the average number of tasks of type k executed
per time unit, and

. sentðkÞu!v, the average number of tasks of type k
received by Pv from Pu per time unit.

Any valid schedule must satisfy the linear constraints of (1);
we seek a schedule also satisfying the optimal value of the
objective function:

Maximize mink �ðkÞ
n o

under the constraints

8k;
P

u �
ðkÞ
u ¼ �ðkÞ ðdefinition of �ðkÞÞ;

8k; 8u 6¼ 0; sent
ðkÞ
pðuÞ!u ¼ �ðkÞu þ

P
v2�ðuÞ sent

ðkÞ
u!v

ðdata conservationÞ;
8u;

P
k �
ðkÞ
u � cðkÞ � cu

ðcomputation limit at node PuÞ;

8u;
P

v2�ðuÞ

P
k
sent

ðkÞ
u!v�bðkÞ

bv
� 1

ðcommunication limit out of PuÞ;
8k; u �ðkÞu � 0 and sentðkÞu!v � 0 ðnonnegativityÞ:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
ð1Þ

All the input parameters to the linear programming
problem are rational numbers, and the solution will be
rational also (and, hence, computed in polynomial time).

As explained in Section 3.4, on tree-shaped platforms,
the previous solution is the max-min fair solution. On the
general platform, similar constraints can be written, but
solving this linear program would not give the max-min fair
solution as the first minimum should be maximized, then
the second should be maximized, and so on. This can easily
be done in our setting by identifying which applications
correspond to the first minimum by looking at saturated
constraints (those inequalities that are in fact equalities at
optimum point). One can then rerun the linear program,
with the throughput of these applications fixed, to max-
imize the smallest throughput of the remaining applica-
tions. This process can be repeated until all applications are
saturated. Max-min solutions can thus easily be computed
in polynomial time, even on complex platforms.

4.2 Reconstructing a Periodic Schedule from a
Linear Programming Solution

The linear inequalities in the linear programming problem
(1) describe steady-state behavior, but it is not immediately
obvious that there exists a valid schedule satisfying these
constraints that also achieves the desired throughput.
Nevertheless, let us suppose that such a solution exists,
and we have determined all the values �ðkÞu and sentðkÞu!v. We
define a periodic schedule as follows:

Define the time period Tperiod to be the least common
multiple of the denominators of these rational values. Thus,
in one time period, there will be an integral number of tasks
sent over each link and executed by each node. We give
each node sufficient buffer space to hold twice the number
of tasks it receives per time period. Each task received in
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period i will, in period iþ 1, either be computed locally or
sent to a child. Since each node receives tasks from only one
other node (its parent), there is no concern with scheduling
the incoming communications to avoid conflicts. Further,
each node is free to schedule its sends arbitrarily within a
time period. Note that this schedule is substantially simpler
than what is required when processors were connected as
an arbitrary graph (cf., [19]).

A node at depth d does not receive any tasks during the
firstd� 1 time periods and so will only enter the “steady-state
mode” in time period d. Similarly, the root will eventually run
out of tasks to send, so the final time periods will also be
different from the steady state. It is often possible to improve
the schedule in the start-up and clean-up time periods, which
is the concern of the NP-complete makespan minimization
problem. However, the periodic schedule described above is
asymptotically optimal. More precisely, let zbe the number of
tasks executed by the periodic schedule in the steady state
during d time periods, where d is the maximum depth of any
node that executes a positive number of tasks. Then, our
schedule will execute up to z fewer tasks than any possible
(not necessarily periodic) schedule. More precisely, given a
time bound B for the execution, it can be shown that the
periodic schedule computes as many tasks of each type as the
optimal up to a constant (independent ofB) number of tasks.
This result is an easy generalization of the same result with a
single application [18], [19]. Note that as the applications we
consider consist of a large number of independent tasks, z is
generally much smaller than the total number of tasks of an
application.

One final comment is that the time period Tperiod and
the amount of buffer space used can be extraordinarily
large, making this schedule impractical. We will revisit
this issue later.

4.3 The Optimal Solution for Star Networks

When the computer platform is a star network, we can
prove that the optimal solution has a very particular
structure: applications with higher CCR are scheduled on
processors with higher bandwidth. Thus, if we order the
processors according to their bandwidths, then each
application is executed by a set of consecutive nodes,
which we refer to as a slice. The application with the highest
CCR is executed by the first slice of processors, those with
largest bandwidths. Then, the next most communication-
intensive application is executed by the next slice of
processors, and so on. There is a possible overlap at the
slice boundaries. For instance, Pa1

, the processor at the
boundary of the first two slices, may execute tasks for both
applications A1 and A2.

To simplify matters, we consider the root P0 to be a
worker with infinite bandwidth ðb0 ¼ þ1Þ. The following
proposition proves that the optimal solution has the
structure described above:

Proposition 1. Sort nodes by bandwidth so that b0 � b1 . . . � bp
and sort the applications by CCR so that bð1Þ

cð1Þ
� bð2Þ

cð2Þ
. . . � bðKÞ

cðKÞ
.

Then, there exist indices a0 � a1 . . . � aK such that only

processors Pu, u 2 ½ak�1; ak�, execute tasks of type k in the

optimal solution.

Proof. The key idea is to show that if a node Pi is assigned a
task with a lower CCR than a task assigned to Piþ1, then

these two nodes could swap an equal amount of
computational work. This would reduce the commu-
nication time required by the schedule without changing
any throughput. Thus, by a sequence of such swaps, any
schedule can be transformed to one of the desired
structure, without changing the fair throughput. See [2]
for a detailed proof. tu

This characterization does not enable the determination of
the boundaries of the slices nor the �ðkÞu through analytical
formulas. We did not succeed in deriving a counterpart of
Proposition 1 for tree-shaped platforms. Intuitively, the
problem is that a high-bandwidth child of node Pi can itself
have a low-bandwidth high-computation-rate child, so
there is no a priori reason to give Pi only communication-
intensive tasks. Still, we use the intuition provided by
Proposition 1 and its proof to design the heuristic in
Section 5.5.

5 DEMAND-DRIVEN AND DECENTRALIZED

HEURISTICS

As shown in Section 4.1, given a tree-shaped platform and the
set of all application parameters, we are able to compute an
optimal periodic schedule from any linear programming
solution. However, this approach suffers from several serious
drawbacks. First, the period of the schedule is the least
common multiple of the denominators of the solution of the
linear program (1). This period may be huge, requiring the
nodes to have unreasonably large buffers to ensure unin-
terrupted steady-state behavior. The problem of buffer size
has already been pointed out in [21] and [31], where it is
shown that no finite amount of buffer space is sufficient for
every tree. It is also known that finding the optimal
throughput when buffer sizes are bounded is a strongly
NP-hard problem even in very simple situations [31].

Since an unlimited buffer space is unrealistic, we will only
consider demand-driven algorithms, which operate as follows:
Each node has a local worker thread and a scheduler thread. The
worker thread is an infinite loop that requests a task from the
same node’s scheduler thread and then, upon receiving a
task, executes it. Fig. 3 shows the pseudocode for the
scheduler thread. The “select” choices in line 5 depend on
the particular heuristic used and can be based on, for instance,
the history of requests, task types it has received, and the
communication times it has observed for its children.

A second problem that some schedulers (including those
generated as in Section 4.2) encounter is that centralized
coordination becomes an issue as the size of the platform
grows. It may be costly to collect up-to-date information
and disseminate it to all nodes in the system. Consequently,
a decentralized scheduling algorithm, where all choices are
based exclusively on locally available information, is
desirable.

In the following, we consider one demand-driven
algorithm that is based on global information (derived
from a solution to the linear programming problem) and
four algorithms that are fully decentralized.

5.1 Centralized Linear-Programming-Based (LP)

If we know the computation power and communication
speeds of all nodes in the distributed system, we can solve
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the linear programming problem (Section 4.1), obtaining
values for the number of tasks of each type it should assign
to each of its children during each time period. Thereafter,
no further global communication is required.

Each scheduler thread uses a 1D load-balancing mechan-

ism [32] to select a requesting thread and an application

type. The 1D load-balancing mechanism works as follows: if

task k should be chosen with frequency fðkÞ and has

already been chosen gðkÞ times, then the next task to be sent

will be of type ‘, where gð‘Þþ1
fð‘Þ ¼ mink

gðkÞþ1
fðkÞ .

We might hope that the LP heuristic would always
converge to the optimal throughput, but we will see in
Section 6.2.1 that this is not always the case, primarily
because of insufficient buffer space.

5.2 First-Come, First-Served (FCFS) Heuristic

The FCFS heuristic is a very simple and common
decentralized heuristic. Each scheduler thread simply
fulfills its requests on an FCFS basis, using the tasks it
receives in order from its parent. The root ensures fairness
by selecting task types using a round-robin selection. This
simple heuristic has the disadvantage, not shared by the
other methods we consider, that an extremely slow
communication link cannot be avoided. Thus, optimal
performance should not be expected.

5.3 Coarse-Grain Bandwidth-Centric (CGBC)
Heuristic

This heuristic (CGBC) builds upon our previous work for
scheduling a single application on a tree-shaped platform
[18], [19]. In bandwidth-centric scheduling, each node only
needs to know the bandwidth to each of its children. The
node’s own worker thread is considered to be a child with
infinite bandwidth. The scheduler thread prioritizes its
children in order of bandwidth, so the greatest bandwidth
has the highest priority. The scheduler always assigns tasks
to the highest priority requester. Bandwidth-centric sche-
duling has been shown to have an optimal steady-state
throughput for a single application, both theoretically and,
when the buffers are sufficiently large, in extensive
simulations.

Our coarse-grain heuristic assembles several tasks into a
large one. More precisely, we build a macrotask out of one
task of type k for each k, and the macrotasks are scheduled
using the bandwidth-centric method. Thus, fairness is
assured.

Unfortunately, even though bandwidth-centric schedul-
ing can give the optimal throughput of macrotasks, the
CGBC heuristic does not reach the optimal fair throughput.

Indeed, Proposition 1 asserts that in star networks, nodes
with faster incoming links should process only tasks with
larger CCRs. However, since a macrotask includes tasks of
all types, CGBC will send communication-intensive tasks to
some low-bandwidth nodes in a star network.

5.4 Parallel Bandwidth-Centric (BCS) Heuristic

The BCS heuristic superposes bandwidth-centric trees for
each type of task, running all of them in parallel. More
precisely, each node has K scheduler and K worker threads
that run concurrently, corresponding to the K application
types. Threads only communicate with other threads of
their own type.

In all our other simulations, we enforce the one-port
constraint for each scheduler thread. However, for this
BCS heuristic, we have not enforced this constraint globally
across theschedulers, andanode maysend asmanyasK tasks
concurrently, one of each type. Instead, we model the
contention on the port, so the aggregate bandwidth does not
exceed the port’s limit (similarly, the node’s processor can
multitask betweenmultiple tasks). This gives the BCS strategy
an unfair advantage over the other heuristics. In fact, it has
been shown [21] that allowing interruptible communication
(which is similar to concurrent communication) dramatically
reduces the amount of buffer space needed to achieve optimal
throughput.

5.5 Data-Centric Scheduling (DATA-CENTRIC)
Heuristic

This heuristic is our best attempt to design a decentralized
demand-driven algorithm that converges to a solution of
the linear program (1). The idea is to start from the
bandwidth-centric solution for the most communication-
intensive application and to progressively trade some of
these tasks for more computationally intensive ones. Doing
so yields better values for the expected �ðkÞu ’s and the
expected sentðkÞu!v’s, which can in turn be used in the
demand-driven algorithm in Fig. 3. These frequencies are
continuously recomputed so as to cope with potential
availability variations. The rest of this section is devoted to
the details of the trading operations. As we have explained
in Section 3.4, in the optimal solution on trees, all
applications have the same throughput. Therefore, this
heuristic starts from an initial solution and updates the
�ðkÞu ’s until all throughputs are close to each other.

We sort the task types by nonincreasing CCRs. We start
the algorithm using the pure bandwidth-centric approach
for tasks of type 1, but as the computation proceeds, a node
will find itself receiving a mix of different types of tasks. To
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reduce the imbalance, the root iteratively applies the four
operations described below, in the listed order of prece-
dence. In the following, H (respectively, L) denotes the
application that currently has the highest (respectively,
lowest) throughput. As the root distributes all tasks, H and
L are easy to identify. Those operations attempt to increase
the number of tasks of type L that are assigned, sometimes
by reducing the number of H’s.

Communication trading. Suppose H has a higher CCR

than L (which is the common case since we start with only

tasks of type 1). Then, if a child reports that it is not fully

utilized (either because its CPU is idle or because it cannot

keep up with the requests it receives from its own children,

that is,
P

k �
ðkÞ
u cðkÞ < cu, or

P
v2�ðuÞ

P
k
sent

ðkÞ
u!v�bðkÞ

bv
¼ 1), then the

parent can substitute some tasks of type H by sending them

in place of some tasks of type L to the underutilized child. It

should make the substitution in a way that keeps the

communication time the same (that is, in the ratio of bðLÞ H’s

for bðHÞ L’s) and limited by the number that would make the

throughputs equal. Last, let CPU denote the CPU computa-

tion time to execute all tasks currently assigned to processor

Pu. Then, we have CPU ¼
P

k
�
ðkÞ
u :cðkÞ

cu
, and we should not

exceed the CPU capacity after the update. Therefore, �ðLÞu is

increased by "L, and �ðHÞu is decreased by "H with the

following constraints:

"Lb
ðLÞ ¼ "HbðHÞ

0 � �L þ "L � �H � "H
CPU þ "L cðLÞ

cu
� "H cðHÞ

cu
� 1:

8<:
Hence, we get

"H ¼ min
�ðHÞ � �ðLÞ

1þ bðHÞ

bðLÞ

;
1� CPU

cðHÞcðLÞ

bðLÞcu
bðHÞ

cðHÞ
� bðLÞ

cðLÞ

� �
0@ 1A:

Gap filling. Suppose that some bandwidth from the root is

not used and that a remote processor Pu could receive more

tasks of a low-throughput application. This step calculates "L,

the possible additional number of tasks of type L that this

processor could handle. Let CPU denote the CPU computa-

tion time to execute all tasks currently assigned to processor

Pu. Then, we have CPU ¼
P

k
�
ðkÞ
u :cðkÞ

cu
, and the following

computation limit on "L has to hold: CPU þ "L cðLÞ

cu
� 1. In

addition, there must be enough free bandwidth along the

path from the root node to Pu to send the additional tasks;

therefore, for any node i along this path, we can define

bus occupationðpðiÞÞ ¼
P

k

P
j

sent
ðkÞ
pðiÞ!j:b

ðkÞ

bj
, and we need the

following condition on "L to hold true: bus occupationðpðiÞÞ þ
"L

bðLÞ

bi
� 1 (Fig. 4a).

Last, to avoid overreducing the imbalance between �ðHÞ

and �ðLÞ, we add the following constraint: �ðHÞ � �ðLÞ þ "L.
Therefore, we have

"L ¼min
cuð1� CPUÞ

cðLÞ
; �ðHÞ � �ðLÞ;

�
min i 2 path from

the root to Pu

bið1� bus occupationðpðiÞÞÞ
bðLÞ

� ��
:

Bus desaturation. If the bus is saturated by tasks with a
high CCR, we may still be using only workers with high
communication capacity. However, the workload might still
be increased by using additional idle subtrees, that is, the
current tree must be widened. Thus, we need to reduce the
amount of tasks of type H that are processed by the
currently used subtrees. This heuristic takes the branch with
the smallest bandwidth that processes tasks of type H and
scales down the �

ðHÞ
i and sent

ðHÞ
i!j values of nodes on the

branch by 10 percent (Fig. 4b). This operation allows us to
decrease the communication resource utilization and pre-
cedes the next round of “Gap filling” operations.

Task trading on the root. At some point, it may be the

case that application H is processed only on the root

node. This heuristic will try to substitute "H tasks of type

H for "L tasks of type L at the root. To do so, we need

the following constraints: "H � �ðHÞroot, �
ðHÞ � "H � �ðLÞ þ "L,

and "L:
cðLÞ

croot
¼ "H: c

ðHÞ

croot
. Therefore, we have

"H ¼ min �
ðkÞ
root;

�ðHÞ � �ðLÞ

1þ cðHÞ

cðLÞ

 !
and "L ¼

cðHÞ

cðLÞ
"H:

The preceding operations are iteratively performed (with
the listed order of precedence) until we reach a (tunable)
balance, for example

maxk �ðkÞ
� �

�mink �ðkÞ
� �

mink �ðkÞf g < 0:05:

The above operations may appear to need global knowl-
edge about the tree. For example, it may seem at first sight
that when performing a “Gap filling” operation, the master
needs to know the path to its remote descendant Pu.
However, this operation in fact simply amounts to comput-
ing a minimum along this path, which can be done via a
classical and efficient distributed propagation mechanism.
The same distributed technique can be used for all other
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operations as they only require information from immediate
descendants in a single subtree.

6 SIMULATION RESULTS

6.1 Evaluation Methodology

6.1.1 Throughput Evaluation

It is not at all obvious how to determine that a computation
has entered the steady state, and measuring throughput
becomes even trickier when the schedule is not periodic.
We took a pragmatic heuristic approach for our experi-
ments. Let T denote the earliest time that all tasks of some
application were completed. Let N ðkÞðtÞ denote the number
of tasks of type k that were finished in time period ½0; t�. We
define the achieved throughput �k for application k by

�k ¼
NðkÞðð1� "ÞT Þ �N ðkÞð"T Þ

ð1� 2"ÞT ; where " 2 ½0; 0:5�:

The " factor allows us to ignore the initial and final
instabilities (in practice, we set " to be equal to 0.1). In the
following, we will refer to �k as the experimental throughput
of application k as opposed to the expected throughput that
can be computed by solving the linear program (1).
Likewise, the minimum of the experimental throughputs
is called the experimental fair throughput.

6.1.2 Platform Generation

The platforms used in our experiments are random trees
described by two parameters: the number of nodes n and the
maximum degree degreemax. To generate the interconnection
network topology, we use a breadth-first algorithm (see [2]
for more details) in order to have wide (rather than deep and
narrow) trees. In our experiments, we generated a total of
150 trees, 10 trees each with 5, 10, 20, 50, and 100 nodes and a
maximum degree of 2, 5, or 15.

We assigned capacity, latency, and CPU floating-point rate
values on edges and nodes at random. Those values come
from real measurements (performed using tools like path-
char) on machines spread across the Internet. CPU rates
ranged from 22.151 Mflops (an old Pentium Pro 200-MHz
processor) to 171.667 Mflops (an Athlon 1800). The band-
width ranged from 110 Kbps to 7 Mbps, and latency ranged
from 6 ms to 10 sec. Note that in the SimGrid simulator [3] that
we are using, latency and link capacity are limiting factors for
determining the effective bandwidth of a connection.

6.1.3 Application Generation

An application is mainly characterized by its CCR. We used
CCRmin ¼ 0:001, which corresponds to the computationally
intensive task of multiplying two 3,500� 3,500 matrices. We
also set an upper bound for CCR of 4.6, corresponding to the
addition of two such matrices. In choosing application types,
we pickedCCRmax between 0.002 and 4.6 and then chose the
applications’ CCRs to be evenly spaced in the range
½CCRmin; CCRmax�. For simplicity, we take K to be 2 or 3.

6.1.4 Heuristic Implementation

The experiments were performed using the SimGrid

simulator [3], and the values of ci and bi were measured
from within the simulator (based on the node values input)

and used to make the decisions in the algorithms in

Section 5.
As explained in Section 5.5, the demand-driven algorithms

send requests (involving a few bytes) from children to

parents. Our simulations included the request mechanism,

and we ensured that no deadlock occurred in our thousands

of experiments, even when some load variations occurred.

Except where otherwise noted, throughput evaluations were

performed using 200 tasks per application. Note that we

carefully checked by hand using a larger number of tasks

(10 times more tasks) that the smaller number we used for our

experiments was always sufficient to reach the steady state

(the experimental throughput was within 1 percent for all

configurations when adding more tasks).

6.2 Case Study

6.2.1 Theoretical versus Observed Throughput

For the heuristics LP, DATA-CENTRIC, and CGBC, we can

easily compute the expected theoretical fair throughput as

they all rely on explicit rate computation. This allowed us to

explore how implementation issues result in the experi-

mentally obtained fair throughput differing from the

theoretical fair throughput. There are many reasons why

these quantities might differ, such as the overhead of the

request mechanism or a start-up period longer than the

10 percent we allowed for. It turned out that the major cause

of inefficiency was the limit on the buffer size.

Our experiments assumed enough buffer space to hold

10 tasks of any type. For this case, Fig. 5 depicts the

experimental fair throughput deviation from the expected

theoretical throughput for heuristics CGBC, LP, and

DATA-CENTRIC. This deviation is computed as

1� Experimental fair throughput
Theoretical fair throughput . All three heuristics exhibited a

similar distribution, so they were combined in this figure.

The average deviation is equal to 9.426 percent. However,

when we increased the buffer size by a factor 10 (and

increased the number of tasks per application to 2,000),

the mean average deviation dropped to 0.334 percent.

Even though the larger buffer size led to a much better

throughput, we considered it unrealistic and used size 10

in all other experiments.
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6.2.2 Performance of Heuristics

Let us first compare the relative performances of our five
heuristics (FCFS, BCS, CGBC, LP, and DATA-CENTRIC).
More precisely, for each experimental setting (that is, a
given platform and a given CCR interval), we compute the
(natural) logarithm of the ratio of the experimental fair
throughput of LP with the experimental fair throughput of a
given heuristic (applying a logarithm enables us to have a
symmetrical value). This value is called in the following
logarithmic deviation. Therefore, a positive value means that
LP performed better than the other heuristic. Fig. 6 depicts
the histogram plots of these values.

First of all, we observe that most values are positive,
which illustrates the superiority of LP. Next, observe in
Fig. 6a that DATA-CENTRIC is very close to LP most of the
time, despite the distributed computation of the expected
�ðkÞu and sentðkÞu!v values. However, the geometric average2 of
these ratios is equal to 1.164, which is slightly larger than
the geometric average for CGBC (1.156). The reason is that
even though in most settings DATA-CENTRIC ends up with
a very good solution, in a few instances, it performed very
badly (up to 16 times worse than LP). In contrast, CGBC (see
Fig. 6d) is much more stable since its worst performance is
only twice that of LP. Note that these failures happen on
any type of tree (small or large, narrow or wide) and that

the geometric averages of these two heuristics are always
very close to each other. We have also checked that these
failures are not due to an artifact of the decentralized
control of the scheduling by ensuring that the theoretical
throughput has the same behavior (that is, the bad behavior
actually comes from the computation of the expected �ðkÞu
and sentðkÞu!vÞ. We are still investigating the reasons why
DATA-CENTRIC fails on some instances and suspect that it
is due to the use of the (sometimes misleading) intuition of
Proposition 1. Indeed, in this heuristic, applications with a
high CCR are performed mainly on the subtrees with the
best bandwidths at the root, whereas applications with a
low CCR are performed primarily on the subtrees with the
worst bandwidths at the root, which is definitely not
optimal on particular instances.

Unsurprisingly, BCS leads to very bad results. In many
situations (more than 35 percent), an application has been
particularly unfavored, and the fair experimental through-
put was close to 0. The logarithm of the deviation for these
situations has been normalized to 8. These poor results
advocate the need for fairness guarantees in distributed
computing environments like the ones we consider. As a
matter of fact, this is somehow similar to the Bushel of
AppLeS problem [34]: all applications identify the same
resources as “best” for their tasks and seek to use them at
the same time, thus making them no longer optimal or
available.

Last, the geometrical average of FCFS is 1.564, and in the
worst case, its performance is more than eight times worse
than LP. On the average, FCFS is therefore much worse than
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2. It is a well-known fact [33] that the arithmetic average of ratios can
lead to contradictory conclusions when changing the reference point.
Therefore, we use a geometric average of ratios, which is known to be closer
to the common idea of average ratio.

Fig. 6. Logarithmic deviation from LP performances ln mink �
ðkÞ for LP

mink �ðkÞ for other heuristic

� �� �
. (a) Performances of DATA-CENTRIC. (b) Performances of FCFS.

(c) Performances of BCS. (d) Performances of CGBC.



LP. On small platforms, the performances for FCFS and
CGBC have the same order of magnitude. However, on
larger ones (50 and 100 workers), CGBC performs much
better (geometrical average equal to 1.243) than FCFS
(geometrical average equal to 2.0399).

7 CONCLUSION

In this paper, we presented several heuristics for scheduling
multiple Bag-of-Tasks applications on a tree-connected
platform composed of heterogeneous processing and
communication resources. Our contributions to this pro-
blem are the following:

. We outlined a theoretical scheduling model for Bag-
of-Tasks applications’ scheduling environments
with a particular emphasis on the fairness issue.

. We presented a centralized algorithm that, given the
performance of all resources, computes an optimal
schedule with respect to throughput maximization
for tree networks. We also have characterized an
optimal solution on single-level trees.

. Since centralized algorithms may be unrealistic on
large-scale platforms, we then presented several
distributed algorithms based on decentralized
heuristics.

. We evaluated the efficacy of these heuristics using a
wide range of realistic simulation scenarios, using a
limited buffer space. The results obtained by the
most sophisticated heuristics are quite reasonable
compared to the optimal centralized algorithm.

The experimental analysis provided in this article is an
average-case analysis on small data sets. It would be
certainly be instructive to perform a worst-case analysis
for the previous heuristics. In particular, we conjecture that
it should be possible to establish a performance guarantee
(an approximation factor) for CGBC and FCFS. However,
we believe that DATA-CENTRIC and BCS are much harder
to analyze.

We have seen with the BCS heuristic that noncooperative
approaches, where each application optimizes its own
throughput, lead to a particularly unfair Nash equilibrium
[35]. This Nash equilibrium has been recently analytically
studied in a multiport context [36]. Extending this work to a
single-port setting seems very challenging.

Another approach could be a cooperative approach
where several decision-makers (each of them being respon-
sible for a given application) cooperate in making the
decisions such that each of them will operate at its
optimum. This situation can be modeled as a cooperative
game like in [37], where this approach is successfully used
for simpler problems such as bandwidth sharing in net-
works and other fairness criteria (proportional fairness). In
particular, fully distributed protocols achieving proportion-
ally fair allocations have been proposed. However in our
situation, hierarchical resource sharing is rather hard to
model, which renders such an approach quite challenging.
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