686

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.7, JULY 2003

Scheduling with Dynamic Voltage/Speed
Adjustment Using Slack Reclamation in
Multiprocessor Real-Time Systems

Dakai Zhu, Student Member, IEEE, Rami Melhem, Fellow, IEEE, and Bruce R. Childers

Abstract—The high power consumption of modern processors becomes a major concern because it leads to decreased mission
duration (for battery-operated systems), increased heat dissipation, and decreased reliability. While many techniques have been
proposed to reduce power consumption for uniprocessor systems, there has been considerably less work on multiprocessor systems.
In this paper, based on the concept of slack sharing among processors, we propose two novel power-aware scheduling algorithms for
task sets with and without precedence constraints executing on multiprocessor systems. These scheduling techniques reclaim the time
unused by a task to reduce the execution speed of future tasks and, thus, reduce the total energy consumption of the system. We also
study the effect of discrete voltage/speed levels on the energy savings for multiprocessor systems and propose a new scheme of slack
reservation to incorporate voltage/speed adjustment overhead in the scheduling algorithms. Simulation and trace-based results
indicate that our algorithms achieve substantial energy savings on systems with variable voltage processors. Moreover, processors
with a few discrete voltage/speed levels obtain nearly the same energy savings as processors with continuous voltage/speed, and the
effect of voltage/speed adjustment overhead on the energy savings is relatively small.

Index Terms—Real-time systems, multiprocessor, scheduling, slack sharing.

1 INTRODUCTION

IN recent years, processor performance has increased at the
expense of drastically increased power consumption [15].
On the one hand, such increased power consumption
decreases the lifetime of battery operated systems, such as
hand-held mobile systems or remote solar explorers. On the
other hand, increased power consumption generates more
heat, which causes heat dissipation to be a problem since it
requires more expensive packaging and cooling technology
and decreases reliability, especially for systems that have
many processors.

To reduce processor power consumption, many hard-
ware techniques have been proposed, such as shutting
down unused parts or reducing the power level of nonfully
utilized functional units [4], [7]. Processors that have
multiple supply voltages (i.e., multiple power levels) have
become available in recent years [16], making power
management at the processor level possible. Using this
feature, several software techniques have been proposed to
adjust the supply voltage, especially for mobile or uni-
processor systems [1], [2], [6], [14], [17], [18], [20], [26].
However, much less work has been done for real time
multiprocessing applications [13], [24], [25], such as parallel
signal processing, automated target recognition (ATR), and
real time MPEG encoding. For satellite-based parallel signal
processing, the satellite may have multiple processing units

o The authors are with the Computer Science Department, University of
Pittsburgh, Pittsburgh, PA 15260.
E-mail: {zdk, melhem, childers)@cs.pitt.edu.

Manuscript received 19 Nov. 2001; revised 5 June 2002; accepted 21 Jan.
2003.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 115415.

1045-9219/03/$17.00 © 2003 IEEE

and need to process the signals on-board in real time [24].
ATR uses multiple processors to detect targets by compar-
ing regions of interest (ROI) to templates in parallel. For
mobile military systems (e.g., missiles), ATR is widely used
and usually requires real time processing [23]. Since such
systems are battery operated, their power consumption
needs to be managed to achieve maximum duration for
minimal energy. For the applications of cable television and
video conferencing, real time performance of MPEG encod-
ing is necessary and many processing units may be used to
achieve real time performance [12]. For such systems,
power management can reduce energy consumption and
associated costs.

In multiprocessor real time systems, power management
that adjusts processor voltage/speed changes task execu-
tion time, which affects the scheduling of tasks on
processors. This change may cause a violation of the timing
requirements. This paper describes novel techniques that
dynamically adjust processor voltage/speed while still
meeting timing requirements. We propose scheduling
algorithms that use shared slack reclamation on variable
voltage/speed processors for task sets without precedence
constraints (independent tasks) and task sets with pre-
cedence constraints (dependent tasks). All the algorithms
are proven to meet timing constraints. We also discuss how
to incorporate discrete voltage/speed levels into the
algorithms, and propose a scheme to incorporate voltage/
speed adjustment overheads into the scheduling algorithms
with slack reservation. Simulation and trace (from real
applications) based results show that our techniques save
substantial energy compared to static power management.

Published by the IEEE Computer Society

ZHU ET AL.: SCHEDULING WITH DYNAMIC VOLTAGE/SPEED ADJUSTMENT USING SLACK RECLAMATION IN MULTIPROCESSOR REAL-... 687

1.1 Related Work

For uniprocessor systems, Yao et al. describe an optimal
preemptive scheduling algorithm for independent tasks
running with variable speed [26]. When deciding processor
speed and supply voltage, Ishihara and Yasuura consider
the requirement of completing a set of tasks within a fixed
interval and the different switch activities for each task [17].
By assigning lower voltage to the tasks with more switch
activities and higher voltage to the tasks with less switch
activities, their scheme can reduce energy consumption by
70 percent. Krishna and Lee proposed a power-aware
scheduling technique using slack reclamation, but only in
the context of systems with two voltage levels [18]. Hsu et
al. described a performance model to determine a processor
slow down factor under compiler control [14]. Based on the
super-scalar architecture with similar power dissipation as
the Transmeta Crusoe TM5400, their simulation results
show the potential of their technique. Mossé et al. proposed
and analyzed several techniques to dynamically adjust
processor speed with slack reclamation [20]. The best
scheme is the adaptive one that takes an aggressive
approach while providing safeguards that avoid violating
application deadlines [2]. For periodic tasks executing on
uniprocessor systems, a few voltage/speed levels are
sufficient to achieve the same energy saving as infinite
voltage/speed levels [6]. AbouGhazaleh et al. have studied
the effect of dynamic voltage/speed adjustment overhead
on choosing the granularity of inserting power management
points in a program [1].

For multiprocessor systems with fixed applications and
predictable execution time, static power management
(SPM) can be accomplished by deciding beforehand the
best supply voltage/speed for each processor. Based on the
idea of SPM, Gruian proposed two system-level designs for
architectures with variable voltage processors. The simula-
tion results show that both approaches can save 50 percent
of the energy when the deadline is relaxed by 50 percent
[13]. For system-on-chip designs with two processors
running at two different fixed voltage levels, Yang et al.
proposed a two-phase scheduling scheme that minimizes
energy consumption under the time constraints by choosing
different scheduling options determined at compile time
[25]. Using the power aware multiprocessor architecture
(PAMA), Shriver et al. proposed a power management
scheme for satellite-based parallel signal processing based
on different rate of the signals [24]. The work reported in
this paper focused on dynamic power management for
shared memory multiprocessor systems, which is different
from static power management [13], the selection of
predetermined scheduling options [25], and the master-
slave architecture used in [24].

This paper is organized as follows: The task model,
energy model, and power management schemes are
described in Section 2. Power-aware scheduling with
dynamic processor voltage/speed adjustment using shared
slack reclamation for independent tasks is addressed in
Section 3. In Section 4, the algorithm for dependent tasks is
proposed and proven to meet the timing requirements.
Section 5 discusses how to incorporate voltage/speed
adjustment overhead and discrete voltage/speed levels

into the scheduling algorithms. Simulation and trace-based
results are given and analyzed in Section 6, and Section 7
concludes the paper.

2 MobELS AND POWER MANAGEMENT
2.1 Energy Model

For processors based on CMOS technology, the power
consumption is dominated by dynamic power dissipation
Py, which is given by: Py = Cy - V2, - S, where Vg, is the
supply voltage, C is the effective switched capacitance,
and S is the processor clock frequency; that is, the
processor speed. Processor speed is almost linearly
related to the supply voltage: S =k- V“i, where k is
constant and V; is the threshold voltage [4] []. Thus, P,
is almost cubically related to S: Py~ Cy -3 k,. Since the
time needed for a specific task is: time =&, where C is
the number of cycles to execute the task, the energy
consumption of the task, E, is E = P;-time~ C-Cy - 2>.
When decreasing processor speed, we can also reduce the
supply voltage. This reduces processor power cubically
and energy quadratically at the expense of linearly
increasing the task’s latency. For example, consider a
task that, with maximum speed S,,,,;, needs 20 time units
to finish execution. If we have 40 time units allocated to
this task, we can reduce the processor speed and supply
voltage by half while still finishing the task on time. The
new power when executing the task would be: P =
Cef - (%)2 -Swe = 1. P) and the new energy consumption
would be:

E’:Pgl.z;ozcefl(—

1 2
:ZCejVidSma:rQO: 'Ea
where P; is the power and E is the energy consumption

with maximum processor speed.

2.2 Task Model

We assume a frame-based real time system in which a frame
of length D is executed repeatedly [19]. A set of tasks I' =
{T1,...,T,}is to execute within each frame and is to complete
before the end of the frame. The precedence constraints
among the tasks in I' are represented by a graph G. Because of
the schedule’s periodicity, we consider only the problem of
scheduling I in a single frame with deadline D.

We assume a multiprocessor system with N homoge-
neous processors sharing a common memory. Our goal is to
develop a scheduling algorithm that minimizes energy
consumption for all tasks, while still meeting the deadline.
In specifying the execution of a task 7j, we use the tuple
(¢}, a;), where ¢, is the estimated worst-case execution time
(WCET) and q] is the actual execution time (AET). Both are
based on maximal processor speed. We assume that for a
task T}, the value of ¢, is known before execution, while a; is
determined at runtime. The precedence constraints are
represented by G = {I', E'}, where E is a set of edges. There
is an edge, T; — Tj € E, if and only if T; is a direct

688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.7, JULY 2003

predecessor of Tj, which means that T; will be ready to
execute only after T; finishes execution.

2.3 Power Management Schemes

First, we consider the worst-case scenario in which all tasks
use their worst-case execution time (referred to as canonical
execution). In this case, if the tasks finish well before D at the
maximal processor speed, Sy, we can reduce the
processor’s supply voltage and speed to finish the tasks
just-in-time and, thus, reduce energy consumption. The
basic idea of static power management is to calculate
beforehand the minimum processor speed that will ensure
that the canonical execution of tasks finishes just-in-time.
The tasks are then run with reduced supply voltage and
speed to save energy [2], [13], [20]. In this paper, the
minimal processor speed to ensure that all tasks finish just-
in-time is referred to as Sj;.

In addition to static power management, we may reduce
energy further by using dynamic voltage and speed
adjustment. To simplify the discussion, we assume that
the processor supply voltage and speed are always adjusted
together, by setting the maximum speed under certain
supply voltage. Since tasks exhibit a large variation in actual
execution time and, in many cases, only consume a small
fraction of their worst-case execution time [11], any unused
time can be considered as slack and can be reused by the
remaining tasks to run slower while still finishing before D
[2], [20]. In this case, power and energy consumption is
reduced.

To get maximal energy savings, we combine static power
management and dynamic voltage/speed adjustment. In the
following algorithms, we assume that canonical execution is
first checked to see whether a task set can finish before D or
not. If not, the task set is rejected; otherwise, Sj;; is calculated
and used so that the canonical execution will finish at time D.
Our algorithms then apply dynamic voltage/speed adjust-
ment. In the rest of the paper, we normalize the worst-case
execution time and the actual case execution time of task T;
such that ¢; =¢}- “":g—/ and a; = a} - SST Task T; will be
characterized by (¢;, a;).

Initially, to simplify the problem and our discussion, we
assume that the processor supply voltage and frequency
can be changed continuously, and ignore the overhead of
voltage/speed adjustment. In Section 5, we discuss the
effect of discrete speeds and overhead.

3 POWER-AWARE SCHEDULING FOR
INDEPENDENT TASKS

Without precedence constraints, all tasks are available at
time 0 and are ready to execute. There are two major
strategies to scheduling independent tasks in multiproces-
sor systems: global and partition scheduling [10]. In global
scheduling, all tasks are in a global queue and each
processor selects from the queue the task with the highest
priority for execution. In partition scheduling, each task is
assigned to a specific processor and each processor fetches
tasks for execution from its own queue. In this paper, we
consider only the nonpreemptive scheduling scheme; that

ueue
ARSI EN NN

I
I

L | KT LT 4L| T
T 1T 1T TrT T T T T T 17T

20 Time

I
!
|
|
|
I
|
20 Time

(a) (b)

Fig. 1. Global scheduling for two-processor systems. (a) LTF priority
assignment. (b) Optimal priority assignment.

is, a task will run-to-completion whenever it begins to
execute.

In global scheduling, the task priority assignment affects
which task goes where, the workload of each processor, and
the total time needed to finish the execution of all tasks. In
general, the optimal solution of assigning task priority to
get minimal execution time is NP-hard [10]. Furthermore,
we show in Section 3.3, that the priority assignment that
minimizes execution time may not lead to minimal energy
consumption. Expecting that longer tasks generate more
dynamic slack during execution, in this paper, we use the
longest task first heuristic (LTF, based on the task’s WCET)
when determining task’s priority. The difference between
the total execution time using optimal priority assignment
and that using longest task first priority assignment is
small. Given a specific priority assignment, tasks are
inserted into the global queue in the order of their priority,
with the highest priority task at the front. For the examples,
we number the tasks by their order in the global queue
when using longest task first priority assignment. That is,
the kth task in the global queue is identified as 7.

To emphasize the importance of task priority on
scheduling, we consider one simple example of a task set
executing on a dual-processor system, as shown in Fig. 1.
Here, I = {T1(10,7), T>(8,4), T5(6,6), Tx(6,6), T5(6,6)}, and
D = 20. In the figures, the X-axis represents time, the Y-axis
represents processor speed (in cycles per time unit), and the
area of the task box defines the number of CPU cycles
needed to execute the task. Considering the canonical
execution, from Fig. 1a, we see that the longest task first
priority assignment meets the deadline D. But, the optimal
priority assignment in Fig. 1b results in less time. It is easy
to see that some order, suchas 73 — Ty — 15 — Ty — T,
will miss the deadline.

In what follows, we first extend the greedy slack
reclamation scheme [20] to global scheduling, and we show
that this scheme may fail to meet the deadline. Then, we
propose a novel slack reclamation scheme for global
scheduling: shared slack reclamation.

3.1 Global Scheduling with Greedy Slack
Reclamation

This scheme is an extension of the dynamic power
management scheme for uniprocessor systems from Mossé
et al. [20]. In the scheme of greedy slack reclamation, any
slack on one processor is used to reduce the speed of the
next task running on this processor.

ZHU ET AL.: SCHEDULING WITH DYNAMIC VOLTAGE/SPEED ADJUSTMENT USING SLACK RECLAMATION IN MULTIPROCESSOR REAL-... 689

Queue

T ‘ T ‘T3‘T4‘T5‘Te‘ ‘ T ‘ T ‘T3‘T4‘T5‘Te‘
I

1

Tz‘Ta‘Ts P

9 Time Time

(@) (b)

Fig. 2. Global scheduling with no power management. (a) Canonical
execution. (b) Actual execution with NPM.

Consider a task set: I' = {T'(5, 2), T»(4,4), T5(3, 3), T1(2, 2),
T5(2,2), T5(2,2)}, and D = 9. Fig. 2a shows that the canonical
execution can meet the deadline D. Fig. 2b shows that, with
no power management and slack reclamation, actual execu-
tion can finish before D. Fig. 3a shows that in actual
execution, 7; finishes at time 2 with a slack of three time
units. With greedy slack reclamation, this slack is given to the
next task T3 that runs on P;. Thus, T3 will execute in six units
of time and the processor speed is reduced to % - Sjit,
accordingly. When T3 uses up its time, T misses the deadline
D, as shownin Fig. 3b. Hence, even when canonical execution
finishes before D, global scheduling with greedy slack
reclamation cannot guarantee that all tasks finish before D.

3.2 Global Scheduling with Shared Slack
Reclamation (GSSR)

For the example in Section 3.1, greedy slack reclamation
gives all of the slack to 73. This means that 73 can start
execution at time 2 at a speed of 2. Sj;; with six time units
and finish execution at time 8. There is only one time unit
left for T, which misses the deadline at time unit 9. In this
case, it would be better to share the three units of slack by
splitting it into two parts, i.e., give two units to 73 and one
unit to 7. With slack sharing, T; starts at time 2, executes for
five time units at the speed of % - Sji» and ends at time 7. Ty
starts at time 4, executes for three time units at the speed of
%-Sﬂt, and ends at time 7. Thus, both Ty and T meet the
deadline. Figs. 4a and 4b demonstrate the operations of this
scheme. When P, finishes 77 at time 2, it finds that it has
three units of slack. But, only two of these time units are
before P»’s expected finish time based on T5's WCET. After
fetching T3, P, gives two units (the amount of slack before
Py’s expected finish time) to 73 and shares the remaining
slack with P,.

From a different point of view, sharing the slack may be looked
at as Ty being allocated four time units on P, instead of five, with
T, being allocated five time units on P, instead of four. Here, Ty

T ‘ T ‘Tz‘ﬂ’%‘%‘
I
Uleemk)
I
I
T
2 |45
| L B e
9 Time

(a) (b)

Fig. 3. Global scheduling with greedy slack reclamation.

ueue
@ee n [n [w[ns[w]|[0 [n] m[n[u]y
I I
1
d hIE g
0_BHie Ik
| |
‘
Tzl ! PR
0\ T T \\\\9 Tlme 0\ 1T 11 1T \9 Tlme

(a) (b)
Fig. 4. Global scheduling with shared slack reclamation.

has two units of slack and T> has one unit of slack. So, in some
sense, the situation is similar to T\ being assigned to P, and T
being assigned to Py, and all the tasks that are assigned to P, in
canonical execution, will now be assigned to P, and vice versa.

3.2.1 GSSR for N (> 2) Processor Systems (GSSR-N)

Following the idea described above, we propose the
GSSR algorithm for N-processor systems. Before formally
presenting the algorithm, we define the estimated end time
(EET) for a task executing on a processor as the time at
which the task is expected to finish execution if it consumes
all of the time allocated for it. The start time of the next task
(STNT) for a processor is the time at which the next task is
estimated to begin execution on that processor. If no more
tasks will execute on that processor within the current
frame, the STNT is defined as the finish time of the last task
that executed on that processor.

The GSSR-N algorithm is presented in Algorithm 1. Each
processor invokes the algorithm at the beginning of
execution or when a processor finishes executing a task. A
shared memory holds control information, which must be
updated within a critical section (not shown in the
algorithm). The shared memory has a common queue,
Ready-Q, which contains all ready tasks and an array to
record STNT, for processor P, (p=1,...,N). Initially, all
tasks are put into Ready-Q in the order of their priorities,
and the ST NT's of processors are set to 0. In the algorithm,
P,; represents the current processor, ¢ is the current time,
and Sjq is the speed of P.

Algorithm 1 The GSSR-N algorithm invoked by Py
1: while (1) do
2: if (Ready-Q # () then
3: Ty, = Dequeue (Ready-Q);
4: Find P, such that:
STNT, = min{STNTy,...,STNT,};
if (STNT,; > STNT,) then
STNT,; — STNT,;
end if
EET, = STNT;y + c;
STNT,; = EET};
10: Sia = Sjit " gt
11: Execute T}, at speed Sig;

12: else
13: wait();
14: end if

15: end while

At the beginning of execution or when P, finishes a task
at time ¢, if there are no more tasks in Ready-Q, P,q will stall
and sleep until it is awakened by the next frame. Here, we

690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.7, JULY 2003

use the function wait() to put one processor to sleep (line 13).
Otherwise, P;; will fetch the next task 7} from Ready-Q
(line 3). Because Tj starts at the smallest STNT in the
canonical execution, we exchange STNT;; with the mini-
mum STNT if STNT;; > min{STNTy,...,STNT,} (lines 4,
5, and 6). Here, we try to emulate the timing of the
canonical execution. Pj; then calculates its speed S;; to
execute T based on the timing information and begins
execution. By exchanging ST NT;; with STNT,, P,y shares
part of its slack (specifically, ST NT;q — STNT,) with P,.

Reconsider the example from Fig. 1, and suppose every
task uses its actual execution time. Assuming that power
consumption is equal to Cy i—;, if no slack is reclaimed
dynamically, the energy consumption is computed to be
29 - % Under global scheduling with shared slack reclama-
tion and longest task first priority assignment, the energy
consumption is computed to be 21.83 - % Note that if we
use the optimal priority assignment as in Fig. 1b, which
optimizes the execution time, the energy consumption is
computed to be 21.97- % Hence, the optimal priority
assignment in terms of execution time is not optimal for
energy consumption when considering the dynamic beha-
vior of tasks.

From the algorithm, we notice that at any time (except
when Ready-Q is empty) the values of STNT, (p=1,...,N)
of the processors are always equal to the N biggest values of
EET of the tasks running on the processors. One of these
tasks is the most recently started task (from line 5 to 9). The
task that starts next will follow the smallest ST NT. These
properties are used to prove the correctness of GSSR-N (in
the sense that, shared slack reclamation does not extend the
finish time of the task set and execution with shared slack
reclamation will use no more time than the canonical
execution), as shown in next section.

3.2.2 Analysis of the GSSR-N Algorithm

For the canonical execution, we define the canonical estimated
end time, EETY,, for each task T},. From the definition, we know
that EET, is the latest time at which T, will finish its
execution. If EET),, = EETY for every task and the canonical
execution can finish before time D, then any execution will
finish before D. To prove that EET, = EET} for every Ty, we
define maxn{Xi,...,X,} to be the set containing the N
largest elements in the set {Xj,. .., X, }.! We also define the
history set H(t) as the set of tasks that have started (and
possibly finished) execution before or at time ¢.

Lemma 1. For GSSR-N, at any time t, if T}, is the most recently
started task, then EET, € maxn{EET;|T; € H(t)}, more-
over, {STNT:,...,STNTy} = maxn{EET;|T; € H(t)}.

Proof. If n < N, the result is trivial. Next, we consider the
case where n > N. The proof is by induction on
Tk,k': 1,...,’/7,.

Base case: Initially, after the first N tasks start
execution and before any of them finish, at any time ¢,
we have H(t) = {T;,i=1,...,N} and

1. If n < N, the remaining values are taken to be zero.

EETy € maxn{EET,|T; € H(t)};
{STNT:,...,STNTN} = maxn{EET;|T; € H(t)}.

Induction step: Assuming that, at any time t, Tj,_;
(k—1> N) is the most recently started task, we have
H(t) = {Tl, . ,Tk,l} and

EET) 1 € maxn{EET;|T;, € H(t)};
{STNT:,...,STNTN} = maxn{EET;|T; € H(t)}.

Without loss of generality, assume

EET; = min{STNT,...,STNTy}
=min{mazy{EET;|T, € Ht)}}(1 <j<k-1).

After T}, started and before T}, starts, at any time ¢, 7}, is
the most recently started task. Hence, H(t) = {T1,...,T}}
and, from lines 5 to 9 of the algorithm:

EET}, = min{STNT,,..., STNTx} + ci
= min{mary{EET;|T; € H®t)}} + ¢
= EET] + cj.

Then, EET), € maxn{EET;|T; € H(t)}. The new values
of ST NTs are thus given by:

{STNTi,...,STNTy} = {({STNT\,...,STNTy}

— {EET;}) U{EET}\}}
= mazy{EET|T; € H(t)};

Theorem 1. For a fixed independent task set I' with a common
deadline executing on N-processor systems, if canonical
execution with a priority assignment under global scheduling
completes at a time D, any execution with the same priority
assignment under GSSR-N will complete by time D.

Proof. For a specific priority assignment, the canonical
execution under global scheduling is the same as under
GSSR-N and tasks can be identified by their orders in the
ready queue during canonical execution. We prove this
theorem by showing that, for any execution under GSSR-
N: EET; = EET! (i=1,...,n). If n <N, it is trivial.
Next, we consider the case where n > N. The proof is by
inductionon Ty, k=1,...,n.

Base case: Initially, GSSR-N sets EET; at the
beginning of execution without any consideration to
the actual execution time of 7; (i=1,...,N). Hence,
EET; = EFETf,i=1,...,N.

Induction step: Assume that EET; = EETS for
i=1,...,k—1. At any time ¢ before T} starts, T}_; is
the most recently started task. Without loss of generality,
assume that:

mary{EET|T,€ H(t)} ={EET}—a,, ..., EET}—0y ,, EET} 1}
EET; = min{maxn{EET;|T; € H(t)}}.
Here, we have a; >...>ay_1>1 and 1 <j<k—1.

From Lemma 1:

{STNT\,...,STNTy}={EET},,,..., EET;_,, ,,EET;_}.

ZHU ET AL.: SCHEDULING WITH DYNAMIC VOLTAGE/SPEED ADJUSTMENT USING SLACK RECLAMATION IN MULTIPROCESSOR REAL-... 691

OO
@\%Dj@
(%) @)

3,1

(@)

33 Ready Time y O 2 3 y 6

Queue

A

T ‘Tz T ‘ T T T
\
T ’ T, ‘ g
L T Ts
T T T T T T 7T
12 Time

Fig. 5. List scheduling for dual-processor systems. (a) Precedence graph. (b) Canonical execution, finish at D = 12.

When T}, begins to run, from lines 4 to 8 of Algorithm
1, we will have (for noncanonical and canonical execu-
tion, respectively):

EET, = min(STNTh, ..., STNTy) + ¢
= min(BEETy_a,,..., BEETy_oy ., EETy_1) + o1
= EET; + ¢

EET; = min(STNT:,...,STNTN) + ¢
= min(EET{_, ..., EET{_, ,EET{_)+
= EET; ~+ ¢k

Notice that EET;, = EETf (i=1,...,k—1). Thus, we
have EET, = EET!. Finally, EET; = EETS,i = 1,...,n.0

In the next section, we discuss scheduling with shared
slack reclamation for dependent tasks. The idea of slack
sharing is the same as that used for independent tasks. A
new concern, however, is to maintain the execution order
implied in the canonical execution of dependent tasks.

4 POWER-AWARE SCHEDULING FOR
DEPENDENT TASKS

List scheduling is a standard technique used to schedule
tasks with precedence constraints [8], [10]. A task becomes
ready for execution when all of its predecessors finish
execution. The root tasks that have no predecessors are
ready at time 0. List scheduling puts tasks into a ready
queue as soon as they become ready and dispatches tasks
from the front of the ready queue to processors. When more
than one task is ready at the same time, finding the optimal
task order that minimizes execution time is NP-hard [10]. In

Ready Time 10 ‘1 |2 ‘6
Queue Tl ‘TZ‘ T5 [T3 ‘ T4 ‘ T6 ‘

A |
mTs T
|
I

T T T T T T T -

12 Time

this section, we use the same heuristic as in global
scheduling. We put into the ready queue first the longest
task (based on WCET) among the tasks that become ready
simultaneously. The tasks are numbered by the order at
which they are added to the ready queue during canonical
execution. That is, the kth task entering the ready queue in
canonical execution is identified as Tj.

Consider a dependent task set with T = {Ty, T, T3, Ty,
Ts, Ts}, and D = 12. The precedence graph is shown in
Fig. 5a, and the canonical execution is shown in Fig. 5b.
Task nodes are labeled with the tuple (c;,a;). For the
canonical execution, we see that 77 and 75 are root tasks and
ready at time 0. T3 and 7} are ready at time 2 when their
predecessor 1) finishes execution. T5 is ready at time 3 and
T; is ready at time 6.

Due to dependencies among tasks, a task’s readiness
during noncanonical execution depends on the actual
execution of its predecessors. From the discussion of
independent tasks, we know that greedy slack reclamation
cannot guarantee completion before D (i.e., the completion
time of canonical execution). We next show that the
straightforward application of shared slack reclamation to list
scheduling cannot guarantee that timing constraints are met.

4.1 List Scheduling with Shared Slack Reclamation

Consider the example from Fig. 5a, and assume that every
task uses its actual execution time. In Fig. 6a, whenever one
task is ready it is put into the queue. From the figure, it is
clear that list scheduling with shared slack reclamation does
not finish execution by time 12 (the completion time of
canonical execution).

The reason list scheduling with shared slack reclamation
takes longer than the canonical execution is that the tasks’

Ready Time ¢ o v2 v! v6
Queue Tl ‘ T2 T3 ‘ T4 T5 T6
A
Tl T4 T6 . Slack wasted
T T T . Slack reclaimed
2 3 S5 =
T T T T 1T T T =
0 12 Time

(b)

Fig. 6. List scheduling with slack reclamation; D = 12. (a) Shared slack reclamation. (b) FLSSR-2.

692 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.7, JULY 2003

ready time change. Thus, the order at which the tasks are
added to the queue is different from the canonical execution
order. In the example, T} is ready before T3 and 7,, which
leads to T3 being assigned to P rather than P;. This, in turn,
leads to the late completion of all tasks and the deadline
being missed.

4.2 Fixed-Order List Scheduling with Shared Slack
Reclamation (FLSSR)
For the schedule in Fig. 6a, we need to prevent 75 from
executing before 73 and T, to guarantee that execution
does not take longer than canonical execution; that is, we
need to maintain the task execution order the same as in
canonical execution. As discussed in Section 2, in the first
step (which is not shown in the following algorithm), the
canonical execution is emulated and Sj; is calculated.
During the emulation, tasks’ canonical execution order is
collected and the ready time of task 7; is calculated as:
RTf = maz{EET{|T; — T; € E} when all tasks run at Sj;,.
To determine the readiness of tasks, we define the number
of unfinished immediate predecessors (UIP) for each task. UIP;
will decrease by one when any predecessor of task T;
finishes execution. Task 7; is ready when UIP, =0.
Whenever a processor is free, it will check the task at the
head of Global-Q to see whether it is ready or not. If the task
is ready, the processor will fetch and execute it; otherwise,
the processor goes to sleep. The details of the algorithm are
described below.

4.2.1 FLSSR for N (> 2) Processor Systems
(FLSSR-N)

As for independent tasks, we assume that the shared
memory holds the control information. Algorithm 2 shows
the FLSSR-N algorithm. Each processor (FP;;) invokes the
algorithm at the beginning of execution, when a task
finishes execution on P,;, or when P,; is sleeping and
signaled by another processor. We use the function wait() to
put an idle processor to sleep and another function signal (P)
to wake up processor P. Initially, all tasks are put in Global-
Q in the canonical execution order (line 1; it is important for
the algorithm to keep the canonical execution order to

maintain temporal correctness). UIP; (i = 1,...,n) are set to
the number of predecessors of task 7; and STNT, (p=
1,...,N) are set to 0 (not shown in the algorithm).

If the algorithm is invoked by a signal from another
processor, it will begin at the “waiting for signal” point
(line 20). If the algorithm is invoked at the beginning or
when P, finishes a task, it begins at line 3. If the head of
Global-Q is ready, P, picks task 7} from the head of
Global-Q (line 4). To claim the slack, Pj; calculates FET)
as if T, starts at the same time as in the canonical
execution, which is RT} or STNT,; (whichever is bigger),
and claims the difference between ¢ and T},’s start time in
the canonical execution as slack (line 9; notice that either
t < RT{ or t < STNTq). Then, Pj; calculates the speed Siq
to execute T and signals P, if P, is sleeping and the
new head of Global-Q is ready (lines 12 and 13). Finally,
Py runs Tj, at the speed of S;; (line 15).

Algorithm 2 The FLSSR-N algorithm invoked by P
1: Put the tasks in Global-Q in the order of their canonical
execution.
2: while (1) do
3: if (Head(Global-Q) is ready) then
4: Ty = Dequeue (Global-Q);
5: Find P, such that:
STNT, = min{STNT,...,STNT,};
6: if (STNT,; > STNT,) then
7 STNT,; < STNT,;
8: end if
9: EET, = max{RT{, STNT;q,t} + ci;
10: STNT,; = EET};
11: Sy = Sjit ﬁ‘ﬁt,
12: if ((Head(Global-Q) is ready) AND (P, is sleep)) then
13: Signal(Py);
14: end if
15: Execute T}, at speed Sj4;
16: for (Each T; such that T, — T; € E) do
17: UIP, =UIP, - 1;
18: end for
19: else
20: wait();
21: end if
22: end while

Reconsider the example shown in Fig. 5. The execution
on dual-processors for FLSSR-2 is shown in Fig. 6b. In order
to wait for the readiness of T3 and T}, P, wastes part of its
slack. By maintaining the same execution order as canonical
schedule, all tasks finish on time.

4.2.2 Analysis of FLSSR-N Algorithm

Similar to GSSR-N, at any time (except when Global-Q is
empty), the values of STNT, (p=1,...,N) are always
equal to the N biggest values of EET of the tasks running
on the processors. One of these tasks is the most recently
started task. The task that starts next will follow the
minimum STNT.

Lemma 2. For FLSSR-N, at any time t, if Ty, is the most recently
started task, there will be EET,, € maxn{EET;|T; € H(t)};
moreover,

{STNT:,...,STNTN} = maxn{EET;|T; € H(t)}.
Proof. The proof is by induction on Tj,k=1,...,n and is
similar to the proof of Lemma 1.
Base case: Initially, after 7, (:=1,...,m)" start
execution and before any of them finish, at any time ¢,
we have H(t) = {T1,...,T,,} and

2

EET,, € maxy{EET;|T; € H(t)}
{STNT,...,STNTy} = mazy{EET,|T; € H(t)).

Induction step: Assume that before T}, started execu-
tion, T;,_; is the most recently started task. At any time ¢,
we have H(t) = {T1,...,Ty—1} and

2. If m < N, it means that there are only m tasks ready at time 0;
otherwise, m = N, the number of ready tasks is greater than or equal to N,
the number of processors.

ZHU ET AL.: SCHEDULING WITH DYNAMIC VOLTAGE/SPEED ADJUSTMENT USING SLACK RECLAMATION IN MULTIPROCESSOR REAL-... 693

EETy—1 € maxy{FEET;|T; € H(t)}
{STNT,,...,STNTN} = mazn{EET;|T; € H(t)}.

Without loss of generality, assume

EET; = min{STNT, ..., STNTy}
=min{mazy{EET;|T, € Ht)}}(1 <j<k-1).

After Tj, starts and before any more tasks finish, T} is
the most recently started task, and at any time ¢,
H(t)={T,...,T;}. From lines 6 to 10 of Algorithm 2:

EET, = max{min{STNT:,...,STNTN}, RT;,t} + ci
= max{EET;, RT;,t} + c.

Notice that, when T}, starts, either ¢t < RT} or t < EET].
Then,

EET, € mazny{EET;|T; € H(t)}.
The new values of STNT, (p = 1,..., N) are thus given by:

{STNT:,...,STNTy} = {({STNT,,...,STNTy}

—{STNT,}) U{EET},}}
=mary{EET;|T; € H(t)}.

Theorem 2. For a fixed dependent task set I" with a common
deadline executing on N-processor systems, if canonical
execution with a priority assignment under list scheduling
completes at time D, any execution with the same priority
assignment under FLSSR-N will complete by time D.

Proof. If all tasks use their WCET, canonical execution
under list scheduling is the same as under FLSSR-N.
For a specific priority assignment, the tasks are
numbered by the order in which they entered Global-
Q during canonical execution. We prove this theorem
by showing that, for any execution of FLSSR-N:
EET, = EETf (i =1,...,n). The proof is by induction
on Ty, k=1,...,n.

Base case: Initially, FLSSR-N sets EET;,i = 1,...,
m(m < N) at the beginning of execution without any
consideration to the actual execution time of T;. Hence,
EET, = EET?, i =1,...,m(m < N).

Induction step: Assume that EET, = EETS for
i=1,...,k—1. At any time before T}, starts, T} is the
most recently started task. Without loss of generality,
assume that:

EET; = min{maxzn{EET;|T; € H(t)}}
mazy{EET,|T, € H(t)} = {EET;_,,,.

Here, a1 > ... >ay_1>1,1<j<k—1. From Lemma 2:

{STNT\,...,STNTy} = {EET}_,,,..., EET;_,, ,, EET;_,}.

When Tj starts at time ¢ (noncanonical execution) or ¢/
(canonical execution), from lines 5 to 9 of Algorithm 2,
we will have:

..,EET,_,, ,,EET,_}.

EET;, = maz{min{STNT,...,STNT\}, RT{,t} + ¢
= max{min{EET}_q,...,EET} 0, ,, EET; 1},
RT{, t} + ¢
EET! = maz{min{STNT,...,STNTN}, RT{ U} + ¢
= maz{min{ EET}_, ,...,EET;_, ,EET_ },
RIS ¢} + o
When T, starts, either t < RT} and t' < RT}, or

t <min{STNTy,...,STNTy}
and
t' < min{STNTy,...,STNTy}.

Notice that, EET, = EETf (i=1,...,k—
have:

1), we will

maz{min{EET},_q,,..., EET} 4, ,, EET;_1}, RT}, t}
= maz{min{EET} , ,...,EET} ,EET{ |}, RT;, '}

—an-1
Thus, EET}, = EET. Finally, EET, = EET¢,i = 1,...,n.0

In the above discussion, we assumed continuous
voltage/speed and ignored the speed adjustment overhead.
However, current variable voltage processors have only
discrete voltage/speed levels [16]. Moreover, there is time
and energy overhead associated with voltage/speed ad-
justment. In the following section, we discuss how to
incorporate these issues into the scheduling algorithms.

ap?”

5 ACCOUNTING FOR OVERHEAD AND DISCRETE
VOLTAGE/SPEED LEVELS

5.1 Voltage/Speed Adjustment Overhead

There are two kinds of overhead that have to be considered
when changing processor voltage/speed: time and energy.
The time overhead affects the feasibility of our algorithms;
that is, whether the timing constraints can be met or not. We
focus on time overhead first and discuss energy overhead
later. When time overhead is considered, we need a model
to calculate that overhead and a scheme to incorporate it
into the algorithms. In the following, we propose a new
scheme of slack reservation to incorporate time overhead into
the dynamic speed adjustment algorithms.

5.1.1 Time Overhead

We model the time overhead as consisting of two parts: a
constant part that is a set-up time and a variable part that is
proportional to the degree of voltage/speed adjustment.
Hence:

Timeoverhsad =C+K- ‘Sl - SZ‘a

where C' and K are constants, and 5, is the processor speed
before adjustment and S; is the processor speed after the
adjustment. Here, the choice of K = 0 results in a constant
time overhead. In the simulations of Section 6, we set C and
K to different values to see how they affect energy savings.

One conservative way to incorporate the time overhead
is by adding the maximum time overhead of voltage/
speed adjustment, C' + K - (Sy0p — Smin), to the worst-case
execution time for all the tasks. In this case, there will be
enough time to change speed for each task.

694 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.7, JULY 2003

Ti Ti+1

. Slack used

D Overhead to slow down

. Overhead reserved to speed up
Fig. 7. Slack reservation for overhead.

We propose the idea of slack reservation to incorporate
the time overhead. Specifically, whenever we try to use
slack to slow down processor speed, we reserve enough
slack for the processor to change the voltage/speed back to
the appropriate level in the future. In this way, we ensure
that future tasks can be executed at the appropriate speed to
meet the deadline. The idea is illustrated in Fig. 7.

From the figure, when 7T finishes early with slack L;,
we use a portion of L; to change the voltage/speed for
Ti+1. We also reserve enough slack for changing the
processor voltage/speed back to Sj; when T, uses up
its allocated time. The rest of the slack is used to slow
down the speed of Ti;.

Suppose that the current speed for 7; is S; and assume
that the speed for Tj;; is Si;1 (to be computed). The
overhead, O;, to change speed from S; to Si;1, and the
overhead, R;, to change speed from S;;; back to Sj; are:

Oi =C+ K- ‘Si+l _Sz|
R =C+K- (Sjit — Si+1)'

Hence, ;41 can be calculated by giving additional time,
(L; — O; — R;), to task T, y; that is:

Ci+1
Ciy1+Li—0; — R;

Sit1 = Sjit -

Assuming that S;;; < S;, then the above equation is a
quadratic equation in Sjy1:

2- K-8}, + e+ Li—2-C— K- (Sj + 8)]-

Sit1 — Sjir - ¢i1 = 0.

If no solution is obtained with S;;; < S; from the above
equation, the assumption is wrong; that is, S;;; > S;. It is
possible to set S;y; = S; if the slack L; — R; is enough for
Ti+1 to reduce the speed from Sj; to S;; that is, if
Sjit - ﬁ < 8;, we can set S;11 = S;. If it is not possible
toset S;;1 < S;, we have S;;1 > S; and S;,; can be solved as:

Cit1

SHI:Sjit.ci+1+Li72«07[('(5]-2-1,752-)'

Finally, if S;;; computed from the above equation is larger
than Sj;;, we set Si11 = Sji.

In most cases, the reserved slack, R;, will not be used and
becomes part of the reclaimed slack ;. However, in some
cases, after T;,, finishes, the useful slack, L;,; — R;, is not
enough to use for Tj,,. In these cases, R; will be used to

Tin L Tan

L)

1%+1

D Slack Saved

. Slack used for speeding up
Fig. 8. Slack not enough to be used by T;,».

change the speed back to Sj; and T;,» will run at Sj; (see
Fig. 8).

When considering time overhead, slack sharing between
processors needs to be modified. Referring to Fig. 9,
suppose processor P; runs at S; and finishes early. As
described in Section 3, it would share its slack with
processor P; running at Sy if STNT; > STNT}. But, if
after slack sharing there is not enough time for P; to change
its speed back to Sj;, we should not share the slack.
Processor P, needs to change speed to Sj;; first and share the
slack later (if possible).

5.1.2 Energy Overhead

Besides the time overhead of voltage/speed adjustment,
there is also energy overhead associated with the speed
change. Suppose the energy overhead for changing speed
from S; to S; is E(S;,S;). Assuming that the energy
consumption of T;, is E;; with Sj;, and E/ ; with Sy,
then, it is not efficient to change the speed from S; to S;;1
for T; 4 if

E(Si, Siv1) + El + E(Sis1,Sjit) > Eiv1 + E(S;, Sjit)-

In other words, even if the timing constraints can be met
with the time overhead, we may decide not to run 7}, at a
lower speed (if the energy overhead is larger than the
energy saved by the speed change).

5.1.3 Setting the Processor to the Idle Speed

When no voltage/speed adjustment overhead is consid-
ered, we can always let the processor run at the slowest
speed when it is idle (not executing a task). This speed
achieves the least energy consumption for the idle state.
With the overhead considered, for independent tasks, the
idle state only appears at the very end of the execution and
we can set the processor to idle if there is enough time to
adjust the voltage/speed. For dependent tasks, however,
the idle state may appear in the middle of execution. To
ensure that future tasks finish on time, during idle state, the
processor needs to run at speed Sj; since the processor

T ‘
| - running at S;
|

T% I
. Slack can be used . Slack reserved for speed change

running at Sjit

Fig. 9. Slack sharing with overhead considered.

ZHU ET AL.: SCHEDULING WITH DYNAMIC VOLTAGE/SPEED ADJUSTMENT USING SLACK RECLAMATION IN MULTIPROCESSOR REAL-... 695

cannot predict exactly when the next task will be available.
We use this scheme to deal with the idle states appearing in
the middle of execution.

We may put the processor to sleep when it is idle and
wake it up before the next task is ready by predicting the
ready time of the next task using the task’s canonical ready
time. This scheme will require a “watchdog timer” to
specify when the task is ready. However, it is possible that a
task arrives before the timer expires; in this case, the
processor needs to be activated and the timer deactivated.
While this scheme can possibly achieve some additional
energy savings, it makes the implementation more complex
and, for the purpose of this paper, will not be considered
further.

Another way to deal with the idle state for dependent
tasks is to be conservative and add the maximum overhead
to each task’s worst-case execution time. In this case, we can
always put the processor to sleep when it is idle and
guarantee that there will be enough time to speed up the
processor when the next task is ready to execute.

5.2 Discrete Voltage/Speed Levels

Currently, available variable voltage processors have only
several working voltage/speed settings [16]. Our algorithms
can be easily adapted to discrete voltage/speed levels.
Specifically, after calculating a given processor speed S, if S
falls between two speed levels (S; < S < Sj41), setting S to
Si+1 will always guarantee that the tasks finish on time and
that the deadline is met.

With the higher discrete speed, some slack will not be used
for the next task and, thus, will be available for future tasks.
Our experimental results show that, when sharing slack with
future tasks, scheduling with discrete voltage/speed levels
sometimes have better performance, in terms of energy
savings, than continuous voltage/speeds.

6 PERFORMANCE ANALYSIS

In this section, we empirically demonstrate how slack
reclamation reduces energy consumption. Along with
synthetic data, we also use several sets of trace data (from
actual real time multiprocessor applications) in the simula-
tion. We compare the energy consumed when using the
combination of static power management and dynamic
supply voltage/speed adjustments with the energy con-
sumed when using only static power management. Follow-
ing the idea of the minimal energy scheduling technique for
uniprocessor systems [17], we consider the clairvoyant
(CLV) algorithm that uses the tasks’ actual runtime
information to generate the schedule and to compute a
single voltage/speed for all the tasks (the idle state may be
still in the schedule). We also consider an absolute lower
bound (ALB) scheme, which assumes the application is
fully parallel and is obtained by averaging the total actual
workload on all processors with the speed being uniformly
reduced (there is no idleness in this case, and preemption is
needed to generate the schedule, e.g., P-fairness scheduling
[3]). CLV and ALB are achievable only via postmortem
analysis and are impractical since they require knowledge
of the future.

6.1 Experiments

First, we describe the simulation experiments. For the
synthetic data, to get the actual execution time for each task,
we define «; as average/worst-case ratio for 7;’s execution

time, and the actual execution time of 7; will be generated
as a normal distribution around «; - ¢;. For the task sets, we
specify the lower (¢pi,) and upper (cm.:) bounds on the
task’s WCET and the average « for the tasks, which reflects
the amount of dynamic slack in the system. The higher the
value of «, the less the dynamic slack. A task’s WCET is
generated randomly between (¢yin; Cmez) and «; is gener-
ated as a uniform distribution around «. For simplicity,
power consumption is assumed to be proportional to S%. In
the following experiments, energy is normalized to the
energy consumed when using only static power manage-
ment. We also assume continuous voltage/speed scaling
and no penalty for changing voltage/speed if not specified
otherwise. The effects of discrete voltage/speed scaling and
voltage/speed adjustment overhead are reported in Sec-
tions 6.5 and 6.6. When no overhead is considered, the
processor speed in the idle state is set to 0.1-Sj;; when
overhead is considered, for the idle state appearing at the
end of schedule, the processor speed is set to 0.1 - Sj;;, while
for the idle state in the middle of execution, the processor
speed is set to Sj; as discussed earlier.

6.2 GSSR and Partition Scheduling with Greedy
Slack Reclamation versus SPM

The results in this section were obtained by running a
synthetic independent task set with 100 tasks and the
results are the average of 1,000 runs. The WCET of tasks are
generated by setting ¢, = 1 and ¢pe, = 50. In Fig. 10a, the
number of processors is two, and « is varied from 0.1 to 1.0.
We compare the global scheduling with shared slack
reclamation (GSSR) with partition scheduling and greedy
slack reclamation (PGSR). For PGSR, we use the longest task
first partitioning to divide tasks among processors, and then
apply greedy slack reclamation on each processor [20].
From the figure, we see that global scheduling with shared
slack reclamation consumes less energy than partition
scheduling with greedy slack reclamation. The reason is
that the slack sharing scheme gives more slack to longer
tasks and less to shorter tasks. This balances the speed of
each task and reduces energy consumption. When the
average/worst-case ratio («) is about 0.5 (that is, on the
average we have 50 pecent of time as dynamic slack), global
scheduling with shared slack reclamation results in energy
saving of more than 60 percent versus static power
management. When « increases, there is less dynamic slack
and, compared to SPM, the energy saving of GSSR
decreases. Note that, for independent tasks, only a little
idle state appears at the very end of the schedule and CLV
gets almost the same energy savings as ALB. Compared
with these lower bounds, the performance of our algorithm
is within 15 percent difference (when a = 0.5).

To see the shared slack reclamation scheme’s performance
on systems with a different number of processors, we run the
synthetic independent task set by changing the number of
processors and setting a = 0.5. The results are shown in
Fig. 10b. Compared to SPM, the energy savings of GSSR is
almost the same when the number of processors is less than or
equal to eight. When the number of processors is more than
eight, the energy savings of GSSR decreases sharply. The
reason is that the first task on each processor is always
executed at S and the slack at the very end on each processor
is wasted. Since there are only 100 tasks in the task set, with
more processors, such as 16 or 32, the number of tasks
running at Sj; and the total amount of slack wasted increases

696 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.7, JULY 2003

E 100 T T T T T T T T E 75 T T T T T T
n %)
o 9 PGSR /4 o, 70F PGSR 1 -
” GSSR it GSSR - <
5 80 F CLV - E 1 s e5F cLv s 4
8 ALB 5 o 60 ALB -tk
£ 6ot i i ®r e i
Z 0 o Z 50 [- 7 E
50 - - B At

8 . g 45 + ,-,,,/Jr i,
- 4+ - -
5 40 - T 1 3 y
5 L g A0 F e 7
7 30 & 1 & sl i
g X g
o 20 - L E o L o i
2 e " 2 %0 B B L IR :
g 10| L 1 g 25 B g
N :
[i5] 0 H 1 1 1 1 1 1 1 1 [i5] 20 1 1 1 1 1 1

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1 0 5 10 15 20 25 30 35

alpha Number of Processors

(@)

(b)

Fig. 10. Energy savings for independent tasks. (a) Varying «. (b) Varying number of processors.

quickly. While compared with PGSR, our algorithm is always
better. When the number of processors is less or equal to eight,
our algorithm is within 13 percent of CLV and ALB. With
more processors, such as 16 or 32, ALB performs better than
CLV. The reason is that ALB assumes the actual workload is
evenly balanced among all processors.

6.3 FLSSR versus SPM

In this section, we consider the dependent task sets and
compare the energy consumption used by FLSSR versus
SPM. First, we consider an example with 20 synthetic tasks.
The tasks” WCET are generated randomly from 1 to 50 and we
assume a two-processor system. In Fig. 11a, we vary « from
0.1 to 1.0. The energy saving of fixed-order list scheduling
with shared slack reclamation (FLSSR) compared to that of
static power management (SPM) varies from 0 percent when
ais 1.0, to 72 percent when « is 0.1. When « increases, there is
less dynamic slack and compared to SPM the energy savings
of FLSSR decreases. On average, when « is 0.5, the energy
savings is approximately 40 percent. Since there is more idle
time for dependent tasks, compared with ALB, the perfor-
mance of our algorithm is within 35 percent difference (when
a=0.5).

We next consider two matrix operations, matrix-multi-
plication and Gaussian-elimination (assuming a 5 x 5 matrix
of 100 x 100 submatrices) [9], and measure the effectiveness
of our techniques for these benchmarks. The worst-case
execution time of each task is determined by the operations
involved. We conduct the same experiments as above,
achieving similar energy savings for fixed-order list schedul-
ing with shared slack reclamation. The results are shown in
Fig. 11a.

For Gaussian-elimination, we also considered a 20 x 20
matrix of 100 x 100 submatrices to allow more parallelism.
With a = 0.5, we vary the number of processors, as shown
in Fig. 11b. For this application, when the number of
processors is larger than eight, the energy consumption of
FLSSR increases sharply compared to SPM. One reason is
similar to what happen for GSSR: the number of tasks
running at Sj; and the amount of slack wasted increases.
Another reason is the idleness of the processors due to the
dependence among tasks. Compared with CLV, our
algorithm is within 15 percent difference. Note that ALB
assumes a fully parallel application, which is not possible
for Gaussian-elimination with a large number of processors.

z 100 T T T T T T T z 90 T T T T T T
0 (Gaussion Elimination: FLSSR —+— %) o

90 -Matrix-Multiplication: FLSSR ---x--- B 80 -FLSSR T -
3 Random Graph: FLSSR : . S CLV ,,,;,,,)
< 80 - Gaussion Elimination: ALB -1 ¥ o A kel ALB ---%---
o Matrix-Multiplication: ALB —-m-- e . P 3 70 - 7
-~ 70 b = L . -
?g ' o . é 60 + / e T
5§ 60 A R B o
= 4 e T = 50 - S b
g Op = St 1 s s
. - By 5 40 1 b
D40 Py : 1 prt
o x . G o ot)
: : o S0 o 1
a 05 o a 1 8 e
8 20} _n 1 8aop el i
?) w0l ‘] § 10 - T 1
ﬁ o, - |i _ 1 I I 1 I LEJ: 0 I 1 1 1 1 1 -

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15 20 25 30 35
alpha Number of processors
(@) (b)

Fig. 11. Energy savings for dependent tasks. (a) Varying «. (b) Varying number of processors.

ZHU ET AL.: SCHEDULING WITH DYNAMIC VOLTAGE/SPEED ADJUSTMENT USING SLACK RECLAMATION IN MULTIPROCESSOR REAL-...

Normalize
Deltections

Py

@WEE WG

(@)

Templates
Cnmpm'c

697

| || min{s) | max(fs) |

Prescreen 1146 1299
Norm. Detection 429 748
Template 1 466 574
Template 2 466 520
Template 3 467 504

(b)

Fig. 12. The dependence graph of ATR to process one frame and the execution time for the tasks of ATR. Assuming up to four detections in one
frame and three templates. (a) Dependence graph of ATR. (b) Execution time for tasks in ATR.

6.4 FLSSR with Trace Data

In this section, we use several sets of trace data for different
parallel applications to show the effectiveness of our
algorithms. The trace data is gathered by instrumenting the
applications to record their execution time for each parallel
section. The applications are then run on a Pentium-III
500M Hz with 128 M B memory.

The first application we considered is automated target
recognition (ATR). ATR searches regions of interest (ROI) in
one frame and tries to match specific templates with each
ROL. The dependence graph for ATR is shown in Fig. 12a.
Fig. 12b shows the runtime information about the tasks in
ATR for processing 180 consecutive frames on our platform.
Here, we assume that ATR can process up to four ROIs in
one frame and that each ROI is compared with three
different templates. If the number of ROIs is less than four,
the actual runtime of the tasks corresponding to undetected
ROIs (the first few ROIs) is set to 0.

Second, we consider the Berkeley real time MPEG-1
encoder [12]. By setting the group of pictures (GOP) as 15
with the pattern of IBBPBBPBBPBBPBB, and forcing it to
encode the last frame, the dependence graph to process the
frames in one GOP using decoded frame as reference is
shown in Fig. 13a. There are three different frames in the
dependence graph. The I frame is the intraframe that is
encoded as a single image with no reference to any past or
future frames. The P frame is the forward predicted frame
that is encoded relative to the past reference frame. A
B frame is a bidirectional predicted frames that is encoded
relative to the past, the future or both reference frames. The
reference frame is either an I or a B frame. For the Flower-
Garden and Tennis movies with each having 150 frames,
Fig. 13b shows the runtime information of processing

a

different frames (the time is only for encoding and does
not include 1/0).

Using the trace data, we vary the number of processors
and run these two applications (note that the maximum
parallelism for Berkeley MPEG-1 encoder is three for one
GOP) on our simulator. The results of energy savings are
shown in Table 1. There is more energy savings for Tennis
than Flower-Garden from the MPEG-1 encoder because the
encoding time for Tennis varies more than Flower-Garden
(see Fig. 13b). CLV gets 7 to 32 percent more energy savings
than FLSSR and ALB gets 27 to 44 percent more. Again,
ALB assumes fully parallel application with preemption
and an evenly balanced actual workload. It is impractical
and is not a tight lower bound. The results are consistent
with the earlier results from the synthetic data.

6.5 Considering the Overhead

To observe how the time overhead affects the algorithms’
performance in terms of energy savings, we set in the
experiments the constant part of the overhead (C) to
different values relative to the smallest task’s worst-case
execution time. We also experiment with setting the
coefficient (K) to different values from 0 to 1. The maximum
variable part of time overhead (changing speed between
Simaz and Spin) equals K times the smallest task’s worst-case
execution time. Recall that the range of task’s worst-case
execution time is from 1 to 50 and the smallest task has
worst-case execution time of 1. Fig. 14a shows an
independent task set with 100 tasks, and Fig. 14b shows
the synthetic dependent task set with 20 tasks. The results
reported here do not include the energy overhead optimi-
zation discussed in Section 5. We expect better results when
this optimization is considered.

Flower(ms) | Tennis(ims)

min | max || min | max
I 50 70 60 70
P || 120 | 140 100 | 140
B || 270 | 320 190 | 340

(b)

Fig. 13. The dependence graph and execution time to process different frames of MPEG-1 encoder; assuming the encoding sequence is
IBBPBBPBBPBBPBB, force to encode the last frame and use decoded frame as reference. (a) Dependence graph of MPEG-1 encoder.

(b) Execution time for different frames.

698

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.7, JULY 2003

TABLE 1
Energy Savings versus SPM Using Trace Data
ATR MPEG-1 Encoder
Flower Tennis
2-Proc | 3-Proc | 4-Proc || 2-Proc | 3-Proc | 2-Proc | 3-Proc
FLSSR || 26.35% | 38.65% | 41.66% || 17.42% | 16.53% | 25.16% | 23.77%
CLV 58.83% | 54.71% | 52.14% || 24.11% | 26.43% | 35.07% | 36.92%
ALB || 70.58% | 78.19% | 80.43% || 44.33% | 53.75% | 52.65% | 60.67%

From the figures, the constant part of the overhead
affects the algorithms’ performance the most. With the
maximum overhead considered, for independent tasks
there is a 6 percent difference in energy consumption from
the case with no overhead. For dependent tasks, the
difference is 12 percent. There is a big jump between the
case with no overhead and with minimal overhead. The
reason is that without overhead the idle state runs at
0.1- S}, and with overhead, the idle state runs at Sj; =
Smaz (load = 100 percent) to ensure that future tasks finish
on time (see Section 5).

Note that C and K are dependent on specific processor
hardware and the tasks running on the processor. Suppose
that the minimum task has the worst-case execution time of
10 ms, and we are using a Transmeta processor that takes
5 ms to change voltage/speed [16]. Hence, C' = 50 percent
and K = 0. Similarly, the AMD K6-2+ was measured to
have an overhead of 0.4 ms to change voltage and 40 us to
change frequency [22]. Thus, for AMD, C = 4 percent and
K = 0. For the IpARM processor that needs 70 us to change
voltage [5], C' = 0.7 percent and K = 0.

6.6 The Effect of Discrete Voltage/Speed Levels

To see how discrete voltage/speed levels affect the
algorithms’ performance in terms of energy savings, we
set different levels between 200M Hz and 700MHz (the
speed is from Transmeta TM5400 [16]) and their corre-
sponding supply voltage. The levels are uniformly dis-
tributed at the same increment between two discrete speed
levels. The idle state runs at the minimum speed and
consumes the corresponding energy. For GSSR, we run the
task set with 100 tasks, and for FLSSR we run the synthetic
task set with 20 tasks. Here we set the number of processors

50

Energy consumption normalized to SPM

38 . . L .

(@)

as two and fix a = 0.5. The energy consumption of GSSR
and FLSSR versus SPM with different number of voltage/
speed levels is shown in Fig. 15, where “oco” means
continuous voltage/speed adjustment.

Since the workload is 100 percent, there is no static slack
and Sjiy = Sya.. For static power management, because the
processors runs at either 200M H z or 7000 H z for all speed
configurations, the energy consumption is the same.

From Fig. 15, we see that energy consumption of the
algorithms with continuous adjustment is not always less
than that with discrete voltage/speed levels, and more
levels do not guarantee less energy consumption. The
reason is that, with discrete voltage/speed levels, the
processors set their speed to the next higher discrete level,
which saves some slack for future tasks. When sharing the
slack with future tasks, the energy consumption of the
algorithms with discrete voltage/speed levels may be less
than that with continuous adjustment, and a few levels may
be better than many levels. In any case, four to six levels are
sufficient to achieve the effect of continuous adjustment,
which is the same observation as reported in [6] for
uniprocessor with periodic tasks.

7 SUMMARY

In this paper, we introduce the concept of slack sharing on
multiprocessor systems to reduce energy consumption.
Based on this concept, we propose two novel power-aware
scheduling algorithms for independent and dependent
tasks. In both cases, we prove that scheduling with slack
reclamation will not cause the execution of tasks to finish
later than the completion time in canonical execution,

80

Energy Consumption Normalized to SPM

60
0 0.2 04 0.6 0.8 1

K

(b)

Fig. 14. Energy savings with varied time overhead of voltage/speed adjustment. (a) GSSR versus SPM. (b) FLSSR versus SPM.

ZHU ET AL.: SCHEDULING WITH DYNAMIC VOLTAGE/SPEED ADJUSTMENT USING SLACK RECLAMATION IN MULTIPROCESSOR REAL-...

85 1
8o L
75 — .
70 | _
65 - 7
60 | , '
55 ;R o ’/ﬁ _
sol " .

45+ ¢ .

Energy Consumption Normalized to SPM

40 F e

35

Number of discrete voltage/speed levels

Fig. 15. Energy consumption of GSSR and FLSSR versus SPM with
different number of voltage/speed levels.

where each task uses its worst-case execution time.
Specifically, if canonical execution of a task set can finish
before time D, then the two proposed algorithms, global
scheduling with shared slack reclamation (GSSR) and fixed-
order list scheduling with shared slack reclamation
(FLSSR), will finish the execution of the tasks before D.
Compared to static power management (SPM), Our
simulation results show that GSSR and FLSSR achieve
considerable energy saving when the task’s execution time
is smaller than their worst-case execution time (which is
true for most real applications). Using trace data from
several real applications, such as automated target recogni-
tion [23] and the Berkeley MPEG-1 encoder [12], the results
show that our schemes can save up to 44 percent energy
compared to SPM.

The effect of discrete voltage/speed on the performance
of the algorithms is also studied. Our simulation results
show that a few discrete voltage/speed levels are sufficient
to achieve almost the same or better energy savings than
continuous voltage/speed.

Finally, we propose a scheme to incorporate the voltage/
speed adjustment overhead into our scheduling algorithms
using slack reservation. Based on the assumption that it takes
a few milliseconds to adjust processor supply voltage and
speed [21], our simulation results show that the effect of the
overhead on energy saving ranges from 6 percent to
12 percent.

ACKNOWLEDGMENTS

This work has been supported by the US Defense Advanced
Research Projects Agency through the PARTS Project
(Contract F33615-00-C-1736). The authors would like to
thank Dr. Daniel Mossé for useful discussion about the
overhead in Section 5. They would also like to thank the
referees for their criticisms and suggestions that helped
them in rewriting the paper in a better form.

REFERENCES

[1] N. AbouGhazaleh, D. Mossé, B. Childers, and R. Melhem,
“Toward the Placement of Power Management Points in Real
Time Applications,” Proc. Workshop Compilers and Operating
Systems for Low Power, 2001.

(2]

(3]

4

(5]

o]

[

(8]

]
(10]

(1]

[12]

(13]

(14]

[15]
[16]
(7]

(18]

[19]

(20]

(21]

(22]

[23]

(24]

(25]

(20]

699

H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Dynamic
and Aggressive Scheduling Techniques for Power-Aware Real-
Time Systems,” Proc. 22nd IEEE Real-Time Systems Symp., Dec. 2001.
S.K. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varel, “Propor-
tionate Progress: A Notion of Fairness in Resource Allocation,”
Algorithmica, vol. 15, no. 6, pp. 600-625, 1996.

T.D. Burd and R.W. Brodersen, “Energy Efficient CMOS Micro-
processor Design,” Proc. Hawaii Int’l Conf. System Sciences, pp 288-
297, Jan. 1995.

T.D. Burd, T.A. Pering, A.J. Stratakos, and R.W. Brodersen, “A
Dynamic Voltage Scaled Microprocessor System,” IEEE]. Solid-
State Circuits, vol. 35, no. 11, pp. 1571-1580, 2000.

A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data Driven
Signal Processing: An Approach for Energy Efficient Computing,”
Proc. Int’l Symp. Low-Power Electronic Devices, 1996.

A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-Power
CMOS Digital Design,” IEEE]. Solid-State Circuit, vol. 27, no. 4,
pp. 473-484, 1992.

K.D. Cooper, P.J. Schielke, and D. Subramanian, “An Experi-
mental Evaluation of List Scheduling,” technical report, Dept. of
Computer Science, Rice Univ., Sept. 1998.

M. Cosnard and D. Trystram, Parallel Algorithms and Architectures.
Int’'l Thomson Computer Press, 1995.

M.L. Dertouzos and A K. Mok, “Multiprocessor On-Line Schedul-
ing of Hard-Real-Time Tasks,” IEEE Trans. Software Eng., vol. 15,
no. 12, pp. 1497-1505, 1989.

R. Ernst and W. Ye, “Embedded Program Timing Analysis Based
on Path Clustering and Architecture Classification,” Proc. Int’l
Conf. Computer-Aided Design, pp. 598-604, Nov. 1997.

K.L. Gong and L.A. Rowe, “Parallel MPEG-1 Video Encoding,”
Proc. Picture Coding Symp., Sept. 1994.

F. Gruian, “System-Level Design Methods for Low-Energy
Architectures Containing Variable Voltage Processors,” Proc.
Workshop Power-Aware Computing Systems, Nov. 2000.

C.H. Hsu, U. Kremer, and M. Hsiao, “Compiler-Directed Dynamic
Frequency and Voltage Scheduling,” Proc. Workshop Power-Aware
Computing Systems, Nov. 2000.

http:/ /www.microprocessor.sscc.ru, 2003.

http:/ /www.transmeta.com, 2003.

T. Ishihara and H. Yauura, “Voltage Scheduling Problem for
Dynamically Variable Voltage Processors,” Proc. Int'l Symp. Low
Power Electronics and Design, pp. 197-202, Aug. 1998.

CM. Krishna and Y.H. Lee, “Voltage Clock Scaling Adaptive
Scheduling Techniques for Low Power in Hard Real-Time
Systems,” Proc. Sixth IEEE Real-Time Technology and Applications
Symp., May 2000.

F. Liberato, S. Lauzac, R. Melhem, and D. Mossé, “Fault-Tolerant
Real-Time Global Scheduling on Multiprocessors,” Proc. 10th IEEE
Euromicro Workshop Real-Time Systems, June 1999.

D. Mossé, H. Aydin, B. Childers, and R. Melhem, “Compiler-
Assisted Dynamic Power-Aware Scheduling for Real-Time Appli-
cations,” Proc. Workshop Compiler and OS for Low Power, Oct. 2000.
W. Namgoong, M. Yu, and T. Meng, “A High-Efficiency Variable-
Voltage CMOS Dynamic DC-DC Switching Regulator,” Proc. IEEE
Int’l Solid-State Circuit Conf., pp. 380-381, Feb. 1997.

P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” Proc. 18th ACM
Symp. Operating Systems Principles, Oct. 2001.

J.A. Ratches, C.P. Walters, R.G. Buser, and B.D. Guenther, “Aided
and Automatic Target Recognition Based upon Sensory Inputs
from Image Forming Systems,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 19, no. 9, pp. 1004-1019, 1997.

P.M. Shriver, M.B. Gokhale, S.D. Briles, D. Kang, M. Cai, K.
McCabe, S.P. Crago, and J. Suh, A Power-Aware, Satellite-Based
Parallel Signal Processing Scheme. chapter 13, Power Aware
Computing, Plenum/Kluwer Publishers, pp. 243-259, 2002.

P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest,
and R. Lauwereins, “Energy-Aware Runtime Scheduling for
Embedded-Multiprocessor SOCS,” IEEE Design and Test of
Computers, vol. 18, no. 5, pp. 46-58, 2001.

F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for
Reduced CPU Energy,” Proc. 36th Ann. Symp. Foundations of
Computer Science, pp. 374-382, Oct. 1995.

700 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.7, JULY 2003

Dakai Zhu received the BE degree in computer
science and technology from Xi'an Jiaotong
University in 1996, the ME degree in computer
science and technology from Tsinghua Univer-
sity in 1999, and the MS degree in computer
science from the University of Pittsburgh in
2001. Currently, he is a PhD student at the
University of Pittsburgh and is researching on
power and fault tolerance management for
parallel real time systems. He is a student

member of the IEEE.

Rami Melhem received the BE degree in
electrical engineering from Cairo University in
1976, the MA degree in mathematics and the
MS degree in computer science from the
University of Pittsburgh in 1981, and the PhD
degree in computer science from the University
of Pittsburgh in 1983. He was an assistant
professor at Purdue University prior to joining
the faculty of The University of Pittsburgh in
1986, where he is currently a professor of
computer science and electrical engineering and the chair of the
Computer Science Department. His research interests include real time
and fault-tolerant systems, optical interconnection networks, high
performance computing, and parallel computer architectures. Dr.
Melhem served on program committees of numerous conferences and
workshops and was the general chair for the Third International
Conference on Massively Parallel Processing Using Optical Intercon-
nections. He was on the editorial board of the IEEE Transactions on
Computers and the IEEE Transactions on Parallel and Distributed
Systems. He is serving on the advisory boards of the IEEE technical
committees on parallel processing and on computer architecture. He is
the editor for the Kluwer/Plenum Book Series in computer science and is
on the editorial board of the Computer Architecture Letters. He is a
fellow of IEEE and the IEEE Computer Society, and is a member of the
ACM.

Bruce R. Childers received the BS degree in

computer science from the College of William

and Mary in 1991, and the PhD degree in

§ computer science from the University of Virginia

*" in 2000. He is an assistant professor in the

Department of Computer Science at the Uni-

versity of Pittsburgh. His research interests

include computer architecture, compilers and

software development tools, and embedded

systems. Currently, he is researching continuous compilation, power-

aware computer architecture for small and portable systems, and
compiler optimization for embedded systems.

> For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

