Computing with limited memory

Loris Marchal (CNRS, Lyon, France)
loris.marchal@ens-lyon.fr

November 19, 2013
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Introduction

Usual performance metric: **makespan** (or other time-related metric)

Today: focus on **memory**

- Workflows with large temporary data
- Bad evolution of perf. for computation vs. communication:
 \[\frac{1}{\text{Flops}} \ll \frac{1}{\text{bandwidth}} \ll \text{latency} \]

- Gap between processing power and communication cost increasing exponentially

<table>
<thead>
<tr>
<th></th>
<th>annual improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flops rate</td>
<td>59%</td>
</tr>
<tr>
<td>mem. bandwidth</td>
<td>26%</td>
</tr>
<tr>
<td>mem. latency</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Avoid communications (I/O)
- Restrict to in-core memory (out-of-core is expensive)
Introduction

Usual performance metric: makespan (or other time-related metric)

Today: focus on memory

- Workflows with large temporary data
- Bad evolution of perf. for computation vs. communication: \(\frac{1}{\text{Flops}} \ll \frac{1}{\text{bandwidth}} \ll \text{latency} \)

- Gap between processing power and communication cost increasing exponentially

<table>
<thead>
<tr>
<th></th>
<th>annual improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flops rate</td>
<td>59%</td>
</tr>
<tr>
<td>mem. bandwidth</td>
<td>26%</td>
</tr>
<tr>
<td>mem. latency</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Avoid communications (I/O)
- Restrict to in-core memory (out-of-core is expensive)
Introduction

Usual performance metric: makespan (or other time-related metric)

Today: focus on memory

- Workflows with large temporary data
- Bad evolution of perf. for computation vs. communication: \(\frac{1}{\text{Flops}} \ll \frac{1}{\text{bandwidth}} \ll \text{latency} \)
- Gap between processing power and communication cost increasing exponentially

<table>
<thead>
<tr>
<th></th>
<th>annual improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flops rate</td>
<td>59%</td>
</tr>
<tr>
<td>mem. bandwidth</td>
<td>26%</td>
</tr>
<tr>
<td>mem. latency</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Avoid communications (I/O)
- Restrict to in-core memory (out-of-core is expensive)
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Model

Out-of-core execution:

- Fast memory of size M
- M is too small to accommodate all data
- Unlimited disk space
- Disk access are slow: minimize read/write (I/O)

Applies to other two-level systems:

- Fast but limited cache / Large and slower memory
- Fast but limited L1 cache / Large and slower L2/L3 cache
Out-of-core execution:

- Fast memory of size M
- M is too small to accommodate all data
- Unlimited disk space
- Disk access are slow: minimize read/write (I/O)

Applies to other two-level systems:

- Fast but limited cache / Large and slower memory
- Fast but limited L1 cache / Large and slower L2/L3 cache
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Basic matrix-product algorithm: analysis

naive-matrix-multiply(n,C,A,B)
for i = 1 to n
 for j = 1 to n C[i,j] = 0
 for k = 1 to n
 end for
 end for
end for

- how many I/O operations with a memory of size M
- assumption: $M < n^2/2$
- all B elements accessed during outer loop: at least $n^2/2$ reads
- total: at least $n^3/2$ read (at most $4n^3$ read/write)
Basic matrix-product algorithm: analysis

naive-matrix-multiply(n,C,A,B)
for i = 1 to n
 for j = 1 to n C[i,j] = 0
 for k = 1 to n
 end for
 end for
end for

- how many I/O operations with a memory of size M
- assumption: $M < \frac{n^2}{2}$
- all B elements accessed during outer loop: at least $\frac{n^2}{2}$ reads
- total: at least $\frac{n^3}{2}$ read (at most $4n^3$ read/write)
Basic matrix-product algorithm: analysis

naive-matrix-multiply(n,C,A,B)
for i = 1 to n
 for j = 1 to n C[i,j] = 0
 for k = 1 to n
 end for
 end for
end for

- how many I/O operations with a memory of size M
- assumption: $M < n^2/2$
- all B elements accessed during outer loop: at least $n^2/2$ reads
- total: at least $n^3/2$ read (at most $4n^3$ read/write)
Basic matrix-product algorithm: analysis

```plaintext
naive-matrix-multiply(n,C,A,B)
for i = 1 to n
    for j = 1 to n C[i,j] = 0
        for k = 1 to n
        end for
    end for
end for
```

- how many I/O operations with a memory of size M
- assumption: $M < \frac{n^2}{2}$
- all B elements accessed during outer loop: at least $\frac{n^2}{2}$ reads
- total: at least $\frac{n^3}{2}$ read (at most $4n^3$ read/write)
Matrix-product algorithm: how to do better?

Idea: use blocks of size $\sqrt{M}/3$

\[
\text{blocked-matrix-multiply}(n,C,A,B) \\
b = \text{square root of (memory size}/3) \\
\text{for } i = 1 \text{ to } n \text{ step } b \\
\hspace{1em} \text{for } j = 1 \text{ to } n \text{ step } b \\
\hspace{2em} \text{fill } C[i:i+b-1,j:j+b-1] \text{ with zeros} \\
\hspace{2em} \text{for } k = 1 \text{ to } n \text{ step } b \\
\hspace{3em} \text{naive-matrix-multiply}(b, C[i:i+b-1,j:j+b-1], A[i:i+b-1,k:k+b-1], B[k:k+b-1,j:j+b-1]) \\
\hspace{1em}\text{end for} \\
\hspace{1em}\text{end for} \\
\hspace{1em}\text{end for} \\
\]

- each iteration of the inner loop accesses only $3b^2 = M$ data:
 each data is read/written only once

- bound on the number of transfers:
 \[
 (n/b)^3 \times 2M = (n/\sqrt{M}/3)^3 \times 2M = O(n^3/\sqrt{M})
 \]
Matrix-product algorithm: how to do better?

Idea: use blocks of size $\sqrt{M}/3$

```
blocked-matrix-multiply(n,C,A,B)

b = square root of (memory size/3)

for i = 1 to n step b
    for j = 1 to n step b
        fill C[i:i+b-1,j:j+b-1] with zeros
        for k = 1 to n step b
            naive-matrix-multiply(b,C[i:i+b-1,j:j+b-1],
                                    A[i:i+b-1,k:k+b-1],
                                    B[k:k+b-1,j:j+b-1])
        end for
    end for
end for
```

- each iteration of the inner loop accesses only $3b^2 = M$ data:
 - each data is read/written only once

- bound on the number of transfers:
 $$ (n/b)^3 \times 2M = (n/\sqrt{M}/3)^3 \times 2M = O(n^3/\sqrt{M}) $$
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
 - Decompose a schedule into phases that transfer exactly M data
 - $c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
 - alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
 - at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
 - S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
 - S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
 - total: at most $6M^{3/2}$ per phase
 - number of full phases $= \lfloor n^3/6M^{3/2} \rfloor \geq n^3/6M^{3/2} - 1$
 - number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i,j}$ is alive in phase p if it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
- S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \lfloor n^3 / 6M^{3/2} \rfloor \geq n^3 / 6M^{3/2} - 1$
- number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i,j}$ is alive in phase p if it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
- S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \lfloor n^3/6M^{3/2} \rfloor \geq n^3/6M^{3/2} - 1$
- number of transfers $\geq n^3/6\sqrt{M} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into *phases* that transfer exactly M data
- $c_{i,j}$ is *alive* in phase p if it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
 - at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
 - S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
 - S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \lfloor n^3 / 6M^{3/2} \rfloor \geq n^3 / 6M^{3/2} - 1$
- number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i,j}$ is alive in phase p if it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
- S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \left\lfloor n^3/6M^{3/2} \right\rfloor \geq n^3/6M^{3/2} - 1$
- number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
- S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \lfloor n^3/6M^{3/2} \rfloor \geq n^3/6M^{3/2} - 1$
- number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
- S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \lceil n^3/6M^{3/2} \rceil \geq n^3/6M^{3/2} - 1$
- number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i,j}$ is alive in phase p if it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
- S_{1p}^1: set of rows of A with \sqrt{M} or more elements in A_p ($|S_{1p}^1| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S_{1p}^1
- S_{2p}^2: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S_{2p}^2
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \lfloor n^3/6M^{3/2} \rfloor \geq n^3/6M^{3/2} - 1$
- number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i,j}$ is alive in phase p if it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
- S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $\geq \left\lfloor \frac{n^3}{6M^{3/2}} \right\rfloor \geq \frac{n^3}{6M^{3/2}} - 1$
- number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Consider a “normal” matrix-product algorithm (not Strassen)

Decompose a schedule into phases that transfer exactly M data

$c_{i,j}$ is alive in phase p is it computes $a_{i,k}b_{k,j}$ for some k

alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase

at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)

S_1^p: set of rows of A with \sqrt{M} or more elements in A_p ($|S_1^p| \leq 2\sqrt{M}$)

- each row used in at most $|B_p| \leq 2M$ products
- at most $4M^{3/2}$ multiplications with elements from S_1^p

S_2^p: set of rows of A with fewer elements in A_p

- each row used for a different alive $c_{i,j}$

- at most $\sqrt{M} \times 2M$ multiplications with elements from S_2^p

total: at most $6M^{3/2}$ per phase

number of full phases $= \lceil n^3/6M^{3/2} \rceil \geq n^3/6M^{3/2} - 1$

number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i,j}$ is alive in phase p if it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
- S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \lfloor n^3/6M^{3/2} \rfloor \geq n^3/6M^{3/2} - 1$
- number of transfers $\geq n^3/6\sqrt{M} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into phases that transfer exactly M data
- $c_{i,j}$ is alive in phase p if it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
- S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \lfloor n^3/6M^{3/2} \rfloor \geq n^3/6M^{3/2} - 1$
- number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into *phases* that transfer exactly M data
- $c_{i,j}$ is *alive* in phase p if it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: $A_p (B_p)$
- S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
- S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \left\lfloor \frac{n^3}{6M^{3/2}} \right\rfloor \geq \frac{n^3}{6M^{3/2}} - 1$
- number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: can we do even better?

- Consider a “normal” matrix-product algorithm (not Strassen)
- Decompose a schedule into *phases* that transfer exactly M data
- $c_{i,j}$ is *alive* in phase p if it computes $a_{i,k}b_{k,j}$ for some k
- alive $c_{i,j}$ is either in memory or written: at most $2M$ alive $c_{i,j}$ in a phase
- at most $2M$ elements of A (B) in memory during phase p: A_p (B_p)
- S^1_p: set of rows of A with \sqrt{M} or more elements in A_p ($|S^1_p| \leq 2\sqrt{M}$)
 - each row used in at most $|B_p| \leq 2M$ products
 - at most $4M^{3/2}$ multiplications with elements from S^1_p
- S^2_p: set of rows of A with fewer elements in A_p
 - each row used for a different alive $c_{i,j}$
 - at most $\sqrt{M} \times 2M$ multiplications with elements from S^2_p
- total: at most $6M^{3/2}$ per phase
- number of full phases $= \lfloor n^3/6M^{3/2}\rfloor \geq n^3/6M^{3/2} - 1$
- number of transfers $\geq \frac{n^3}{6\sqrt{M}} - M$
Matrix-product algorithm: better bound

Lemma (Loomis-Whitney inequality).

With N_A, N_B, N_C elements of A, B, C, we can perform at most $\sqrt{N_A N_B N_C}$ elementary multiplications.

- in each phase of the previous proof: $N_A, N_B, N_C \leq 2M$
- at most $2\sqrt{2M^{3/2}}$ products
- number of transfers: $\geq \frac{n^3}{2\sqrt{2M}} - M$

Further improvement:

- $N_A = N_A^{\text{received}} + N_A^{\text{cached}}$
- $N_A^{\text{received}} + N_B^{\text{received}} + N_C^{\text{received}} \leq M$
- $N_A^{\text{cached}} + N_B^{\text{cached}} + N_C^{\text{cached}} \leq M$
- $N_A + N_B + N_C \leq 2M$
- $\sqrt{N_A N_B N_C} \leq (2M/3)^{3/2}$
- number of transfers: $\geq \frac{27}{8} \frac{n^3}{\sqrt{M}} - M$
Matrix-product algorithm: better bound

Lemma (Loomis-Whitney inequality).

With N_A, N_B, N_C elements of A, B, C, we can perform at most $\sqrt{N_A N_B N_C}$ elementary multiplications.

- in each phase of the previous proof: $N_A, N_B, N_C \leq 2M$
- at most $2\sqrt{2}M^{3/2}$ products
- number of transfers: $\geq \frac{n^3}{2\sqrt{2}M} - M$

Further improvement:

- $N_A = N_A^{\text{received}} + N_A^{\text{cached}}$
- $N_A^{\text{received}} + N_B^{\text{received}} + N_C^{\text{received}} \leq M$
- $N_A^{\text{cached}} + N_B^{\text{cached}} + N_C^{\text{cached}} \leq M$
- $N_A + N_B + N_C \leq 2M$
- $\sqrt{N_A N_B N_C} \leq (2M/3)^{3/2}$
- number of transfers: $\geq \frac{27}{8} \frac{n^3}{\sqrt{M}} - M$
Matrix-product algorithm: better bound

Lemma (Loomis-Whitney inequality). With \(N_A, N_B, N_C\) elements of \(A, B, C\), we can perform at most \(\sqrt{N_A N_B N_C}\) elementary multiplications.

- in each phase of the previous proof: \(N_A, N_B, N_C \leq 2M\)
- at most \(2\sqrt{2M^{3/2}}\) products
- number of transfers: \(\geq \frac{n^3}{2\sqrt{2M}} - M\)

Further improvement:

- \(N_A = N^\text{received}_A + N^\text{cached}_A\)
- \(N^\text{received}_A + N^\text{received}_B + N^\text{received}_C \leq M\)
- \(N^\text{cached}_A + N^\text{cached}_B + N^\text{cached}_C \leq M\)
- \(N_A + N_B + N_C \leq 2M\)
- \(\sqrt{N_A N_B N_C} \leq (2M/3)^{3/2}\)
- number of transfers: \(\geq \frac{27}{8} \frac{n^3}{\sqrt{M}} - M\)
Matrix-product algorithm: parallel processing

Bounds on the number of transfers:

- For a processor computing W products:
 \[I/O_W \geq \frac{W}{2\sqrt{2M}} - M \]

- If we use P processors, one of them computes at least n^3/P products
 \[I/O \geq \frac{n^3}{2\sqrt{2MP}} - M \]

Example: 2D algorithms (Cannon, SUMMA, ...):

- 2D block distributions on a grid $\sqrt{P} \times \sqrt{P}$
- store A, B and C: $3n^2/P$ elements on each processor
- at each step, each processors receives a block of A and B
- storage per processor: $O(n^2/P)$
- communication volume per processor:
 \[(n/\sqrt{P})^2 \times \sqrt{P} = n^2/\sqrt{P} \]
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Generalized expression and model

Generalized matrix computation:

\[C(i, j) = f_{i,j}(g_{i,j,k}(A(i, k), B(k, j)) \text{ for } k \in S_{i,j}, K) \]

where

- \(A(i, j), B(i, j), C(i, j) \) are any reordering of \(A, B, C \)
- \(K \) represents any other arguments
- \(f_{i,j}, g_{i,j,k} \) depends non-trivially on their arguments
- \(A, B \) and \(C \) may overlap

Trivial application to matrix product:

- \(g_{i,j,k} \): product
- \(S_{i,j} = \{(i, j, k) \text{ for } k = 1 \ldots n\} \)
- \(f_{i,j} \): sum
I/O analysis for extended model

- As previously, decompose into phases of M transfers
- consider operands (of A, B or C) in memory during a phase
- Root: how it came to be in memory?
 - R1: already in memory at the beginning of the phase, or read during the phase (at most $2M$)
 - R2: created during the phase (not bounded)
- Destination: what happens when it disappears?
 - D1: still in memory at the end of the phase, or written during the phase (at most $2M$)
 - D2: discarded (not bounded)
- Discard R2/D2 for now
- Alive values of A in a phase $\leq 4M$ ($= R1/* + */D1$)
- Using Loomis-Whitney inequality:
 - at most $\sqrt{(4M)^3}$ computations in a phase
- For a computation of size G: at least $G/(8\sqrt{M}) - M$ transfers
I/O analysis for extended model

- As previously, decompose into phases of M transfers
- consider operands (of A, B or C) in memory during a phase
- Root: how it came to be in memory?
 - R1: already in memory at the beginning of the phase, or read during the phase (at most $2M$)
 - R2: created during the phase (not bounded)
- Destination: what happens when it disappears?
 - D1: still in memory at the end of the phase, or written during the phase (at most $2M$)
 - D2: discarded (not bounded)
- Discard R2/D2 for now
- *Alive* values of A in a phase $\leq 4M$ ($= R1/* + */D1$)
- Using Loomis-Whitney inequality:
 at most $\sqrt{(4M)^3}$ computations in a phase
- For a computation of size G: at least $G/(8\sqrt{M}) - M$ transfers
Extending to solving linear equations

- TRSM kernel \((C = A^{1}B)\) for \(A\) upper triangular (solve linear equations)

\[
C_{i,j} = (B_{i,j} - \sum_{k=i+1}^{n} A_{i,k} \cdot C_{k,j})/A_{i,i}
\]

(any order of \(j\), decreasing \(i\))
- May be transformed to

\[
C(i, j) = f_{i,j}(g_{i,j,k}(A(i, k), B(k, j)) \text{ for } k \in S_{i,j}, K)
\]

with:
 - \(C = B\)
 - \(g_{i,j,k}\) multiplies \(A_{i,k} \cdot C_{k,j}\)
 - \(f_{i,j}\) performs the sum, subtracts from \(B_{i,j}\) divides by \(A_{i,i}\)

- Same bound as for matrix multiplication!
- Achieved by some algorithms
Extending to LU factorization

- Gaussian elimination: $A = L \cdot U$ where L is lower triangular, U is upper triangular

 \[
 L_{i,j} = (A_{i,j} - \sum_{k < j} L_{i,k} \cdot U_{k,j}) / U_{j,j} \text{ for } i > j
 \]

 \[
 U_{i,j} = A_{i,j} - \sum_{k < i} L_{i,k} \cdot U_{k,j} \text{ for } i \leq j
 \]

- May be transformed to

 \[
 C(i, j) = f_{i,j}(g_{i,j,k}(A(i, k), B(k, j)) \text{ for } k \in S_{i,j}, K)
 \]

 with:

 - $A = B = C$
 - $g_{i,j,k}$ multiplies $L_{i,k} \cdot U_{k,j}$
 - $f_{i,j}$ performs the sum, subtracts from $A_{i,j}$ (divides by $U_{j,j}$)

- Same bound
- Achieved by some algorithms
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
What if we don’t know the memory size M?

- Back to the matrix product (square matrix of size $n \times n$)

$$ C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix} = A \cdot B = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} $$

- Recursive matrix multiplication algorithm:

```plaintext
RMM(n, A, B)
if n == 1 then C = A*B else {
    C_11 = RMM(n/2, A_11, B_11) + RMM(n/2, A_12, B_21)
    C_12 = RMM(n/2, A_11, B_12) + RMM(n/2, A_12, B_22)
    C_21 = RMM(n/2, A_21, B_11) + RMM(n/2, A_22, B_21)
    C_22 = RMM(n/2, A_21, B_12) + RMM(n/2, A_22, B_22)
return C
```
Analysis of the recursive algorithm

\[
\text{RMM}(n, A, B)
\]

\[
\text{if } n == 1 \text{ then } C = A \ast B \text{ else } \{
\]
\[
C_{11} = \text{RMM}(n/2, A_{11}, B_{11}) + \text{RMM}(n/2, A_{12}, B_{21})
\]
\[
C_{12} = \text{RMM}(n/2, A_{11}, B_{12}) + \text{RMM}(n/2, A_{12}, B_{22})
\]
\[
C_{21} = \text{RMM}(n/2, A_{21}, B_{11}) + \text{RMM}(n/2, A_{22}, B_{21})
\]
\[
C_{22} = \text{RMM}(n/2, A_{21}, B_{12}) + \text{RMM}(n/2, A_{22}, B_{22})
\]
\[
\text{return } C
\]

\[C(n)\]: Number of arithmetic operations in \(\text{RMM}(n, A, B)\)

\[
C(n) = 8 \cdot C(n/2) + 4 \cdot (n/2)^2 \quad \text{if } n > 1 \quad \text{otherwise } 1
\]

\[C(n) = 2n^3 \quad \text{...as usual, in different order}\]

\[T(n)\]: Number of transfers \(\text{RMM}(n, A, B)\) with memory \(M\)

\[
T(n) = 8 \cdot T(n/2) + 12 \cdot (n/2)^2 \quad \text{if } 3n^2 > M \quad \text{otherwise } 3n^2
\]

\[
T(n) = O(n^3/\sqrt{M} + n^2) \quad \text{...same as blocked version}\]
Analysis of the recursive algorithm

RMM(n, A, B)
if n == 1 then C = A * B else {
 C_11 = RMM(n/2, A_11, B_11) + RMM(n/2, A_12, B_21)
 C_12 = RMM(n/2, A_11, B_12) + RMM(n/2, A_12, B_22)
 C_21 = RMM(n/2, A_21, B_11) + RMM(n/2, A_22, B_21)
 C_22 = RMM(n/2, A_21, B_12) + RMM(n/2, A_22, B_22)
return C

► C(n): Number of arithmetic operations in RMM(n, A, B)

\[
C(n) = \begin{cases}
8 C(n/2) + 4 (n/2)^2 & \text{if } n > 1 \\
1 & \text{otherwise}
\end{cases}
\]

► T(n): Number of transfers RMM(n, A, B) with memory M

\[
T(n) = \begin{cases}
8 T(n/2) + 12 (n/2)^2 & \text{if } 3n^2 > M \\
3n^2 & \text{otherwise}
\end{cases}
\]

\[
T(n) = O(n^3 / \sqrt{M} + n^2) \ldots \text{same as blocked version}
\]
Summary on cache-oblivious algorithms

- Designed for unknown cache (or memory) size
- Works well for operations naturally expressed by divide-and-conquer algorithms (matrix multiplication, FFT, sorting, matrix transposition, ...)
- Asymptotically optimal algorithms
- Well adapted to memory/cache hierarchies: L3 (large, slow) → L2 (avg. size, avg. speed) → L1 (small, fast)
- Extensions exist for parallel machines: Parallel External Memory (PEM)

- In practice for matrix computations, usually outperformed by optimized blocked algorithms
References

- Foundation paper: Hong & Kung: “I/O Complexity: The Red-Blue Pebble Game” (STOC 1981)
- Communication lower bounds revisited by Irony, Toledo, Tiskin (JPDC 2004)
- Application to numerical linear algebra: Ballard, Demmel, Holtz (SIAM. J. Matrix Anal. & Appl 2011)
 - Development of communication-avoiding algorithms
- Cache-oblivious algorithms: Frigo, Leiserson, Prokop, Ramachandran (FOCS 1999), ...
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Introduction

- Directed Acyclic Graphs: express task dependencies
 - nodes: computational tasks
 - edges: dependencies (data = output of a task = input of another task)
- Formalism proposed long ago in scheduling
- Back into fashion thanks to task based runtimes

Here, we focus on task trees:
- Arise in multifrontal sparse matrix factorization
- Assembly/Elimination tree: application task graph is a tree
- Large temporary data
- Memory usage becomes a bottleneck
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v \]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - \left(\frac{u - t}{2 + z}\right) + v \]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers?

$$7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v$$

Pebble-game rules:

- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v\]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - \left(\frac{(u - t)}{(2 + z)}\right) + v \]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v \]

Complexity results

Problem on trees:
- Polynomial algorithm [Sethi & Ullman, 1970]

General problem on DAGs (common subexpressions):
- P-Space complete [Gilbert, Lengauer & Tarjan, 1980]
- Without re-computation: NP-complete [Sethi, 1973]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

- Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$

Two existing sequential algorithms:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$

Two existing sequential algorithms:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$

Two existing sequential algorithms:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$

Two existing sequential algorithms:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

- Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$

Two existing sequential algorithms:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

For each subtree T_i: peak memory P_i, residual memory f_i

For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum_{i<n} f_i + n_r + f_r\}$$

Optimal order:

Post-Order traversals are dominant for unit-weight trees
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_i: peak memory P_i, residual memory f_i
- For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum_{i<n} f_i + n_r + f_r\}$$

- Optimal order:
- Post-Order traversals are dominant for unit-weight trees
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

For each subtree T_i: peak memory P_i, residual memory f_i

For a given processing order $1, \ldots, n$, the peak memory is:

$$\max \{ P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum_{i<n} f_i + n_r + f_r \}$$

Optimal order:

Post-Order traversals are dominant for unit-weight trees
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_i: peak memory P_i, residual memory f_i
- For a given processing order $1,\ldots,n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum_{i<n} f_i + n_r + f_r\}$$

- Optimal order:
- Post-Order traversals are dominant for unit-weight trees
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_i: peak memory P_i, residual memory f_i
- For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum_{i<n} f_i + n_r + f_r\}$$

- Optimal order:
- Post-Order traversals are dominant for unit-weight trees
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_i: peak memory P_i, residual memory f_i
- For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum f_i + n_r + f_r\}$$

- Optimal order: non-increasing $P_i - f_i$
- Post-Order traversals are dominant for unit-weight trees
Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

- For each subtree T_i: peak memory P_i, residual memory f_i
- For a given processing order $1, \ldots, n$, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \ldots, \sum_{i<n} f_i + P_n, \sum_{i<n} f_i + n_r + f_r\}$$

- Optimal order: non-increasing $P_i - f_i$
- Post-Order traversals are dominant for unit-weight trees
Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtained by processing subtrees in non-increasing order $P_i - f_i$.

Proof:

- Consider an optimal traversal which does not respect the order:
 - subtree j is processed right before subtree k
 - $P_k - f_k \geq P_j - f_j$

<table>
<thead>
<tr>
<th></th>
<th>peak when j, then k</th>
<th>peak when k, then j</th>
</tr>
</thead>
<tbody>
<tr>
<td>during first subtree</td>
<td>$\text{mem_before } + P_j$</td>
<td>$\text{mem_before } + P_k$</td>
</tr>
<tr>
<td>during second subtree</td>
<td>$\text{mem_before } + f_j + P_k$</td>
<td>$\text{mem_before } + f_k + P_j$</td>
</tr>
</tbody>
</table>

- $f_k + P_j \leq f_j + P_k$
- Transform the schedule step by step without increasing the memory.
Theorem (Best Post-Order).

The best post-order traversal is obtained by processing subtrees in non-increasing order $P_i - f_i$.

Proof:

- Consider an optimal traversal which does not respect the order:
 - subtree j is processed right before subtree k
 - $P_k - f_k \geq P_j - f_j$

<table>
<thead>
<tr>
<th></th>
<th>peak when j, then k</th>
<th>peak when k, then j</th>
</tr>
</thead>
<tbody>
<tr>
<td>during first subtree</td>
<td>$\text{mem_before} + P_j$</td>
<td>$\text{mem_before} + P_k$</td>
</tr>
<tr>
<td>during second subtree</td>
<td>$\text{mem_before} + f_j + P_k$</td>
<td>$\text{mem_before} + f_k + P_j$</td>
</tr>
</tbody>
</table>

- $f_k + P_j \leq f_j + P_k$
- Transform the schedule step by step without increasing the memory.
Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a k-approximation.

Minimum peak memory:

$M_{\text{min}} = M + \epsilon + (b-1)\epsilon$

Minimum post-order peak memory:

$M_{\text{min}} = M + \epsilon + (b-1)M/b$

<table>
<thead>
<tr>
<th></th>
<th>actual assembly trees</th>
<th>random trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non optimal traversals</td>
<td>4.2%</td>
<td>61%</td>
</tr>
<tr>
<td>Maximum increase compared to optimal</td>
<td>18%</td>
<td>22%</td>
</tr>
<tr>
<td>Average increased compared to optimal</td>
<td>1%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a k-approximation.

Minimum peak memory:
$$M_{\text{min}} = M + \epsilon + (b-1)\epsilon$$

Minimum post-order peak memory:
$$M_{\text{min}} = M + \epsilon + (b-1)\frac{M}{b}$$

<table>
<thead>
<tr>
<th>Actual assembly trees</th>
<th>Random trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non optimal traversals</td>
<td>4.2%</td>
</tr>
<tr>
<td>Maximum increase compared to optimal</td>
<td>18%</td>
</tr>
<tr>
<td>Average increased compared to optimal</td>
<td>1%</td>
</tr>
</tbody>
</table>
Post-Order is not optimal...

Post-Order traversals are arbitrarily bad in the general case

There is no constant \(k \) such that the best post-order traversal is a \(k \)-approximation.

Minimum peak memory:
\[
M_{\text{min}} = M + \epsilon + (b - 1)\epsilon
\]

Minimum post-order peak memory:
\[
M_{\text{min}} = M + \epsilon + (b - 1)\frac{M}{b}
\]

<table>
<thead>
<tr>
<th></th>
<th>actual assembly trees</th>
<th>random trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non optimal traversals</td>
<td>4.2%</td>
<td>61%</td>
</tr>
<tr>
<td>Maximum increase compared to optimal</td>
<td>18%</td>
<td>22%</td>
</tr>
<tr>
<td>Average increased compared to optimal</td>
<td>1%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Post-Order traversals are arbitrarily bad in the general case.

There is no constant k such that the best post-order traversal is a k-approximation.

- **Minimum peak memory:**
 \[
 M_{\text{min}} = M + \epsilon + 2(b-1)\epsilon
 \]

- **Minimum post-order peak memory:**
 \[
 M_{\text{min}} = M + \epsilon + 2(b-1)\frac{M}{b}
 \]

<table>
<thead>
<tr>
<th></th>
<th>actual assembly trees</th>
<th>random trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non optimal traversals</td>
<td>4.2%</td>
<td>61%</td>
</tr>
<tr>
<td>Maximum increase</td>
<td>18%</td>
<td>22%</td>
</tr>
<tr>
<td>Average increase</td>
<td>1%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Post-Order is not optimal...but almost!

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a k-approximation.

Minimum peak memory:
$$M_{\text{min}} = M + \epsilon + (b - 1)\epsilon$$

Minimum post-order peak memory:
$$M_{\text{min}} = M + \epsilon + (b - 1)\frac{M}{b}$$

<table>
<thead>
<tr>
<th></th>
<th>actual assembly trees</th>
<th>random trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non optimal traversals</td>
<td>4.2%</td>
<td>61%</td>
</tr>
<tr>
<td>Maximum increase compared to optimal</td>
<td>18%</td>
<td>22%</td>
</tr>
<tr>
<td>Average increased compared to optimal</td>
<td>1%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Liu’s optimal traversal – sketch

- Recursive algorithm: at each step, merge the optimal ordering of each subtree (sequence)
- Sequence: divided into segments:
 - H_1: maximum over the whole sequence (hill)
 - V_1: minimum after H_1 (valley)
 - H_2: maximum after H_1
 - V_2: minimum after H_2
 - ...
 - The valleys V_is are the boundaries of the segments
- Combine the sequences by non-increasing $H - V$
- Complex proof based on a partial order on the cost-sequences:
 $$(H_1, V_1, H_2, V_2, \ldots, H_r, V_r) < (H'_1, V'_1, H'_2, V'_2, \ldots, H'_r, V'_r)$$
 if for each $1 \leq i \leq r$, there exists $1 \leq j \leq r'$ with $H_i \leq H'_j$
 and $V_i \leq V'_j$.
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Model for Parallel Tree Processing

- p uniform processors
- Shared memory of size M
- Task i has execution times p_i
- Parallel processing of nodes \Rightarrow larger memory
- Trade-off time vs. memory
NP-Completeness in the Pebble Game Model

Background:

- Makespan minimization NP-complete for trees ($P|\text{trees}|C_{\text{max}}$)
- Polynomial when unit-weight tasks ($P|p_i = 1, \text{trees}|C_{\text{max}}$)
- Pebble game polynomial on trees

Pebble game model:

- Unit execution time: $p_i = 1$
- Unit memory costs: $n_i = 0, f_i = 1$
 (pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles in at most C steps is NP-complete.
NP-Completeness – Proof

Reduction from 3-Partition:

- $3m$ integers a_i and B with $\sum a_i = mB$,
- find m subsets S_k of 3 elements with $\sum_{i \in S_k} a_i = B$

Schedule the tree using:

- $p = 3mB$ processors,
- at most $B = 3m \times B + 3m$ pebbles,
- at most $C = 2m + 1$ steps.
Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1
There is no algorithm that is both an α-approximation for makespan minimization and a β-approximation for memory peak minimization when scheduling tree-shaped task graphs.

Lemma
For a schedule with peak memory M and makespan C_{max},

$$M \times C_{\text{max}} \geq 2(n - 1)$$

Proof: each edge stays in memory for at least 2 steps.
With m^2 processors: $C_{\text{max}}^* = 3$

With 1 processor, sequentialize the a_i subtrees: $M^* = 2m$

By contradiction, approximating both objectives: $C_{\text{max}} \leq 3\alpha$ and $M \leq 2m\beta$

But $M \times C_{\text{max}} \geq 2(n - 1) = 2m^2 + 2m$

$2m^2 + 2m \leq 6m\alpha\beta$

Contradiction for a sufficiently large value of m
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
In practice: physical bound on the memory

How to cope with this bound, and guarantee completion?

Two approaches:

- Sequential activation order
- Memory booking
Sequential activation order

Idea (Sequential Task Flow model):
- activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

- 😊 minimum memory requirement: memory peak of the activation traversal
- 😞 no memory reuse
Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- 😊 minimum memory requirement: memory peak of the activation traversal
- 🙁 no memory reuse
Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order
 (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- 😊 minimum memory requirement: memory peak of the activation traversal
- 😞 no memory reuse
Sequential activation order

Idea (Sequential Task Flow model):
- activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

- 😊 minimum memory requirement: memory peak of the activation traversal
- 😞 no memory reuse
Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- minimum memory requirement: memory peak of the activation traversal
- no memory reuse
Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- minimum memory requirement: memory peak of the activation traversal
- no memory reuse
Sequential activation order

Idea (Sequential Task Flow model):
- activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

- 😊 minimum memory requirement: memory peak of the activation traversal
- 😞 no memory reuse
Sequential activation order

Idea (Sequential Task Flow model):
- activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:
- Allocate as many tasks as possible
- Then, start processing allocated tasks

- minimum memory requirement: memory peak of the activation traversal
- no memory reuse
Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- minimum memory requirement: memory peak of the activation traversal
- no memory reuse
Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- minimum memory requirement: memory peak of the activation traversal
- no memory reuse
Sequential activation order

Idea (Sequential Task Flow model):

- activate tasks using a prescribed order (memory allocation: $f_i + n_i$)
- schedule active (and ready) tasks using another order/priority

When a node completes:

- Allocate as many tasks as possible
- Then, start processing allocated tasks

- minimum memory requirement: memory peak of the activation traversal
- no memory reuse
Heuristics design: memory booking

- Design of scheduling heuristics with guaranteed peak memory
- Idea: re-use memory for parents, grand-parents, ...
- Book memory only when starting new leaves
- Stronger assumptions:
 - Reduction tree: $\sum_{j \in \text{Children}(i)} f_j \geq f_i$
 - No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

memory reuse

extra memory weights
Heuristic design: memory booking

- Design of scheduling heuristics with guaranteed peak memory
- Idea: re-use memory for parents, grand-parents, ...
- Book memory only when starting new leaves
- Stronger assumptions:
 - Reduction tree: \(\sum_{j \in \text{Children}(i)} f_j \geq f_i \)
 - No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

- 😊 memory reuse
- 😞 extra memory weights
Heuristic design: memory booking

- Design of scheduling heuristics with guaranteed peak memory
- Idea: re-use memory for parents, grand-parents, ...
- Book memory only when starting new leaves
- Stronger assumptions:
 - Reduction tree: \(\sum_{j \in \text{Children}(i)} f_j \geq f_i \)
 - No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

memory reuse

extra memory weights
Heuristic design: memory booking

- Design of scheduling heuristics with guaranteed peak memory
- Idea: re-use memory for parents, grand-parents, ...
- Book memory only when starting new leaves
- Stronger assumptions:
 - Reduction tree: \[\sum_{j \in \text{Children}(i)} f_j \geq f_i \]
 - No extra memory cost for task execution
- For trees that do not respect these constraints, add fictitious nodes

- 😊 memory reuse
- 😞 extra memory weights
Outline

Introduction and motivation

Minimize I/O in out-of-core matrix computations
 Naïve and optimized algorithms for matrix product
 Lower bound on the I/O volume
 Extending lower bounds to other operations
 Cache-oblivious algorithms

Memory-Aware DAGs scheduling
 Pebble game
 Optimal depth-first and general traversals
 Complexity of parallel tree processing
 Practical solutions for limited memory

Conclusion
Conclusion

- Memory, I/O and cache impact performance
- Avoid data movement, re-use data as much as possible
- Many different approaches, depending on the target application model:
 - Cache-oblivious algorithms (recursive computations)
 - Communication-avoiding algorithms (numerical algebra)
 - Memory-Aware scheduling (task graphs)