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We present two new results of importance in code generation for and synthesis of synchronously
scheduled parallel processor arrays and multicluster VLIWs. The first is a new practical method
for constructing a linear schedule for the iterations of a loop nest that schedules precisely one
iteration per cycle on each of a prescribed set of processors. While this problem goes back to the era
in which systolic computation was in vogue, it has defied practical solution until now. We provide
a closed form solution that enables the enumeration of all such schedules. The second result is a
new technique that reduces the cost of code or hardware whose function is to control the flow of
data and predicate operations, and to generate memory addresses. The key idea is that by using the
mathematical structure of any of the conflict-free schedules we construct, a very shallow recurrence
can be developed to inexpensively update these quantities.
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1. INTRODUCTION

We consider the implementation of a perfect loop nest through software pipelin-
ing on statically scheduled hardware. The machines we consider include one
VLIW processor with prescribed hardware, or a prescribed array of such VLIWs,
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that is, a multicluster VLIW. Alternatively, we may be asked to synthesize an
array of customized, irregular VLIW processors that implements the given nest
with a prescribed initiation interval (II). (The II is the number of machine cy-
cles between two consecutive executions of a given operation in the loop body
[Rau 1996]).

Traditionally, software pipelining has been done on inner loops, possibly with
a preliminary loop permutation. We look at two significant generalizations. We
consider handling one iteration on each cluster at a time, thereby using loop-
level parallelism as well as instruction-level parallelism to provide enough par-
allelism to saturate the hardware resources. In addition, we consider arbitrary
linear schedules, which generalize loop permutation. Doing so allows us to use
additional loop-level parallelism to cope with recurrences that would otherwise
limit the achievable II. Even though we can use an arbitrary linear schedule,
we also automatically flatten the loop nest into a singly nested loop, improving
efficiency because prologue and epilogue code execute only once.

Our principle motivation is ASIC synthesis. The consumer electronics indus-
try demands low-cost, high-performance computing hardware to perform image
and signal processing. Cost-effective designs often employ embedded general-
purpose computers assisted by ASICs. Such systems are difficult and expensive
to design. This makes automatic synthesis of application-specific hardware ac-
celerators increasingly desirable.

We feel that the synthesis of an array of VLIWs for implementing a loop nest
with prescribed throughput is a central problem in automatic ASIC synthesis.
We use the techniques presented here in the HP Labs PICO1 system [Schreiber
et al. 2000], which automatically synthesizes the hardware and software for
such processor-and-ASIC systems. In PICO, a source program is compiled into
a system consisting of a general-purpose processor and one or more hardware
accelerators (automatically designed and interfaced to the whole system) using
the program as a behavioral specification.

We are concerned here only with synchronous arrays of statically scheduled
processing elements; such an array may also be viewed as a single multicluster
machine. The term processor is used in this article to mean one of the clusters.
There is only one process, or thread of control, regardless of the number of such
processors.

This article addresses some important practical problems. The first is to map
each iteration of the nest to a processor and a timestep in such a way that all
processors are kept busy at all times, and none is overloaded. Previous theoret-
ical solutions made it inconvenient to quickly find a mapping that accomplishes
this. We present some new theoretical insight into this problem that leads di-
rectly to an efficient solution.

The second problem is to control the cost of this sort of parallel implementa-
tion of a loop nest. Parallel realizations of sequential algorithms come at some
cost: in our case additional computation—which would lead to additional hard-
ware in an application-specific accelerator—needed to control and coordinate
the processor. By exploiting some basic properties of our conflict-free schedules,

1Program In, Chip Out.
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we develop a low-cost technique for control and coordination that is theoreti-
cally appealing, and we give some experimental evidence that it greatly reduces
cost in comparison with expensive standard approaches.

2. AN EXAMPLE

Example 1. Consider the nest

for (i = 0; i < 100; i++) {
for (j = 0; j < 10; j++) {

x[i+1][j+1] = x[i][j+1] * x[i+1][j];
}

}

Suppose the application demands an implementation that uses about 500
cycles to do all 1000 iterations. Both the inner and outer loops are sequential,
and there is a multiplication in the critical path of the recurrence, so neither
the inner nor the outer loop is amenable to software pipelining with low II. Yet
there is considerable loop-level parallelism: all iterations for which i+ j = k can
be computed in parallel, for all k = 0, . . . , 108. So there are only 109 iterations
on the critical path. If the latency of multiply is 3 cycles, then this critical path
is 327 cycles, so it is not impossible to get the job done with enough hardware.

We allocate two processors, each of which is to achieve an II of one. We may
map iteration (i, j ) to virtual processor j and then to physical processor j ÷ 5.
Then we schedule iteration (i, j ) to start at cycle 5i+ 3 j . Alternatively, we
may map iteration (i, j ) to virtual processor i, and then to physical processor
i ÷ 50. The schedule in this case is chosen as 3i+ 50 j . It is not hard to see
that these maps are conflict free, causal, and that the recurrences have been
covered by loop-level parallelism so that an II of one is achievable. Clearly, the
first choice, which has a total schedule length of 5 · 99+ 3 · 9= 522, is preferable
to the second, with a schedule length of 3 · 99+ 50 · 9= 747.

The remainder of this article shows how such mappings and schedules can
be efficiently found and effectively implemented.

3. ITERATION TO PROCESSOR MAPPING

The iterations of a perfect n-deep loop nest are identified by the corresponding
integer n-vector Ej = ( j1, . . . , jn) of loop indices. The iteration vector lies in
some given polytope J , called the iteration space. An (n− 1)-dimensional grid
of processors with rectangular topology is given, and each processor is identified
by its coordinate vector. The mapping problem is to find functions π and τ such
that processor π ( Ej ) commences computation of iteration Ej at cycle τ ( Ej ). We
use the term schedule for the timing function τ and mapping for the processor
assignment π . Since we are interested in using software-pipelined processors,
the time τ ( Ej ) is the start time for iteration Ej . The set of operations belonging
to that iteration is scheduled relative to this start time. We require that the
scheduling function τ be an integer-valued linear function of the iteration vector.

We allow spatial mappings that work, as in Example 1, by a projection 6

of the iteration space into an (n − 1)-dimensional array of virtual processors
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(VPs), followed by a partitioning of the virtual processors among the given set
of physical processors. We can allow any projection Ev = 6 Ej , where the (n−1)×n
integer matrix 6 admits a unimodular extension.

Each physical processor is then assigned the work of a cluster of virtual
processors. A cluster is a rectangular neighborhood in the array of virtual pro-
cessors. This amounts to choosing a rectangular cluster shape (a small (n− 1)-
dimensional rectangle) and then covering the (n− 1)-dimensional array of vir-
tual processors with nonoverlapping clusters. The cluster shape is chosen so
that the set of clusters forms a grid of the same shape as the processor grid.

Note that because the clusters can be as big, in any given dimension, as the
virtual processor grid, the physical processor array can have any dimensionality
up to (n−1). For example, we would map a 10×10 virtual processor array into
a one-dimensional array of two physical processors by using either 10 × 5 or
5× 10 clusters.

Let an (n− 1)-dimensional grid of processors of shape EP be given: processor
coordinates satisfy 0 ≤ pi < Pi. The virtual processor array is the image of J
under6. Let the smallest rectangle that covers the set of virtual processors have
dimensions EV , so that if Ev = 6 Ej for some Ej ∈J , then 0≤ vi <Vi. (We must apply
a shift, in general, to make the virtual processor coordinates nonnegative).
Define the shape of the cluster EC = (C1, . . . , Cn−1) by Ci ≡ dVi/Pie. The processor
grid of shape EP , whose processors each cover a cluster of shape EC, covers the
whole virtual processor space of shape EV . The VP (virtual processor) coordinates
are

vi = piCi + ci , (1)

where Ec satisfies 0 ≤ Ec ≤ EC; the cluster coordinates Ec give the position of the
VP within its cluster. The number of virtual processors assigned to a processor
is not more than γ ≡∏n−1

i=1 Ci.
In Example 1, the first mapping was obtained by taking 6= (0, 1), which

yields a one-dimensional array of 10 virtual processors. Since we specify
two physical processors, EC= (d10/2e)= (5), and iteration (i, j ) maps to pro-
cessor p= j ÷ 5. (We dropped the subscript because the processor array
has only one dimension). For the second mapping, 6= (1, 0), EV = (100), and
EC= (d100/2e)= (50); iteration (i, j ) maps to processor p= i ÷ 50.

4. ITERATION SCHEDULING

We seek a linear schedule τ ( Ej )= Eτ . Ej . Assume that the physical processor can
start one loop iteration per cycle. Given the mapping, we need to find a linear
schedule that assigns, in the steady state, one iteration per clock on each pro-
cessor. In Example 1, we used Eτ = (5, 3) with the first projection and clustering,
and Eτ = (3, 50) with the second.

The schedule must be causal; this means that if there is a path in the dataflow
graph of the loop from an operation to the same operation at a later iteration,
then the start times of these iterations must differ by at least the sum of the
latencies of the operations on the path. This causality requirement amounts
to a set of linear inequality constraints on Eτ . In Example 1, we required that
each element of τ be three or greater because of the dependence of the multiply
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on itself at earlier iterations in the directions (0, 1) and (1, 0), and the latency,
three, of the multiply.

Let Eu be a smallest integer null vector of 6. Thus, Eu connects the iteration Ej
to the very next iteration, Ej + Eu, that is mapped to the same virtual processor.
We want a schedule with the property that the physical processor visits each
of its γ simulated virtual processors once, in some round-robin manner, before
returning to6 Ej again. Because we need to allow at least γ cycles between visits,

|Eτ .Eu| ≥ γ. (2)

The throughput inequality (2) ensures that the physical processor is not over-
loaded on average. It remains to ensure that no two iterations start at the same
time on the same processor. The problem we seek to solve here is the conflict-
free scheduling problem: given EC, the mapping 6 of rank (n−1) which has Eu as
its smallest integer null vector, and linear inequality constraints on Eτ , choose
Eτ satisfying these constraints and such that no two virtual processors assigned
to a given physical processor are scheduled to be simultaneously active.

We say that a schedule that satisfies the no-conflict constraint for the given
cluster “juggles”; imagine a juggling processor with its γ balls (virtual proces-
sors) in the air, and only one hand, capable of holding only one ball at any given
time. If Eτ juggles and satisfies (2) with equality,

|Eτ .Eu| = γ ,

then we say that the schedule is tight.
Our main result is a construction that produces all tight schedules for a

given cluster EC. We have not obtained any results concerning nontight juggling
schedules, except for the obvious. If a schedule is tight for cluster shape ED 6=
EC and ED≥ EC elementwise, then this schedule is a nontight juggling schedule

for EC.

5. EARLIER WORK

Darte, Delosme, Megson, and Chen have provided partial solutions to this
problem.

The idea of Darte’s (and initially Darte and Delosme’s) solution [Darte and
Delosme 1990; Darte 1991] is to produce a cluster shape EC compatible with the
given schedule vector Eτ . In many practical situations, however, the physical and
virtual processor arrays and thus the set of possible cluster shapes are known.
The task is to find a tight schedule for a known cluster shape. Using Darte’s
approach, this must be done by an indirect and possibly costly trial-and-error
approach, while the theorem that we later prove leads to a simple method that
directly enumerates the tight schedules.

Darte’s theorem and method work this way. The inverse of any unimodular
matrix having its first row equal to Eτ has as its second through nth columns
an n× (n− 1) matrix Q whose columns are a basis for the lattice of iterations
scheduled for time zero. Let A = 6Q . Then A is a square integer matrix of order
(n−1) whose columns are the coordinates of a set of virtual processors active at
time zero. Darte called A the “activity matrix.” Let Ha be the Hermite normal
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form of A: A=Ha Qa with Qa unimodular.2 The columns of Ha generate the
lattice of virtual processors active at time zero, and the diagonal elements of
Ha are a cluster shape for which Eτ is a tight schedule. This remains true for the
Hermite normal form of any permutation of the rows of A. Furthermore, this
is a necessary and sufficient condition for tight schedules (the necessity being
the difficult part). Thus, given Eτ , Darte’s method produces all cluster shapes EC
of size |Eτ .Eu| that juggle with Eτ . If the schedule is specified and an appropriate
cluster shape is desired, then this method gives all possible choices.

Megson and Chen [1995] attempt to guarantee a tight schedule for a given
cluster shape EC by working with the Hermite form of A = 6Q directly. Rely-
ing on the fact that the Hermite form of a triangular matrix X has the same
diagonal as X , they choose A to be triangular with the elements of EC on the
diagonal, and they assume that6 is known. They then look at the general solu-
tion Q to the underconstrained linear system 6Q = A and, from the solutions,
they infer Eτ . They try to choose the unconstrained components of Q and the
off-diagonal elements of A to obtain an acceptable schedule (via the inverse of a
unimodular extension of Q). Megson—Chen produce tight schedules from the
specified cluster shape, but do not have real advantages compared to Darte: one
will still need to search for desirable tight schedules indirectly, by manipulating
parameters other than the elements of Eτ .

The clear advantage of the method we propose here is that it works directly
with Eτ . Thus one has far more control over the resulting schedule, and may
quickly determine a tight schedule that meets other requirements.

6. CONSTRUCTION OF TIGHT SCHEDULES

We now present a way to construct the set of all tight schedules for a given
cluster EC. First, we assume that 6 consists of the first (n − 1) rows of the
identity matrix, so that 6u = 6en = 6(0, . . . , 0, 1)t = 0. We write x ∧ z for the
greatest common divisor of x and z. Then, we have the following result.

THEOREM 1. Let EC be a given cluster shape. If 6 consists of the first (n− 1)
rows of the identity, then Eτ is a tight schedule if and only if, up to a permutation
of the elements of EC and the same permutation of the first (n− 1) elements of Eτ ,

Eτ = (k1, k2C1, k3C1C2, . . . , knC1 · · ·Cn−1), (3)

where ki ∧ Ci = 1 and kn = ±1.

PROOF. The if part is easy. For the only if part, we use Hajós [1942] theorem
on a representation of a finite abelian group as a direct sum, also employed
in Darte [1991]. The complete proof is available in the extended version of this
article [Darte et al. 1999].

The restriction on 6 can be lifted. Let S be the inverse of a unimodular
extension of 6. The last column of S is the projection vector Eu, and 6S = In−1,
the identity matrix of order (n−1). Define the linear loop transformation matrix

2For more about Hermite forms and lattice theory, refer to Newman [1972] and Schrijver [1986].
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M to be the matrix whose first row is Eτ and whose last (n− 1) rows are 6:

M ≡
( Eτ
6

)
; thus

(
t
Ev
)
=M Ej (4)

is the mapping from iteration Ej to time t and virtual processor Ev. We now
change basis in the iteration space: Ej ′ = S−1 Ej are the coordinates of the itera-
tion with respect to the basis consisting of the columns of S. In this basis, the
transformation becomes(

t
Ev
)
=MS Ej ′ =

( Eτ .S
6S

)
Ej ′ =

( Eτ .S
In−1 0

)
Ej ′.

Clearly, Eτ is a tight schedule with cluster shape EC and mapping 6 if and only if
Eτ .S is a tight schedule for EC with the mapping

(
In−1 0

)
. Hence, the generalized

condition (3) applied to Eτ .S is a necessary and sufficient condition for a tight
schedule. The formula does not specify the components of Eτ but rather the
components of Eτ .S, and Eτ is recovered through the integer matrix S−1.

Example 2. Let n = 3; let EC = (4, 5). Assume that e3 is the smallest integer
null vector of the space mapping. From (3), either Eτ = (k1, 4k2,±20) or Eτ =
(5k1, k2,±20) with ki ∧Ci = 1, for i = 1, 2. For example, Eτ = (7, 4, 20) is a tight
schedule (with k1 = 7, k2 = 1, k3 = 1) that corresponds to the activity tableau
below. The tableau represents the 4 × 5 array of virtual processors assigned
to one physical processor. The number in each box denotes the residue modulo
20 of the times at which the virtual processor that lives there is active. For a
juggling schedule, these are all different. (The c1 axis is the vertical axis).

1 5 9 13 17
14 18 2 6 10

7 11 15 19 3
0 4 8 12 16

We use the following method to construct a tight schedule that satisfies ad-
ditional linear inequality constraints, as explained in Section 4. From the given
linear inequality constraints, we derive bounds (through linear programming)
for the components of Eτ . We construct tight schedules of the form given here,
and consistent with these bounds. To do this, we simply enumerate a finite
sequence of possible values for the parameters ki that satisfy the constraint
of relative primality (ki ∧Ci = 1) and such that the resulting element τi of Eτ is
within the bounds just determined. We try all of the allowed permutations of the
elements of EC and Eτ . Every choice of the parameters ki yields a tight schedule.
We admit only those schedules that satisfy the full system of linear inequality
constraints; finally, we choose one of the admissible schedules according to a
criterion that measures total schedule length and estimates hardware cost.

For later use, we need to record an important property of the mapping ma-
trix and its Hermite normal form. It is fairly straightforward to show, as a
consequence of Darte’s theorem on schedules and the cluster shapes for which
they are tight, that the Hermite normal form of the mapping matrix M (see (4)
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above) is a lower triangular matrix whose diagonal is (1, C1, . . . , Cn−1) (up to
the permutation of EC used in its construction).

7. REDUCING THE COST OF CONTROL

After transformation into synchronous parallel form, the loop body serves as a
specification of the special-purpose processor. The nest has a sequential outer
loop over time and a parallel nest over processors. The transformed parallel
loop body contains generated code that we call housekeeping code whose cost
we consider here. Housekeeping code has several forms and functions.

—Cluster coordinates. For each time t on the given processor Ep, one may need
to compute the position Ec of the currently active VP within the cluster: 0 ≤
ck < Ck .

—Virtual processor coordinates. One may also need the global virtual processor
coordinate vk = pkCk + ck .

—Iteration space coordinates. Since the iteration space coordinates Ej may ap-
pear in the loop body, these will sometimes need to be computed. The usual
technique is to use the relation Ej = M−1

(t
Ev
)
.

—Memory addresses. When a value is “live-in” to the loop nest, or is “live-out,”
it is read from or stored into global memory. The memory address, which
is the location of an array element whose indices are affine functions of the
coordinates Ej , must be computed.

—Predicates. In a naive approach, many comparisons are used to compute pred-
icates. These comprise cluster-edge predicates (comparison of the cluster co-
ordinates Ec and the cluster shape EC) and iteration-space predicates (that test
the global iteration coordinates against the limits of the iteration space).

As an example, for a two-dimensional processor array, the loop has the fol-
lowing form.

for (t = TMIN; t <= TMAX; t++) {
for (p1 = 0; p1 < P1; p1++) in parallel {

for (p2 = 0; p2 < P2; p2++) in parallel {
Calculate the cluster coordinates

c = (c1, c2)
of the active virtual processor;

Calculate the global VP coordinates
v = (p1 C1 + c1, p2 C2 + c2)
of the active virtual processor;

Calculate the iteration space coordinates j
of the iteration mapped to VP v at time t;

if ( j is in the iteration space ) {
Execute the loop body of iteration j;

}
}

}
}
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Our first experiments with processor synthesis revealed that these house-
keeping computations were so costly that the resulting processor was grossly
inefficient. The large number of comparisons for predicates was a big contribu-
tor. We then observed that almost all of these repeat on a given processor with
period γ , and that they can therefore be obtained from a γ -bit circular buffer.
We use this technique in our current implementations with good results. A
second and more important inefficiency is the method used to compute cluster
coordinates. Our original approach took the rather obvious viewpoint that each
processor, at each time, computes the cluster coordinates of its active virtual
processor, which is a function of the processor coordinates Ep and the time t. We
generated the code by first applying standard techniques [Ancourt and Irigoin
1991] for code generation after a nonunimodular loop transformation (using
Hermite form) to generate a loop nest that scans the active virtual processors
for each time. We then inferred the local processor coordinates Ec from the lower
bounds for the virtual processor loops, which are functions of Ep and t, by taking
their residues modulo EC.

This technique is memory efficient, but computationally expensive. It is a
form of integer triangular system solution. Let M be the mapping matrix of
(4), let Hm be its Hermite form, and let T be a unimodular matrix such that
MT=Hm. Then

(t
Ev
) = M Ej = HmT−1 Ej = Hm Ej T , where Ej T is integer. Further-

more, we know (see end of Section 6) that the (1, 1) element of Hm is unity and
that the rest of the diagonal of Hm consists of the elements of EC. The require-
ment that the triangular system above has an integer solution EjT completely
determines the residues modulo (1, EC) ≡ diag(Hm) of Ev, which are the cluster
coordinates of the VP active at time t on processor Ep. This in turn determines Ev.
Solving this system, inferring the cluster coordinates in the process, has O(n2)
complexity. By a slightly different use of the special form of a tight schedule
(see Darte et al. [1999]), we reduced this cost to O(n). From the viewpoint of
generating hardware, however, the method still has a few disadvantages since
it involves a quotient and a remainder for each dimension, and it does nothing
to assist with addresses, iteration space coordinates, or predicates.

7.1 A General Updating Scheme

We now discuss methods for making a major reduction in the cost of housekeep-
ing computations; tests will show that once these techniques are employed the
cost of the resulting processor is close to the possible minimum. We examine two
alternatives. Both of them trade space for time. Both use temporal recurrences
to compute coordinates.

First note that with a tight schedule, the cluster and virtual processor coor-
dinates, and all but one of the global iteration space coordinates, are periodic
with period γ , as are all predicates defined by comparing these periodic func-
tions to one another and to constants. The remaining iteration space coordinate
satisfies

jn(t) = jn(t − γ )+ 1 .

(These assertions apply when 6 consists of the first (n − 1) rows of the iden-
tity; things are only slightly more complicated in general). Any quantity that
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depends linearly on jn can be updated with a single add. Quantities (such as
predicates) that depend only on the other coordinates are similarly periodic.
This is the cheapest approach possible in terms of computation; its only disad-
vantage is in storage. We need to store the last γ values of any coordinate or
related quantity that we wish to infer by this γ -order recurrence. When γ is
fairly large (say more than 10 or so) these costs become significant.

The alternative technique allows us to update the cluster coordinates Ec(t, Ep)
from their values at an arbitrary previous cycle but on the same processor:
Ec(t, Ep)= R(Ec(t − δt, Ep)) (here R stands for the recurrence map that we now
explain). We may choose any time lag δt (provided that δt is not so small that the
recurrence becomes a tight dataflow cycle inconsistent with the schedule that
we have already chosen). The form of R is quite straightforward. Using a binary
decision tree of depth (n− 1), we find at the leaves of the tree the increments
Ec(t, Ep)− Ec(t− δt, Ep). The tests at the nodes are comparisons of scalar elements
of Ec(t − δt, Ep) with constants that depend only on δt, EC, and the schedule Eτ .
They are thus known at compile time and can be hard-coded into the processor
hardware.

These cluster coordinates are the key. The global virtual processor coordi-
nates Ev, the global iteration space coordinates Ej , and the memory addresses
are all linear functions of them. If we know the change in Ec then we also know
the changes in all of these derived values, and these changes appear as explicit
constants in the code. Only one addition is needed to compute each such value.
We have thus reduced the problem of cost reduction to that of the update of the
cluster coordinates. We now explain how we can automatically generate this
decision tree.

Back to Example 2. By examining the activity tableau, we see that to move
forward in time by one cycle, c1 increases by 3 (if this is possible, i.e., if we
start with c1= 0) or else decreases by 1. In the former case, the move is always
straight up; that is, c2 remains unchanged. In the latter case, the change to c2
is either 2 or −3. Note that the two potential changes to a coordinate always
take opposite signs and have magnitudes that sum to the cluster shape, so that
for any given position in the cluster, only one of them will lead to another point
in the cluster.

It remains to show that these observations are true in general. Again assume
for simplicity and without real loss of generality that6 consists of the first (n−1)
rows of the identity.

The activity times on some arbitrarily chosen processor Ep are shifted by a
constant (equal to Eτ .(p1C1, . . . , pn−1Cn−1)) compared with the times on processor
zero. This implies that for a given δt, the path through the activity tableau is
the same on all processors, and the same decision tree may therefore be used.
This is vital, because software pipelining and hardware synthesis are simplified
when there is one loop body common to all processors. We can therefore now
restrict our attention to the processors whose coordinates are equal to 0.

Let Ej be any iteration mapped to processor zero. Suppose it is scheduled at
time t and mapped to the virtual processor whose cluster coordinates are Ec. We
are given the time lag δt. Since the schedule is tight, there is a unique vector δEj
such that iteration Ej + δEj is scheduled δt cycles after iteration Ej on processor
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zero; that is, M ( Ej + δEj ) = (t + δt, Ec + δEc)t, where Ec + δEc is “in the box”:

0 ≤ Ec + δEc < EC . (5)

It follows that the cluster coordinate change vector satisfies

− EC < δEc < EC.
Recall the Hermite normal form of M; that is, MT =Hm. The columns of

T are a unimodular basis. Since the first row of MT is (1, 0, . . . , 0), the first
column Et1 of T connects an isochrone (a hyperplane of iterations scheduled for
the same time) to the next isochrone, and the remaining columns Et2, . . . , Etn are
a basis for the lattice of iterations in an isochrone.

Because a move in the iteration space in the direction δEj moves time forward
by δt cycles, δEj is the sum of δt × Et1 and a linear combination of Et2, . . . , Etn. In
the shifted lattice generated in this way, there is a unique point that maps to
processor zero. We now show how it is determined.

We make a change in variables using the basis given by the columns of T ,
defining

Ej T = T−1 Ej .
Then (

δt
δEc
)
= Mδ Ej = Hmδ Ej T .

Now we exploit the structure of Hm discussed above. It is lower triangular,
having one in the (1,1) position and the elements of EC along the remainder of
the diagonal. The elements to the left of the diagonal have smaller absolute
value than the diagonal element to their right. Clearly, the first element of
δ Ej T must be δt. We proceed to solve the lower triangular system by using the
bounds (5). As Ec varies over the whole cluster, there can be only two possible
choices for the second component of δ Ej T , because the (2, 2) element of Hm is
C2. For each of these two choices, there can be at most two choices of the third
component, and so on. This is how the decision tree is generated.

Having generated all the possible moves in the transformed coordinates Ej T ,
we may apply T to get the possible moves in the iteration space coordinates
Ej , and then multiply by 6 to get the potential moves in the virtual processor
space.

Back to Example 2. We take δt = 1 again. The Hermite form of the mapping
(MT =Hm) is  7 4 20

1 0 0
0 1 0

 3 4 0
0 3 5
−1 −2 −1

 =
 1 0 0

3 4 0
0 3 5

.
Recall that the cluster size is C(1) = 4 and C(2) = 5. From the first column

of T , we read that a move along Et1 = (3, 0,−1) in the iteration space moves to
the next isochrone. (This corresponds to requiring the first element of Ej T to be
δt). Because of the structure of 6, this move corresponds to the move (3, 0) in
the cluster. If c1 + 3 ≥ 4, that is, we have c1 > 0, then this move would take us

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.



170 • A. Darte et al.

outside the cluster; in that case, we subtract the second column of T , that is,
(4, 3,−2); this yields the change (−1,−3, 1) in the iteration space and a cluster
coordinate change vector δEc = (−1,−3). (Thus, there were two possibilities for
the second element of Ej T , namely, 0 and −1). If c2−3 < 0, then this move takes
us out of the cluster. The correct move in this case is found by adding the last
column: (3, 0,−1)− (4, 3,−2)+ (0, 5,−1) = (−1, 2, 0).

With this technique, we get the following decision tree.

if (c(1) + 3 < 4) { /* out in dim. 1? */
c(1) = c(1) + 3;
/* c(2) is unchanged, c(2) = c(2) + 0 */

}
else {

c(1) = c(1) - 1;
if (c(2) + 2 < 5) { /* out in dim. 2? */

c(2) = c(2) + 2;
}
else {

c(2) = c(2) - 3;
}

}

The technique works the same way for arbitrary δt. You begin with the change
δt× Et1, and “correct” it as necessary with the remaining columns of Hm in order
to find the tree of changes. This gives the necessary tests in the decision tree
directly, as well as the corresponding changes in the cluster coordinates and
the original loop indices. However, the decision-tree recurrence has a certain
computational latency. To be usable, we need that δt times the desired II be
at least equal to this latency; to minimize the required storage, we take the
smallest usable δt.

7.2 Measuring the Cost of Housekeeping Code

We show here the results of loop transformation with our efficient recurrence
scheme for cluster coordinates and those parameters that depend on them lin-
early. We show several loop nests as test cases here. The first, from an appli-
cation in digital photography, is a nest of depth six, in which the loop body
contains only a simple multiply—accumulate statement. The second, from a
printing application, is a much more complicated loop body. The third is matrix
multiplication. We transformed the loop nests using the mechanisms described
in this article. In Darte et al. [1999], we present the original and the trans-
formed loop nests for matrix multiplication as an illustrative example. In the
table, we show the number of inner-loop integer operations in the original and
the fully transformed loop nests. In addition, for the photography application,
we show the same statistics for the code as transformed by the naive meth-
ods that we have described earlier. The counts were obtained by examining
the code.
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Photography Printing Matrix
Op. Orig. Transf. Naive Orig. Transf. Orig. Tranf.

+ 5 7 52 22 31 5 6
× 1 1 34 1 1 1 1
÷ 0 0 4 0 0 0 0
= 1 6 35 18 18 1 3

It is clear from these data that the housekeeping, due to parallelization and
flattening the loop nest with a general linear schedule, has added to the compu-
tational cost of the loop body. The number of operations increased by seven in
the simple photography loop, nine in the more complicated printing loop, and
only three in the matrix product loop. The ratio of the added operation count to
the original operation count is 3 : 7 for the matrix multiply loop, 1 : 1 for the pho-
tography loop, and 9 : 41 for the more complicated loop. The photography loop
has a deeper decision tree than matrix multiply because of the deep loop nest;
this accounts for the different costs. Evidently, with optimization, housekeep-
ing costs are not trivial, but they are manageable. The naive method, however,
produces intolerably costly code for calculation of coordinates, predicates, and
memory addresses.

8. CONCLUSION

The first part of this article provided a simple characterization of all tight syn-
chronous, parallel schedules, solving a longstanding problem in processor-array
synthesis. The characterization allows a synthesis system to directly enumer-
ate all the tight schedules in any desired region of the space of schedules, which
can be very useful in generating tight schedules in, for example, a polyhedron
defined by recurrence constraints. The second part proposes a new technique
for generating efficient parallel code that takes full advantage of our charac-
terization of tight schedules. Our experiments have shown that the specialized
processors we generate are highly efficient in their gate count and chip area.
We conclude that the added computational cost due to parallelization and the
use of a general linear schedule can be controlled to the point where it is not
overly burdensome, especially for loop nests that have more than a handful
of computations in the innermost loop. The techniques of this article provide
new powerful tools for synchronous processor-array synthesis and for software
pipelining of nested loops on a single or multicluster VLIW.
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