

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Offline and online master-worker scheduling of concurrent bags-of-tasks
on heterogeneous platforms

Anne Benoit 2,4,5 Loris Marchal 1,4,5 Jean-François Pineau 2,4,5

Yves Robert 2,4,5 Frédéric Vivien 3,4,5

1 CNRS 2 ENS Lyon 3 INRIA 4 Université de Lyon
5 LIP laboratory, UMR 5668, ENS Lyon – CNRS – INRIA – UCBL, Lyon, France

{anne.benoit,loris.marchal,jean-francois.pineau,yves.robert,frederic.vivien}@ens-lyon.fr

Abstract

Scheduling problems are already difficult on tradi-
tional parallel machines. They become extremely chal-
lenging on heterogeneous clusters, even when embar-
rassingly parallel applications are considered. In this
paper we deal with the problem of scheduling multi-
ple applications, made of collections of independent
and identical tasks, on a heterogeneous master-worker
platform. The applications are submitted online, which
means that there is no a priori (static) knowledge of the
workload distribution at the beginning of the execution.
The objective is to minimize the maximum stretch, i.e.
the maximum ratio between the actual time an applica-
tion has spent in the system and the time this application
would have spent if executed alone.

On the theoretical side, we design an optimal algo-
rithm for the offline version of the problem (when all
release dates and application characteristics are known
beforehand). We also introduce several heuristics for the
general case of online applications.

On the practical side, we have conducted extensive
simulations and MPI experiments, showing that we are
able to deal with very large problem instances in a few
seconds. Also, the solution that we compute totally out-
performs classical heuristics from the literature, thereby
fully assessing the usefulness of our approach.

1. Introduction

Scheduling problems are already difficult on tradi-
tional parallel machines. They become extremely chal-
lenging on heterogeneous clusters, even when embar-
rassingly parallel applications are considered. For in-
stance, consider a bag-of-tasks [1], i.e., an applica-
tion made of a collection of independent and identical

tasks, to be scheduled on a master-worker platform. Al-
though simple, this kind of framework is typical of a
large class of problems, including parameter sweep ap-
plications [6] and BOINC-like computations [5]. These
middlewares usually organize participating processors
in a master/worker platform, and make use of dynamic
schedulers. When the platform gathers heterogeneous
processors, connected to the master via different-speed
links, then purely demand-driven approaches are likely
to fail dramatically. This is because it is crucial to select
which resources to enroll before initiating the computa-
tion [2].

In this paper, we still target fully parallel applications,
but we introduce a much more complex (and more re-
alistic) framework than scheduling a single application.
We envision a situation where users, or clients, submit
several bags-of-tasks to a heterogeneous master-worker
platform, using a classical client-server model. Applica-
tions are submitted online, which means that there is no
a priori (static) knowledge of the workload distribution
at the very beginning of the execution.

When several applications are executed simultane-
ously, they compete for hardware (network and CPU)
resources. What is the scheduling objective in such
a framework? A greedy approach would execute the
applications sequentially in the order of their arrival,
thereby optimizing the execution of each application
onto the target platform. Such a simple approach is
not likely to be satisfactory for the clients. Sharing re-
sources to execute several applications concurrently may
have two key advantages: (i) from the clients’ point of
view, the average response time is expected to be much
smaller; (ii) from the resource usage perspective, the
global utilization of the platform is likely to increase.
The traditional measure to quantify the benefits of con-
current scheduling on shared resources is the maximum
stretch. The stretch of an application is defined as the

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

ratio of its response time under the concurrent schedul-
ing policy over its response time in dedicated mode, i.e.,
when it is the only application executed on the platform.
The objective is then to minimize the maximum stretch
of any application, thereby enforcing a fair trade-off be-
tween all applications.

The aim of this paper is to provide a scheduling strat-
egy which minimizes the maximum stretch of several
concurrent bags-of-tasks which are submitted online.
Our scheduling algorithm relies on complicated math-
ematical tools but can be computed in time polynomial
to the problem size. On the theoretical side, we prove
that our strategy is optimal for the offline version of the
problem (when all release dates and application charac-
teristics are known beforehand). We also introduce sev-
eral heuristics for the general case of online applications.
On the practical side, we have conducted extensive sim-
ulations and MPI experiments, showing that we are able
to deal with very large problem instances in a few sec-
onds and still outperform classical heuristics from the
literature, thereby fully assessing the usefulness of our
approach.

The rest of the paper is organized as follows. Sec-
tion 2 describes the platform and application models.
Section 3 is devoted to the derivation of the optimal solu-
tion in the offline case, and to the presentation of heuris-
tics for online applications. In Section 4 we report an
extensive set of simulations and MPI experiments, and
we compare the optimal solution with several classical
heuristics from the literature. Finally, we state some
concluding remarks in Section 5. Due to lack of space,
the review of related work is provided in the dedicated
research report [4].

2. Framework

In this section, we outline the model for the target
platforms, as well as the characteristics of the applica-
tive framework. Next we survey steady-state scheduling
techniques and we introduce the objective function.

2.1. Platform Model

We target a heterogeneous master-worker platform
(see Figure 1), also called star network or single-level
tree in the literature.

The master Pmaster is located at the root of the tree,
and there are p workers Pu (1 ≤ u ≤ p). The link be-
tween Pmaster and Pu has a bandwidth bu. We assume a
linear cost model, hence it takes X/bu time-units to send
(resp. receive) a message of size X bits to (resp. from)

Pu. The computational speed of worker Pu is su, mean-
ing that it takes X/su time-units to execute X floating
point operations. Without any loss of generality, we as-
sume that the master has no processing capability.

· · ·
PpP2P1

Pmaster

bp

sp

Figure 1. A star network.

The communication model is the bounded multi-port
model [10]: the master can send/receive data to/from all
workers at a given time-step. However, there is a limit
on the amount of data that the master can send per time-
unit, denoted as BW. Simultaneous sends and receives
are allowed (all links are assumed bi-directional, or full-
duplex). Finally, we assume that computation can be
overlapped by independent communication, without any
interference.

For computations, we enforce the fluid computation
model, where several tasks can be executed concurrently
on a given worker. Furthermore, we assume that we to-
tally control the computation rate for each task, for ex-
ample using a time-sharing mechanism. These compu-
tation rates may be changed at any time during the com-
putation of a task.

Unlike classical master/workers models, we do not
assume that a worker has to wait for a task to be com-
pletely received before starting its computation. On the
contrary, we assume that the computation of a task can
start at the same time as its transfer, modeling the fact
that, in several applications, only the first bytes of data
are needed to start its execution [11]. This model is
much more tractable than the classical ones, it provides
an upper bound on the achievable performance for any
model, and it is not too far from reality when consider-
ing small-size tasks1.

2.2. Application model

We consider n bags-of-tasks Ak, 1 ≤ k ≤ n. The
master Pmaster holds the input data of each applica-
tion Ak upon its release time. Application Ak is com-
posed of a set of Π(k) independent, same-size tasks. In
order to completely execute an application, all its con-
stitutive tasks must be computed (in any order).

1For a comparison of several computation models, we refer to the
extended version of the paper [4].

2

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

We let w(k) be the amount of computations (ex-
pressed in flops) required to process a task of Ak. As the
platform can be composed of heterogeneous machines,
the speed of a worker Pu may be different for each appli-
cation. To take this into account, we refine the platform
model and denote by s

(k)
u the speed of worker Pu when

processing application Ak. The time required to process
one task of Ak on processor Pu is now w(k)/s

(k)
u . Each

task of Ak has a size δ(k) (expressed in bytes), which
means that it takes a time δ(k)/bu to send a task of Ak

to processor Pu (when there are no other ongoing trans-
fers). For simplicity we do not consider any return mes-
sage.

2.3. Steady-state scheduling

Assume for a while that a unique bag-of-tasks Ak is
executed on the platform. If Π(k), the number of inde-
pendent tasks composing the application, is large (other-
wise, why would we deploy Ak on a parallel platform?),
we can relax the problem of minimizing the total execu-
tion time. Instead, we aim at maximizing the through-
put, i.e., the average (fractional) number of tasks exe-
cuted per time-unit. We design a cyclic schedule, that
reproduces the same schedule every period, except pos-
sibly for the very first (initialization) and last (clean-up)
periods. It is shown in [2] how to derive an optimal
schedule for throughput maximization. The idea is to
characterize the optimal throughput as the solution of a
linear program over rational numbers, which is a prob-
lem with polynomial time complexity.

Throughout the paper, we denote by ρ
(k)
u the through-

put of worker Pu for application Ak, i.e., the average
number of tasks of Ak that Pu executes each time-unit.
In the special case where application Ak is executed
alone in the platform, we denote by ρ

∗(k)
u the value of

this throughput in the solution which maximizes the to-

tal throughput: ρ∗(k) =
p∑

u=1
ρ
∗(k)
u . We write the fol-

lowing linear program (see Equation 1) to compute an
asymptotically optimal schedule. The maximization of
the throughput is bounded by three types of constraints:
• The first set of constraints states that the processing
capacity of Pu is not exceeded.
• The second set of constraints states that the bandwidth
of the link from Pmaster to Pu is not exceeded.
• The last constraint states that the total outgoing capac-
ity of the master is not exceeded.

(1)

MAXIMIZE ρ∗(k) =
∑p

u=1 ρ
∗(k)
u SUBJECT TO

∀u, ρ
∗(k)
u

w(k)

s
(k)
u

≤ 1

∀u, ρ
∗(k)
u

δ(k)

bu
≤ 1

p∑
u=1

ρ∗(k)
u

δ(k)

BW
≤ 1

The formulation in terms of a linear program is sim-
ple when considering a single application. A closed-
form expression can be derived:

ρ∗(k) = min

{
BW
δ(k)

,

p∑
u=1

min

{
s
(k)
u

w(k)
,

bu

δ(k)

}}
.

It can be shown [2] that any feasible schedule has
to enforce the previous constraints. Hence the optimal
value ρ∗(k) is an upper bound of the achievable through-
put. Moreover, we can construct an actual schedule,
based on an optimal solution of the linear program and
which approaches the optimal throughput:
• While there are tasks to process on the master, send
tasks to processor Pu with rate ρ

∗(k)
u .

• As soon as processor Pu starts receiving a task it pro-
cesses at the rate ρ

∗(k)
u .

Due to the constraints of the linear program, this
schedule is always feasible and it is asymptotically opti-
mal, not only among periodic schedules, but more gen-
erally among any possible schedules. More precisely,
its execution time differs from the minimum execution
time by a constant factor, independent of the total num-
ber of tasks Π(k) to process [2]. This allows us to accu-
rately approximate the total execution time, also called
makespan, as:

MS∗(k) =
Π(k)

ρ∗(k)
.

We often use MS∗(k) as a comparison basis to ap-
proximate the makespan of an application when it is
alone on the computing platform. If MS

(k)
opt is the op-

timal makespan for this single application, then we have
MS

(k)
opt −Mk ≤MS∗(k) ≤MS

(k)
opt where Mk is a fixed

constant, independent of Π(k) [2].

2.4. Stretch

We come back to the original scenario, where several
applications are executed concurrently. Because they
compete for resources, their throughput will be lower.
Equivalently, their execution rate will be slowed down.

3

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

Informally, the stretch of an application is the slowdown
factor.

Let r(k) be the release date of application Ak on the
platform. Its execution will terminate at time C(k) ≡
r(k) + MS(k), where MS(k) is the time to execute all
Π(k) tasks of Ak. Because there might be other appli-
cations running concurrently to Ak during part or whole
of its execution, we expect that MS(k) ≥ MS∗(k). We
define the average throughput ρ(k) achieved by Ak dur-
ing its (concurrent) execution using the same equation
as before.

In order to process all applications fairly, we would
like to ensure that their actual (concurrent) execution is
as close as possible to their execution in dedicated mode.
The stretch of application Ak is its slowdown factor

Sk =
MS(k)

MS∗(k)
=

ρ∗(k)

ρ(k)

Our objective function is defined as the max-stretch
S, which is the maximum of the stretches of all applica-
tions: S = max1≤k≤n Sk. Minimizing the max-stretch
S ensures that the slowdown factor is kept as low as pos-
sible for each application, and that none of them is un-
duly favored by the scheduler.

3. Theoretical study

We start this section with the presentation of an
asymptotically optimal algorithm for the offline setting,
when application release dates and characteristics are
known in advance. Then we present our solution for the
online framework.

3.1. Offline setting

In this section, we assume that all characteristics of
the n applications Ak, 1 ≤ k ≤ n are known in advance.

The scheduling algorithm is the following. Given a
candidate value for the max-stretch, we have a proce-
dure to determine whether there exists a solution that
can achieve this value. The optimal value will then be
found using a binary search on possible values.

Consider a candidate value Sl for the max-stretch.
If this objective is feasible, all applications will have a
max-stretch smaller than Sl, hence:

∀ 1 ≤ k ≤ n,
MS(k)

MS∗(k)
≤ Sl

⇐⇒ ∀k, 1 ≤ k ≤ n,

C(k) = r(k) + MS(k) ≤ r(k) + Sl ×MS∗(k)

Thus, given a candidate value Sl, we have a deadline:

d(k) = r(k) + Sl ×MS∗(k) (2)

for each application Ak, 1 ≤ k ≤ n. This means that the
application must complete before this deadline in order
to ensure the expected max-stretch. If this is not possi-
ble, no solution is found, and a larger max-stretch should
be tried by the binary search.

Once a candidate stretch value S has been chosen, we
divide the total execution time into time-intervals whose
bounds are epochal times, that is, applications’ release
dates or deadlines. Epochal times are denoted tj ∈
{r(1), ..., r(n)} ∪ {d(1), ..., d(n)}, such that tj ≤ tj+1,
1 ≤ j ≤ 2n − 1. Our algorithm consists in running
each application Ak during its whole execution window
[r(k), d(k)], but with a different throughput on each time-
interval [tj , tj+1] such that r(k) ≤ tj and tj+1 ≤ d(k).

Note that contrarily to the steady-state operation with
only one application, in the different time-intervals, the
communication throughput may differ from the com-
putation throughput: when the communication rate is
larger than the computation rate, extra tasks are stored in
a buffer. On the contrary, when the computation rate is
larger, tasks are extracted from the buffer and processed.
We introduce new notations to take both rates, as well as
buffer sizes, into account:
• ρ

(k)
M→u(tj , tj+1) denotes the average number of

tasks of Ak sent from the master to the worker Pu

per time-unit, during time-interval [tj , tj+1] (com-
munication throughput);
• ρ

(k)
u (tj , tj+1) denotes the average number of tasks

of Ak computed by Pu per time-units, during time-
interval [tj , tj+1] (computation throughput);
• B

(k)
u (tj) denotes the (fractional) number of tasks of

application Ak stored in a buffer on Pu at time tj .
We write the linear constraints that must be satisfied

by the previous variables. Our aim is to find a schedule
with minimum stretch satisfying those constraints.

The additional constraints are summarized here:
• all the tasks of a given application Ak are sent by

the master,
• each buffer should always have a non-negative size,
• at the beginning of the computation of application

Ak, all corresponding buffers are empty,
• after the deadline of application Ak, no tasks of this

application should remain on any node,
• during time-interval [tj , tj+1], some tasks of ap-

plication Ak are received and some are consumed
(computed), which affects the size of the buffer,
• all throughputs are non-negative.
We still have to add the original constraints from Lin-

ear Program (1) to ensure the platform capacity is not
exceeded. Please refer to the companion research re-

4

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

port [4] for a detailed presentation of these constraints.
We obtain a convex polyhedron (K) defined by the pre-
vious constraints. The problem turns now into checking
whether the polyhedron is empty and, if not, into finding
a point in the polyhedron.

ρ
(k)
M→u(tj , tj+1), ρ(k)

u (tj , tj+1),
∀k, u, j such that 1 ≤ k ≤ n, 1 ≤ u ≤ p

under all previous constraints

(K)

One can note that we can easily add some constraints
to bound the buffers to any prescribed maximal size.

Theorem 1. Polyhedron (K) is not empty if and only if
there exists a schedule with stretch S.

The proof of this theorem can be found in [4]. In
practice, to know if the polyhedron is empty or to ob-
tain a point in (K), we can use classical tools for lin-
ear programs. Finding a point in Polyhedron (K) allows
to determine whether the candidate value for the stretch
is feasible. Depending on whether Polyhedron (K) is
empty, the binary search will be continued with a larger
or smaller stretch value.

The initial upper bound for this binary search is com-
puted using a naive schedule where all applications are
computed sequentially. For sake of simplicity, we con-
sider that all applications are released at time 0 and ter-
minate simultaneously. This is clearly a worst case sce-
nario, and allows us to compute the maximum stretch
Smax. The lower bound on the achievable stretch is 1.

We suppose here the termination criterion of the bi-
nary search (ε) is given by the user. Please refer to the
extended version of the paper [4] for a low-complexity
technique (a binary search among stretch-intervals) to
compute the optimal maximum stretch.

Suppose that we are given ε > 0. The binary search is
conducted using Algorithm 1. This algorithm allows to
approach the optimal stretch, as stated by the following
theorem (the proof can be found in [4]).

Theorem 2. For any ε > 0, Algorithm 1 computes a
stretch S such that there exists a schedule achieving S
and S ≤ Sopt + ε, where Sopt is the optimal stretch. The
complexity of Algorithm 1 is O(log Smax

ε).

3.2. Online setting

Because we target an online framework, the schedul-
ing policy needs to be modified upon the completion of
an application, or upon the arrival of a new one. The idea
is to make use of our study of the offline case. However,
we cannot pretend to optimality any longer as we now
have only limited information on the applications.

Algorithm 1: Binary search

begin
Sinf ← 1
Ssup ← Smax
while Ssup − Sinf > ε do
S ← (Ssup + Sinf)/2
if Polyhedron (K) is empty then
Sinf ← S

else
Ssup ← S

return Ssup

end

When a new application Aknew arrives at time Tnew =
r(knew), we consider the applications A0, . . . , Aknew−1,
released before Tnew. We call Π(k)

rem the (fractional) num-
ber of tasks of application Ak remaining at the master at
time Tnew. For sake of simplicity, we do not consider the
applications that are totally processed, and we thus have
Π(k)

rem 6= 0 for all applications. For the new application,
we have Π(knew)

rem = Π(knew). We also consider as parame-
ters the state B

(k)
u (tknew) of the buffers at time Tnew. We

also have B
(knew)
u (tknew) = 0.

As previously, we compute the optimal max-stretch
using Algorithm 1. For a given objective S, we have
a convex polyhedron defined by the linear constraints,
which is non empty if and only if stretch S is achiev-
able. The constraints are slightly modified in order to
fit the online context. First, we recompute the deadlines
of the applications: d(k) = r(k) + S ×MS∗(k). Note
that now, all release dates are smaller than Tnew, and all
deadlines are larger than Tnew. We sort the deadlines
by increasing order, and denote by tj the set of ordered
deadlines: {tj} = {d(k)} ∪ {Tnew} such that tj ≤ tj+1.
The constraints are the same as the ones used for Poly-
hedron (K), except the constraint on the number of task
processed, which is updated to account for the remain-
ing number of tasks to be processed.

As described for the offline setting, a binary search
allows to find the optimal max-stretch. Note that this
“optimality” concerns only the time interval [Tnew,+∞],
assuming that no other application will be released af-
ter Tnew. This assumption will not hold true in gen-
eral, hence our schedule will be suboptimal. The stretch
achieved for the whole application set is bounded by the
maximum of the stretches obtained by the binary search
each time a new application is released.

5

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

4. MPI experiments and SimGrid simula-
tions

We have conducted several experiments in order to
compare different scheduling strategies, and to show the
benefits of the algorithms presented in this work.

As our fluid model requires a total control of the rate
of computation and communication, it is quite hard to
implement in practice. During the experiments we used
the one-port model for the communication, which seri-
alizes sending from the master, and we assume that a
worker has to completely receive a task before starting
its computation, and that it cannot perform several com-
putations simultaneously. Please refer to [4] to see how
optimality results can be translated under this more con-
straint model.

We first present the heuristics. Then we detail the
platforms and applications used for the experiments. Fi-
nally, we expose and comment the numerical results.

The code and the experimental results can be
downloaded from: http://graal.ens-lyon.fr/
∼lmarchal/cbs3m/.

4.1. Heuristics

In this section, we present strategies that are able
to schedule multi-applications in an online setting. Al-
though far from the optimal in a number of cases, such
strategies are representative of existing Grid schedulers.
We compare sixteen algorithms in the experiments. First
we outline policies for selecting the set of applications
to be executed:
• FIFO (First In First Out): applications are computed
in the order of their release dates.
• SPT (Shortest Processing Time): released applications
are sorted by non-decreasing processing time (which is
approximated by MS∗). The first application must be
completed before we determine the next one to be exe-
cuted.
• SRPT (Shortest Remaining Processing Time): at each
release date, released applications are sorted by non-
decreasing processing time, according to the tasks that
remains to be scheduled, and the applications are fully
executed one after the other in this order until a new re-
lease date occurs.
• SWRPT (Shortest Weighted Remaining Processing
Time): it is very similar to SRPT, but the remaining pro-
cessing time of the released applications are weighted
with MS∗. In practice, it gives small applications a
priority against large applications which are almost fin-
ished.

Next we describe policies for resource selection:
• RR (Round-Robin): all workers are selected in a
cyclic way.
• MCT (Minimum Completion Time): given a task of
an application, it selects the worker which will finish this
task first, given the current load of the platform.
• DD (Demand-Driven): workers are themselves asking
for a task to compute as soon as they become idle.

The four application selection policies and the three
ressource selection rules lead to twelve different greedy
algorithms. We also test a more sophisticated algorithm:
•MWMA (Master Worker Multi-Applications): this al-
gorithm computes on each time interval a steady-state
strategy to schedule the available applications, as pre-
sented in [3]. All available applications are running at
the same time, and each application is given a different
fraction of the platform according to its weight. This
weight can be derived from either the remaining num-
ber of tasks of the applications (variant called NBT), or
the remaining time of computation of the applications
(variant called MS). Both variants are compared in the
experiments.

Finally, there is the strategy presented in this paper,
called CBS3M (Clever Burst Steady-State Stretch Min-
imization). We test it with two variants, both a FIFO or
EDF (Earliest Deadline First) policy for the workers to
choose the next task to compute among those they have
received. Both the CBS3M and the MWMA strategies
make use of linear programs to compute their schedule.
These linear programs are solved using glpk, the Gnu
Linear Programming Kit [8].

4.2. Platforms

In this section, we conduct experiments on a real plat-
form, in order to have an insight of the behavior of the
algorithms. We also run multiple simulations, in order
to get more results about their performance.

Experimental setting. Experiments were conducted
on a cluster composed of nine processors. The master
is a SuperMicro server 6013PI, with a P4 Xeon 2.4 GHz
processor, and the workers are all SuperMicro servers
5013-GM, with P4 2.4 GHz processors. All nodes have
1 GB of memory and are running Linux. They are con-
nected with a switched 10 Mbps Fast Ethernet network.
In order to artificially enhance its heterogeneity, we slow
down some communication links, by multiplying the
size of messages targeting given workers by a constant
factor. Similarly, we slow down some processor speeds
by performing tasks several time on given workers. The

6

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

experiments are performed using the MPICH-2 commu-
nication library [9].

We create ten different fully heterogeneous plat-
forms. The communication and computation slowdowns
are uniformly chosen between 1 to 10.

Simulation setting. An extensive set of simulations is
performed using SimGrid [12]. The parameters of the
simulated platforms are kept as close as possible to the
actual experimental framework so that simulations can
be considered a direct complement of the experimen-
tal MPI setting. In a first step, we run the exact same
experiments (with the same platform configuration and
application scenario) to make sure that our simulation
behaves similarly to the MPI experiments. Then, we
conduct an extensive set of simulations with larger ap-
plications.

4.3. Applications

For our experiments and simulations, we randomly
generated the applications parameters, with the follow-
ing constraints in order to be realistic:

1. the release dates of the applications follow a log-
normal distribution as suggested in [7];

2. the total amount of communications and computa-
tions for an application is randomly chosen with
a log-normal distribution between realistic bounds,
and then split into tasks.

The number of tasks for one application is bounded
above by the minimum amount of communication and
computation allowed for one task. The parameters used
in the generation of the applications for the experiments
and the simulations are described in [4].

4.4. Results

In this section we describe the results obtained on all
different platforms, experimental or simulated.

Experimental results. We express the performance of
any given algorithm on one problem instance as the ratio
of the max-stretch obtained by the algorithm on this in-
stance over the theoretical optimal max-stretch obtained
by linear programming.

The full results of the experiments can be found
in [4]. Figure 2 summarizes the experiments for the best
four algorithms, CBS3M using EDF policy, in both the
offline and online versions, MWMA NBT and SWRPT.

Our results show that CBS3M achieve far better per-
formance than any other strategy in all but two exper-
iments. Surprisingly, the offline version is not always

better than the online version. The offline version knows
the future and thus should achieve better performance.
However, it suffers from discrepancies between the ac-
tual characteristics of the platform and those of the plat-
form model. The online version is able to circumvent
this problem as it takes into account the work effectively
processed to recompute the schedule at each new appli-
cation arrival. This gain of reactivity compensates for
the loss due to the lack of knowledge of the future.

The MWMA algorithms lie in between our algo-
rithms and the greedy strategies.

Figure 2. Relative max-stretch of best four
heuristics in the MPI experiments.

Simulation on experimental platform. We have run
exactly the same experiments with simulations, using
the same platform configurations and application sce-
narios. We compare the difference between the relative
max-stretch in both cases. As a result, we found that the
average difference on the relative max-stretch is around
21%, with a standard deviation of 57%. These results
show that our simulations are generally close to those
obtained on a real platform.

Simulation results. In this section, we run 1000 ex-
periments The results of all heuristics for the max-
stretch metric can be found in [4]. Figure 3 shows the
evolution of some heuristics (the best ones) over the
load of the scenario. The CBS3M heuristics perform
very well for the max-stretch: CBS3M EDF ONLINE
achieves the optimal max-stretch in 65.2% of the exper-
iments. This heuristic achieves great performance, with
an average max-stretch of 1.16 times the optimal max-
stretch, and a worst case of 1.93. In the extended ver-
sion of the paper [4], we detailed results of the different
heuristics for a bunch of metrics.

The good results of the CBS3M heuristics can be ex-
plained with the fact that they make very good use of the

7

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

platform, by scheduling simultaneously several applica-
tions when it is possible, for example when the com-
munication medium has still some free bandwidth af-
ter scheduling the most critical application. All other
heuristics (except MWMA) are limited to scheduling
only one application at a time, leading to an overall bad
utilization of the computing platform.

MWMA NBT
SWRPT MCT

CBS3M EDF ONLINE

SRPT MCT
CBS3M EDF OFFLINE

1

1.5

2

2.5

3

3.5

4

4 5 6 7 8 9 10

av
er

ag
e

m
ax

st
re

tc
h

/o
pt

im
al

m
ax

st
re

tc
h

load (optimal stretch)

Figure 3. Evolution of the relative max-
stretch of best heuristics in the simula-
tions under different load conditions.

5. Conclusion

In this paper, we have studied the problem of schedul-
ing multiple applications, made of collections of inde-
pendent and identical tasks, on a heterogeneous master-
worker platform. Applications have different release
dates. We aimed at minimizing the maximum stretch,
or equivalently at minimizing the largest relative slow-
down of each application due to their concurrent execu-
tion. We derived an optimal algorithm for the off-line
setting (when all application sizes and release dates are
known beforehand). We have adapted this algorithm to
an online scenario, so that it can react when new appli-
cations are released.

We have compared our new algorithms against clas-
sical greedy heuristics, and also against some involved
static multi-applications strategies. Experiments were
run both on a real cluster, using MPI, and through exten-
sive simulations, conducted with SimGrid. Both exper-
imental comparisons show a great improvement when
using our CBS3M strategy, which achieves an averaged
worse max-stretch only 16% greater than the off-line op-
timal max-stretch. To the best of our knowledge, this
work is the first attempt to provide efficient scheduling

techniques for multiple bags-of-tasks in an online sce-
nario.

Future work includes extending the approach to other
communication models and to more general platforms
(such as multi-level trees). It would also be very inter-
esting to deal with more complex application types, such
as pipeline or even general DAGs.

References

[1] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal shar-
ing of bags of tasks in heterogeneous clusters. In 15th
ACM Symp. on Parallelism in Algorithms and Architec-
tures (SPAA’03), pages 1–10. ACM Press, 2003.

[2] C. Banino, O. Beaumont, L. Carter, J. Ferrante,
A. Legrand, and Y. Robert. Scheduling strategies
for master-slave tasking on heterogeneous processor
platforms. IEEE Trans. Parallel Distributed Systems,
15(4):319–330, 2004.

[3] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Mar-
chal, and Y. Robert. Centralized versus distributed sched-
ulers for multiple bag-of-task applications. In Interna-
tional Parallel and Distributed Processing Symposium
IPDPS’2006. IEEE Computer Society Press, 2006.

[4] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, and
F. Vivien. Offline and online scheduling of bag-of-tasks
applications on heterogeneous platforms. Research Re-
port 2007-48, LIP, ENS Lyon, France, Dec. 2007.

[5] BOINC: Berkeley Open Infrastructure for Network
Computing. http://boinc.berkeley.edu.

[6] H. Casanova and F. Berman. Grid’2002. In F. Berman,
G. Fox, and T. Hey, editors, Parameter sweeps on the
grid with APST. Wiley, 2002.

[7] D. G. Feitelson. Workload Characterization and Model-
ing Book. electronic draft, no published yet.

[8] GLPK: GNU Linear Programming Kit. http://www.
gnu.org/software/glpk/.

[9] W. Gropp. Mpich2: A new start for mpi implementa-
tions. In PVM/MPI, page 7, 2002.

[10] B. Hong and V. Prasanna. Distributed adaptive task
allocation in heterogeneous computing environments to
maximize throughput. In International Parallel and
Distributed Processing Symposium IPDPS’2004. IEEE
Computer Society Press, 2004.

[11] H. J. Kim. A novel optimal load distribution algo-
rithm for divisible loads. Cluster Computing, 6(1):41–
46, 2003.

[12] A. Legrand, L.Marchal, and H. Casanova. Schedul-
ing Distributed Applications: The SIMGRID Simulation
Framework. In Proceedings of the Third IEEE Interna-
tional Symposium on Cluster Computing and the Grid
(CCGrid’03), pages 138–145, May 2003.

8

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

