
Revisiting the decomposition of Karp, Miller and Winograd
Alain D a r k and Fr6dkric Vivien *

LIP, CNRS URA 1398
Ecole Normale Supkrieure de Lyon

Lyon, France
e-mail: [dark, fvivien]Qlip.ens-1yon.fr

Abstract

This paper i s devoted to the construction of multi-dimensional schedules f o r a system of
uniform recurrence equations. W e show that this problem is dual to the problem o j com-
putability of a system of uniform recurrence equations. W e propose a new study of the
decomposition algorithm j r s t proposed by Karp, Milliller and Winograd: we base our imple-
mentation on linear programming resolutions whose duals give exactly the desired multi-
dimensional schedules. Furthermore, we prove that the schedules built this way are optimal
up to a constant factor.

1: Introduction

This paper is concerned with the problem of building multi-dimensional schedules for
system of uniform recurrence equations, especially when there exists no linear schedule.

Systems of uniform recurrence equations were first defined and studied, by Karp,
Miller and Winograd, in the now famous paper: “The organization of computations for
uniform recurrence equations” [6]. This model happened t o be powerful enough to describe a
large class of algorithms, and simple enough to allow a precise description of the organization
of computations. These two properties are certainly responsible for the success of uniform
recurrence equations over the last decade, especially in the field of systolic array design
methodologies [8, 111, for which this model provides a sound mathematical framework.

In [6], Karp, Miller and Winograd described the structure of a system of uniform recur-
rence equations with a dependence graph, whose edges are labelled with multi-dimensional
vectors. They studied the calculability of such systems and showed tha t this problem is
equivalent to the problem of detecting cycles, in the dependence graph, whose total weight
is a non positive vector.

When the system of equations is reduced t o a single equation, the problem of computabil-
ity is quite simple and is equivalent to the existence of a linear schedule. This result is t he
base of most systolic array design methodologies, such as space-time mapping (first intro-
duced in [lo] and developed in many other papers), and some parallelization techniques
such as the hyperplane method [9, 31.

In the general case, thus the case of several equations, Karp, Miller and Winograd showed
tha t t he problem of calculability is decidable and they gave an algorithm tha t solves it. This
algorithm is based on a recursive decomposition of the dependence graph. Deeper studies
and variants of this algorithm have been proposed by Rao [12], Kosaraju and Sullivan [7],
Cohen and Meggido [a] , Backes [l]. All these works deal with cycle detection or longest
dependence paths construction.

‘Supported by the French Council for Research CNRS, and by the ESPRIT Basic Research Action 6632
“NANAZ” of the European Economic Community.

1063-6862/95 $4.00 0 1995 IEEE 13

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

http://fvivien]Qlip.ens-1yon.fr

14 In t e rna t iona l Conference on Application-Specific A r r a y Processors

However, t he dual aspect of this decomposition has never been really studied. In the
case of a single equation, i t is well-known tha t studying the dual problem leads to the
construction of linear schedules. In the general case, things are much more complicated:
we show in this paper t ha t the dual problem leads to the construction of multi-dimensional
schedules. The interest of our approach is threefold:

Any computable system of uniform recurrence equations admits a explicit order of
computations, given by a multi-dimensional schedule.
Such a schedule can be efficiently built by a dual representation of Karp, Miller and
Winograd's decomposition.
Furthermore, we prove tha t the schedule we build is nearly optimal: i t expresses
the maximal parallelism implicitly contained in the system of uniform recurrence
equations.

In section 2, we introduce the notations and definitions tha t we need. In section 3,
we recall Karp, Miller and Winograd's decomposition tha t detects null weight cycles in
a dependence graph. In section 4, we explain how a step of the decomposition can be
efficiently implemented by a single linear programming resolution and we study the dual
linear program. In section 5, we show how this dual resolution allows us to build nearly
latency optimal multi-dimensional schedules. Finally, in section 6, we give some concluding
remarks: we summarize the paper and we show briefly how this work is linked to our first
motivation: the automatic parallelization of nested loops. However, due to the lack of
space, we refer to [4] for complete proofs and for details on the applications and interests
of our approach, especially how it applies t o the parallelization of arbitrary nested loops
and how to rewrite the code to handle "shifted-linear" schedules.

2: Definitions and notations

Z and Q denote, respectively, the set of integral and rational numbers, and Zn and
Qn denote the set of n-dimensional integral and rational vectors. [.Ii denotes the i-th
component of vector z , and z.y the dot product of vectors 2 and y. For any finite set S ,
we denote by #S the number of elements in S.

2.1: S y s t e m s of u n i f o r m r e c u r r e n c e e q u a t i o n s (SURE)

Def in i t ion by e q u a t i o n s :
finite set of equations of the form:

A s y s t e m of un i fo rm r e c u r r e n c e e q u a t i o n s (SURE) is a

i s a d a t a array (or var iab le) t o be computed for all integral points z included in a
subset P of Z". P is called the i t e r a t ion d o m a i n . Boundary values are assumed t o
be given a t points z e P wherever required for variable evaluation at points t E 'P.
z is a vector in Z" called i t e r a t ion vec to r .
clt,J are vectors in Z" called d e p e n d e n c e vec tors .
f8 is a strict function with m, arguments whose properties (if any) will not be con-

One says tha t K (t) depends on K l (t - d,,,), . . ., K,,(z - cl,=,,"). These dependence
relations define a graph in P C Z" called the e x p a n d e d d e p e n d e n c e graph.

sidered.

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

Session 1: Scheduling and Mapping 15

Example: Throughout the paper, we will work on the following example:

a (i , j, k) = b (i + 1, j - 1, k) + a(i , j , k - 1)
b (i , j , k) = a (i - 1, j , k) + b(i , j, k + 1)

Definition by dependence graph: A system of uniform recurrence equations (can be
defined in terms of a multigraph G called a reduced dependence graph (or briefly, de-
pendence graph) t h a t gives a condensed representation of the expanded dependence graph.
G is naturally defined as follows:

0 For each variable V,, there is a vertex U, in G.
0 For each V, such tha t V , (z) depends on V,(r - d, %), there is an edge in G, from vj t o

A system of uniform recurrence equations is then simply defined by a dependence graph G
and an iteration domain 'P. In the following, V denotes the set of vertices of G, E the set of
edges of G. w(e) represents the weight of an edge e (i.e. the dependence vector associated
to it) , t (e) t he vertex from which edge e is directed (the tail) and h(e) t he vertex t o which
edge e is directed (the head).

v, labelled with vector d,,$. Such a label is called the weight of the edge.

Example: The dependence graph G associated to our example is given in figure 1.

Difference between SUREs and nested loops: A SURE may seem identical t o per-
fectly nested loops with uniform dependences, since both can be defined by a dependence
graph with uniform dependences and an iteration domain. However, the way these graphs
a re built makes a huge difference.

In nested loops, there is an explicit order of computations: t he lexicographic order
of iteration vectors, since innermost loops are scanned for each scan of t he outermost
loops. Dependence vectors can be flow, anti or output dependences but they are always
lexicographically positive: therefore, the expanded dependence graph is acyclic ;and the
reduced dependence graph has no cycle of null weight.

In a SURE, the order of computations is an implicit order: the left-hand side of each
equation can be computed only if all arguments of the right-hand side have been computed.
All dependence vectors can be seen as flow dependences, since values are used after being
computed, bu t they d o not have to be lexicographically positive. The main consequence is
t ha t a SURE is not always computable.

In this sense, t he framework of SURE is a more general framework than perfect1:y nested
loops with uniform dependences. The simple fact, t ha t t he dependence vectors d o not, have
to be lexicographically positive leads to two difficult problems:

i. A SURE is not always computable: this problem is linked to the problem of detecting

ii. The order of computations is implicit: building an explicit order is linked to the
null weight cycles in the reduced dependence graph G

construction of multi-dimensional schedules as defined in section 2.2.

The goal of this paper is to show tha t these two problems are actually dual problems
and tha t they can be solved efficiently by an algorithm based on a recursive decom,position
of the dependence graph G.

'This was the main res& of Karp, Miller and Winograd the computability of a SURE is decidable (and
is in P). However, for all known extensions of the model of SURE, the problem is undecidable (see [14]).

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

16 International Conference on Application-Specific Array Processors

2.2: Schedules

A schedule gives an explicit order of the computations described by a SURE. Among
all schedules, schedules tha t correspond to loop executions are particularly interesting. A
linear schedule (wave-front or hyperplane method [9, 3]), defined below, corresponds in
term of loops to the possibility of rewriting a SURE with one outermost sequential loop
and all parallel inner loops. However, such a schedule does not exist for all SUREs. When
the degree of parallelism contained in the SURE is not sufficient, one has to consider an
extension of the notion of schedule. called multi-dimensional schedule.

One-dimensional schedules: A one-dimensional schedule is a mapping from V x Zn
t o Z t ha t gives an execution order t o the computation of each value v (z) while preserving
dependence relations. Thus, a function T , with values in Z, is a schedule if and only if for
all iteration vectors p and q , for all variables v and tu:

T (v , p) 2 T(w, q) + 1 whenever (U , q) 4 (U , p) (1)

where (w, q) + (v l p) means tha t V (p) depends on W(q) *.

a schedule since
Note tha t if T satisfies inequalities 1 but takes i ts values in Q instead of' Z, then [TI is

T (v , p) 2 T (w , 4) + 1 * T (u , P) 2 1T(u3 d1 + 1 * l T (v , ~) i 2 LT(u, 411 + 1

For this reason, in the rest of the paper, we will be interested in rational functions tha t
satisfy inequalities 1, since they are easier t o build. We will call such functions rational
schedules.

One way of measuring the performance of a schedule T is its latency L(T, P) , i.e the
total number of computation steps needed to execute the SURE on its iteration domain P
according t o the schedule T : L (T) P) = # {T(V x P)}.

Among all one-dimensional schedules, some interesting classes of schedules are linear
schedules, shifted-linear schedules and affine schedules: a schedule is an affine schedule
if it is a mapping T of the following form (where X , G Q" and pv E Q):

T : V X Z " + Q
(V i P) --i X".P+ P"

If all Xu are equal, T is called a shifted-linear schedule, and if, moreover, all pu are null,
then T is called a linear schedule. Note tha t for shifted-linear schedules, inequalities 1
reduces to:

Ve E G, X . u (e) + mce) - Pt(e) 2 1
Such a vector X is called a strictly separating hyperplane. When we just have the
relation X.w(e) + ph(e) - 2 0, X is said to be a weakly separating hyperplane for
edge e.

Multi-dimensional schedules: We are now ready to define multi-dimensional sched-
ules introduced by Karp, Miller and Winograd [6]. Rao [12] in the context of SURE and
Feautrier [5] in the context of nested loops.

2this notation implicitly implies that p , q E P ,

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

Session 1: Scheduling and Mapping 17

A multi-dimensional schedule (of dimension d) is a mapping from V x Z" t o Z d
t ha t gives an execution order t o the computation of each value x (z) , while preserving
dependence relations.

The execution order is now a d-dimensional order, t ha t we take to be the strict lexico-
graphic order Bl (so as t o correspond to the execution of d nested loops): you can visualize
this by saying tha t the successive components given by the schedule correspond to days,
hours, minutes, seconds, and so on . . .

The compatibility with dependence relations is not an inequality on values anymore, bu t
on d-dimensional vectors and is expressed with >>l. The constraints t o be satisfied now are:

T (u , P) >>l T(w,q) whenever (w,q) -$ (v , ~) (2)

t ha t is to say:

whenever (w, q) + (w,p). As previously, integral schedules are extended t o rational func-
tions t h a t satisfy constraints 3.

Once again, things get simpler when considering particular schedules such as affine multi-
dimensional schedules defined as follows: a d-dimensional schedule is an affine schedule
if i t is a mapping T of the following form (where X ; E Q" and p: E Q):

T : V x Z " -+ Q d

(01 P) + (X,'.P + p:, ' ' . I Xud.P + 43
When all vectors X i are equal, inequalities 3 reduce to:

Ye E E , 3k,, 15 IC , 5 d such tha t
vi, 15 i < IC , X* .w(e) + P i $ --& = 0 i X k = . 4 e) i- &) 2 1

Thus, t he existence of such multi-dimensional schedules is strongly related t o the notion
of weakly and strictly separating hyperplanes. The objective of this paper is to build such
schedules and to show the link between their dimension and the parallelism contained in
the SURE.

3: Detection of null weight cycles in a SURE

Consider a system of uniform recurrence equations defined by i ts iteration domain P and
its reduced dependence graph G. When P is bounded, the system is computable if and
only if t he expanded dependence graph has no cycle. When the SURE is not computable,
there is a cycle in the expanded dependence graph: therefore, G has a cycle of null weight.
Conversely, if G has a null weight cycle, one can build a dependence cycle in P - if P is
sufficiently large so t ha t boundary problems can be avoided.

Therefore, we will assume in the following tha t P is bounded and sufficiently large, so
tha t t he SURE is computable if and only if G has no cycle of null weight.

In this section, we recall how the problem of detecting null weight cycles in a reduced
dependence graph can be solved, by an algorithm first proposed by Karp, Miller and Wino-
grad [6], then studied among others by Rao [12], Kosaraju and Sullivan [7], Cohen and
Meggido [2]. We also give an interpretation of the number of recursive calls in the algo-
rithm: we show t h a t i t is linked t o the inherent sequentiality contained in the SURE.

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

18 International Conference on Application-Specific Array Processors

3.1: Definitions and notations

Matrix notations: We denote by C the connection matrix of the reduced dependence
graph G, defined as follows: each row of C corresponds t o a vertex of G and each column
of C t o an edge of G. If the j - t h edge of G is oriented from vertex i t o vertex k, then we
let Ci,i = -1 and Ck,j = +1, otherwise for all 1 { i , k } , we let Ci,j = 0. A special case
exists for self-dependence edges for which we let C ' , j = 0, for all 1.

We denote by D t h e dependence matrix whose columns are the dependence vectors.
Of course, edges of G are considered in the same order for D and for C.

Finally, we denote by B; the block matrix whose first rows are the rows of C and whose
last rows are the rows of D.

Example: For our example (given by figure 1) with 2 vertices and 4 edges, we have:

0 - 1 0 1

-1 0 1 0
C=[" ' ' 1 D = [0 1 0 0 1 B = [g] 0 1 0 - 1

Subgraph of null weight multi-cycles: The previous matrix notations allow us t o
formulate the notion of multi-cycle of null weight. A multi-cycle is a union of cycles, not
necessarily connected. If there exists a vector q (with non negative integer components)
such t h a t Cq = 0, then G has a multi-cycle tha t uses q, times the i-th edge of G. Moreover,
if Dq = 0 (thus Bq = 0), then the multi-cycle is a multi-cycle of null weight. Thus,
detecting a null weight multi-cycle can be easily done by checking if the following system
has a rational solution:

(q 2 0 , 4 # 0 , & = O } (4)
(If there exists a rational solution, then by scaling i ts components, there exists an integral
solution).

However, detecting a null weight cycle is much more difficult. Every null weight cycle
is a null weight multi-cycle but the converse is not necessarily true. However, when all
edges of a null weight multi-cycle form a strongly connected graph, a null weight cycle can
be found as will be stated in lemma 1. This is the underlying idea of the decomposition
algorithm of Karp, Miller and Winograd.

Let G' be the subgraph of G induced (by the residual edges), after all edges in G t h a t
belong t o any null weight multi-cjcles have been deleted. In [6], this is achieved by testing,
for each edge e,, whether t h e system 4 has a feasible solution with qs > 0. We will show in
section 4 t h a t G' can be built more efficiently by solving only one linear program.

3.2: Decomposition algorithm

Determining if a SURE is computable can be done by applying the following algorithm
t o its dependence graph G.

Algorithm:
i. Decompose G into strongly connected components GI, Gz, . . . , G,, and call step (ii)

ii. Build G' the subgraph of G generated by all edges t h a t belong t o a null weight multi-
on each G,.

cycle of G.

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

Session 1: Scheduling and Mapping 19

If G‘ is strongly connected then G is not computable.

If G’ is an empty graph, G is computable.

Otherwise call s tep (i) on G’.

We will see in section 5.3 how t h e decomposition algorithm works on our example.
T h e correctness of the algorithm is based on several lemmas, proved in [6] and reformu-

lated in [4]. T h e most important lemma is the following one:

Lemma 1 (Karp, Miller and Winograd) If the subgraph G‘ of a graph G is strongly
connected, G has a null wezght cycle.

Corollary 1 The decomposition algorithm is correct.

Proof: Note first t h a t t h e decomposition algorithm always ends, when applied t o a finite
graph. When step (ii) is applied t o a graph G, either the algorithm ends because G‘ is
strongly connected or null, or step (ii) is called on strictly smaller subgraphs of G: (the
strongly connected components of G’).

If t h e decomposition ends because one of the G: is strongly connected, then G: has a null
weight cycle as shown by lemma 1 and so does G. The corresponding SURE is not com-
putable. On t h e other hand, if all recursive calls end because the corresponding subgraphs
G: are empty, G has no null weight cycle and the corresponding SURE is computable. 0

We denote by d the depth of the decomposition algorithm, i.e. t h e longest sequence of
recursive calls, except if all vertices are “lonely” (in the sense t h a t no edge passes through
them) in which case we let d = 0.

4: Construction and properties of G’

In this section, we show how t o build G‘ efficiently (by one linear programming problem
instead of one per edge as in [6]) . Furthermore, we show t h a t this construction is closely
related t o t h e construction of weakly and strictly separating hyperplanes and thus t o affine
multi-dimensional schedules.

4.1: Linear program for building G‘

Step (ii) of t h e decomposition algorithm, which consists in the construction of CY, can
be done by solving only one linear program. We will show indeed t h a t the edges of G‘ are
exactly t h e edges e, for which w, = 0 in any optimal solution of linear program 5.

min{ C5vi 1 q L O , v > O , q + v ? I , B ~ = o } (5)
Note first t h a t linear program 5 has a finite solution: q = 0 with ’U = 1 is indeed a

solution.

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

20 In t e rna t iona l Conference on Application-Specific Array Processors

L e m m a 2 For any optamal solutaon (q , v) of program 5.

0 q ,#O*v ,=O.
0 q , = O * w v , = l .

v,=Owee, E G '

Therefore, solving program 5 gives directly G': the edges of G' are the edges e, such tha t
v, = 0.

4.2: I n t e r p r e t a t i o n of t h e dual

Now, to better understand what is behind this linear program, let us consider i ts dual.
Program 5 can be written in a canonical form as:

min{ Civi 1 4 2 0 , v E O , w > O , q + v = I + w , Bq=O } (6)

I t s dual can be written (after some manipulations) as:

where inequality zi 2 0 corresponds to variable tuir inequality zi 5 1 to variable vi while
inequality X.w(ei) + p ~ (~ ,) - pt (e ,) 2 2% corresponds to variable qi . The dual solution has
an interesting property as shown by the following lemma.

L e m m a 3 For any optimal solution (z , X , p) of the dual program 7:

Lemma 3 shows tha t considering the dual provides separating hyperphnes, which a re
strictly separating hyperplanes for the edges not in G' and weakly separating hyperplanes
for edges in G'. Furthermore, for each subgraph G tha t appears in the decomposition, these
hyperplanes are those tha t are the "most often strict": the number of edges, for which such
an hyperplane is strict, is maximal.

During the decomposition algorithm, one can associate t o each vertex v of G, a sequence
of vectors X,', . . . , X,"., obtained by considering the dual problem 7. d, is the depth of t he
decomposition algorithm at which vertex v is removed. This sequence of vectors has the
following property:

T h e o r e m 1 T h e d, - 1 first separating hyperplanes X:, . . . , Xid"-') associated to a uer-
tex v of G are linearly independent. Furthermore, when G is computable, all separating
hyperplanes X; , . . . , X,". associated t o u are linearly independent.
Note tha t this implies t ha t t he depth of the decomposition is bounded by n + 1 (and even
by n when G is computable). This permits t o give an upper bound on the time complexity
of the decomposition algorithm (see [4]).

Remark: in practice, linear programs 5 and 7 can be simplified by replacing Cq = 0 by
4 = / 1 1 q 1 + . . .+pmqrr. where q1, . . ., qm form a basis of cycles. This reduces the number of
inequalities in program 5 and the number of variables in program 7 (constants p disappear in
t,his new formulation). The constants p can then be computed by an algorithmic approach,
less expensive than a linear programming resolution, simply by computing the longest paths
in a graph similar t o G but where edge ei has a weight equal t o z, - X . w (e ,) (Bellman-Ford
algorithm). This is roughly the way we implemented it.

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

Session 1: Scheduling and Mapping 21

5: Optimal multi-dimensional schedule for a computable SURE

We are now ready t o use the dual interpretation of Karp, Miller and Winograd's algorithm
for building nearly optimal multi-dimensional schedules.

5.1: Construction of a &dimensional schedule

Consider a computable dependence graph G and assume first t h a t G is strongly con-
nected. We apply t o G the decomposition algorithm, focusing this time on the dual pro-
gram 7.

We build for each vertex v of G, the sequence of vectors X:, . . . , Xtu and the sequence of
constants p:, . . . , p t u , obtained by considering the dual program 7 during the decomposition
algorithm. For each vertex U , we complete the sequences of vectors X i and constants pi,
with zeros so as t o obtain sequences of length d. This defines a function T :

T : V X P ---t Q d

(2)) P) -+ (X:.Ptpt, . .. ' XUd".Ptd", 0, . . ' , 0)

Lemma 4 T defines a multi-dimensional schedule.

Proof: We just have t o show t h a t for all edges e , for all p E P :

T (h (e) , p) >i T (t (e) , p - 4.1)
G is computable, thus the decomposition algorithm ended because all the leaves of the

calling tree ended with an empty G'. Thus, at some level of the decomposition, edge e has
been removed. Let k be the level where edge e has been removed, i.e. e E Gk but e # G;.
By construction, until level k , h(e) and t (e) belong t o the same subgraph of G, thuci their
sequences of vectors Xi are the same until level k :

Xi(.) = Xi(.) = X ' , . . . , Xh"(.) = x&, = X k (10)

Furthermore, until level k - 1, vectors X i are weakly separating hyperplanes for ledge e
and at level k , since e has been removed, X k is a strictly separating hyperplane for edge e .
Thus, t h e i- th component (i < k) of T (h (e) , p) - T (t (e) , p - w(e)) is equal to:

(x2J+ Ph(,)) - (x% - 4 e)) + Pl(,)) = Xi. .w(e) + P&,) -

(Xk .P+ Pi(p)) - (Xk.(P - d e)) + f&) = X".w(e) +&) -

= 0

and t h e k-th component satisfies:

2 1

Finally, whatever are t h e rests of the sequences Xh[,,, Xk,,, p&,) and p t (e) after lmevel I C ,
one has T (h (e) , p) >>i T (t (e) , p) for all p E P. The dependence corresponding t o edge e is
satisfied a t level k . 0

Remarks:

T h e separating hyperplanes X t h a t define T are obviously not unique: once we know
which edge corresponds t o an equality like 8 and which one corresponds t o an inequal-
ity like 9, one can choose another objective function than E, zz. One can for example
t ry t o minimize the latency corresponding to the vector X , i.e. maxpEp, q E p X. (p -q) .
See 131 for this kind of optimization.

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

22 International Conference on Application-Specific Array Processors

0 T h e multi-dimensional schedules so obtained are not arbitrary schedules: they are
indeed at each level affine schedules whose linear part is the same on the current
graph Gk (see equation 10). We call them, locally shifted-linear schedule. This is an
important property in practice, because it does not generate too complicated results,
t h a t would be difficult t o use.

When the dependence graph has more than one strongly connected component, we first
schedule independently each strongly connected component with a multi-dimensional sched-
ule built as above. Then, we schedule them with respect to each other by a topological sort
on the acyclic graph constitued by the strongly connected components.

5.2: Longest dependence path in a SURE and latency of the multi-dimensional
schedules

Once we know t h a t a syst,em of uniform recurrence equations is computable or not, it is
interesting t o give an idea of the length of the longest path in the expanded dependence
graph. This length gives a lower bound on the sequentiality of the system of recurrence
equations and thus gives also an upper bound 011 the parallelism it contains

In [3], it is shown tha t for a single uniform recurrence equation, this length is equivalent
t o the latency of the optimal linear schedule, on full dimensional polyhedra whose size
tends t o infinity. To say it briefly, on domains of size parameterized by N , the latency of
the optimal linear schedule is equivalent t o A N for some constant X and so does the length
of the longest dependence path. Both are in N and the multiplicative constants X are the
same.

Here, in a SURE, when linear schedules do not always exist, the length of the longest
path is not necessarily linear in N anymore, it can be equivalent t o kNP for some constants
k and p . We will not t ry t o be precise on the multiplicative constant. k , we will just focus
on p , the power of N .

Consider a SURE defined in Z" by an iteration domain P and a dependence graph G.
Suppose t h a t 17 contains a n-dimensional cube of size Ai (thus P is full dimensional) and
is contained in a n-dimensional cube of size A N , for some constant X 2 1. With these
hypot,hesis, the link between the latency of the multi-dimensional schedules we built, and
the length of the longest dependence path is given by the following theorem:

Theorem 2 The "&-dimensional schedule built in section 5 is nearly optimal: i f d is the
depth of the decomposition algorithm, the latency of the schedule is O (N d) and the length
of the longest dependence path is Q (N d) .

This means t h a t the system of uniform recurrence equations corresponding t o G contains
a parallelism of degree (n - d) and tha t we are able to find it.

5.3: Example

We now go back t o our example (given in section 2.1).

Decomposition: In practice, t o check the computability of the studied SURE, we need
t o apply the decomposition algorithm of subsection 3.2 and thus t o solve the following
linear program (linear program 5) :

m i n i CIw, I Q > O , v > O , q + v > 1 , B q = O }
3see [13] for a definition of the dimension of a polyhedron

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

Session 1: Scheduling and Mapping 23

I b' I

This means tha t only the self-dependences are members of G', the subset of the edges of
G which can participate t o a null-weight multi-cycle. The same study is made on the two
strongly connected components of G'. Each one contains one of the two self-dependences
of G. As none of these self-dependences is null, none of the connected components of
G' contains a null-weight multi-cycle. The theoretical results previously presented let us
conclude tha t the studied system of uniform recurrence equations is computable. As the
decomposition algorithm stops at depth 2, there exists a multi-dimensional schedule whose
latency is O (N 2) and a dependence path of length R(N2).

The decomposition is illustrated by the figure 1.

GraphcG Graphhc U'

Figure 1 . Decomposition of the dependence graph

Multi-dimensional schedule: Hence, we are assured of the computability of the SIJRE.
"e now have to build a multi-dimensional schedule, and thus to solve the linear progra,m 7.
In our example, we choose as an objective function t o minimize E, I X J , the norm of the
vector X so as to get not too complicated results. Note tha t if the iteration domain is a
cube, this is equivalent t o minimizing the latency.

Now, because of lemma 3, we have to find a solution to the system:

If we note X = [z, y, z] , this system can be re-written as follows:

The optimal solutions of this linear program is: X = [O, 2 , 01, pa = 0, p b = 1.
To this point,, we have solved the problem on two of the four edges. We have then

to work recursively on the remaining strongly connected components of G', but in this

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

24 International Conference on Application-Specific Array Processors

caSe these components are very simple and the linear programs are trivial: for the con-
nected component which only contains the dependence [0, 0, 11, an optimal solution is
X = [0, 0, l] ,pa = 0, and for the connected component which only contains the depen-
dence [0, 0, -11, an optimal solution is X = [0, 0, -I] > p b = 0.

The final result is thus the following:

constant parts

and , if P is the 3-dimensional cube of size N , it leads to the following nested loops:

for j = 1 to N (vector (0 , 2 , O), constant 0)
for k = 1 to N (vector (0,0, 1))

forall i = 1 to N

endforall
a(i, j , k) = b(i+l, j-1, k) + a(i, j , k-1)

endfor

for k = N to 1
(vector (0 , 2 , Oj, constant 1)

(vector (0,O; -1))
forall i = 1 to N

endforall
b(i, j , k) = a(i-1, j , k) + b(i, j , k + l)

endfor
endfor

6: Conclusion

The results presented in this paper are mainly based on Karp, Miller and Winograd’s
decomposition algorithm which decides if a system of uniform recurrence equations is com-
putable or not. We first showed how this algorithm can be efficiently implemented by
linear programming resolutions. Then, by an interpretation of the dual linear programs,
we explained how to build multi-dimensional schedules tha t express explicit orders of com-
putations for a computable system of uniform recurrence equations.

The first interest of this resolution is that we are able to guarantee the quality of such
schedules: they a re indeed nearly optimal in the sense tha t their latency and the length of
the longest dependence paths are of the same order. The schedules tha t we obtain reveal
the maximal degree of parallelism contained in the SURE, while the longest dependence
paths reveal t he maximal degree of sequentiality in the SURE.

The second interest, and in our opinion not the less important, is tha t such schedules have
a very particular structure: we called them locally shifted-linear schedules. Tha t means tha t
there is no need to look for complicated schedules such as arbitrary affine multi-dimensional
schedules. The resolution gives directly the simpliest form tha t can be considered to keep
optimal latency. The simplicity of the results has to be taken into account, since the final
goal is t o use such schedules to generate code. The simpler the schedule, the easier the
implementation, the better the chance of further optimizations.

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

Session 1: Scheduling and Mapping 25

Because of space limitation, we did not address in this paper the possible applicatioiis of
this construction of schedules. Actually, the initial motivation of this work was not in the
context of systems of uniform recurrence equations but in the context of nested loops. Our
goal was t o find a way to parallelize arbitrary nested loops, especially when dependences
are not uniform but are expressed as direction vectors or dependence cones: our idea was
to try t o extend linear scheduling methods. Finally, we found much more than what was
expected: based on this study of Karp, Miller and Winograd’s decomposition, we are now
able t o propose a new and optimal parallelization technique for nested loops. The main
idea is t o transform the dependence graph associated to the nested loops into an equivalent
dependence graph where all dependences are uniform but not necessarily lexicographically
positive, i.e. nothing but the dependence graph of a SURE on which we apply the techniques
presented in this paper. We refer t o [4] for more details.

We believe t h a t this approach is a very promising approach since it can be proven optimal
with respect t o the quality of the dependence analysis.

Dedication
ago. Hem6 was a bright researcher in the field of systolic methodology design.

We would like t o dedicate this work t o Her& Le Verge who died a few months

References

[l] Wolfgang Backes. The structure of longest paths in periodic graphs. PhD thesis, Universitat des
Saarlandes, Sarbriicken, July 1993.

[2] Edith Cohen and Nimrod Megiddo. Strongly polynomial-time and NC algorithms for detecting cycles
in dynamic graphs. In Prodceedings of 2 i s t Annual ACM Symposium on Theory of Computing, pages
523-534, 1989.

[3] Alain Darte, Leonid Khachiyan, and Yves Robert. Parallel
Processing Letters, 1(2):73-81, 1991.

[4] Alain Darte and FrCdCric Vivien. Automatic parallelization based on multi-dimensional sche’duling.
Technical Report 94-24, Laboratoire de 1’Informatique du ParaUBlisme, Ecole Normale SupCrieure de
Lyon, France, September 1994.

[5] Paul Feautrier. Some efficient solutions to the affine scheduling problem, part 11, multi-dime:nsional
time. fnt. J . Parallel Programming, 21(6):389-420, December 1992. Available as Technical Report
92-78, Laboratoire MASI, Universitb Pierre et Marie Curie, Paris, October 1992.

161 R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations for uniform recurrence
equations. Journal of the ACM, 14(3):563-590, July 1967.

[7] S. Rao Kosaraju and Gregory F. Sullivan. Detecting cycles in dynamic graphs in po1ynomi.d time
(preliminary version). In ACM Press, editor, Proceedings of the Twentieth Annual ACM Symcposium
on Theory of Computing, pages 398-406, May 1988.

Linear scheduling is nearly optimal.

[8] S.Y. Kung. VLSI array processors. Prentice-Hall, 1988.
[9] Leslie Lamport. The parallel execution of DO loops. Communications of the ACM, 17(2):83-93,

February 1974.
[lo] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. In The i l t h

Annual International Symposrum on Computer Architecture, A m Arbor, Michigan, June 1984. IEEE
Computer Society Press.

[11] Patrice Quinton and Yves Robert. Systolic Algorithms and Architectures. Prentice Hall, 1991. Trans-
lated from French, Masson (1989).

[la] Sailesh K. Rao. Regular Iterative Algorithms and their Implementations on Processor Arrays. PhD
thesis, Stanford University, October 1985.

[13] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York,
1986.

[14] Hervb Le Verge and Yannick Saouter. New results on computability of recurrence equations. Technical
Report 380-93, LaBRI, Bordeaux (France), September 1993. Submitted to Foundations of Computer
Science.

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

