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Abstract 

This  paper i s  devoted to  the construction of multi-dimensional schedules f o r  a system of 
uniform recurrence equations. W e  show that this problem is dual to  the problem o j  com- 
putability of a system of uniform recurrence equations. W e  propose a new study of the 
decomposition algorithm j r s t  proposed by Karp, Milliller and Winograd: we base our imple- 
mentation on linear programming resolutions whose duals give exactly the desired multi- 
dimensional schedules. Furthermore, we prove that the schedules built this way are optimal 
up to  a constant factor. 

1: Introduction 

This paper is concerned with the  problem of building multi-dimensional schedules for 
system of uniform recurrence equations, especially when there exists no linear schedule. 

Systems of uniform recurrence equations were first defined and studied, by Karp, 
Miller and Winograd, in the  now famous paper: “The organization of computations for 
uniform recurrence equations” [6]. This model happened t o  be powerful enough to  describe a 
large class of algorithms, and simple enough to allow a precise description of the  organization 
of computations. These two properties are certainly responsible for the  success of uniform 
recurrence equations over the  last decade, especially in the  field of systolic array design 
methodologies [8, 111, for which this model provides a sound mathematical framework. 

In [6], Karp, Miller and Winograd described the  structure of a system of uniform recur- 
rence equations with a dependence graph, whose edges are labelled with multi-dimensional 
vectors. They studied the  calculability of such systems and showed tha t  this problem is 
equivalent to the  problem of detecting cycles, in the  dependence graph, whose total  weight 
is a non positive vector. 

When the  system of equations is reduced t o  a single equation, the problem of computabil- 
ity is quite simple and is equivalent to the  existence of a linear schedule. This result is t he  
base of most systolic array design methodologies, such as space-time mapping (first intro- 
duced in [lo] and developed in many other papers), and some parallelization techniques 
such as the  hyperplane method [9, 31. 

In the  general case, thus the  case of several equations, Karp, Miller and Winograd showed 
tha t  t he  problem of calculability is decidable and they gave an algorithm tha t  solves it. This 
algorithm is based on a recursive decomposition of the  dependence graph. Deeper studies 
and variants of this algorithm have been proposed by Rao [12], Kosaraju and Sullivan [7], 
Cohen and Meggido [a] ,  Backes [l]. All these works deal with cycle detection or longest 
dependence paths construction. 
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However, t he  dual aspect of this decomposition has never been really studied. In the  
case of a single equation, i t  is well-known tha t  studying the  dual problem leads to the  
construction of linear schedules. In the  general case, things are much more complicated: 
we show in this paper t ha t  the  dual problem leads to  the  construction of multi-dimensional 
schedules. The  interest of our approach is threefold: 

Any computable system of uniform recurrence equations admits a explicit order of 
computations, given by a multi-dimensional schedule. 
Such a schedule can be efficiently built by a dual representation of Karp, Miller and 
Winograd's decomposition. 
Furthermore, we prove tha t  the  schedule we build is nearly optimal: i t  expresses 
the  maximal parallelism implicitly contained in the  system of uniform recurrence 
equations. 

In section 2, we introduce the  notations and definitions tha t  we need. In section 3, 
we recall Karp, Miller and Winograd's decomposition tha t  detects null weight cycles in 
a dependence graph. In section 4, we explain how a step of the  decomposition can be 
efficiently implemented by a single linear programming resolution and we study the  dual 
linear program. In section 5, we show how this dual resolution allows us to build nearly 
latency optimal multi-dimensional schedules. Finally, in section 6, we give some concluding 
remarks: we summarize the  paper and we show briefly how this work is linked to  our first 
motivation: the  automatic parallelization of nested loops. However, due to  the  lack of 
space, we refer to [4] for complete proofs and for details on the applications and interests 
of our approach, especially how it applies t o  the  parallelization of arbitrary nested loops 
and how to  rewrite the  code to  handle "shifted-linear" schedules. 

2: Definitions and notations 

Z and Q denote, respectively, the  set of integral and rational numbers, and Zn and 
Qn denote the  set of n-dimensional integral and rational vectors. [.Ii denotes the  i-th 
component of vector z ,  and z.y the  dot  product of vectors 2 and y. For any finite set  S ,  
we denote by #S the  number of elements in S. 

2.1: S y s t e m s  of u n i f o r m  r e c u r r e n c e  e q u a t i o n s  (SURE) 

Def in i t ion  by e q u a t i o n s :  
finite set  of equations of the  form: 

A s y s t e m  of un i fo rm r e c u r r e n c e  e q u a t i o n s  (SURE) is a 

i s  a d a t a  array (or var iab le)  t o  be computed for all integral points z included in a 
subset P of Z". P is called the  i t e r a t ion  d o m a i n .  Boundary values are assumed t o  
be given a t  points z e P wherever required for variable evaluation at points t E 'P. 
z is a vector in Z" called i t e r a t ion  vec to r .  
clt,J are vectors in Z" called d e p e n d e n c e  vec tors .  
f8 is a strict function with m, arguments whose properties (if any) will not be con- 

One says tha t  K ( t )  depends on K l ( t  - d,,,), . . ., K,,(z - cl,=,,"). These dependence 
relations define a graph in P C Z" called the  e x p a n d e d  d e p e n d e n c e  graph. 

sidered. 

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:02 from IEEE Xplore.  Restrictions apply. 



Session 1: Scheduling and Mapping 15 

Example: Throughout the  paper, we will work on the  following example: 

a ( i ,  j, k )  = b ( i  + 1, j - 1, k )  + a( i ,  j ,  k - 1) 
b ( i ,  j ,  k )  = a ( i  - 1, j ,  k )  + b( i ,  j, k + 1) 

Definition by dependence graph: A system of uniform recurrence equations (can be 
defined in terms of a multigraph G called a reduced dependence graph (or briefly, de- 
pendence graph) t h a t  gives a condensed representation of the  expanded dependence graph. 
G is naturally defined as follows: 

0 For each variable V,, there is a vertex U, in G. 
0 For each V,  such tha t  V , ( z )  depends on V,(r  - d, %), there is an  edge in G, from vj t o  

A system of uniform recurrence equations is then simply defined by a dependence graph G 
and an  iteration domain 'P. In the  following, V denotes the  set of vertices of G, E the  set of 
edges of G. w(e) represents the  weight of an edge e (i.e. the  dependence vector associated 
to it) ,  t ( e )  t he  vertex from which edge e is directed (the tail) and h(e)  t he  vertex t o  which 
edge e is directed (the head). 

v, labelled with vector d,,$. Such a label is called the  weight of the  edge. 

Example: The  dependence graph G associated to  our example is given in figure 1. 

Difference between SUREs and nested loops: A SURE may seem identical t o  per- 
fectly nested loops with uniform dependences, since both can be defined by a dependence 
graph with uniform dependences and an  iteration domain. However, the way these graphs 
a re  built makes a huge difference. 

In nested loops, there is an explicit order of computations: t he  lexicographic order 
of iteration vectors, since innermost loops are scanned for each scan of t he  outermost 
loops. Dependence vectors can be flow, anti  or output dependences but they are always 
lexicographically positive: therefore, the  expanded dependence graph is acyclic ;and the  
reduced dependence graph has no cycle of null weight. 

In a SURE, the  order of computations is an implicit order: the  left-hand side of each 
equation can be computed only if all arguments of the  right-hand side have been computed. 
All dependence vectors can be seen as flow dependences, since values are used after being 
computed, bu t  they d o  not have to be lexicographically positive. The  main consequence is 
t ha t  a SURE is not always computable. 

In this sense, t he  framework of SURE is a more general framework than  perfect1:y nested 
loops with uniform dependences. The  simple fact, t ha t  t he  dependence vectors d o  not, have 
to be lexicographically positive leads to  two difficult problems: 

i. A SURE is not always computable: this problem is linked to the  problem of detecting 

ii. The  order of computations is implicit: building an  explicit order is linked to  the  
null weight cycles in the  reduced dependence graph G 

construction of multi-dimensional schedules as defined in section 2.2. 

The  goal of this paper is to show tha t  these two problems are actually dual problems 
and tha t  they can be solved efficiently by an algorithm based on a recursive decom,position 
of the  dependence graph G. 

'This was the main res& of Karp,  Miller and Winograd the computability of a SURE is decidable (and 
is in P).  However, for all known extensions of the model of SURE, the problem is undecidable (see [14]). 
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2.2: Schedules 

A schedule gives an explicit order of the computations described by a SURE. Among 
all schedules, schedules tha t  correspond to  loop executions are particularly interesting. A 
linear schedule (wave-front or hyperplane method [9, 3]), defined below, corresponds in 
term of loops to  the  possibility of rewriting a SURE with one outermost sequential loop 
and all parallel inner loops. However, such a schedule does not exist for all SUREs. When 
the  degree of parallelism contained in the SURE is not sufficient, one has to consider an 
extension of the  notion of schedule. called multi-dimensional schedule. 

One-dimensional schedules: A one-dimensional schedule is a mapping from V x Zn 
t o  Z t ha t  gives an execution order t o  the computation of each value v ( z )  while preserving 
dependence relations. Thus,  a function T ,  with values in Z, is a schedule if and only if for 
all iteration vectors p and q ,  for all variables v and tu: 

T ( v ,  p )  2 T(w, q )  + 1 whenever ( U ,  q )  4 ( U ,  p )  (1) 

where (w, q)  + ( v l p )  means tha t  V ( p )  depends on W(q) *. 

a schedule since 
Note tha t  if T satisfies inequalities 1 but takes i ts  values in Q instead of' Z, then [TI is 

T ( v , p )  2 T ( w ,  4) + 1 * T ( u , P )  2 1T(u3 d1 + 1 * l T ( v , ~ ) i  2 LT(u, 411 + 1 

For this reason, in the  rest of the  paper, we will be interested in rational functions tha t  
satisfy inequalities 1, since they are easier t o  build. We will call such functions rational 
schedules. 

One way of measuring the  performance of a schedule T is its latency L(T,  P ) ,  i.e the  
total  number of computation steps needed to  execute the  SURE on its iteration domain P 
according t o  the  schedule T :  L (T)  P) = # {T(V x P)}. 

Among all one-dimensional schedules, some interesting classes of schedules are linear 
schedules, shifted-linear schedules and affine schedules: a schedule is an affine schedule 
if it is a mapping T of the  following form (where X ,  G Q" and pv E Q): 

T :  V X Z "  + Q 
( V i  P )  --i X".P+ P" 

If all Xu are  equal, T is called a shifted-linear schedule, and if, moreover, all pu are null, 
then T is called a linear schedule. Note tha t  for shifted-linear schedules, inequalities 1 
reduces to: 

Ve E G, X . u ( e )  + mce) - Pt(e) 2 1 
Such a vector X is called a strictly separating hyperplane. When we just  have the  
relation X.w(e)  + ph(e)  - 2 0, X is said to  be a weakly separating hyperplane for 
edge e. 

Multi-dimensional schedules: We are now ready to define multi-dimensional sched- 
ules introduced by Karp, Miller and Winograd [6]. Rao [12] in the  context of SURE and 
Feautrier [5] in the  context of nested loops. 

2this notation implicitly implies that p ,  q E P ,  
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A multi-dimensional schedule (of dimension d )  is a mapping from V x Z" t o  Z d  
t ha t  gives an execution order t o  the  computation of each value x ( z ) ,  while preserving 
dependence relations. 

The  execution order is now a d-dimensional order, t ha t  we take to be the  strict lexico- 
graphic order Bl (so as  t o  correspond to the  execution of d nested loops): you can visualize 
this by saying tha t  the  successive components given by the  schedule correspond to days, 
hours, minutes, seconds, and so on . . . 

The  compatibility with dependence relations is not an inequality on values anymore, bu t  
on d-dimensional vectors and is expressed with >>l. The  constraints t o  be satisfied now are: 

T ( u , P )  >>l T(w,q) whenever (w,q) -$ ( v , ~ )  (2) 

t ha t  is to say: 

whenever (w, q )  + (w,p). As previously, integral schedules are extended t o  rational func- 
tions t h a t  satisfy constraints 3. 

Once again, things get simpler when considering particular schedules such as  affine multi- 
dimensional schedules defined as follows: a d-dimensional schedule is an affine schedule 
if i t  is a mapping T of the  following form (where X ;  E Q" and p: E Q): 

T : V x Z "  -+ Q d  

(01 P) + (X,'.P + p:, ' ' . I  Xud.P + 43 
When all vectors X i  are  equal, inequalities 3 reduce to: 

Ye E E ,  3k,, 15 IC ,  5 d such tha t  
vi, 15 i < IC ,  X* .w(e)  + P i $  --& = 0 i X k = . 4 e )  i- &) 2 1 

Thus,  t he  existence of such multi-dimensional schedules is strongly related t o  the  notion 
of weakly and strictly separating hyperplanes. The  objective of this paper is to build such 
schedules and to show the  link between their dimension and the  parallelism contained in 
the  SURE. 

3: Detection of null weight cycles in a SURE 

Consider a system of uniform recurrence equations defined by i ts  iteration domain P and 
its  reduced dependence graph G. When P is bounded, the  system is computable if and 
only if t he  expanded dependence graph has no cycle. When the  SURE is not computable, 
there is a cycle in the  expanded dependence graph: therefore, G has a cycle of null weight. 
Conversely, if G has a null weight cycle, one can build a dependence cycle in P - if P is 
sufficiently large so t ha t  boundary problems can be avoided. 

Therefore, we will assume in the  following tha t  P is bounded and sufficiently large, so 
tha t  t he  SURE is computable if and only if G has no cycle of null weight. 

In this section, we recall how the  problem of detecting null weight cycles in a reduced 
dependence graph can be solved, by an  algorithm first proposed by Karp, Miller and Wino- 
grad [6], then studied among others by Rao [12], Kosaraju and Sullivan [7], Cohen and 
Meggido [2]. We also give an  interpretation of the  number of recursive calls in the  algo- 
rithm: we show t h a t  i t  is linked t o  the  inherent sequentiality contained in the  SURE. 
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3.1: Definitions and notations 

Matrix notations: We denote by C the  connection matrix of the  reduced dependence 
graph G, defined as follows: each row of C corresponds t o  a vertex of G and each column 
of C t o  an edge of G. If the  j - t h  edge of G is oriented from vertex i t o  vertex k, then we 
let Ci,i = -1 and Ck,j = +1, otherwise for all 1 { i , k } ,  we let Ci,j = 0. A special case 
exists for self-dependence edges for which we let C ' , j  = 0, for all 1. 

We denote by D t h e  dependence matrix whose columns are the  dependence vectors. 
Of course, edges of G are  considered in the  same order for D and for C. 

Finally, we denote by B;  the  block matrix whose first rows are the  rows of C and whose 
last rows are  the  rows of D. 

Example: For our example (given by figure 1) with 2 vertices and 4 edges, we have: 

0 - 1 0 1  

-1 0 1 0  
C=[" '  ' 1  D = [ 0  1 0 0 1  B = [ g ]  0 1 0 - 1  

Subgraph of null weight multi-cycles: The  previous matrix notations allow us  t o  
formulate the  notion of multi-cycle of null weight. A multi-cycle is a union of cycles, not 
necessarily connected. If there exists a vector q (with non negative integer components) 
such t h a t  Cq = 0, then G has a multi-cycle tha t  uses q, times the  i-th edge of G. Moreover, 
if Dq = 0 (thus Bq = 0),  then the  multi-cycle is a multi-cycle of null weight. Thus, 
detecting a null weight multi-cycle can be easily done by checking if the  following system 
has a rational solution: 

( q 2 0 ,  4 # 0 ,  & = O }  (4) 
(If there exists a rational solution, then by scaling i ts  components, there exists an integral 
solution). 

However, detecting a null weight cycle is much more difficult. Every null weight cycle 
is a null weight multi-cycle but the  converse is not necessarily true. However, when all 
edges of a null weight multi-cycle form a strongly connected graph, a null weight cycle can 
be found as will be stated in lemma 1. This is the  underlying idea of the decomposition 
algorithm of Karp,  Miller and Winograd. 

Let G' be the  subgraph of G induced (by the  residual edges), after all edges in G t h a t  
belong t o  any null weight multi-cjcles have been deleted. In [6], this is achieved by testing, 
for each edge e,, whether t h e  system 4 has a feasible solution with qs > 0. We will show in 
section 4 t h a t  G' can be built more efficiently by solving only one linear program. 

3.2: Decomposition algorithm 

Determining if a SURE is computable can be done by applying the  following algorithm 
t o  its dependence graph G. 

Algorithm: 
i. Decompose G into strongly connected components GI,  Gz, . . . , G,, and call step (ii) 

ii. Build G' the  subgraph of G generated by all edges t h a t  belong t o  a null weight multi- 
on each G,. 

cycle of G. 
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If G‘ is strongly connected then G is not computable. 

If G’ is an  empty graph, G is computable. 

Otherwise call s tep  (i) on G’. 

We will see in section 5.3 how t h e  decomposition algorithm works on our example. 
T h e  correctness of the  algorithm is based on several lemmas, proved in [6] and reformu- 

lated in [4]. T h e  most important  lemma is the  following one: 

Lemma 1 (Karp, Miller and Winograd) If the subgraph G‘ of a graph G is strongly 
connected, G has a null wezght cycle. 

Corollary 1 The  decomposition algorithm is correct. 

Proof: Note first t h a t  t h e  decomposition algorithm always ends, when applied t o  a finite 
graph. When step (ii) is applied t o  a graph G, either the  algorithm ends because G‘ is 
strongly connected or null, or step (ii) is called on strictly smaller subgraphs of G: (the 
strongly connected components of G’). 

If t h e  decomposition ends because one of the  G: is strongly connected, then G: has a null 
weight cycle as shown by lemma 1 and so does G. The  corresponding SURE is not com- 
putable. On t h e  other hand, if all recursive calls end because the  corresponding subgraphs 
G: are  empty, G has no null weight cycle and the  corresponding SURE is computable. 0 

We denote by d the  depth of the  decomposition algorithm, i.e. t h e  longest sequence of 
recursive calls, except if all vertices are “lonely” (in the  sense t h a t  no edge passes through 
them) in which case we let d = 0. 

4: Construction and properties of G’ 

In this section, we show how t o  build G‘ efficiently (by one linear programming problem 
instead of one per edge as in [ 6 ] ) .  Furthermore, we show t h a t  this construction is closely 
related t o  t h e  construction of weakly and strictly separating hyperplanes and thus t o  affine 
multi-dimensional schedules. 

4.1: Linear program for building G‘ 

Step (ii) of t h e  decomposition algorithm, which consists in the  construction of CY, can 
be done by solving only one linear program. We will show indeed t h a t  the  edges of G‘ are  
exactly t h e  edges e, for which w, = 0 in any optimal solution of linear program 5. 

min{ C5vi 1 q L O ,  v > O ,  q + v ? I ,  B ~ = o  } (5) 
Note first t h a t  linear program 5 has a finite solution: q = 0 with ’U = 1 is indeed a 

solution. 
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L e m m a  2 For any  optamal solutaon ( q ,  v) of program 5.  

0 q ,#O*v ,=O.  
0 q , = O * w v , = l .  

v,=Owee, E G '  

Therefore, solving program 5 gives directly G': the  edges of G' are the  edges e, such tha t  
v, = 0. 

4.2: I n t e r p r e t a t i o n  of t h e  dual 

Now, to better understand what is behind this linear program, let us consider i ts  dual. 
Program 5 can be written in a canonical form as: 

min{  Civi 1 4 2 0 ,  v E O ,  w > O ,  q + v = I + w ,  Bq=O } ( 6 )  

I t s  dual can be written (after some manipulations) as: 

where inequality zi 2 0 corresponds to  variable tuir inequality zi 5 1 to  variable vi while 
inequality X.w(ei)  + p ~ ( ~ , )  - pt (e , )  2 2% corresponds to  variable qi .  The  dual solution has 
an  interesting property as  shown by the following lemma. 

L e m m a  3 For any  optimal solution ( z ,  X ,  p)  of the dual program 7: 

Lemma 3 shows tha t  considering the  dual provides separating hyperphnes,  which a re  
strictly separating hyperplanes for the  edges not in G' and weakly separating hyperplanes 
for edges in G'. Furthermore, for each subgraph G tha t  appears in the decomposition, these 
hyperplanes are those tha t  are the  "most often strict": the  number of edges, for which such 
an  hyperplane is strict, is maximal. 

During the  decomposition algorithm, one can associate t o  each vertex v of G, a sequence 
of vectors X,', . . . , X,"., obtained by considering the dual problem 7. d, is the  depth of t he  
decomposition algorithm at which vertex v is removed. This sequence of vectors has the  
following property: 

T h e o r e m  1 T h e  d, - 1 first separating hyperplanes X:, . . . , Xid"-')  associated to a uer- 
tex v of G are linearly independent. Furthermore, when G is computable, all separating 
hyperplanes X; ,  . . . , X,". associated t o  u are linearly independent. 
Note tha t  this implies t ha t  t he  depth of the  decomposition is bounded by n + 1 (and even 
by n when G is computable). This permits t o  give an upper bound on the time complexity 
of the  decomposition algorithm (see [4]). 

Remark: in practice, linear programs 5 and 7 can be simplified by replacing Cq = 0 by 
4 = / 1 1 q 1 + .  . .+pmqrr. where q1, . . ., qm form a basis of cycles. This reduces the  number of 
inequalities in program 5 and the  number of variables in program 7 (constants p disappear in 
t,his new formulation). The  constants p can then be computed by an algorithmic approach, 
less expensive than  a linear programming resolution, simply by computing the longest paths 
in a graph similar t o  G but where edge ei has a weight equal t o  z, - X . w ( e , )  (Bellman-Ford 
algorithm). This is roughly the  way we implemented it. 
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5: Optimal multi-dimensional schedule for a computable SURE 

We are  now ready t o  use the  dual interpretation of Karp, Miller and Winograd's algorithm 
for building nearly optimal multi-dimensional schedules. 

5.1: Construction of a &dimensional schedule 

Consider a computable dependence graph G and assume first t h a t  G is strongly con- 
nected. We apply t o  G the  decomposition algorithm, focusing this time on the  dual pro- 
gram 7. 

We build for each vertex v of G, the  sequence of vectors X:,  . . . , Xtu and the  sequence of 
constants p:, . . . , p t u ,  obtained by considering the  dual program 7 during the  decomposition 
algorithm. For each vertex U ,  we complete the  sequences of vectors X i  and constants pi, 
with zeros so as  t o  obtain sequences of length d.  This defines a function T :  

T :  V X P  ---t Q d  

(2)) P) -+ (X:.Ptpt, . .. ' XUd".Ptd", 0, . . ' ,  0) 

Lemma 4 T defines a multi-dimensional schedule. 

Proof: We just  have t o  show t h a t  for all edges e ,  for all p E P :  

T ( h ( e ) , p )  >i T ( t ( e ) , p -  4.1) 
G is computable, thus the  decomposition algorithm ended because all the  leaves of the  

calling tree ended with an  empty G'. Thus, at some level of the  decomposition, edge e has 
been removed. Let k be the  level where edge e has been removed, i.e. e E Gk but  e # G;. 
By construction, until level k ,  h(e)  and t ( e )  belong t o  the  same subgraph of G, thuci their 
sequences of vectors Xi are the  same until level k :  

Xi(.) = Xi(.) = X ' ,  . . . , Xh"(.) = x&, = X k  (10) 

Furthermore, until level k - 1, vectors X i  are weakly separating hyperplanes for ledge e 
and at level k ,  since e has been removed, X k  is a strictly separating hyperplane for edge e .  
Thus, t h e  i- th component (i < k )  of T ( h ( e ) , p )  - T ( t ( e ) , p -  w(e)) is equal to: 

(x2J+ Ph(,)) - (x% - 4 e ) )  + Pl(,)) = Xi. .w(e)  + P&,) - 

(Xk .P+ Pi(p)) - (Xk.(P - d e ) )  + f&) = X".w(e) +&) - 

= 0 

and t h e  k-th component satisfies: 

2 1 

Finally, whatever are t h e  rests of the  sequences Xh[,,, Xk,,, p&,) and p t ( e )  after lmevel I C ,  
one has T ( h ( e ) , p )  >>i T ( t ( e ) , p )  for all p E P. The dependence corresponding t o  edge e is 
satisfied a t  level k .  0 

Remarks: 

T h e  separating hyperplanes X t h a t  define T are obviously not unique: once we know 
which edge corresponds t o  an equality like 8 and which one corresponds t o  an  inequal- 
ity like 9, one can choose another objective function than E, zz. One can for example 
t ry  t o  minimize the  latency corresponding to the  vector X ,  i.e. maxpEp, q E p  X. (p -q ) .  
See 131 for this kind of optimization. 
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0 T h e  multi-dimensional schedules so obtained are not arbitrary schedules: they are 
indeed at each level affine schedules whose linear part is the same on the current 
graph Gk (see equation 10). We call them, locally shifted-linear schedule. This is an  
important property in practice, because it does not generate too complicated results, 
t h a t  would be difficult t o  use. 

When the  dependence graph has more than one strongly connected component, we first 
schedule independently each strongly connected component with a multi-dimensional sched- 
ule built as above. Then,  we schedule them with respect to each other by a topological sort  
on the  acyclic graph constitued by the strongly connected components. 

5.2: Longest dependence path in a SURE and latency of the multi-dimensional 
schedules 

Once we know t h a t  a syst,em of uniform recurrence equations is computable or not, it is 
interesting t o  give an idea of the length of the longest path in the expanded dependence 
graph. This length gives a lower bound on the sequentiality of the system of recurrence 
equations and thus gives also an upper bound 011 the parallelism it contains 

In [3], it is shown tha t  for a single uniform recurrence equation, this length is equivalent 
t o  the  latency of the optimal linear schedule, on full dimensional polyhedra whose size 
tends t o  infinity. To say it briefly, on domains of size parameterized by N ,  the latency of 
the optimal linear schedule is equivalent t o  A N  for some constant X and so does the length 
of the longest dependence path.  Both are in N and the multiplicative constants X are the  
same. 

Here, in a SURE, when linear schedules do  not always exist, the length of the longest 
path is not necessarily linear in N anymore, it can be equivalent t o  kNP for some constants 
k and p .  We will not t ry  t o  be precise on the multiplicative constant. k ,  we will just focus 
on p ,  the power of N .  

Consider a SURE defined in Z" by an iteration domain P and a dependence graph G. 
Suppose t h a t  17 contains a n-dimensional cube of size Ai (thus P is full dimensional) and 
is contained in a n-dimensional cube of size A N ,  for some constant X 2 1. With these 
hypot,hesis, the link between the latency of the multi-dimensional schedules we built, and 
the  length of the longest dependence path is given by the following theorem: 

Theorem 2 The "&-dimensional schedule built in section 5 is nearly optimal: i f d  is the 
depth of the decomposition algorithm, the latency of the schedule is O ( N d )  and the length 
of the longest dependence path is Q ( N d ) .  

This means t h a t  the system of uniform recurrence equations corresponding t o  G contains 
a parallelism of degree ( n  - d) and tha t  we are able to find it. 

5.3: Example 

We now go back t o  our example (given in section 2.1). 

Decomposition: In practice, t o  check the computability of the studied SURE, we need 
t o  apply the decomposition algorithm of subsection 3.2 and thus t o  solve the following 
linear program (linear program 5 ) :  

m i n i  CIw, I Q > O ,  v > O ,  q + v > 1 ,  B q = O  } 
3see [13] for a definition of the dimension of a polyhedron 
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I b' I 

This means tha t  only the  self-dependences are members of G', the  subset of the  edges of 
G which can participate t o  a null-weight multi-cycle. The  same study is made on the  two 
strongly connected components of G'. Each one contains one of the  two self-dependences 
of G. As none of these self-dependences is null, none of the  connected components of 
G' contains a null-weight multi-cycle. The theoretical results previously presented let us 
conclude tha t  the  studied system of uniform recurrence equations is computable. As the  
decomposition algorithm stops at depth 2, there exists a multi-dimensional schedule whose 
latency is O ( N 2 )  and a dependence path of length R(N2). 

The decomposition is illustrated by the  figure 1. 

GraphcG Graphhc U' 

Figure 1 .  Decomposition of the dependence graph 

Multi-dimensional schedule: Hence, we are assured of the  computability of the  SIJRE. 
"e now have to build a multi-dimensional schedule, and thus to  solve the  linear progra,m 7. 
In our example, we choose as an  objective function t o  minimize E, I X J ,  the  norm of the  
vector X so as to get not too complicated results. Note tha t  if the  iteration domain is a 
cube, this is equivalent t o  minimizing the latency. 

Now, because of lemma 3, we have to find a solution to the  system: 

If we note X = [z, y, z ] ,  this system can be re-written as follows: 

The  optimal solutions of this linear program is: X = [O, 2 ,  01, pa = 0, p b  = 1. 
To this point,, we have solved the  problem on two of the four edges. We have then 

to work recursively on the  remaining strongly connected components of G', but in this 
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caSe these components are very simple and the linear programs are trivial: for the  con- 
nected component which only contains the  dependence [0, 0,  11, an optimal solution is 
X = [0, 0, l] ,pa  = 0, and for the  connected component which only contains the depen- 
dence [0, 0, -11, an  optimal solution is X = [0,  0, -I] > p b  = 0. 

The  final result is thus  the  following: 

constant parts 

and ,  if P is the  3-dimensional cube of size N ,  it leads to  the  following nested loops: 

for j = 1 to N (vector ( 0 , 2 ,  O), constant 0) 
for k = 1 to N (vector (0,0, 1)) 

forall i = 1 to N 

endforall 
a(i, j ,  k) = b(i+l,  j-1, k) + a(i, j ,  k-1) 

endfor 

for k = N to 1 
(vector ( 0 , 2 ,  Oj, constant 1) 

(vector (0,O; -1)) 
forall i = 1 to N 

endforall 
b(i, j ,  k)  = a(i-1, j ,  k )  + b(i, j ,  k + l )  

endfor 
endfor 

6: Conclusion 

The  results presented in this paper are mainly based on Karp, Miller and Winograd’s 
decomposition algorithm which decides if a system of uniform recurrence equations is com- 
putable or not. We first showed how this algorithm can be efficiently implemented by 
linear programming resolutions. Then, by an interpretation of the dual linear programs, 
we explained how to build multi-dimensional schedules tha t  express explicit orders of com- 
putations for a computable system of uniform recurrence equations. 

The  first interest of this resolution is that we are able to  guarantee the  quality of such 
schedules: they a re  indeed nearly optimal in the  sense tha t  their latency and the  length of 
the  longest dependence paths are of  the  same order. The schedules tha t  we obtain reveal 
the  maximal degree of parallelism contained in the SURE, while the  longest dependence 
paths reveal t he  maximal degree of sequentiality in the SURE. 

The  second interest, and in our opinion not the  less important,  is tha t  such schedules have 
a very particular structure: we called them locally shifted-linear schedules. Tha t  means tha t  
there is no need to  look for complicated schedules such as arbitrary affine multi-dimensional 
schedules. The  resolution gives directly the  simpliest form tha t  can be considered to keep 
optimal latency. The  simplicity of the  results has to be taken into account, since the  final 
goal is t o  use such schedules to generate code. The  simpler the schedule, the  easier the  
implementation, the  better the  chance of further optimizations. 
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Because of space limitation, we did not address in this paper the possible applicatioiis of 
this construction of schedules. Actually, the initial motivation of this work was not in the 
context of systems of uniform recurrence equations but in the context of nested loops. Our 
goal was t o  find a way to parallelize arbitrary nested loops, especially when dependences 
are not uniform but are expressed as direction vectors or dependence cones: our idea was 
to try t o  extend linear scheduling methods. Finally, we found much more than what was 
expected: based on this study of Karp, Miller and Winograd’s decomposition, we are now 
able t o  propose a new and optimal parallelization technique for nested loops. The main 
idea is t o  transform the dependence graph associated to the nested loops into an equivalent 
dependence graph where all dependences are uniform but not necessarily lexicographically 
positive, i.e. nothing but the dependence graph of a SURE on which we apply the techniques 
presented in this paper. We refer t o  [4] for more details. 

We believe t h a t  this approach is a very promising approach since it can be proven optimal 
with respect t o  the quality of the dependence analysis. 

Dedication 
ago. Hem6 was a bright researcher in the field of systolic methodology design. 

We would like t o  dedicate this work t o  Her& Le Verge who died a few months 
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