
On ithe removal of anti and output dependences 

Pierre-Yves Calland Alain D a r t e  Yves Robert  
Frdddric Vivien’ 

Laboratoire LIP, URA C N R S  1398 
Ecole Normale SupCrieure de Lyon, F - 69364 LYON Cedex 07 

e-mail: Firstname.Lastname@lip.ens-1yon.fr 

Abstract 

I n  this paper we build upon results of Padua and Wolfe [9], who introduce two graph 
transformations to eliminate anti and output dependences. We first give a unified frame- 
work for such transformations. Then, given a loop nest, cue aim at determining which 
statements should be transformed so as to break artificial q c l e s  involving anti or output 
dependences. The problem of finding the mininum number of statements to (5e transformed 
is shown to be NP-complete in  the strong sense, and we propose two efficient heuristics. 

Key-words: node splitting, anti dependences, output dependences, depen- 
dence graph, NP-completeness, heuristics. 

1: Introduction 

Flow dependences are the  only “true” dependences of a program. Anti delpendences and 
output dependences are due t o  storage re-use and can be eliminated at the price of more 
memory usage. Removing anti and output dependences may prove very useful t o  break data  
dependence cycles and thereby enabling vectorization and/or improving parallelization. 

Many papers have been devoted to  the problem of eliminating anti and output de- 
pendences. Proposed methods include “array d a t a  flow analysis” [5, 81, “array privati- 
zation” [7],  “variable expansion” [3], “variable renaming” [9] and “node splitting” [9]. See 
the survey papers of Banerjee, Eigenmann, Nicolau and Padua [2] and Bacon, Graham and 
Sharp [1], as well as the books of Wolfe [15] and Zima [16], for further references. 

In this paper we build upon results of Padua and Wolfe [9], who introduce two graph 
transformations to  eliminate anti and output dependences. We first give a unifed framework 
for such transformations in Section 2. Then, given a loop nest we aim at determining which 
statements should be transformed so as to break artificial cycles involving anti or output 
dependences. The problem of finding the mininum number of statements to be transformed 
is shown to be difficult: in Section 3, we prove i t  NP-complete in the  strong sense. This 
justifies the intioduction of heuristics in Section 4. Finally, we give some conclusions in 
Section 5. 
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2: Graph transformations 

2.1: Two well-known elementary transformations 

Padua and Wolfe [9] propose two transformations to  break da ta  dependence cycles in the 
presence of anti or output dependences. These transformations are best illustrated with 
the original examples of their paper. 

Anti dependences 

Consider the following loop, denoted as L1: 
for i := 1 to N do 

SI: .(i) := b ( i )  + c( i )  
s,: d ( i )  := ( a ( i )  + a ( i  + 1)) /2  

There is a flow dependence from SI t o  Sz because SI writes a ( i )  and S, uses it immedi- 
ately after. There is also an anti dependence from S, to SI because a( ;  + 1) must be read 
in Sz before being written in SI at the  next iteration. As a consequence, there is a d a t a  
dependence cycle, as illustrated’ in Figure l ( a ) .  

(4 (b) 

Figure 1. Dependence graph of loop nest L1: (a) before transformation; (b) after 
transformation. 

The cycle can be broken by inserting a new assignment to a compiler temporary array 
as follows: 

for i := 1 to N do 
Si: t e m p ( i )  := a( i  + 1) 
Si: a ( i )  := b ( i )  + c ( i )  
s,: d ( i )  := ( a ( i )  + t e m p ( i ) ) / 2  

There is now an extra dependence (the flow of the temporary from Sg to S,) but the new 
dependence graph has no cycle (see Figure l (b ) ) .  Therefore the new loop can be directly 
vectorized: 

Sh: t emp(1  : N) := a(2 : N + 1) 
SI: a ( 1  : N) := b ( 1  : N) + c(1 : N )  
S,: d(1  : N )  := ( a ( 1  : N )  + t emp(1  : N ) ) / 2  

Output dependences 

In the presence of a d a t a  dependence cycle due to an output dependence, a similar 
transformation can be performed. Consider the following loop, denoted as L2:  

’In all figures, flow, anti and output dependence edges are labeled with a “j”, a “o”and a “~”respectively. 
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for i := 1 to N do 
SI: a ( i )  := b ( i )  + ~ ( i )  
s z :  u ( i  + 1) := u ( i )  + 2 x d ( i )  

There is an output dependence from Sz to SI because a( i  + 1) is written in Sz before 
being re-written i n  SI at the next iteration. We still have a flow dependence from SI to 
Sz because of ~ ( i ) ,  hence the dependence graph of Figure 2(a). Now, adding a, temporary 
array leads to the following loop: 

for i := 1 to N do 
S::  t e m p ( i )  := b ( i )  + c ( i )  
Sz: a ( i  + 1) := t e m p ( i )  + 2 x d ( i )  
SI: a( i )  := t e m p ( i )  

The new loop has no cycles (see Figure 2(b)) and therefore can be vectorized. 

f f 

Figure 2. Dependence graph of loop nest L2:  (a) before transformation; (b) after 
transformation. 

To summarize this section, we see tha t  both transformations have brokein a cycle in 
the dependence graph, thereby enabling vectorization and/or improving parallelization. Of 
course the price to  pay is an increase in the memory requirements. In both cases, we have 
used an extra temporary array. In Section 2.2, we give a unified framework for generalizing 
Padua and Wolfe's transformations. 

2.2: A unified t:ransformation 

We unify the two transformations of the previous section in a general setting. Then we 
identify the transformations induced on the dependence graph, and we formally state the 
problem of minimizing memory overhead when removing anti and output dependences. 

2.2.1 Defining the transformation 

Consider the following loop Ls: 

for i := 1 to N do 

sk: Ihs ( f ( i ) )  = rhs( .  . .) 

and assume we w.ant t,o remove some anti and output dependences due to the  access to the 
array lhs2 in statement Sk (say because there are cycles due to  such dependences in the 
dependence graph). W h a t  would be the effect on the dependen(:e graph of a transformation 
like: 

*lhs and rhs  stand far left-hand side and right-hand side respectively. 
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for i := 1 to N do 

SA: t e m p ( f ( i ) )  = rhs(.  . .) 
Sk: Ihs( f ( i ) )  = t e m p ( f ( i ) )  

Note tha t  we simply evalua.te the right hand side into a new temporary array t e m p  which 
we copy back to Ihs. Of course, any access to an array element Ihs(g( i ) )  tha t  depends upon 
the value calculated in statement Sk should be replaced by t e m p ( g ( i ) ) .  Thus we need t o  
know what are the statement instances which depend upon the value calculated in statement 
SL, and we may have to rely on a powerful dependence analyzer such as Tiny [14], Petit [lo], 
Par t i ta  [ll], PAF [13] or PIPS [12] (to quote but a few). 

Our 
discussion is presented for a single loop, but all results hold for several nested loops. The 
loop nest need not be perfect or uniform or whatever, what really matters is the availability 
of a good dependence analyzer capable of providing sources and sinks of all dependences. 
We d o  have a restriction, however: to  perform our transformation we must assume tha t  
the access function f t o  the left-hand side array Zhs is one-to-one. The reason for this is 
explained below in Section 2.2.2, when discussing self output  dependences. Note tha t  the 
two transformations of Padua and Wolfe have the same requirement. 

Before going further, we point out  tha t  the loop nest can be multidimensional. 

2.2.2 Applying the transformation 

Consider statement s k  in loop L3.  There can be flow, anti and output dependences going 
to or coming from S k ,  hence six kinds of arrows' in the  dependence graph (see Figure 3). 
We discuss hereafter the impact of our transformation on each of these arrows. Of course 
there is a new flow dependence fnew from SA to Sk. Note also tha t  there is no self output 
loop on SL because we have supposed tha t  the  access functions to the left-hand side arrays 
are one-to-one. 

fout aout Oout 

fin f0"t 

kii '  
S'- - 

aout 

fnew 

s '.A 

a .  i n -  -A 

Oout ..7 
'in . 

(a) (b) 

Figure 3. A statement S with in-coming and out-going dependences a) before and b) 
after transformation. 

0 In-coming flow dependence (Figure 4).  One of the da ta  read in the right-hand 
side of statement Sk was previously produced in the left-hand side of a statement 

31n the figure f tn  stands for an in-coming flow dependence, fout stands for an out-going flow dependence, 
and so on. 
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S,. After the transformation, the da ta  is read in the right-hansd side of statement SA. 
Thus there is a flow dependence from SI to SA. 

S ,  : rhs( ...) = 

f," \ S,  : rhs( ...) = 

s;: temp(f(i)) = rhs( ...) 

sk : Ihs(f(i)) = rhs( ...) \* 
S k : Ihs(f(i)) = temp(f(i)) 

-igure 4. In-coming flow dependence a) before and b) alter transformation. 

In-coming anti dependence (Figure 5). A statement Si reads I h s ( f ( i ) )  before ,Sk 
writes it. After the transformation, Ihs ( f ( i ) )  is still read by SI and is still written by 
Sk. Thus, the anti-dependence from S, to  SI, is left unchanged. 

s ,  : = lhs( ...) 

S,:  = lhs( ...) 

S : lhs(f(i)) = rhs( ...) 
S : lhs(f(i)) = temp(f(i)) 

(4 (b) 

Figure 5. In-coming anti dependence a) before and b) after transformation. 

In-coming output dependence (Figure 6) .  A statement S, writes l h s ( f ( i ) )  before 
Sk writes it. After the transformation Ihs ( f ( i ) )  is still written by Si and by Sk. So, 
there is an output deperidence from S, to  S C .  

S , :  lhs( ...) = 

S;: e m p ( f ( i ) )  = rhs( ...) 

S : lhs(f(i)) := temp(f(i)) 

S ,  : lhs( ...) = 

\ - l . f g e w  
(in 

S : lhs(f(i)) = rhs( ...) 

(4 (b) 

gure 6. In-coming output dependence a) before and b) alter transformation. 

Out-going flow dependence (Figure 7). A statement Si reads the value of Ihs ( f ( i ) )  
produced by S,. Thus the access to Ihs in S,, denoted Ihs(g( i ) ) ,  was replaced by an 
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access to temp,  denoted t e m p ( g ( i ) ) .  Now, as t e m p ( f ( i ) )  is written by SL, there is a 
flow dependence from SA t o  Sl. 

S ; :  temp(f(i)) = rhs( ...) 

S sk : c G f ( i ) )  

S I :  =Ihs( ... ) 

: lhs(f(i)) = rhs( ...) 

S , :  =temp( ...) 

(a) (b) 

Figure 7.Out-going flow dependence a) before and b) after transformation. 

Out-going anti dependence (Figure 8). One of the  d a t a  read in the right-hand side 
of statement Sk is written afterwards in a statement Si. After the transformation this 
d a t a  is read in the  right-hand side of statement SA. Thus there is an anti dependence 
from S: to SI .  

s;: temp(f(i)) = rhs( ...) 

S k : lhs(f(i)) = temp(f(i)) 

s k  : lhs(f(i)) = rhs( ...) 

1 : rhs( ...) = 

s : rhs( ...) = 

(4 (b) 

Figure 8. Out-going anti dependence a) before and b) after transformation. 

Out-going output dependence (Figure 9).  A statement Sl writes Ihs ( f ( i ) )  after 
SA writes it.  After the  transformation, Ihs ( j ( i ) )  is still written by S, and by SA. 
Thus, there is an output  dependence from Sk t o  Si. 

sk: temp(f(i)) = rhs( ...) 

s k : lhs(f(i)) = rhs( ...) bew bout S k : Ihs(f(i)) = temp(@)) 

s : lhs( ...) = 6 out 

S I  : lhs( ...) = 

(a) (b) 

Figure 9.Out-going output dependence a) before and b) after transformation. 

All these results are summarized in Figure 3. Note tha t  self loops are processed as the 
other edges: the less obvious c a e  is a self anti-dependence loop on statement S k ;  since it 
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comes from Sk and goes to Sk, it will be replaced by an anti d'ependence edge coming from 
SL and going to Sk.  

Next we show the usefulness of our transformation. If we transform all vertices of a 
dependence graph, then the only cycles that  may remain are pure flow dependence cycles 
(only made up with edges labeled f )  or pure output dependence cycles (only imade up with 
edges labeled o). See [4] for a proof of the following result: 

Theorem 1 Let C be the dependence graph of a loop nest L ,  and let G' be the graph 
obtained from G by transforming all its nodes. Then  a cycle C of G' is onhy composed of 
Pow dependences or is only composed of output dependences. Furthermore, C corresponds 
to  a cycle that was already a cycle of C .  

In other words, pure flow dependence cycles and pure output dependence cycles are 
not broken when transforming all vertices. But if the original dependence graph contains 
no such cycles, then the transformed graph is acyclic. In fact, from the point of view of 
breaking cycles, the transformation of a given vertex .U may be useful only if it has an 
incoming anti or output dependence edge, and an outgoing flow or anti dependence edge 
(see Figure 3 again). We can summarize th i s  discussion by the following schema: 

These are the only paths that  are broken by applying our transformation to vertex w. 

Determining the minimum number of vertices to  transform (i.e. the minimum number of 
temporary array;; to use) so that  the new dependence graph h.as only pure flow dependence 
cycles and pure output dependence cycles turns out to be a difficult problem. Before 
stating this formally, we work out an example, so as t o  illustrate our transformation and 
the heuristics intxoduced later. 

2.3: Target example 

Consider the following loop nest Lq: 
for i := 4 to N do 

s,: a ( i  + 5) := c ( i  - 3) + b(2i + 2 )  

s,: a ( i )  := c ( i  + 5 )  - 1 
s,: c ( i )  := b(2i  - 4) 

Sz: b ( 2 i )  := ~ ( i  - 1) + 1 

The dependence graph is represented in Figure 10. Thew are six dependences in the 

3 flow dependences from S, to Sz (because of array a) ,  from Sz to S,  (because of array 

2 anti dependences from SI t o  Sz (because of array b)  and from S, to S,  (because of 

1 output dependence from SI t o  S, (because of array a ) .  
Note that  Tiny [14] does find the six dependences listed above (see Table 1). In fact Tiny 

finds a seventh dependence (the second one in Table l), but recognizes that  this dependence 
is killed. Indeed, we might have found a flow dependence from S1 t o  Sz because a ( i  + 5 )  
is written in Si (i) (the i-th instance of S,) and used in S2( i  -1 6 ) .  But meanwhile, a ( ;  + 5 )  

loop: 

b ) ,  and from S4 to SI (because of array c ) ,  

array c ) ,  
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Figure 10. The target dependence graph before transformation. 

output 

- 2  -,-, 

Table 1. The dependences found by Tiny. 

is re-written in S3(i + 5), and this new value is used in Sz(i + 6) ,  hence the source of the 
dependence for using a ( i f 5 )  in Sz( i )  is S3(i+5) rather than Sl(i). In other words, this flow 
dependence is overlapped by the succession of the output dependence from S1 t o  S3 and of 
the flow dependence from S3 to S,. I t  turns out,  in our example, that  it is of tremendous 
importance to have an accurate dependence analyzer capable of detecting that  this seventh 
dependence is a false one. Otherwise we would have considered that  there is a pure flow 
dependence cycle in the dependence graph ! 

Consider the effect of transforming vertices Sz and S3 in the dependence graph. The 
new graph G‘ is represented in Figure 11. 

Figure 11. The target dependence graph after transforming Sz and S,. 

To illustrate the impact of transforming vertices S, and S3, we can rewrite the loop using 
the two temporary arrays a-temp (introduced to transform S,) and b-temp (introduced to  
transform S1): 
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for i := 4 to N do 
SI: a ( ;  + 5) := c ( i  - 3) + b(2i  + 2) , ,  ~ 

S;: b-temp(%) := 
if i 2 5 then’a-temp(i - 1) + 1 

else a ( i  - lj + 1 
S2: b(2i) := btemp(2i)  
Si: a-temp(i) := c ( i  + 5) - 1 
S,: a ( i )  := a-temp(i) 

if i 2 6 then b-temp(2i - 4) 
else b(2i - 4) s,: c ( i )  := { 

Note that  conditional statements are required to process dependences conling from sev- 
eral sources. 

3: NP-completeness 

In  this section we prove that  the problem of determining 1 he minimal number of state- 
ments to split with our transformation is NP-hard. First, we formally s ta te  the problem 
and then we prove that  the associated decision problem is NFcomplete by reduction from 
the 3-SAT satisfiability problem. This theoretical result states the complexity of the prob- 
lem and motiva1,es the search for efficient heuristics (see Section 4). Due to lack of space, 
all proofs are omitted (see [4]). However, we point out that  in the proof we use loop nests 
with anti dependences only. Even with this simple assumption, the problem still exhibits 
hard complexity. 

3.1: Problem statement 

Let G = (V, E ,  e )  be the dependence graph of a loop nest, L.  Vertices represent state- 
ments. Edges represent dependences between statements. The label of a n  edge is given 
by the function : E -+ {f,a,o} (flow, anti or output dependence). Our problem is t o  
determine the minimum number of statements which we should transform using the trans- 
formation of Figure 3 so that  there remains only pure flow dependence cycles and pure 
output dependence cycles. The associated decision problem can be stated as follows: 

Definition 1 Given a loop nest L (and its dependence graph G = (V, E,!)) and a non- 
negative integer bound I<, can we find k < IS vertices of G such that transforming these IC 
vertices leads to  a graph G’ where there remains only pure pow dependence cycles and pure 
output dependence cycles? (if the answer is yes, we say that L E PURE-CYCL(IS)). 

Theorem 2 PURE-CYCL is NP-complete ( in  the strong sense). 

4: Heuristics 

In this section we briefly sketch some heuristics to find out which vertices of the depen- 
dence graph G = (V, E )  of a loop nest should be transformed so that  there remains only 
pure cycles in CY. We give two heuristics, both quite natural. The first one might be very 
expensive in the worst case, but could he of interest for small dependence graphs. The 
second one always requires a polynomial time. It runs in time O(t’((iV1 + I I S l ) ) ,  where t is 
the number of t ransformd vertices, hence a worst  cas^ bound O(IV12(lVI + /E l ) ) .  

361 

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore.  Restrictions apply. 



4.1: A heuristic based on the hypergraph of the cycles of G 

The most natural heuristic is to build the hypergraph H = ( V , F )  of the cycles of G. 
F is defined as a collection of subsets { C V ,  where each { is the set of the vertices of 
an elementary cycle C of G. See Figure 12 for the hypergraph H of our target example. 
Furthermore each vertex v in { is marked breakable if C is broken when U is transformed, 
i.e. w is marked breakable if the in-coming edge of v in C is an anti or output dependence, 
and the out-coming edge a flow or anti dependence. 

Figure 12. Hypergraph of the target example. The three elementary cycles are shown 
with different arrow formats. 

Once H is built, we have to transform one breakable vertex per cycle, which is related 
to the NP-complete hitting set problem 16, problem SP81. Therefore we apply a greedy 
strategy and transform the vertex vo which belongs to,  and is breakable for, the maximal 
number of subsets { E F .  We delete all cycles that  are going through U,, and for which vo is 
breakable. We redo the opemtion until there remains no cycle in the graph with breakable 
vertices4. 

The drawback of this heuristic is its high cost in the worst case. The  number of cycles 
can be exponential in the size O(lVl+ /El)  of the graph, and the construction of H might 
therefore have a very high cost. 

The heuristic applied to the target example 

We show here the transformation of the target example of Section 2.3 using this heuristic. 
Figure 13 shows the hypergraph corresponding to t h e  dependence graph of Figure 10. The 
table below (Figure 14) shows for each vertex how many elementary cycles include it as a 
breakable vertex. 

According to this table, the heuristic first transforms node Ss. The hypergraph of the 
new graph is shown in Figure 13. As the hypergraph still contains breakable nodes, and as 
Sz is the only breakable node, the heuristic transform Sz and stops. We obtain the same 
result as in Section 2.3 (see Figure 11). 

4.2: A polynomial-time heuristic 

Transforming a vertex may be useful only if the corresponding statement has a n  incoming 
anti or output dependence, and an outgoing flow or anti dependence. For each vertex v of 

4Here is a small improvement: search whether there exists a subset { E F which contains a single 
breakable vertex U; if such a vertex exists then transform it (because we have to break it later on anyway to 
delete the cycle); else search a vertex which belongs to  and is breaknbIe for the maximal number of subsets 
{ E F .  
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Figure 13. Hypergraph of the target example a) before transformation and b) after 
transformation of node SJ. 

Figure 14. Number of circuits which include a vertex as breakable. 

the dependence graph we can count its “utility”, i.e. the number Util(v) of pairs (ei,, eout) 
such that:  

1. e;, E E ,  e, ,  : ? -+ U and [(e,,) E {a,.} 

2. eovt E E ,  eout : v -+? and [(eout) E {f, a) 

We transform one of the vertices U such that  Util(v) is maximal. We obtain a graph 
G‘. We remove from G‘ all the edges which are not in a strongly connected ‘component. If 
there is at least one anti dependence edge in G’ or if G‘ has a n  elementary circuit which 
contains both an output dependence edge and a flow dependence edge, we apply recursively 
the heuristic on G‘. 

The strongly connected components of G’ can be built in O(lV1 + IEI). To check the 
presence of a n  elementary circuit which contains a n  output dependence edge and a flow 
dependence edge, we consider a vertex v with a n  incoming output dependence and an 
outgoing flow dependence. If there is a path from a vertex reached by an outgoing Row 
dependence of U t o  a vertex from which starts an incoming output dependence of w, and if 
this path does not include U, then G‘ contains a t  least one non pure circuit. ‘One can check 
the existence of such a path in one “smart” graph traversal, a,nd thus in time O(jVl+ IEI). 
As there are IV/ nodes, the total complexity of this circuit checking is O(lVl(lVl + IEI)). 

In the worst c.ase, all nodes will be transformed and the heuristic complexity is O(JV12(/VI+ 
IEI)). 

The polynomial-time heuristic on the target example 

We show here the processing of the target example of Section 2.3 by the polynomial heuris- 
tic. The table below shows the value of Uti/ for each of the graph vertices. 

Once again, S 3  is transformed first. The new graph has one strongly connected compo- 
nent with an anti dependence (from SI t o  Sz): the heuristic is applied once again. The new 
value of Uti1 is then: 
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WW] 
Thus the polynomial-time heuristic transforms Sz. We retrieve the same result as before. 

5:  Conclusion 

In this paper we have formalized Padua  and Wolfe’s transformation [9], to eliminate anti 
and output dependences. We have stated a complexity result tha t  shows the difficulty of 
the problem, even in the restricted framework tha t  we have considered. 

Note tha t  we have dealt with transformations which increase memory requirements only 
by a factor proportional to  the  number of statements. In the general case we also aim at 
suppressing output  dependence cycles, which may require array expansions, thus changing 
the order of magnitude for the memory requirements: e.g. for a single loop with IC state- 
ments, we might go from O ( k  x N )  memory units to  O ( k  x N 2 ) .  Further work will be 
devoted to the  systematic study of such transformations. 
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