
On ithe removal of anti and output dependences

Pierre-Yves Calland Alain D a r t e Yves Robert
Frdddric Vivien’

Laboratoire LIP, URA C N R S 1398
Ecole Normale SupCrieure de Lyon, F - 69364 LYON Cedex 07

e-mail: Firstname.Lastname@lip.ens-1yon.fr

Abstract

I n this paper we build upon results of Padua and Wolfe [9], who introduce two graph
transformations to eliminate anti and output dependences. We first give a unified frame-
work for such transformations. Then, given a loop nest, cue aim at determining which
statements should be transformed so as to break artificial q c l e s involving anti or output
dependences. The problem of finding the mininum number of statements to (5e transformed
is shown to be NP-complete in the strong sense, and we propose two efficient heuristics.

Key-words: node splitting, anti dependences, output dependences, depen-
dence graph, NP-completeness, heuristics.

1: Introduction

Flow dependences are the only “true” dependences of a program. Anti delpendences and
output dependences are due t o storage re-use and can be eliminated at the price of more
memory usage. Removing anti and output dependences may prove very useful t o break data
dependence cycles and thereby enabling vectorization and/or improving parallelization.

Many papers have been devoted to the problem of eliminating anti and output de-
pendences. Proposed methods include “array d a t a flow analysis” [5, 81, “array privati-
zation” [7], “variable expansion” [3], “variable renaming” [9] and “node splitting” [9]. See
the survey papers of Banerjee, Eigenmann, Nicolau and Padua [2] and Bacon, Graham and
Sharp [1], as well as the books of Wolfe [15] and Zima [16], for further references.

In this paper we build upon results of Padua and Wolfe [9], who introduce two graph
transformations to eliminate anti and output dependences. We first give a unifed framework
for such transformations in Section 2. Then, given a loop nest we aim at determining which
statements should be transformed so as to break artificial cycles involving anti or output
dependences. The problem of finding the mininum number of statements to be transformed
is shown to be difficult: in Section 3, we prove i t NP-complete in the strong sense. This
justifies the intioduction of heuristics in Section 4. Finally, we give some conclusions in
Section 5.

‘Supported by the CNRS-INRIA Project ReMaP and by the Eureka project EuroTOPS Pierre-Yves
Calland is supported by a grant of Rkgion RhBne-Alpes

1063-6862196 $5.00 0 1996 IEEE 353

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

mailto:Firstname.Lastname@lip.ens-1yon.fr

2: Graph transformations

2.1: Two well-known elementary transformations

Padua and Wolfe [9] propose two transformations to break da ta dependence cycles in the
presence of anti or output dependences. These transformations are best illustrated with
the original examples of their paper.

Anti dependences

Consider the following loop, denoted as L1:
for i := 1 to N do

SI: .(i) := b (i) + c(i)
s,: d (i) := (a (i) + a (i + 1)) /2

There is a flow dependence from SI t o Sz because SI writes a (i) and S, uses it immedi-
ately after. There is also an anti dependence from S, to SI because a(; + 1) must be read
in Sz before being written in SI at the next iteration. As a consequence, there is a d a t a
dependence cycle, as illustrated’ in Figure l (a) .

(4 (b)

Figure 1. Dependence graph of loop nest L1: (a) before transformation; (b) after
transformation.

The cycle can be broken by inserting a new assignment to a compiler temporary array
as follows:

for i := 1 to N do
Si: t e m p (i) := a(i + 1)
Si: a (i) := b (i) + c (i)
s,: d (i) := (a (i) + t e m p (i)) / 2

There is now an extra dependence (the flow of the temporary from Sg to S,) but the new
dependence graph has no cycle (see Figure l (b)) . Therefore the new loop can be directly
vectorized:

Sh: t emp(1 : N) := a(2 : N + 1)
SI: a (1 : N) := b (1 : N) + c(1 : N)
S,: d(1 : N) := (a (1 : N) + t emp(1 : N)) / 2

Output dependences

In the presence of a d a t a dependence cycle due to an output dependence, a similar
transformation can be performed. Consider the following loop, denoted as L2:

’In all figures, flow, anti and output dependence edges are labeled with a “j”, a “o”and a “~”respectively.

354

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

for i := 1 to N do
SI: a (i) := b (i) + ~ (i)
s z : u (i + 1) := u (i) + 2 x d (i)

There is an output dependence from Sz to SI because a(i + 1) is written in Sz before
being re-written i n SI at the next iteration. We still have a flow dependence from SI to
Sz because of ~ (i) , hence the dependence graph of Figure 2(a). Now, adding a, temporary
array leads to the following loop:

for i := 1 to N do
S:: t e m p (i) := b (i) + c (i)
Sz: a (i + 1) := t e m p (i) + 2 x d (i)
SI: a(i) := t e m p (i)

The new loop has no cycles (see Figure 2(b)) and therefore can be vectorized.

f f

Figure 2. Dependence graph of loop nest L2: (a) before transformation; (b) after
transformation.

To summarize this section, we see tha t both transformations have brokein a cycle in
the dependence graph, thereby enabling vectorization and/or improving parallelization. Of
course the price to pay is an increase in the memory requirements. In both cases, we have
used an extra temporary array. In Section 2.2, we give a unified framework for generalizing
Padua and Wolfe's transformations.

2.2: A unified t:ransformation

We unify the two transformations of the previous section in a general setting. Then we
identify the transformations induced on the dependence graph, and we formally state the
problem of minimizing memory overhead when removing anti and output dependences.

2.2.1 Defining the transformation

Consider the following loop Ls:

for i := 1 to N do

sk: Ihs (f (i)) = rhs(. . .)

and assume we w.ant t,o remove some anti and output dependences due to the access to the
array lhs2 in statement Sk (say because there are cycles due to such dependences in the
dependence graph). W h a t would be the effect on the dependen(:e graph of a transformation
like:

*lhs and rhs stand far left-hand side and right-hand side respectively.

355

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

for i := 1 to N do

SA: t e m p (f (i)) = rhs(. . .)
Sk: Ihs(f (i)) = t e m p (f (i))

Note tha t we simply evalua.te the right hand side into a new temporary array t e m p which
we copy back to Ihs. Of course, any access to an array element Ihs(g(i)) tha t depends upon
the value calculated in statement Sk should be replaced by t e m p (g (i)) . Thus we need t o
know what are the statement instances which depend upon the value calculated in statement
SL, and we may have to rely on a powerful dependence analyzer such as Tiny [14], Petit [lo],
Par t i ta [ll], PAF [13] or PIPS [12] (to quote but a few).

Our
discussion is presented for a single loop, but all results hold for several nested loops. The
loop nest need not be perfect or uniform or whatever, what really matters is the availability
of a good dependence analyzer capable of providing sources and sinks of all dependences.
We d o have a restriction, however: to perform our transformation we must assume tha t
the access function f t o the left-hand side array Zhs is one-to-one. The reason for this is
explained below in Section 2.2.2, when discussing self output dependences. Note tha t the
two transformations of Padua and Wolfe have the same requirement.

Before going further, we point out tha t the loop nest can be multidimensional.

2.2.2 Applying the transformation

Consider statement s k in loop L3. There can be flow, anti and output dependences going
to or coming from S k , hence six kinds of arrows' in the dependence graph (see Figure 3).
We discuss hereafter the impact of our transformation on each of these arrows. Of course
there is a new flow dependence fnew from SA to Sk. Note also tha t there is no self output
loop on SL because we have supposed tha t the access functions to the left-hand side arrays
are one-to-one.

fout aout Oout

fin f0"t

kii '
S'- -

aout

fnew

s '.A

a . i n - -A

Oout ..7
'in .

(a) (b)

Figure 3. A statement S with in-coming and out-going dependences a) before and b)
after transformation.

0 In-coming flow dependence (Figure 4). One of the da ta read in the right-hand
side of statement Sk was previously produced in the left-hand side of a statement

31n the figure f tn stands for an in-coming flow dependence, fout stands for an out-going flow dependence,
and so on.

356

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

S,. After the transformation, the da ta is read in the right-hansd side of statement SA.
Thus there is a flow dependence from SI to SA.

S , : rhs(...) =

f," \ S, : rhs(...) =

s;: temp(f(i)) = rhs(...)

sk : Ihs(f(i)) = rhs(...) *
S k : Ihs(f(i)) = temp(f(i))

-igure 4. In-coming flow dependence a) before and b) alter transformation.

In-coming anti dependence (Figure 5). A statement Si reads I h s (f (i)) before ,Sk
writes it. After the transformation, Ihs (f (i)) is still read by SI and is still written by
Sk. Thus, the anti-dependence from S, to SI, is left unchanged.

s , : = lhs(...)

S,: = lhs(...)

S : lhs(f(i)) = rhs(...)
S : lhs(f(i)) = temp(f(i))

(4 (b)

Figure 5. In-coming anti dependence a) before and b) after transformation.

In-coming output dependence (Figure 6) . A statement S, writes l h s (f (i)) before
Sk writes it. After the transformation Ihs (f (i)) is still written by Si and by Sk. So,
there is an output deperidence from S, to S C .

S , : lhs(...) =

S;: e m p (f (i)) = rhs(...)

S : lhs(f(i)) := temp(f(i))

S , : lhs(...) =

\ - l . f g e w
(in

S : lhs(f(i)) = rhs(...)

(4 (b)

gure 6. In-coming output dependence a) before and b) alter transformation.

Out-going flow dependence (Figure 7). A statement Si reads the value of Ihs (f (i))
produced by S,. Thus the access to Ihs in S,, denoted Ihs(g(i)) , was replaced by an

357

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

access to temp, denoted t e m p (g (i)) . Now, as t e m p (f (i)) is written by SL, there is a
flow dependence from SA t o Sl.

S ; : temp(f(i)) = rhs(...)

S sk : c G f (i))

S I : =Ihs(...)

: lhs(f(i)) = rhs(...)

S , : =temp(...)

(a) (b)

Figure 7.Out-going flow dependence a) before and b) after transformation.

Out-going anti dependence (Figure 8). One of the d a t a read in the right-hand side
of statement Sk is written afterwards in a statement Si. After the transformation this
d a t a is read in the right-hand side of statement SA. Thus there is an anti dependence
from S: to SI .

s;: temp(f(i)) = rhs(...)

S k : lhs(f(i)) = temp(f(i))

s k : lhs(f(i)) = rhs(...)

1 : rhs(...) =

s : rhs(...) =

(4 (b)

Figure 8. Out-going anti dependence a) before and b) after transformation.

Out-going output dependence (Figure 9). A statement Sl writes Ihs (f (i)) after
SA writes it. After the transformation, Ihs (j (i)) is still written by S, and by SA.
Thus, there is an output dependence from Sk t o Si.

sk: temp(f(i)) = rhs(...)

s k : lhs(f(i)) = rhs(...) bew bout S k : Ihs(f(i)) = temp(@))

s : lhs(...) = 6 out

S I : lhs(...) =

(a) (b)

Figure 9.Out-going output dependence a) before and b) after transformation.

All these results are summarized in Figure 3. Note tha t self loops are processed as the
other edges: the less obvious c a e is a self anti-dependence loop on statement S k ; since it

358

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

comes from Sk and goes to Sk, it will be replaced by an anti d'ependence edge coming from
SL and going to Sk.

Next we show the usefulness of our transformation. If we transform all vertices of a
dependence graph, then the only cycles that may remain are pure flow dependence cycles
(only made up with edges labeled f) or pure output dependence cycles (only imade up with
edges labeled o). See [4] for a proof of the following result:

Theorem 1 Let C be the dependence graph of a loop nest L , and let G' be the graph
obtained from G by transforming all its nodes. Then a cycle C of G' is onhy composed of
Pow dependences or is only composed of output dependences. Furthermore, C corresponds
to a cycle that was already a cycle of C .

In other words, pure flow dependence cycles and pure output dependence cycles are
not broken when transforming all vertices. But if the original dependence graph contains
no such cycles, then the transformed graph is acyclic. In fact, from the point of view of
breaking cycles, the transformation of a given vertex .U may be useful only if it has an
incoming anti or output dependence edge, and an outgoing flow or anti dependence edge
(see Figure 3 again). We can summarize th i s discussion by the following schema:

These are the only paths that are broken by applying our transformation to vertex w.

Determining the minimum number of vertices to transform (i.e. the minimum number of
temporary array;; to use) so that the new dependence graph h.as only pure flow dependence
cycles and pure output dependence cycles turns out to be a difficult problem. Before
stating this formally, we work out an example, so as t o illustrate our transformation and
the heuristics intxoduced later.

2.3: Target example

Consider the following loop nest Lq:
for i := 4 to N do

s,: a (i + 5) := c (i - 3) + b(2i + 2)

s,: a (i) := c (i + 5) - 1
s,: c (i) := b(2i - 4)

Sz: b (2 i) := ~ (i - 1) + 1

The dependence graph is represented in Figure 10. Thew are six dependences in the

3 flow dependences from S, to Sz (because of array a) , from Sz to S, (because of array

2 anti dependences from SI t o Sz (because of array b) and from S, to S, (because of

1 output dependence from SI t o S, (because of array a) .
Note that Tiny [14] does find the six dependences listed above (see Table 1). In fact Tiny

finds a seventh dependence (the second one in Table l), but recognizes that this dependence
is killed. Indeed, we might have found a flow dependence from S1 t o Sz because a (i + 5)
is written in Si (i) (the i-th instance of S,) and used in S2(i -1 6) . But meanwhile, a (; + 5)

loop:

b) , and from S4 to SI (because of array c) ,

array c) ,

359

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

Figure 10. The target dependence graph before transformation.

output

- 2 -,-,

Table 1. The dependences found by Tiny.

is re-written in S3(i + 5), and this new value is used in Sz(i + 6) , hence the source of the
dependence for using a (i f 5) in Sz(i) is S3(i+5) rather than Sl(i). In other words, this flow
dependence is overlapped by the succession of the output dependence from S1 t o S3 and of
the flow dependence from S3 to S,. I t turns out, in our example, that it is of tremendous
importance to have an accurate dependence analyzer capable of detecting that this seventh
dependence is a false one. Otherwise we would have considered that there is a pure flow
dependence cycle in the dependence graph !

Consider the effect of transforming vertices Sz and S3 in the dependence graph. The
new graph G‘ is represented in Figure 11.

Figure 11. The target dependence graph after transforming Sz and S,.

To illustrate the impact of transforming vertices S, and S3, we can rewrite the loop using
the two temporary arrays a-temp (introduced to transform S,) and b-temp (introduced to
transform S1):

360

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

for i := 4 to N do
SI: a (; + 5) := c (i - 3) + b(2i + 2) , , ~

S;: b-temp(%) :=
if i 2 5 then’a-temp(i - 1) + 1

else a (i - lj + 1
S2: b(2i) := btemp(2i)
Si: a-temp(i) := c (i + 5) - 1
S,: a (i) := a-temp(i)

if i 2 6 then b-temp(2i - 4)
else b(2i - 4) s,: c (i) := {

Note that conditional statements are required to process dependences conling from sev-
eral sources.

3: NP-completeness

In this section we prove that the problem of determining 1 he minimal number of state-
ments to split with our transformation is NP-hard. First, we formally s ta te the problem
and then we prove that the associated decision problem is NFcomplete by reduction from
the 3-SAT satisfiability problem. This theoretical result states the complexity of the prob-
lem and motiva1,es the search for efficient heuristics (see Section 4). Due to lack of space,
all proofs are omitted (see [4]). However, we point out that in the proof we use loop nests
with anti dependences only. Even with this simple assumption, the problem still exhibits
hard complexity.

3.1: Problem statement

Let G = (V, E , e) be the dependence graph of a loop nest, L. Vertices represent state-
ments. Edges represent dependences between statements. The label of a n edge is given
by the function : E -+ {f,a,o} (flow, anti or output dependence). Our problem is t o
determine the minimum number of statements which we should transform using the trans-
formation of Figure 3 so that there remains only pure flow dependence cycles and pure
output dependence cycles. The associated decision problem can be stated as follows:

Definition 1 Given a loop nest L (and its dependence graph G = (V, E,!)) and a non-
negative integer bound I<, can we find k < IS vertices of G such that transforming these IC
vertices leads to a graph G’ where there remains only pure pow dependence cycles and pure
output dependence cycles? (if the answer is yes, we say that L E PURE-CYCL(IS)).

Theorem 2 PURE-CYCL is NP-complete (in the strong sense).

4: Heuristics

In this section we briefly sketch some heuristics to find out which vertices of the depen-
dence graph G = (V, E) of a loop nest should be transformed so that there remains only
pure cycles in CY. We give two heuristics, both quite natural. The first one might be very
expensive in the worst case, but could he of interest for small dependence graphs. The
second one always requires a polynomial time. It runs in time O(t’((iV1 + I I S l)) , where t is
the number of t ransformd vertices, hence a worst cas^ bound O(IV12(lVI + /E l)) .

361

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

4.1: A heuristic based on the hypergraph of the cycles of G

The most natural heuristic is to build the hypergraph H = (V , F) of the cycles of G.
F is defined as a collection of subsets { C V , where each { is the set of the vertices of
an elementary cycle C of G. See Figure 12 for the hypergraph H of our target example.
Furthermore each vertex v in { is marked breakable if C is broken when U is transformed,
i.e. w is marked breakable if the in-coming edge of v in C is an anti or output dependence,
and the out-coming edge a flow or anti dependence.

Figure 12. Hypergraph of the target example. The three elementary cycles are shown
with different arrow formats.

Once H is built, we have to transform one breakable vertex per cycle, which is related
to the NP-complete hitting set problem 16, problem SP81. Therefore we apply a greedy
strategy and transform the vertex vo which belongs to, and is breakable for, the maximal
number of subsets { E F . We delete all cycles that are going through U,, and for which vo is
breakable. We redo the opemtion until there remains no cycle in the graph with breakable
vertices4.

The drawback of this heuristic is its high cost in the worst case. The number of cycles
can be exponential in the size O(lVl+ /El) of the graph, and the construction of H might
therefore have a very high cost.

The heuristic applied to the target example

We show here the transformation of the target example of Section 2.3 using this heuristic.
Figure 13 shows the hypergraph corresponding to t h e dependence graph of Figure 10. The
table below (Figure 14) shows for each vertex how many elementary cycles include it as a
breakable vertex.

According to this table, the heuristic first transforms node Ss. The hypergraph of the
new graph is shown in Figure 13. As the hypergraph still contains breakable nodes, and as
Sz is the only breakable node, the heuristic transform Sz and stops. We obtain the same
result as in Section 2.3 (see Figure 11).

4.2: A polynomial-time heuristic

Transforming a vertex may be useful only if the corresponding statement has a n incoming
anti or output dependence, and an outgoing flow or anti dependence. For each vertex v of

4Here is a small improvement: search whether there exists a subset { E F which contains a single
breakable vertex U; if such a vertex exists then transform it (because we have to break it later on anyway to
delete the cycle); else search a vertex which belongs to and is breaknbIe for the maximal number of subsets
{ E F .

362

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

Figure 13. Hypergraph of the target example a) before transformation and b) after
transformation of node SJ.

Figure 14. Number of circuits which include a vertex as breakable.

the dependence graph we can count its “utility”, i.e. the number Util(v) of pairs (ei,, eout)
such that:

1. e;, E E , e, , : ? -+ U and [(e,,) E {a,.}

2. eovt E E , eout : v -+? and [(eout) E {f, a)

We transform one of the vertices U such that Util(v) is maximal. We obtain a graph
G‘. We remove from G‘ all the edges which are not in a strongly connected ‘component. If
there is at least one anti dependence edge in G’ or if G‘ has a n elementary circuit which
contains both an output dependence edge and a flow dependence edge, we apply recursively
the heuristic on G‘.

The strongly connected components of G’ can be built in O(lV1 + IEI). To check the
presence of a n elementary circuit which contains a n output dependence edge and a flow
dependence edge, we consider a vertex v with a n incoming output dependence and an
outgoing flow dependence. If there is a path from a vertex reached by an outgoing Row
dependence of U t o a vertex from which starts an incoming output dependence of w, and if
this path does not include U, then G‘ contains a t least one non pure circuit. ‘One can check
the existence of such a path in one “smart” graph traversal, a,nd thus in time O(jVl+ IEI).
As there are IV/ nodes, the total complexity of this circuit checking is O(lVl(lVl + IEI)).

In the worst c.ase, all nodes will be transformed and the heuristic complexity is O(JV12(/VI+
IEI)).

The polynomial-time heuristic on the target example

We show here the processing of the target example of Section 2.3 by the polynomial heuris-
tic. The table below shows the value of Uti/ for each of the graph vertices.

Once again, S 3 is transformed first. The new graph has one strongly connected compo-
nent with an anti dependence (from SI t o Sz): the heuristic is applied once again. The new
value of Uti1 is then:

363

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

WW]
Thus the polynomial-time heuristic transforms Sz. We retrieve the same result as before.

5: Conclusion

In this paper we have formalized Padua and Wolfe’s transformation [9], to eliminate anti
and output dependences. We have stated a complexity result tha t shows the difficulty of
the problem, even in the restricted framework tha t we have considered.

Note tha t we have dealt with transformations which increase memory requirements only
by a factor proportional to the number of statements. In the general case we also aim at
suppressing output dependence cycles, which may require array expansions, thus changing
the order of magnitude for the memory requirements: e.g. for a single loop with IC state-
ments, we might go from O (k x N) memory units to O (k x N 2) . Further work will be
devoted to the systematic study of such transformations.

References

[l] David F. Bacon, Susan L. Graham, and Oliver J . Sharp. Compiler transformations for high-performance

[2] U. Banerjee, R. Eigenmann, A. Nicolau, and D.A. Padua. Automat,ic program parallelization. Pro-

[3] Thomas Brandes. The importance of direct dependences for automatic parallelization. In International

[4] Pierre-Yves Calland, Alain D a t e , Yves Robert, and Frkdkric Vivien. On the removal of anti and output

[5] Paul Feautrier. Datatlow analysis of array and scalar references. Int. J . Parallel Progrumming, 20(1):23-

[6] Michael R. Garey and Davis S. Johnson. Computers and Intractability, a Guide to the Theory of

[7] Jnnjie Gu, Zhiyan Li, and Gyungho Lee. Symbolic array dataflow analysis for array privatization and

[SI Dror E. Maydan, Saman P. Amarasinghe, and Monica Lam. Array data-flow analysis and its use in

[9] David A. Padua and Michael J . Wolfe. Advanced compiler optimizations for supercomputers. Com-

computing. ACM Computing Surveys, 26(4), 1994.

ceedings of the IEEE, 81(2):211-243, 1993.

Conference of Supercomputing, pages 407-417, 1988.

dependences. Technical Report 2800, INRIA, France, February 1996.

51, 1991.

NP-Completeness. W. H. Freeman and Company, 1991.

program parallelization. In Supercomputing 95, 1995.

array privatization. In Principles of Programming Languages, 1993.

munications of the ACM, 29(12):1184-1201, December 1986.

http://uuw.cs.und.edu/projects/omega/petit.html.
[lo] William Pugh. Release 0.96 of petit. World Wide Web document, URL:

[ll] SIMULOG S.A. FORESYS, Manuel de Rkfirence, April 1994.
[I21 PIPS Team. Pips (interprocedural parallelizer for scientific programs). World Wide Web document,

URL:
http://wuu.cri.ensmp.fr/-pips/index.html.

document, URL:
http!//uuu.prism.uvsq.fr/english/parallel/p~/autom~s.html.

Conference on Parallel Processing, volume 11, pages 46-53. CRC Press, 1991.

Company, 1996.

1990.

[13] PRiSM SCPDP Team. Systematic construction of parallel and distributed programs. World Wide Web

[14] Michael Wolfe. The Tiny loop restructuring research tool. In H.D. Schwetman, editor, International

I151 Michael Wolfe. High Performance Compilers For Parallel Computing. Addison-Wesley Publishing

[16] Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Computers. ACM Press,

364

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 10:59 from IEEE Xplore. Restrictions apply.

http://uuw.cs.und.edu/projects/omega/petit.html
http://wuu.cri.ensmp.fr/-pips/index.html

