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Summary. This chapter is devoted to a comparative survey of loop parallelization
algorithms. Various algorithms have been presented in the literature, such as those
introduced by Allen and Kennedy, Wolf and Lam, Darte and Vivien, and Feautrier.
These algorithms make use of different mathematical tools. Also, they do not rely
on the same representation of data dependences. In this chapter, we survey each of
these algorithms, and we assess their power and limitations, both through examples
and by stating “optimality” results. An important contribution of this chapter is
to characterize which algorithm is the most suitable for a given representation
of dependences. This result is of practical interest, as it provides guidance for a
compiler-parallelizer: given the dependence analysis that is available, the simplest
and cheapest parallelization algorithm that remains optimal should be selected.

1. Introduction

Loop parallelization algorithms are useful source to source program transfor-
mations. They are particularly appealing as they can be applied without any
knowledge of the target architecture. They can be viewed as a first –machine-
independent – step in the code generation process. Loop parallelization will
detect parallelism (transforming DO loops into DOALL loops) and will ex-
pose those dependences that are responsible for the intrinsic sequentiality of
some operations in the original program.

Of course, a second step in code generation will have to take machine pa-
rameters into account. Determining a good granularity generally is a key to
efficient performance. Also, data distribution and communication optimiza-
tion are important issues to be considered. But all these problems will be
addressed on a later stage. Such a two-step approach is typical in the field
of parallelizing compilers (other examples are general task graph scheduling
and software pipelining).

This chapter is devoted to the study of various parallelism detection
algorithms based on:

1. A simple decomposition of the dependence graph into its strongly con-
nected components such as Allen and Kennedy’s algorithm [2].

2. Unimodular loop transformations, either ad-hoc transformations such as
Banerjee’s algorithm [3], or generated automatically such as Wolf and
Lam’s algorithm [31].

3. Schedules, either mono-dimensional schedules [10, 12, 19] (a particular
case being the hyperplane method [26]) or multi-dimensional sched-
ules [15, 20].
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These loop parallelization algorithms are very different for a number of
reasons. First, they make use of various mathematical techniques: graph algo-
rithms for (1), matrix computations for (2), and linear programming for (3).
Second, they take a different description of data dependences as input: graph
description and dependence levels for (1), direction vectors for (2), and de-
scription of dependences by polyhedra or affine expressions for (3). For each
of these algorithms, we identify the key concepts that underline them, and we
discuss their respective power and limitations, both through examples and
by stating “optimality” results.

An important contribution of this chapter is to characterize which algo-
rithm is the most suitable for a given representation of dependences. No need
to use a sophisticated dependence analysis algorithm if the parallelization
algorithm cannot take advantage of the precision of its result. Conversely,
no need to use a sophisticated parallelization algorithm if the dependence
representation is not precise enough.

The rest of this chapter is organized as follows. Section 2 is devoted to a
brief summary of what loop parallelization algorithms are all about. In Sec-
tion 3, we review major dependences abstractions: dependence levels, direc-
tions vectors, and dependence polyhedra. Allen and Kennedy’s algorithm [2]
is presented in Section 4 and Wolf and Lam’s algorithm [31] is presented in
Section 5. It is shown that both algorithms are “optimal” in the class of those
parallelization algorithms that use the same dependence abstraction as their
input, i.e. dependence levels for Allen and Kennedy and direction vectors for
Wolf and Lam. In Section 6 we move to a new algorithm that subsumes both
previous algorithms. This algorithm is based on a generalization of direction
vectors, the dependence polyhedra. In Section 7 we briefly survey Feautrier’s
algorithm, which relies on exact affine dependences. Finally, we state some
conclusions in Section 8.

2. Input and Output of Parallelization Algorithms

Nested DO loops enable to describe a set of computations, whose size is
much larger than the corresponding program size. For example, consider n
nested loops whose loop counters describe a n-cube of size N : these loops
encapsulate a set of computations of size Nn. Furthermore, it often happens
that such loop nests contain a non trivial degree of parallelism, i.e. a set
of independent computations of size Ω(N r) for r ≥ 1.

This makes the parallelization of nested loops a very challenging problem:
a compiler-parallelizer must be able to detect, if possible, a non trivial degree
of parallelism with a compilation time not proportional to the sequential
execution time of the loops. To make this possible, efficient parallelization
algorithms must be proposed with a complexity, an input size and an output
size that depend only on n but certainly not on N , i.e. that depend on the
size of the sequential code but not on the number of computations described.
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The input of parallelization algorithms is a description of the dependences
which link the different computations. The output is a description of an
equivalent code with explicit parallelism.

2.1 Input: Dependence Graph

Each statement of the loop nest is surrounded by several loops. Each itera-
tion of these loops defines a particular execution of the statement, called an
operation. The dependences between the operations are represented by a
directed acyclic graph: the expanded dependence graph (EDG). There
are as many vertices in the EDG as operations in the loop nest. Executing
the operations of the loop nest while respecting the partial order specified
by the EDG guarantees that the correct result of the loop nest is preserved.
Detecting parallelism in the loop nest amounts to detecting anti-chains in
the EDG. We illustrate the notion of “expanded dependence graph” with
the Example 21 below. The EDG corresponding to this code is depicted on
Figure 2.1.

Example 21.

DO i=1,n
DO j=1,n

a(i, j) = a(i-1, j-1) + a(i, j-1)
ENDDO

ENDDO
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Fig. 2.1. Example 21 and its EDG.

Unfortunately, the EDG cannot be used as input for parallelization al-
gorithms, since it is usually too large and may not be described exactly at
compile-time. Therefore the reduced dependence graph (RDG) is used
instead. The RDG is a condensed and approximated representation of the
EDG. This approximation must be a superset of the EDG, in order to pre-
serve the dependence relations. The RDG has one vertex per statement in
the loop nest and its edges are labeled according to the chosen approximation
of dependences (see Section 3 for details). Figure 2.2 presents two possible
RDGs for Example 21, corresponding to two different approximations of the
dependences.

Since its input is a RDG and not an EDG, a parallelization algorithm
is not able to distinguish between two different EDGs which have the same
RDG. Hence, the parallelism that can be detected is the parallelism contained
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Fig. 2.2. RDG: a) with dependence levels; b) with direction vectors.

in the RDG. Thus, the quality of a parallelization algorithm must be studied
with respect to the dependence analysis.

For example, Example 21 and Example 22 have the same RDG with
dependence levels (Figure 2.2 (a)). Thus, a parallelization algorithm which
takes as input RDGs with dependence levels, cannot distinguish between the
two codes. However, Example 21 contains one degree of parallelism whereas
Example 22 is intrinsically sequential.

Example 22.

DO i=1,n
DO j=1,n

a(i, j) = 1 + a(i-1, n) + a(i, j-1)
ENDDO

ENDDO

2.2 Output: Nested Loops

The size of the parallelized code, as noticed before, should not depend on the
number of operations that are described. This is the reason why the output
of a parallelization algorithm must always be described by a set of loops 1.

There are at least three ways to define a new order on the operations of
a given loop nest (i.e. three ways to define the output of the parallelization
algorithm), in terms of nested loops:

1. Use elementary loop transformations as basic steps for the algorithm,
such as loop distribution (as in Allen and Kennedy’s algorithm), or loop
interchange and loop skewing (as in Banerjee’s algorithm);

2. Apply a linear change of basis on the iteration domain, i.e. apply a uni-
modular transformation on the iteration vectors (as in Wolf and Lam’s
algorithm).

3. Define a d-dimensional schedule, i.e. apply an affine transformation from
Zn to Zd and interpret the transformation as a multi-dimensional tim-
ing function. Each component will correspond to a sequential loop, and

1 These loops can be arbitrarily complicated, as long as their complexity only
depends on the size of the initial code. Obviously, the simpler the result, the
better. But, in this context, the meaning of “simple” is not clear: it depends
on the optimizations that may follow. We consider that structural simplicity is
preferable, but this can be discussed.
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the missing (n− d) dimensions will correspond to DOALL loops (as in
Feautrier’s algorithm and Darte and Vivien’s algorithm).

The output of these three transformation schemes can indeed be de-
scribed as loop nests, after a more or less complicated rewriting processes
(see [8, 9, 11, 31, 36]). We do not discuss the rewriting process here. Rather,
we focus on the link between the representation of dependences (the input)
and the loop transformations involved in the parallelization algorithm (the
output). Our goal is to characterize which algorithm is optimal for a given
representation of dependences. Here, “optimal” means that the algorithm
succeeds in exhibiting the maximal number of parallel loops.

3. Dependence Abstractions

For the sake of clarity, we restrict ourselves to the case of perfectly nested
DO loops with affine loop bounds. This restriction permits to identify the
iterations of the n nested loops (n is called the depth of the loop nest) with
vectors in Zn (called the iteration vectors) contained in a finite convex
polyhedron (called the iteration domain) bounded by the loop bounds. The
i-th component of an iteration vector is the value of the i-th loop counter in
the nest, counting from the outermost to the innermost loop. In the sequential
code, the iterations are therefore executed in the lexicographic order of their
iteration vectors.

In the next sections, we denote by D the polyhedral iteration domain, by
I and J n-dimensional iteration vectors in D, and by Si the i-th statement
in the loop nest, where 1 ≤ i ≤ s. We write I >l J if I is lexicographically
greater than J and I ≥l J if I >l J or I = J .

Section 3.1 recalls the different concepts of dependence graphs intro-
duced in the informal discussion of Section 2.1: expanded dependence graphs
(EDG), reduced dependence graphs (RDG), apparent dependence graphs
(ADG), and the notion of distance sets. In Section 3.2, we formally define
what we call polyhedral reduced dependence graphs (PRDG), i.e. reduced
dependence graphs whose edges are labeled by polyhedra. Finally, in Sec-
tion 3.3, we show how the model of PRDG generalizes classical dependence
abstractions of distance sets such as dependence levels and direction vectors.

3.1 Dependence Graphs and Distance Sets

Dependence relations between operations are defined by Bernstein’s condi-
tions [4]. Briefly speaking, two operations are considered dependent if both
operations access the same memory location and if at least one of the ac-
cesses is a write. The dependence is directed according to the sequential
order, from the first executed operation to the last one. Depending on the
order of write(s) and/or read, the dependence corresponds to a so called
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flow dependence, anti dependence or output dependence. We write:
Si(I) =⇒ Sj(J) if statement Sj at iteration J depends on statement Si at
iteration I. The partial order defined by =⇒ describes the expanded de-
pendence graph (EDG). Note that (J − I) is always lexicographically
nonnegative when Si(I) =⇒ Sj(J).

In general, the EDG cannot be computed at compile-time, either because
some information is missing (such as the values of size parameters or even
worse, precise memory accesses), or because generating the whole graph is
too expensive (see [35, 37] for a survey on dependence tests such as the gcd
test, the power test, the omega test, the lambda test, and [18] for more details
on exact dependence analysis). Instead, dependences are captured through a
smaller cyclic directed graph, with s vertices (as many as statements), called
the reduced dependence graph (RDG) (or statement level dependence
graph).

The RDG is a compression of the EDG. In the RDG, two statements Si

and Sj are said dependent (we write e : Si → Sj) if there exists at least one
pair (I, J) such that Si(I) =⇒ Sj(J). Furthermore, the 2 edge e from Si to
Sj in the RDG is labeled by the set {(I, J) ∈ D2 | Si(I) =⇒ Sj(J)}, or by an
approximationDe that contains this set. The precision and the representation
of this approximation make the power of the dependence analysis.

In other words, the RDG describes, in a condensed manner, an iteration
level dependence graph, called (maximal) apparent dependence graph
(ADG), that is a superset of the EDG. The ADG and the EDG have the
same vertices, but the ADG has more edges, defined by:

(Si, I) =⇒ (Sj , J) (in the ADG) ⇔
∃ e = (Si, Sj) (in the RDG ) such that (I, J) ∈ De.

For a certain class of nested loops, it is possible to express exactly this set
of pairs (I, J) (see [18]): I is given as an affine function (in some particu-
lar cases, involving floor or ceiling functions) fi,j of J where J varies in a
polyhedron Pi,j :

{(I, J) ∈ D2 | Si(I) =⇒ Sj(J)} = {(fi,j(J), J) | J ∈ Pi,j ⊂ D} (3.1)

In most dependence analysis algorithms however, rather than the set of
pairs (I, J), one computes the set Ei,j of all possible values (J − I). Ei,j is
called the set of distance vectors, or distance set:

Ei,j = {(J − I) | Si(I) =⇒ Sj(J)}
When exact dependence analysis is feasible, Equation 3.1 shows that the set
of distance vectors is the projection of the integer points of a polyhedron.
This set can be approximated by its convex hull or by a more or less accurate

2 Actually, there is such an edge for each pair of memory accesses that induces a
dependence between Si and Sj .
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description of a larger polyhedron (or a finite union of polyhedra). When
the set of distance vectors is represented by a finite union, the corresponding
dependence edge in the RDG is decomposed into multi-edges.

Note that the representation by distance vectors is not equivalent to the
representation by pairs (as in Equation 3.1), since the information concerning
the location in the EDG of such a distance vector is lost. This may even
cause some loss of parallelism, as will be seen in Example 64. However, this
representation remains important, especially when exact dependence analysis
is either too expensive or not feasible.

Classical representations of distance sets (by increasing precision) are:

– level of dependence, introduced in [1,2] for Allen and Kennedy’s paral-
lelizing algorithm.

– direction vector, introduced by Lamport [26] and by Wolfe in [32, 33],
then used in Wolf and Lam’s parallelizing algorithm [31].

– dependence polyhedron, introduced in [22] and used in Irigoin and
Triolet’s supernode partitioning algorithm [23]. We refer to the PIPS soft-
ware [21] for more details on dependence polyhedra.

We now formally define reduced dependence graphs whose edges are la-
beled by dependence polyhedra. Then we show that this representation sub-
sumes the two other representations, namely dependence levels and direction
vectors.

3.2 Polyhedral Reduced Dependence Graphs

We first recall the mathematical definition of a polyhedron, and how it can
be decomposed into vertices, rays and lines.

Definition 31 (Polyhedron, polytope).
A set P of vectors in Qn is called a (convex) polyhedron if there exists an

integral matrix A and an integral vector b such that:

P = {x | x ∈ Qn , Ax ≤ b}

A polytope is a bounded polyhedron.

A polyhedron can always be decomposed as the sum of a polytope and
of a polyhedral cone (for more details see [30]). A polytope is defined by its
vertices, and any point of the polytope is a non-negative barycentric combi-
nation of the polytope vertices. A polyhedral cone is finitely generated and
can be defined by its rays and lines. Any point of a polyhedral cone is the
sum of a nonnegative combination of its rays and of any combination of its
lines.

Therefore, a dependence polyhedron P can be equivalently defined by a set
of vertices (denoted by {v1, . . . , vω}), a set of rays (denoted by {r1, . . . , rρ}),
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and a set of lines (denoted by {l1, . . . , lλ}). Then, P is the set of all vectors
p such that:

p =
ω∑

i=1

µivi +
ρ∑

i=1

νiri +
λ∑

i=1

ξili (3.2)

with µi ∈ Q+ , νi ∈ Q+ , ξi ∈ Q, and
∑ω

i=1 µi = 1.
We now define what we call a polyhedral reduced dependence graph (or

PRDG), i.e. a reduced dependence graph labeled by dependence polyhedra.
Actually, we are interested only in integral vectors that belong to the depen-
dence polyhedra, since dependence distance are indeed integral vectors.

Definition 32. A polyhedral reduced dependence graph (PRDG) is
a RDG, where each edge e : Si → Sj is labeled by a dependence polyhedron
P (e) that approximates the set of distance vectors: the associated ADG con-
tains an edge from instance I of node Si to instance J of node Sj if and only
if (J − I) ∈ P (e).

We explore in Section 6 this representation of dependences. At first sight,
the reader can see dependence polyhedra as a generalization of direction
vectors.

3.3 Definition and Simulation of Classical Dependence
Representations

We come back to more classical dependence abstractions: level of dependence
and direction vector. We recall their definition and show that RDGs labeled
by direction vectors or dependence levels are actually particular cases of
polyhedral reduced dependence graphs.

Direction vectors When the set of distance vectors is a singleton, the depen-
dence is said uniform and the unique distance vector is called a uniform
dependence vector.

Otherwise, the set of distance vectors can still be represented by a n-
dimensional vector (called the direction vector), whose components belong
to Z∪{∗}∪ (Z×{+,−}). Its i-th component is an approximation of the i-th
components of all possible distance vectors: it is equal to z+ (resp. z−) if
all i-th components are greater (resp. smaller) than or equal to z. It is equal
to ∗ if the i-th component may take any value and to z if the dependence
is uniform in this dimension with unique value z. In general, + (resp. −) is
used as shorthand for 1+ (resp. (−1)−).

We denote by ei the i-th canonical vector, i.e. the n-dimensional vector
whose components are all null except the i-th component equal to 1. Then,
a direction vector is nothing but an approximation by a polyhedron, with a
single vertex and whose rays and lines, if any, are canonical vectors.

Indeed, consider an edge e labeled by a direction vector d and denote by
I+, I− and I∗ the sets of components of d which are respectively equal to
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z+ (for some integer z), z−, and ∗. Finally, denote by dz the n-dimensional
vector whose i-th component is equal to z if the i-th component of d is equal
to z, z+ or z−, and to 0 otherwise.

Then, by definition of the symbols +, − and ∗, the direction vector d
represents exactly all n-dimensional vectors p for which there exist integers
(ν, ν′, ξ) in N|I+ | × N|I− | ×Z|I∗| such that:

p = dz +
∑
i∈I+

νiei −
∑
i∈I−

ν′iei +
∑
i∈I∗

ξiei (3.3)

In other words, the direction vector d represents all integer points that belong
to the polyhedron defined by the single vertex dz , the rays ei for i ∈ I+, the
rays −ei for i ∈ I− and the lines ei for i ∈ I∗.

For example, the direction vector (2+, ∗,−, 3) defines the polyhedron with
one vertex (2, 0,−1, 3), two rays (1, 0, 0, 0) and (0, 0,−1, 0), and one line
(0, 1, 0, 0).
Dependence levels The representation by level is the less accurate dependence
abstraction. In a loop nest with n nested loops, the set of distance vectors is
approximated by an integer l, in [1, n] ∪ {∞}, defined as the largest integer
such that the l − 1 first components of the distance vectors are zero.

A dependence at level l ≤ n means that the dependence occurs at depth
l of the loop nest, i.e. at a given iteration of the l − 1 outermost loops. In
this case, one says that the dependence is a loop carried dependence at
level l. If l = ∞, the dependence occurs inside the loop body, between two
different statements, and is called a loop independent dependence. A
reduced dependence graph whose edges are labeled by dependence levels is
called a Reduced Leveled Dependence Graph (RLDG).

Consider an edge e of level l. By definition of the level, the first non-zero
component of the distance vectors is the l-th component and it can possibly
take any positive integer value. Furthermore, we have no information on the
remaining components. Therefore, an edge of level l <∞ is equivalent to the

direction vector: (

l−1︷ ︸︸ ︷
0, . . . , 0, 1+,

n−l︷ ︸︸ ︷∗, . . . , ∗) and an edge of level ∞ corresponds
to the null dependence vector. As any direction vector admits an equivalent
polyhedron, so does a representation by level. For example, a level 2 depen-
dence in a 3-dimensional loop nest, means a direction vector (0, 1+, ∗) which
corresponds to the polyhedron with one vertex (0, 1, 0), one ray (0, 1, 0) and
one line (0, 0, 1).

4. Allen and Kennedy’s Algorithm

Allen and Kennedy’s algorithm [2] has first been designed to vectorizing loops.
Then, it has been extended so as to maximize the number of parallel loops
and to minimize the number of synchronizations in the transformed code.
The input of this algorithm is a RLDG.
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Allen and Kennedy’s algorithm is based on the following facts:

1. A loop is parallel if it has no loop carried dependence, i.e. if there is no
dependence, whose level is equal to the depth of the loop, that concerns
a statement surrounded by the loop.

2. All iterations of a statement S1 can be carried out before any iteration
of a statement S2 if there is no dependence in the RLDG from S2 to S1.

Property (1) allows to mark a loop as aDOALL or aDOSEQ loop, whereas
property (2) suggests that parallelism detection can be independently con-
ducted in each strongly connected component of the RLDG. Parallelism ex-
traction is done by loop distribution.

4.1 Algorithm

For a dependence graph G, we denote by G(k) the subgraph of G in which
all dependences at level strictly smaller than k have been removed. Here is
a sketch of the algorithm in its most basic formulation. The initial call is
Allen-Kennedy(RLDG, 1).

Allen-Kennedy(G, k).

– If k > n, stop.
– Decompose G(k) into its strongly connected components Gi and sort them
topologically.

– Rewrite code so that each Gi belongs to a different loop nest (at level k)
and the order on the Gi is preserved (distribution of loops at level ≥ k).

– For each Gi, mark the loop at level k as a DOALL loop if Gi has no edge
at level k. Otherwise mark the loop as a DOSEQ loop.

– For each Gi, call Allen-Kennedy(Gi, k + 1).

We illustrate Allen and Kennedy’s algorithm on the code below:

Example 41.

DO i=1,n
DO j=1,n

DO k=1,n
S1: a(i, j, k) = a(i-1, j+i, k) + a(i, j, k-1) + b(i, j-1, k)
S2: b(i, j, k) = b(i, j-1, k+j) + a(i-1, j, k)

ENDDO
ENDDO

ENDDO

The dependence graph G = G(1), drawn on Figure 4.1, has only one
strongly connected component and at least one edge at level 1, thus the
first call finds that the outermost loop is sequential. However, at level 2 (the
edge at level 1 is no longer considered), G(2) has two strongly connected
components: all iterations of statement S2 can be carried out before any
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Fig. 4.1. RLDG for Example 41.

iteration of statement S1. A loop distribution is performed. The strongly
connected component including S1 contains no edge at level 2 but one edge
at level 3. Thus the second loop surrounding S1 is marked DOSEQ and the
third one DOALL. The strongly connected component including S2 contains
an edge at level 2 but no edge at level 3. Thus the second loop surrounding
S1 is marked DOALL and the third one DOSEQ. Finally, we get:

DOSEQ i=1,n
DOSEQ j=1,n

DOALL k=1,n
S2: b(i, j, k) = b(i, j-1, k+j) + a(i-1, j, k)

ENDDO
ENDDO
DOALL j=1,n

DOSEQ k=1,n
S1: a(i, j, k) = a(i-1, j+i, k) + a(i, j, k-1) + b(i, j-1, k)

ENDDO
ENDDO

ENDDO

4.2 Power and Limitations

It has been shown in [6] that for each statement of the initial code, as many
surrounding loops as possible are detected as parallel loops by Allen and
Kennedy’s algorithm. More precisely, consider a statement S of the initial
code and Li one of the surrounding loops. Then Li will be marked as parallel
if and only if there is no dependence at level i between two instances of S.
This result proves only that the algorithm is optimal among all parallelization
algorithms that describe, in the transformed code, the instances of S with
exactly the same loops as in the initial code. In fact a much stronger result
has been proved in [17]:

Theorem 41. Algorithm Allen-Kennedy is optimal among all parallelism
detection algorithms whose input is a Reduced Leveled Dependence Graph
(RLDG).

It is proved in [17] that for any loop nest N1, there exists a loop nest
N2, which has the same RLDG, and such that for any statement S of N1

surrounded after parallelization by dS sequential loops, there exists in the



152 Alain Darte, Yves Robert, and Frédéric Vivien

exact dependence graph of N2 a dependence path which includes Ω(NdS )
instances of statement S. In other words, Allen and Kennedy’s algorithm
cannot distinguishes N1 from N2 as they have the same RLDG, and the
parallelization algorithm is optimal in the strongest sense on N2 as it reaches
on each statement the upper bound on the parallelism defined by the longest
dependence paths in the EDG.

This proves that, as long as the only information available is the RLDG,
it is not possible to find more parallelism than found by Allen and Kennedy’s
algorithm. In other words, algorithm Allen-Kennedy is well adapted to
a representation of dependences by dependence levels. Therefore, to detect
more parallelism than found by algorithm Allen-Kennedy, more informa-
tion on the dependences is required. Classical examples for which it is possible
to overcome algorithm Allen-Kennedy are Example 42 where a simple in-
terchange (Figure 4.2) reveals parallelism and Example 43 where a simple
skew and interchange (Figure 4.3) are sufficient.

Example 42.

DO i=1,n
DO j=1,n

a(i, j) = a(i-1, j-1) + a(i, j-1)
ENDDO

ENDDO

0
1 1

1

Fig. 4.2. Example 42: code and RDG.

Example 43.

DO i=1,n
DO j=1,n

a(i, j) = a(i-1, j) + a(i, j-1)
ENDDO

ENDDO

0
1

1
0

Fig. 4.3. Example 43: code and RDG.

5. Wolf and Lam’s Algorithm

Examples 42 and 43 contain some parallelism, that can not be detected by
Allen and Kennedy’s algorithm. Therefore, as shown by Theorem 41, this
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parallelism can not be extracted if the dependences are represented by de-
pendence levels. To overcome this limitation, Wolf and Lam [31] proposed an
algorithm that uses direction vectors as input. Their work unifies all previous
algorithms based on elementary matrix operations such as loop skewing, loop
interchange, loop reversal, into a unique framework: the framework of valid
unimodular transformations.

5.1 Purpose

Wolf and Lam aim at building sets of fully permutable loop nests. Fully
permutable loops are the basis of all tiling techniques [5, 23, 29, 31]. Tiling
is used to expose medium-grain and coarse-grain parallelism. Furthermore, a
set of d fully permutable loops can be rewritten as a single sequential loop
and d− 1 parallel loops. Thus, this method can also be used to express fine
grain parallelism.

Wolf and Lam’s algorithm builds the largest set of outermost fully per-
mutable3 loops. Then it looks recursively at the remaining dimensions and
at the dependences not satisfied by these loops. The version presented in [31]
builds the set of loops via a case analysis of simple examples, and relies on
a heuristic for loop nests of depth greater than or equal to six. In the rest of
this section, we explain their algorithm from a theoretical perspective, and
we provide a general version of this algorithm.

5.2 Theoretical Interpretation

Unimodular transformations have two main advantages: linearity and invert-
ibility. Given a unimodular transformation T , the linearity allows to easily
check whether T is a valid transformation. Indeed, T is valid if and only if
Td >l 0 for all non zero distance vectors d. The invertibility enables to rewrite
easily the code as the transformation is a simple change of basis in Zn.

In general, Td >l 0 cannot be checked for all distance vectors, as there
are two many of them. Thus, one tries to guarantee Td >l 0 for all non-zero
direction vectors, with the usual arithmetic conventions in Z ∪ {∗} ∪ (Z×
{+,−}). In the following, we consider only non-zero direction vectors, which
are known to be lexicographically positive (see Section 3.1).

Denote by t(1), . . . , t(n), the rows of T . Let Γ be the closure of the cone
generated by all direction vectors. For a direction vector d:

Td >l 0⇔ ∃kd, 1 ≤ kd ≤ n | ∀i, 1 ≤ i < kd, t(i).d = 0 and t(kd).d > 0.

This means that the dependences represented by d are carried at loop level
kd. If kd = 1 for all direction vectors d, then all dependences are carried by
the first loop, and all inner loops are DOALL loops. t(1) is then called a

3 The i-th and (i+1)-th loops are permutable if and only if the i-th and (i+1)-th
components of any distance vector of depth ≥ i are nonnegative.
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timing vector or separating hyperplane. Such a timing vector exists if
and only if Γ is pointed, i.e. if and only if Γ contains no linear space. This
is also equivalent to the fact that the cone Γ+ – defined by Γ+ = {y | ∀x ∈
Γ, y.x ≥ 0} – is full-dimensional (see [30] for more details on cones and related
notions). Building T from n linearly independent vectors of Γ+ permits to
transform the loops into n fully permutable loops.

The notion of timing vector is at the heart of the hyperplane method and
its variants (see [10,26]), which are particularly interesting for exposing fine-
grain parallelism, whereas the notion of fully permutable loops is the basis
of all tiling techniques. As said before, both formulations are strongly linked
by Γ+.

When the cone Γ is not pointed, Γ+ has a dimension r, 1 ≤ r < n,
r = n−s where s is the dimension of the lineality space of Γ . With r linearly
independent vectors of Γ+, one can transform the loop nest so that the r
outermost loops are fully permutable. Then, one can recursively apply the
same technique to transform the n − r innermost loops, by considering the
direction vectors not already carried by one of the r outermost loops, i.e by
considering the direction vectors included in the lineality space of Γ . This is
the general idea of Wolf and Lam’s algorithm even if they obviously did not
express it in such terms in [31].

5.3 The General Algorithm

Our discussion can be summarized by the algorithmWolf-Lam given below.
Algorithm Wolf-Lam takes as input a set of direction vectors D and a
sequence of linearly independent vectors E (initialized to void) from which
the transformation matrix is built:
Wolf-Lam(D, E).

– Define Γ as the closure of the cone generated by the direction vectors of D.
– Define Γ+ = {y | ∀x ∈ Γ, y.x ≥ 0} and let r be the dimension of Γ+.
– Complete E into a set E′ of r linearly independent vectors of Γ+ (by
construction, E ⊂ Γ+).

– Let D′ be the subset of D defined by d ∈ D′ ⇔ ∀v ∈ E′, v.d = 0 (i.e.
D′ = D ∩ E′⊥ = D ∩ lin.space(Γ )).

– Call Wolf-Lam(D′, E′).

Actually, the above process may lead to a non unimodular matrix. Building
the desired unimodular matrix T can be done as follows:

– LetD be the set of direction vectors. SetE = ∅ and callWolf-Lam(D, E).
– Build a non singular matrix T1 whose first rows are the vectors of E (in
the same order). Let T2 = pT−1

1 where p is chosen so that T2 is an integral
matrix.

– Compute the left Hermite form of T2, T2 = QH , where H is nonnegative,
lower triangular and Q is unimodular.

– Q−1 is the desired transformation matrix (since pQ−1D = HT1D).
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We illustrate this algorithm with the following example:

Example 51.

DO i=1,n
DO j=1,n
DO k=1,n
a(i, j, k) = a(i-1, j+i, k) + a(i, j, k-1)

+ a(i, j-1, k+1)
ENDDO
ENDDO
ENDDO

 0
 1
−1

 0
 0
 1

 1
 −
 0

Fig. 5.1. Example 51: code and RDG.

The set of direction vectors is D = {(1,−, 0), (0, 0, 1), (0, 1,−1)} (see
Figure 5.1). The lineality space of Γ (D) is two-dimensional (generated by
(0, 1, 0) and (0, 0, 1)). Thus, Γ+(D) is one dimensional and generated by E1 =
{(1, 0, 0)}. Then D′ = {(0, 0, 1), (0, 1,−1)} and Γ (D′) is pointed. We com-
plete E1 by two vectors of Γ+(D′), for example by E2 = {(0, 1, 0), (0, 1, 1)}.
In this particular example, the transformation matrix whose rows are E1, E2

is already unimodular and corresponds to a simple loop skewing. For expos-
ing DOALL loops, we choose the first vector of E2 in the relative interior of
Γ+, for example E2 = {(0, 2, 1), (0, 1, 0)}. In terms of loops transformations,
this amounts to skewing the loop k by factor 2 and then to interchanging
loops j and k:

DOSEQ i=1,n
DOSEQ k=3,3×n

DOALL j=max(1, �k−n
2

�), min(n, �k−1
2

�)
a(i, j, k-2×j) = a(i-1, j+i, k-2×j) + a(i, j, k-2×j-1) + a(i, j-1, k-2×j+1)

ENDDO
ENDDO

ENDDO

5.4 Power and Limitations

Wolf and Lam showed that this methodology is optimal (Theorem B.6.
in [31]): “an algorithm that finds the maximum coarse grain parallelism, and
then recursively calls itself on the inner loops, produces the maximum degree
of parallelism possible”. Strangely, they gave no hypothesis for this theorem.
However, once again, this theorem has to be understood with respect to the
dependence analysis that is used: namely, direction vectors, but without any
information on the structure of the dependence graph. A correct formulation
is the following:
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Theorem 51. Algorithm Wolf-Lam is optimal among all parallelism de-
tection algorithms whose input is a set of direction vectors (implicitly, one
considers that the loop nest has only one statement or that all statements
form an atomic block).

Therefore, as for algorithm Allen-Kennedy, the sub-optimality of algo-
rithm Wolf-Lam in the general case has to be found, not in the algorithm
methodology, but in the weakness of its input: the fact that the structure
of the RDG is not exploited may result in a loss of parallelism. For exam-
ple, contrarily to algorithm Allen-Kennedy, algorithm Wolf-Lam finds
no parallelism in Example 41 (whose RDG is given by Figure 5.2) because of
the typical structure of the direction vectors (1,−, 0), (0, 1,−), (0, 0, 1).

0
0
1

0
1
−

1
−
0

S1 S2

1
0
0

0
1
0

Fig. 5.2. Reduced Dependence Graph with direction vectors for Example 41.

6. Darte and Vivien’s Algorithm

In this section, we introduce a third parallelization algorithm, that takes as
input polyhedral reduced dependence graphs. We first explain our motivation
(Section 6.1), then we proceed to a step-by-step presentation of the algorithm.
We work out several examples.

6.1 Another Algorithm Is Needed

We have seen two parallelization algorithms so far. Each algorithm may out-
put a pure sequential code for examples where the other algorithm does find
some parallelism. This motivates the search for a new algorithm subsum-
ing algorithms Wolf-Lam and Allen-Kennedy. To reach this goal, one
can imagine to combine these algorithms, so as to simultaneously exploit the
structure of the RDG and the structure of the direction vectors: first, compute
the cone generated by the direction vectors and transform the loop nest so as
to expose the largest outermost fully permutable loop nest; then, consider the
subgraph of the RDG, formed by the direction vectors that are not carried
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by the outermost loops, and compute its strongly connected components; fi-
nally, apply a loop distribution in order to separate these components, and
recursively apply the same technique on each component.

Such a strategy enables to expose more parallelism by combining uni-
modular transformations and loop distribution. However, it is not optimal
as Example 61 (Figure 6.1) illustrates. Indeed, on this example, combining
algorithms Allen-Kennedy and Wolf-Lam as proposed above enables to
find only one degree of parallelism, since at the second phase the RDG re-
mains strongly connected. This is not better than the basic algorithmAllen-
Kennedy. However, one can find two degrees of parallelism in Example 61 by
scheduling S1(i, j, k) at time-step 4i−2k and S2(i, j, k) at time-step 4i−2k+3.

Example 61.

DO i=1,n
DO j=1,n
DO k=1,n
S1: a(i, j, k) = b(i-1, j+i, k) + b(i, j-1, k+2)
S2: b(i, j, k) = a(i, j-1, k+j) + a(i, j, k-1)

ENDDO
ENDDO
ENDDO

0
1
-

0
0
1

1
-
0 -2

 1
 0

S2S1

Fig. 6.1. Example 61: code and RDG.

Consequently, we would like to have a single parallelization algorithm
which finds some parallelism at least when Allen-Kennedy or Wolf-Lam
does. The obvious solution would be to try Allen-Kennedy, then Wolf-
Lam (and even a combination of both algorithms) and to report the best
answer. But such a naive approach is not powerful enough, because it uses
either the dependence graph structure (Allen-Kennedy) or direction vec-
tors (Wolf-Lam), but never benefits from both knowledges at the same step.
For example, the proposed combination of both algorithms would use the de-
pendence graph structure before or after the computation of a maximal set
of fully permutable loops, but never during this computation. We claim that
information on both the graph structure and the direction vectors must be
used simultaneously. This is because the key concept when scheduling RDGs
is not the cone generated by the direction vectors (i.e. the weights of the
edges of the RDG), but turns out to be the cone generated by the weights of
the cycles of the RDG.

This is the motivation for the multi-dimensional scheduling algorithm
presented below. It can be seen as a combination of unimodular transforma-
tions, loop distribution, and index-shift method. This algorithm subsumes
algorithms Allen-Kennedy and Wolf-Lam. Beforehand we motivate the
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choice of the representation of the dependences that the algorithm works
with.

6.2 Polyhedral Dependences: A Motivating Example

In this section we present an example which contains some parallelism that
cannot be detected if the dependences are represented by levels or direction
vectors. However, there is no need to use an exact representation of the de-
pendences to find some parallelism in this loop nest. Indeed, a representation
of the dependences with dependence polyhedra enables us to parallelize this
code.

Example 62.

DO i = 1, n
DO j = 1, n
S: a(i, j) = a(j, i) + a(i, j-1)
ENDDO

ENDDO




1 ≤ i ≤ n, 1 ≤ j < n S(i, j)
flow−→ S(i, j+1)

1 ≤ i < j ≤ n S(i, j)
flow−→ S(j, i)

1 ≤ j < i ≤ n S(j, i)
anti−→ S(i, j)

Fig. 6.2. Example 62: source code and exact dependence relations

Consider Example 62 of Figure 6.2. Its exact dependences are listed on the
same figure, and Figure 6.3 shows the corresponding (reduced) dependence
graphs when dependence edges are labeled respectively with levels and direc-
tion vectors. What is the output of our favorite parallelization algorithms?

12 0
1

+
−

(a) (b)

Fig. 6.3. RDG for Example 62: (a) by levels, (b) by direction vectors.

– Allen-Kennedy. Here, the levels of the three dependences are respec-
tively 2, 1, and 1. There is a dependence cycle at depth 1 and at depth 2.
Therefore, no parallelism is detected.

– Wolf-Lam. Here, the dependence vectors are respectively (0, 1), (+,−),
and (+,−). In the second dimension, the “1” and the “−” prevent to detect
two fully permutable loops. Therefore, the code remains unchanged, and
no parallelism is detected.



Loop Parallelization Algorithms 159

– Feautrier. This algorithm will be described in Section 7. It takes as input
the exact dependences. It leads to the valid schedule T (i, j) = 2i+ j − 3.
One level of parallelism is detected.

In this particular example, the representation of the dependences by lev-
els or by direction vectors is not accurate enough to reveal parallelism. This
is the reason why Allen-Kennedy and Wolf-Lam are not able to detect
any parallelism. Exact dependence analysis associated to linear program-
ming methods that require to solve large4 parametric linear programs (as
in Feautrier’s algorithm), enables to reveal one degree of parallelism. The
corresponding parallelized code is:

DO j = 3, 3n
DOPAR i = max

�
1, � j−n

2
�� ,min

�
n, � j−1

2
��

a(i, j − 2i) = a(j − 2i, i) + a(i, j − 2i − 1)
ENDDO

ENDDO

However, in Example 62, an exact representation of the dependences is
not necessary to reveal some parallelism. Indeed, one can notice that there is
one uniform dependence u = (0, 1) and a set of distance vectors {(j−i, i−j) =
(j − i)(1,−1) | 1 ≤ j − i ≤ n − 1} that can be (over)-approximated by the
set P = {(1,−1) + λ(1,−1) | λ ≥ 0}. P is a polyhedron with one vertex
v = (1,−1) and one ray r = (1,−1). Now, suppose that we are looking for
a linear schedule T (i, j) = x1i + x2j. Let X = (x1, x2). For T to be a valid
schedule, we look for X such that Xd ≥ 1 for any dependence vector d.
Thus, X(0, 1) ≥ 1 and Xp ≥ 1 for all p ∈ P . The latter inequality is equal to:
X(1,−1) + λX(1,−1) ≥ 1 with λ ≥ 0, which is equivalent to: X(1,−1) ≥ 1
and X(1,−1) ≥ 0, i.e. Xv ≥ 1 and Xr ≥ 0. Therefore, one has just to solve
the three following inequalities:

Xu ≥ 1 Xv ≥ 1 Xr ≥ 0

i.e. X

(
0
1

)
≥ 1 X

(
1
−1

)
≥ 1 X

(
1
−1

)
≥ 0

which leads, as for Feautrier, to X = (2, 1). Thus, for this example, an ap-
proximation of the dependences by levels or even direction vectors is not
sufficient for the detection of parallelism. However, with an approximation
of the dependences by polyhedra, we find the same parallelism as with exact
dependence analysis, but by solving a simpler set of inequalities.

What is important here is the “uniformization” which enables us to go
from the inequality on the set P to uniform inequalities on v and r. Thanks
to this uniformization, the affine constraints disappear and we do not need
to use the affine form of Farkas’ lemma anymore as in Feautrier’s algorithm

4 The number of inequalities and variables is related to the number of constraints
that define the validity domain of each dependence relation.
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(see Section 7). To better understand the “uniformization” principle, think in
terms of dependence path. The idea is to consider an edge e, from statement
S to statement T and labeled by the distance vector p = v + λr, as a path
φ that uses once the “uniform” dependence vector v and λ times the “uni-
form” dependence vector r. This simulation is summarized in Figure 6.4: we
introduce a new node S′ that enables to simulate φ and a null-weight edge to
go from S′ back to the initial node T . This “uniformization” principle is the
underlying idea of the loop parallelization algorithm described in this section.

v

r

0S’

P = (v,r)

S T S T

Fig. 6.4. Simulation of an edge labeled by a polyhedron with one vertex and
one ray.

By uniformizing the dependences, we have in fact “uniformized” the con-
straints and transformed the underlying affine scheduling problem into a sim-
ple scheduling problem where all dependences are uniform (u, v, and r). How-
ever, there are two fundamental differences between this framework and the
classical framework of uniform loop nests:

– The uniform dependence vectors are not necessarily lexico-positive (for
example, a ray can be equal to (0,−1)). Therefore, the scheduling problem
is more difficult. However, it can be solved by techniques similar to those
used to solve the problem of computability of systems of uniform recurrence
equations [24].

– The constraint imposed on a ray r is weaker than the classical constraint:
the constraint is indeed Xr ≥ 0 instead of Xr ≥ 1. This freedom must be
taken into account by the parallelization algorithm.

6.3 Illustrating Example

We work out the following example, assuming that in the reduced dependence
graph, edges are labeled by direction vectors. The dependence graph, depicted
in Figure 6.5, was built by the dependence analyzer Tiny [34].

The reader can check that neither Allen-Kennedy, nor Wolf-Lam, is
able to find the full parallelism for this code: the third statement seems to
be purely sequential. However, the parallelism detection algorithm that we
propose in the next sections is able to build the following multi-dimensional
schedule: (2i+ 1, 2k) for the first statement, (2i, j) for the second statement
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Example 63.

DO i = 1, n
DO j = 1, n
DO k=1, j
a(i, j, k) = c(i, j, k-1) + 1
b(i, j, k) = a(i-1, j+i, k) + b(i, j-1, k)
c(i, j, k+1) = c(i, j, k) + b(i, j-1, k+i)

+ a(i, j-k, k+1)
ENDDO

ENDDO
ENDDO

1
−
0

0
0
2

0
1
−

 0
 +
−1

0
0
1

0
1
0

S1

S2

S3

Fig. 6.5. Example 63: code and RDG.

and (2i + 1, 2k + 3) for the third statement. This schedule corresponds to
the code with explicit parallelism given below (but in which no effort, such
as loop peeling, has been made so as to remove “if” tests). Thus, for each
statement, one level of parallelism can be detected.

DOSEQ i = 1, n
DOSEQ j = 1, n

DOPAR k = 1, j
b(i, j, k) = a(i-1, j+i, k) + b(i, j-1, k)

ENDDO
ENDDO
DOSEQ k = 1, n+1

IF (k ≤ n) THEN
DOPAR j = k, n
a(i, j, k) = c(i, j, k-1) + 1

ENDDO
ENDIF
IF (k ≥ 2) THEN

DOPAR j = k-1, n
c(i, j, k) = c(i, j, k-1) + b(i, j-1, k+i-1) + a(i, j-k+1, k)

ENDDO
ENDIF

ENDDO
ENDDO

This code has been generated, from the schedule given above, by the
procedure “codegen” of the Omega Calculator5 delivered with Petit [25]. We
point out that the code proposed above is a “virtual” code in the sense that it
only reveals hidden parallelism. We do not claim that it must be implemented
as such.

5 The Omega Calculator is a framework to compute dependences, to check the
validity of program transformations, and to transform programs, once the trans-
formation is given.
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6.4 Uniformization Step

We first show how PRDGs (polyhedral reduced dependence graphs) can be
captured into an equivalent (but simpler to manipulate) structure, the struc-
ture of uniform dependence graphs, i.e. graphs whose edges are labeled by
constant dependence vectors. This uniformization scheme is achieved by the
translation algorithm given below.

To avoid possible confusions between the vertices of a dependence graph
and the vertices of a dependence polyhedron, we call the first one nodes
instead of vertices. Furthermore, the initial PRDG that describes the de-
pendences in the code to be parallelized is called the original graph and
denoted by Go = (V,E). The uniform RDG, equivalent to Go and built by
the translation algorithm, is called the uniform graph or the translated
of Go, and is denoted by Gu = (W,F ).

The translation algorithm builds Gu by scanning all edges of Go. It starts
from Gu = (W,F ) = (V, ∅), and, for each edge e of E, it adds to Gu new nodes
and new edges depending on the polyhedron P (e). We call virtual nodes
the nodes that are created, as opposed to actual nodes which correspond to
nodes of Go.

Let e be an edge of E. We denote by xe and ye, respectively the tail and
head of e, i.e. the nodes that e respectively leaves and enters: xe

e−→ ye.
This definition is generalized to paths: the head (resp. tail) of a path is the
head (resp. tail) of its last (resp. first) edge.

We follow the notations introduced in Section 3.2: ω, ρ, and λ denote the
number of vertices vi, of rays ri, and of lines li of the polyhedron P (e).

Translation Algorithm.

– Let W = V and F = ∅
– For e : x e→ y e ∈ E do

– Add to W a new virtual node ne,
– Add to F ω edges of weights v1, v2, . . . , vω directed from xe to ne,
– Add to F ρ self-loops around ne of weights r1, r2, . . . , rρ,
– Add to F λ self-loops around ne of weights l1, l2, . . . , lλ,
– Add to F λ self-loops around ne of weights −l1, −l2, . . . , −lλ,
– Add to F a null weight edge directed from ne to ye.

Back to Example 63. The PRDG of Example 63 is drawn in Figure 6.5.
Figure 6.6 shows the uniform dependence graph associated to it. It has three
new nodes in gray (i.e. virtual nodes) that correspond to the symbol “+” and
the two symbols “−” in the initial direction vectors.

6.5 Scheduling Step

The scheduling step takes as input the translated dependence graph Gu and
builds a multi-dimensional schedule for each actual node, i.e. for each node
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Fig. 6.6. Translated uniform reduced dependence graph.

of Gu that corresponds to a node of Go. Gu is assumed to be strongly con-
nected (otherwise the algorithm is called for each strongly connected compo-
nent of Gu).

This is a recursive algorithm. Each step of the recursion builds a particular
subgraph G′ of the current graph G being processed. Once G′ is built, a set of
linear constraints is derived and a valid schedule that satisfies all dependence
edges not in G′ can be computed. Then, the algorithm keeps working on the
remaining edges, i.e. the edges of G′ (more precisely G′ and some additional
edges, see below).

G′ is defined as the subgraph of G generated by all the edges of G that
belong to at least one multi-cycle of null weight. A multi-cycle is a union of
cycles, not necessarily connected, and the weight of a union of cycles is the
sum of the weights of its constitutive cycles. G′ is built by the resolution of
a linear program (see Section 6.6).

The scheduling step can be summarized by the recursive algorithm given
below. The initial call is Darte-Vivien(Gu, 1). The algorithm builds, for
each actual node S of Gu, a sequence of vectors X1

S , . . . , X
dS

S and a sequence
of constants ρ1

S , . . . , ρ
dS

S that define a valid multi-dimensional schedule.
DARTE-VIVIEN(G, k).

1. Build G′ the subgraph of G generated by all edges that belong to at least
one null weight multi-cycle of G.

2. Add in G′, all edges from xe to ye and all self-loops on ye if e = (xe, ye)
is an edge already in G′, from an actual node xe to a virtual node ye.

3. Select a vector X , and a constant ρS for each node S in G, such that:{
e = (xe, ye) ∈ G′ or xe is a virtual node⇒ Xw(e) + ρye − ρxe ≥ 0
e = (xe, ye) /∈ G′ and xe is an actual node⇒ Xw(e) + ρye − ρxe ≥ 1

For all actual nodes S of G, let ρk
S = ρS and Xk

S = X .
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4. If G′ is empty or has only virtual nodes, return.
5. If G′ is strongly connected and has at least one actual node, G is not
computable (and the initial PRDG Go is not consistent), return.

6. Otherwise, decompose G′ into its strongly connected components Gi and
call DARTE-VIVIEN(Gi, k + 1) for each subgraph Gi that has at least
one actual node.

Remarks

– Step (2) is necessary only for general PRDGs: for example, it could be
removed for RDGs labeled by direction vectors (for details see [16]). In
this case, the resolution of a single linear program can simultaneously solve
Step (1) and Step (3).

– In Step (3), we do not specify, on purpose, how the vector X and the con-
stants ρ are selected, so as to allow various selection criteria. For example,
a maximal set of linearly independent vectors X can be selected if the goal
is to derive fully permutable loops (see [13] for details).

Back to Example 63 Consider the uniform dependence graph of Figure 6.6.
There are two elementary cycles of weights (1, 0, 1) and (0, 1, 1), and five self-
loops of weights (0, 0, 1), (0, 0,−1), (0, 1, 0) (twice) and (0,−1, 0). Therefore,
all edges (except the edges that only belong to the cycle of weight (1, 0, 1))
belong to a multi-cycle of null weight. The subgraphG′ is drawn in Figure 6.7.
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Fig. 6.7. Subgraph of null weight multi-cycles for Example 63.

The constraints coming from edges in G′ impose that X = (x, y, z) must
be orthogonal to the weight of all cycles of G′. Therefore, y = z = 0. Fi-
nally, considering the other constraints, we find the solution X = (2, 0, 0),
ρS1 = ρS3 = 1 and ρS2 = 0. In G′, there remain four strongly connected
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components, and two of them are not considered since they only have vir-
tual nodes. The two other components have no null weight multi-cycles. The
strongly connected component with the single node S2 can be scheduled with
the vector X = (0, 1, 0), whereas studying the other strongly connected com-
ponent leads, among other solutions, to X = (0, 0, 2), ρS1 = 0, and ρS3 = 3.

Finally, summarizing the results, we find, as claimed in Section 6.3, the
2-dimensional schedules: (2i, j) for S2, (2i+1, 2k) for S1 and (2i+1, 2k+3)
for S3.

6.6 Schematic Explanations

Gu does not always correspond to the RDG of a loop nest since its dependence
vectors are not necessarily lexicographically nonnegative. In fact, if one for-
gets that some nodes are virtual, Gu is nothing but the reduced dependence
graph of a System of Uniform Recurrence Equations (SURE), introduced by
Karp, Miller and Winograd [24]. Karp, Miller and Winograd study the prob-
lem of computability of a SURE: they show that its computability is linked
to the problem of detecting cycles of null weight in its RDG G, which can
be done by a recursive decomposition of the graph, based on the detection
of multi-cycles of null weight. The key structure of their algorithm is G′, the
subgraph of G generated by the edges that belong to a multi-cycle of null
weight.

G′ can efficiently be built by the resolution of a simple linear program
(program 6.1 or its dual program 6.2). This resolution enables to design a
parallelization algorithm, whose principle is dual to Karp, Miller and Wino-
grad’s algorithm:

min

{∑
e

ve | q ≥ 0, v ≥ 0, w ≥ 0, q + v = 1+ w, Bq = 0

}
(6.1)

max

{∑
e

ze | z ≥ 0, 0 ≤ ze ≤ 1, Xw(e) + ρye − ρxe ≥ ze

}
(6.2)

where w(e) is the dependence vector associated to the edge e, B = [CW ]t, C
is the connection matrix and W the matrix of dependence vectors.

Without entering the details, X is a n-dimensional vector and there is
one variable ρ per vertex of the RDG and one variable z per edge of the
RDG. The edges of G′ (resp. G \ G′) are the edges e = (xe, ye) for which
ze = 0 (resp. ze = 1) in the optimal solution of the dual (program 6.2), and
equivalently, for which ve = 0 (resp. ve = 1) in the primal (program 6.1).
When summing inequalities Xw(e) + ρye − ρxe ≥ ze on a cycle C of G, one
finds that Xw(C) = 0 if C is a cycle of G′ and Xw(C) ≥ l(C) > 0 otherwise
(l(C) is the number of edges of C not in G′).

To see the link with algorithm Wolf-Lam, when considering the cone Γ
generated by the weights of the cycles (and not the weights of the edges), G′
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is the subgraph whose cycle weights generate the lineality space of Γ and X
is a vector of the relative interior of Γ+. However, there is no need to build Γ
effectively to build G′. This is one of the interest of the linear programs 6.1
and 6.2.

We have outlined the main ideas of algorithm Darte-Vivien [15]. Some
technical modifications are needed to distinguish between virtual and actual
nodes, and to take into account the nature of the edges (vertices, rays or lines
of a dependence polyhedron): see [16] for full details.

6.7 Power and Limitations

Now that we have a multi-dimensional schedule T , we can prove its optimality
in terms of degree of parallelism. We can show [14,16] that for each statement
S (i.e. for each node of Go), the number of instances of S that have been
sequentialized by T is of the same order as the number of instances of S that
are inherently sequentialized by the dependences.

Theorem 61. The scheduling algorithm is nearly optimal: if the iteration
domain contains (resp. is contained in) a full dimensional cube of size Ω(N)
(resp. O(N)), and if d is the depth (the number of nested recursive calls) of
the algorithm, then, the latency of the schedule is O(Nd) and the length of
the longest dependence path is Ω(Nd). More precisely, after code generation,
each statement S is surrounded by exactly dS sequential loops and these loops
are considered inherently sequential because of the dependence analysis.

Once again, this algorithm is optimal with respect to the dependence
analysis. Consider the example in Figure 6.8.

Example 64.

DO i=1,n
DO j=i,n
S1 a(i, j) = b(i-1, j+i) + a(i, j-1)
S2 b(i, j) = a(i-1, j-i) + b(i, j-1)
ENDDO
ENDDO 1

+

1
−

S2S1
0
1

0
1

Fig. 6.8. Example 64: code and RDG.

If the dependences are described by distance vectors, the RDG has two
self-dependences (0, 1) and two edges labeled by polyhedra, both with one
vertex and one ray (respectively (0, 1) and (0,−1)). Therefore, there exists a
multi-cycle of null weight. Furthermore, the two actual vertices belong to G′.
Thus, the depth of algorithm Darte-Vivien is 2 and no parallelism can be
found.
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However, computing iteration (i, j) of the first statement (resp. the second
statement) at step 2i+ j (resp. i+ j), leads to a valid schedule that exposes
one degree of parallelism 6. Darte-Vivien was not able to find parallelism
in this example because the approximation of the dependences had already
lost all the parallelism.

The technique we used here to detect parallel loops consists in looking for
multi-dimensional schedules whose linear parts (the vectorsX) may be differ-
ent for different statements even if they belong to the same strongly connected
component. This is the base of Feautrier’s algorithm [20] whose fundamental
mathematical tool is the affine form of Farkas’ lemma. Theorem 61 however
shows that there is no need to look for different linear parts (whose construc-
tion is more expensive and lead to more complicated rewriting processes) in
a given strongly connected component of the current subgraph G′, as long as
dependences are given by distances vectors. On the other hand, Example 64
shows that such a refinement may be useful only when a more accurate de-
pendence analysis is available.

7. Feautrier’s Algorithm

In [20], Paul Feautrier proposed an algorithm to schedule static control pro-
grams with affine dependences. This algorithm makes use of an exact depen-
dence analysis, which is always feasible for such programs [18]. This is to
be contrasted with the previous three algorithms (Allen-Kennedy, Wolf-
Lam, and Darte-Vivien) which work with an approximation of the depen-
dences.

Feautrier’s algorithm takes as input a reduced dependence graph G in
which an edge e : Si → Sj is labeled by the set of pairs (I, J) such that Sj(J)
depends on Si(I). This algorithm builds recursively a multi-dimensional affine
schedule for each statement of the loop nest:

Feautrier(G).

– Decompose G into its strongly connected component Gi and sort them
topologically.

– For each strongly connected component Gi:
– Find an affine schedule by statement which induces a non-negative delay
on all dependences and satisfies as many dependences as possible.

– Build the set G′
i of unsatisfied edges. If G

′
i �= ∅, call Feautrier(G′

i).

This algorithm is similar to Darte-Vivien because of its structure and
output, and because both use linear programs to build affine schedules. Here
are the main points for a comparison of the two algorithms:

6 The schedules � 3
2
i + j + 1

2
� and � 1

2
i + j� minimize the latency but the code is

more complicated to write.
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– Darte-Vivien is able to schedule 7 programs even if dependence analysis
is not feasible, given a RDG with polyhedral dependences. Feautrier is
only able to process static control programs with affine dependences. In
this sense, the first algorithm is more powerful. Note however that there
are some attempts to generalize Feautrier’s approach by weakening the
constraints on its input, using a Fuzzy Array Dataflow Analysis [7].

– When dependence analysis is feasible, Feautrier is much more powerful.
This algorithm is able to process any set of loops that describe polyhedra,
even if the loops are not perfectly nested. Darte-Vivien can also process
non perfectly nested loops, either by considering each block of perfectly
nested loops separately, or by fusing artificially the non perfectly nested
loops. In theory however, this is less natural and less powerful.

– Darte-Vivien is based on the resolution of linear programs that are sim-
ilar to those solved by Feautrier. The only (through fundamental) dif-
ference is that the former looks for less general affine transformations.
Therefore, on static control programs with affine dependences, Feautrier
always find more parallelism than Darte-Vivien (cf. Example 64). How-
ever, despite this difference, the optimality result for Darte-Vivien gives
some hints concerning the optimality cases of Feautrier that was first
presented as a “greedy heuristic”.

– Feautrier needs to use the affine form of Farkas’ lemma to obtain its
linear programs, which Darte-Vivien avoids thanks to its uniformization
scheme. Therefore, Feautrier’s linear programs are more complex.

– Both algorithms were extended from fine grain to medium grain parallelism
detection through a search for fully permutable loops. Darte et al. [13]
proposed an extension of Darte-Vivien which is a mere generalization
of Wolf-Lam. Lim and Lam [27] proposed an extension of Feautrier
which finds maximal sets of fully permutable loops while minimizing the
amount of synchronizations required in the parallelized code.

– Darte-Vivien produces schedules as regular as possible in order to gen-
erate codes as simple as possible. Indeed, this algorithm rewrites the codes
using affine schedules, but, unlike Feautrier, these affine schedules are
chosen such that as many statements as possible have the same linear part:
the code generation can then be viewed as a sequence of partial unimodular
transformations and loop distributions. As a result, the output codes are
guaranteed to be simpler than Feautrier’s codes.

A small comparison study was conducted in [28]. It used only four exam-
ples. As expected, the complexity of Darte-Vivien was (much) lower than
that of Feautrier. More surprisingly, both algorithms output the same re-
sult on each of the four examples considered. Obviously, more real examples
should be processed to reach a conclusion. At least we can say that more
complex techniques do not always provide better results!

7 We did not write “is able to rewrite”...
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Finally, here is a code (Example 71) which obviously contain some par-
allelism, but which cannot be parallelized by any of the four parallelization
algorithms surveyed in this paper:

Example 71.

DO i=1,n
a(i) = 1 + a(n-i)

ENDDO

DOPAR i=1,�n
2
�

a(i) = 1 + a(n-i)
ENDDO
DOPAR i=�n

2
�+ 1,n

a(i) = 1 + a(n-i)
ENDDO

Fig. 7.1. Example 71: original code and parallelized version.

8. Conclusion

Our study provides a classification of loop parallelization algorithms. The
main results are the following: Allen and Kennedy’s algorithm is optimal for
a representation of dependences by levels, and Wolf and Lam’s algorithm is
optimal for a representation by direction vectors (but for a loop nest with
only one statement). Neither one subsumes the other, since each uses infor-
mation that cannot be exploited by the other (graph structure for the first
one, direction vectors for the second one). However, both are subsumed by
Darte and Vivien’s algorithm which is optimal for any polyhedral representa-
tion of distance vectors. Feautrier’s algorithm subsumes Darte and Vivien’s
algorithm when dependences can be represented as affine dependences, but
the characterization of its optimality remains open.

We believe this classification of loop parallelization algorithms to be of
practical interest. It provides guidance for a compiler-parallelizer in order to
choose the most suitable algorithm: given the dependence analysis that is
available, the simplest and cheapest parallelization algorithm that remains
optimal should be selected. Indeed, this is the algorithm that is the most
appropriate to the available representation of dependences.
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