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Abstract

We investigate the problem of finding a minimal volume parallelepiped enclosing a given set ofn three-
dimensional points. We give two mathematical properties of these parallelepipeds, from which we derive t
algorithms of theoretical complexity O(n6). Experiments show that in practice our quickest algorithm run
O(n2) (at least forn � 105). We also present our application in structural biology.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is sometimes useful to circumscribe a complex three-dimensional shape with a simpler sh
minimum volume. Solutions for this problem are known if one is looking for the minimal vol
enclosing ball or ellipsoid [10], cylinder [8], tetrahedron [12], or rectangular box [6]. Our orig
motivation was to approximate the surface of a protein with a set of regular shapes in the h
finding some “outstanding faces” of the protein, e.g., responsible of interactions with other pr
From biological considerations, parallelepipeds seemed more suitable for our problem. So, in th
we show how to compute a parallelepiped of minimal volume enclosing a three-dimensional shap
of points. Our algorithms rely on mathematical properties inspired by the properties satisfied in th
by the minimal enclosing parallelogram [3,4,9].

In Section 2 we prove two mathematical properties of minimal enclosing parallelepipeds. From
properties, we derive two algorithms in Section 3. In Section 4, we report the experiments we per
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on these algorithms. Finally, in Section 5, we give an insight of our biological motivation: we apply our
technique to a protein and discuss the result.
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2. Mathematical properties

First, we remark that the minimal volume parallelepiped enclosing a setS of points is the minima
volume parallelepiped enclosing the convex hull ofS as the convex hull ofS is the smallest conve
enclosingS. Then, the first theorem states that each pair of opposite faces of the minimal enc
parallelepiped must flush a face or two edges of the convex hull (and not just a face as in 2D).
paper we never consider degenerated sets of points, i.e., included in a plane.

Theorem 1. For any set of points of convex hullC there exists a minimal enclosing parallelepipedP such
that, for any pair of opposite faces ofP , either one of the faces contains a face ofC or both faces contain
an edge ofC and the two edges are not parallel.

Proof. We consider a set of points of convex hullC and one of its minimal enclosing parallelepipedP .
Any faceF of P contains at least one vertex ofC: otherwise it would be possible to moveF closer to its
opposite face to obtain an enclosing parallelogram of smaller volume.

To prove the theorem, we suppose thatP does not satisfy the property stated by the theorem an
show that we can build an enclosing parallelogram satisfying the property and at least as small aP . As,
by hypothesis,P does not satisfy the property stated by the theorem, there exist two opposite faF1

andF2 of P such that none of them contain a face ofC and if both contain an edge ofC, both edges ar
parallel. We denote byP1 (respectivelyP2) the plane containingF1 (respectivelyF2).

A parallelepiped is defined by its eight vertices. It is also defined by the three pairs of parallel
that contain its faces. We will call these planes thesupporting planes. Let us consider a pair of supportin
planes,{p1,p2}, i.e., two supporting planes corresponding to opposite faces ofP . We take two paralle
lines, d1 andd2, the first included inp1 and the second inp2. We rotatep1 aroundd1 andp2 around
d2 with a same angle. This way, we obtain a new pair of parallel planes which defines, with th
remaining supporting planes ofP , a new parallelepiped. This new parallelepiped may or may not b
enclosing parallelepiped forC. We say that we have rotated the pair of supporting planes{p1,p2}.

We first study the freedom we have to rotate the pair of supporting planes{P1,P2} while the obtained
parallelepiped remains enclosing forC.

The possibility to rotate some supporting planes

We consider the numbernv of vertices ofC belonging to either of the two facesF1 andF2:

nv � 5: one of the two faces contains at least three vertices and thus a face ofC. This is impossible by
definition ofF1 andF2.

nv = 4: by definition ofF1 andF2, both faces contain an edge ofC and these two edges are paral
We denote byd1 (respectivelyd2) the line ofP1 (respectivelyP2) containing the edge ofC ∩F1

(respectivelyC∩F2). Then one can (slightly) rotate, in any direction,P1 andP2 of a same angle
aroundd1 andd2 while transformingP into another parallelepiped enclosingC, as long as the
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angle of the rotation remains small. Indeed, we can rotate the pair of supporting planes{P1,P2}
until one of the rotated planes touches a new vertex ofC.

nv = 3: because of our hypothesis, one face contains a single vertex ofC and the other one an edge ofC.

)
s

ure

,

Without any loss of generality, we denote byF1 the face containing the edge. We defined1 as
previously andd2 as the line ofP2 containingC ∩F2 and parallel tod1. Then one can (slightly
rotate, in any direction,P1 andP2 of a same angle aroundd1 andd2, under the same condition
than previously.

nv = 2: each face contains exactly one vertex ofC. We randomly peak any vectorv in P1 to define the
direction ofd1 andd2: d1 (respectivelyd2) is then the line ofP1 (respectivelyP2) parallel tov

and containingC ∩F1 (respectivelyC ∩F2). Then one can (slightly) rotate, in any direction,P1

andP2 of a same angle aroundd1 andd2, under the same conditions than previously.

Building an enclosing parallelogram smaller thanP

From what precedes, whatever the case, one can (slightly) rotate, in any direction,P1 andP2 of a
same angle aroundd1 andd2 while transformingP into another parallelepiped,P ′, enclosingC. We now
compute the volume of the new parallelepipedP ′. In the following, given two pointsI andJ , IJ denotes
the vector from pointI to pointJ andIJ the algebraic measure.

Fig. 1 shows the original parallelepiped and the new faceF ′
1 = (B ′F ′G′C ′) obtained from the rotation

of P1 by an angle ofΘ aroundd1. We use the notations defined in Fig. 1.S1,t (respectivelyS1,b) is the
intersection ofd1 with the line(BC) (respectively(FG)). In order to ease the computations, we meas
the rotation aroundd1 and d2 not by an angle measured in a plane orthogonal tod1 but in the plane
(ABCD). Θ is the angle defined by the vectorsS1,tC andS1,tC

′.
The volume of the parallelepipedP is equal to: vol(P) = |(CB ∧ CD).CG|. The volume ofP ′ is

equal to: vol(P ′) = |(C′B ′ ∧ C′D′).C′G′|. To explicit the value of vol(P ′), we need to explicit the
values ofC′B ′, C′D′ andC′G′. We start withC′D′.

The value ofC′D′. C′D′ = C′C + CD + DD′. To compute the value ofC′D′ we focus on Fig. 2
which is a magnification of Fig. 1. We denote byα the angle defined by the vectorsCB andCD. Then

Fig. 1. Original parallelepiped and the rotation.
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Fig. 2. Detail of Fig. 1.

cos(α − δ) = CHt

CC ′ and cos(δ) = CHt

CS1,t
. As the sum of the angles in a triangle is equal toπ , δ = π

2 + Θ ,
and

CC ′ = cos(δ)

cos(α − δ)
CS1,t = cos(π

2 + Θ)

cos((α − Θ) − π
2 )

CS1,t = − sin(Θ)

sin(α − Θ)
CS1,t ,

and,uCD denoting the unitary vector of same direction and orientation thanCD,

CC′ = − sin(Θ)

sin(α − Θ)
CS1,t .uCD.

Symmetrically, we have forDD′ (S2,t (respectivelyS2,b) being the intersection ofd2 with the line(DA)

(respectively(HE))): DD′ = − sin(Θ)

sin(α−Θ)
DS2,t .uCD. Gathering these two results, we obtain

C′D′ = C′C + CD + DD′ = CD + sin(Θ)

sin(α − Θ)
(CS1,t − DS2,t ).uCD.

The values ofC′B ′ and C′G′. C′B ′ = C′C + CB + BB ′. Thus, asC′C and BB ′ are parallel
to uCD, there exists a valuex s.t. C′B ′ = CB + x.uCD. Symmetrically, there exists a valuey s.t.
C′G′ = CG + y.uCD.

The volume ofP ′. Collecting the previous results, we have

(C′B ′ ∧ C′D′).C′G′

=
(

(CB + x.uCD) ∧
(

CD + sin(Θ)

sin(α − Θ)
(CS1,t − DS2,t ).uCD

))
.(CG + y.uCD)

= CB ∧ CD.CG + sin(Θ)

sin(α − Θ)
(CS1,t − DS2,t)(CB ∧ uCD.CG)

=
(

1+ sin(Θ)

sin(α − Θ)

(CS1,t − DS2,t )

‖CD‖
)

CB ∧ CD.CG.

Therefore,

vol(P ′) =
∣∣∣∣1+ sin(Θ)

sin(α − Θ)

(CS1,t − DS2,t )

‖CD‖
∣∣∣∣vol(P). (1)

We have two cases to consider, depending whether(CS1,t − DS2,t ) is null:

(1) CS1,t − DS2,t �= 0. sin(α) is obviously non-null, knowing the definition ofα. For very small
values ofΘ , sin(α − Θ) has the same sign than sin(α). As we can chooseΘ to be either strictly
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negative or strictly positive (see the discussion above), we choose forΘ a very small value such that
�sin(α)(CS1,t − DS2,t) < 0. Then vol(P ′) < vol(P) and we have built an enclosing parallelogram
of (strictly) smaller volume.
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(2) CS1,t − DS2,t = 0. ThenP andP ′ are two enclosing parallelepipeds of same volume (whateve
value ofΘ). We take forΘ the largest value possible. The two new facesF ′

1 andF ′
2 contain by

definition ofd1 andd2 all the points ofF1 andF2 belonging toC. Because of the maximality ofΘ ,
F ′

1 ∪ F ′
2 contains at least one more point ofC (and thus one more vertex ofC) thanF1 ∪ F2. If P ′

satisfies the property stated by the theorem, we are happy. Otherwise, we apply toP ′ the process
we have applied toP to obtainP ′. This way we obtain a new enclosing parallelogramP ′′. As the
number of verticesnv of (F1 ∪F2)∩C is strictly increasing with this process, we shortly end up w
a parallelepiped of volume at most equal to vol(P) and which satisfies the property stated by
theorem. Indeed, any parallelepiped withnv � 5 satisfies this property (as we have shown above

In both cases we obtain, maybe after a few iterations, a parallelepiped enclosingS , satisfying the desired
property, and whose volume is less than or equal to the volume ofP . �
Theorem 2. Let S be a set of points andC its convex hull. LetP be a minimal volume parallelepipe
enclosingS and which satisfies the property stated by Theorem1. LetF1 andF2 be two opposite face
of P . Then, the projection ofF1 ∩ C on F2 along the other faces ofP has a non-null intersection wit
F2 ∩ C.

Proof. We prove this result by contradiction. Thus we suppose thatP , a minimal volume enclosing
parallelepiped which satisfies the property stated by Theorem 1, does not satisfy the property s
Theorem 2. Then we show that we can build an enclosing parallelepiped of strictly smaller v
The proof relies on a careful study of Eq. (1). First, we remark that, because of its definitio
angleα has a value strictly between 0 andπ . Therefore sin(α) is always (strictly) positive.Θ will
be chosen small. ThusΘ and sin(Θ) will have the same sign. Also sin(α − Θ) and sin(α) will have
the same sign. IfCS1,t − DS2,t is not null and ifCS1,t − DS2,t and sin(Θ) have opposite signs, i.e
if sin(Θ)(CS1,t − DS2,t ) < 0, the volume ofP ′ is strictly smaller than that ofP . We now show that
because of our hypotheses, there always exists a rotation satisfying this property.

Let P ′ be projection ofF2 ∩ C onF1 along the other faces ofP . By hypothesis, the intersection ofP ′
andF1 ∩C is empty.P ′ andF1 ∩C are polyhedra asF1 ∩C (respectivelyF2 ∩C) is either a single vertex
an edge or a face ofC. P ′ andF1 ∩ C are two bounded (convex) polyhedra and, as their intersecti
empty, there exists a lined of P1 (the plane containingF1) which separates them strictly: inP1, P ′ and
F1 ∩ C lie on either sides ofd, none of them having some points in common withd (for a proof, see for
example [7, Theorem 2.39, p. 62]). We take ford1 the line ofP1 parallel tod and containing a verte
of F1 ∩ C which is the closest toP ′. We choose ford2 the line ofP2 parallel tod and containing a
vertex ofF2 ∩ C whose projection onF1 is a vertex ofP ′ which is the closest toF1 ∩ C. We defineS1,t

andS2,t from d1 andd2 as previously. Then,CS1,t andDS2,t cannot be equal. Otherwise, the project
of d2 onF1 would be equal tod1 which is impossible by definition ofd1, d2 andd (d would have points
common toP ′ andF1 ∩ C).

Fig. 3 shows the case whereCS1,t − DS2,t > 0 (respectivelyCS1,t − DS2,t < 0). In this case
one can rotate the pair of planes{P1,P2} of a same angleΘ < 0 (respectivelyΘ > 0) aroundd1

andd2 respectively while the obtained parallelepiped remains enclosing, and while the volume
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Fig. 3. CasesCS1,t − DS2,t > 0 (left) andCS1,t − DS2,t < 0 (right). The intersections ofC andF1 andF2 are drawn in bold.
The projectionP ′ of F2 ∩ C is drawn in dotted lines.

parallelepiped strictly decreases:(CS1,t − DS2,t )sin(Θ) < 0. Hence, the obtained parallelepiped ha
volume strictly smaller thanP . �

The following lemma is a corollary of Theorem 2. This lemma states whether two pairs of p
satisfying the condition of Theorem 1 can satisfy the condition of Theorem 2, in which case we sp
compatiblepairs of planes. This lemma is thus a weak version of Theorem 2.

Lemma 3. LetS be a set of points andC its convex hull. Let{P1,P2} and{P3,P4} be two pairs of planes
satisfying the property stated by Theorem1 for S . LetVi = {vi

1, . . . , v
i
|Vi |} be the vertices ofPi ∩ C, for

any i ∈ [1;4]. Letn1,2 (respectivelyn3,4) be a vector normal toP1 andP2 (respectivelyP3 andP4).
{P1,P2} and{P3,P4} can satisfy the property stated by Theorem2 if and only if{ ∃(a, b) ∈ V1 × V2, (b − a).n3,4 � 0, ∃(c, d) ∈ V1 × V2, (d − c).n3,4 � 0,

∃(e, f ) ∈ V3 × V4, (f − e).n1,2 � 0, ∃(g, h) ∈ V3 × V4, (h − g).n1,2 � 0.

This lemma just mathematically states that the pair of planes{P1,P2} contains a direction which map
a point ofP3 ∩ C on a point ofP4 ∩ C, and reciprocally.

Proof. For the two pairs of parallel planes to have a chance to satisfy the property stated by The
there must exist a pointx in P1 ∩ C and a pointy in P2 ∩ C and a directiond in P3 such that the
projection ofx onP2 alongd is equal toy. In other words, the vectory −x must be parallel toP3, which
is equivalent to(y − x).n3,4 = 0. We prove that this property is equivalent to the system of Lemma

The points ofP1∩C are exactly the convex combinations of the vertices ofP1∩C. We use this property
for the pointx of P1 ∩ C and also for the pointy of P2 ∩ C:

∃λ1 � 0, . . . ,∃λ|V1| � 0,

|V1|∑
j=1

λj = 1, x =
|V1|∑
j=1

λjv
1
j , and

∃µ1 � 0, . . . ,∃µ|V2| � 0,

|V2|∑
k=1

µk = 1, y =
|V2|∑
k=1

µkv
2
k . Then
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y − x =
|V2|∑
k=1

µkv
2
k −

|V1|∑
j=1

λjv
1
j =

|V2|∑
k=1

( |V1|∑
j=1

λj

)
µkv

2
k −

|V1|∑
j=1

( |V2|∑
k=1

µk

)
λjv

1
j , and thus

alar
allel

sfy the

at each
x hull.
lanes,
rather

orting
ed by a

es. The
).
y − x =
|V2|∑
k=1

|V1|∑
j=1

µkλj

(
v2

k − v1
j

)
,

and(y − x) is a convex combination of the values(v2
k − v1

j ). We have three cases to consider:

• All the scalar products(v2
k − v1

j ).n3,4 are (strictly) positive (respectively negative). Then, the sc
product(y − x).n3,4 is also (strictly) positive (respectively negative) and the two pairs of par
planes cannot satisfy the property stated by Theorem 2.

• At least one of the scalar products is null: the two pairs of parallel planes can obviously sati
property.

• No scalar product is null, but there exist some valuesk1, k2, j1 andj2 such that:(v2
k1

− v1
j1

).n3,4 > 0
and(v2

k2
− v1

j2
).n3,4 < 0. We define the pointsx andy as follows:

x = |(v2
k2

− v1
j2

).n3,4|v1
j1

+ |(v2
k1

− v1
j1

).n3,4|v1
j2

|(v2
k2

− v1
j2

).n3,4| + |(v2
k1

− v1
j1

).n3,4|
and

y = |(v2
k2

− v1
j2

).n3,4|v2
k1

+ |(v2
k1

− v1
j1

).n3,4|v2
k2

|(v2
k2

− v1
j2

).n3,4| + |(v2
k1

− v1
j1

).n3,4| .

One can check thatx belongs toP1 ∩ C, y to P2 ∩ C and that(y − x).n3,4 = 0.

To obtain the desired property, we redo on the pair of planes{P3,P4} what we have done on{P1,P2}. �

3. Algorithms

Using Theorem 1 we derive a rather simple algorithm. Then we refine it using Lemma 3.

3.1. A first algorithm

Theorem 1 tells us that there is at least one minimal volume enclosing parallelepiped such th
of its faces is either parallel to a face of the convex hull or to two non-parallel edges of this conve
Then, Algorithm 1 simply enumerates all the possible triplets of orientation of the supporting p
and searches for one defining an enclosing parallelepiped of minimal volume. The algorithm is
straightforward: after the computation of the convex hull, we build the pairs of candidate supp
planes defined by faces of the convex hull, then the pairs of candidate supporting planes defin
pair of edges of the convex hull, and we test all the triplets of pairs of candidate supporting plan
volumes of the parallelepipeds are computed using a formula proved in Appendix A (Lemma A.1
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1: Compute the convex hullC of the set of pointsS
2: N = ∅ {The set of pairs of candidate supporting planes}
3: LetF be the set of all the faces ofC

t
nstant

all the

r
ing
tion

f
s

4: for each facef of F do
5: Find the vertexv of C which is the furthest fromf
6: Associate tof the vectornf normal tof and linkingf andv (v + nf is a point off )
7: N =N ∪ {(f,f − nf ,nf )}
8: LetE be the set of all the edges ofC
9: for each pair{e1, e2} of elements ofE do

10: if e1 ande2 are not parallelthen
11: Build the planesf1 andf2 parallel toe1 ande2, with e1 ⊂ f1 ande2 ⊂ f2
12: Compute the vectornf1 normal tof1 (and thus tof2) such thatf1 + nf1 = f2
13: if C is enclosed in the space between the planesf1 andf2 then
14: N =N ∪ {(f1, f2, nf1)}
15: vol_min= +∞
16: planes= ∅
17: for each(f1, f

′
1, n1) of N do

18: for each(f2, f
′
2, n2) of N do

19: for each(f3, f
′
3, n3) of N do

20: if n1 ∧ n2.n3 �= 0 then

21: vol= ∣∣ ‖n1‖2‖n2‖2‖n3‖2

n1∧n2.n3

∣∣
22: if vol < vol_min then
23: vol_min= vol
24: planes= {f1, f

′
1, f2, f

′
2, f3, f

′
3}

25: return planes

Algorithm 1. Compute a minimal volume parallelepiped enclosing the set of pointsS .

Theoretical complexity
Let n be the number of points inS . Its convex hullC containsv vertices withv � n. If C was enforced

to be simplicial, it contains exactly 2v − 4 faces and 3v − 6 edges [2]. Then, the setN contains at mos
�(9v2) = O(n2) faces. Except for the loops, all the operations in this algorithm are performed in co
time except for the steps 1, 5 and 13:

• Step 1: the computation of the convex hull costs O(n logn) [2];
• Step 5: to find the vertex which is the furthest from a face of the convex hull, we need to scan

vertices which costs at worst O(n);
• Step 13: for this test we simply check that the direction of edgee1 (respectivelye2) has two scala

products of opposite signs with the normals to the two faces of the convex hull containe2

(respectivelye1) (to see it, write thate1 ∧ e2, the normal to the new plane, is a convex combina
of the normals to the two faces, and take the scalar product withe1 or e2); hence a cost of O(1).

The overall theoretical complexity of this algorithm is thus at worst O(n6), wheren is the number of
vertices ofS , because of the search on all the triplets of elements ofN . More precisely, the complexity o
this algorithm is in O(n logn + v6), wheren is the number of vertices ofS andv the number of vertice
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of its convex hull. We will see in Section 4 that the complexity is far better in practice. Nevertheless, we
now use Lemma 3 to speed-up our algorithm.

arallel
do not

ma 3 to
lepiped.
3.2. A second algorithm

We use Theorem 2 to refine Algorithm 1. Theorem 2 gives us a condition for a triplet of pairs of p
planes to be an actual candidate for a minimal volume enclosing parallelepiped. Of course, we
want to enumerate anymore any triplets of pairs of candidate parallel planes. Thus we use Lem
check whether two pairs of candidate planes can be used together in a minimal enclosing paralle
This way we obtain Algorithm 2.

1: Compute the convex hullC of the set of pointsS
2: N = ∅ {The set of candidate supporting planes}
3: LetF be the set of all the faces ofC
4: for each facef of F do
5: Find the vertexv of C which is the furthest fromf
6: Associate tof the vectornf normal tof and linkingf andv (v + nf is a point off )
7: N =N ∪ {(f,f − nf ,nf )}
8: LetE be the set of all the edges ofC
9: for each pair{e1, e2} of elements ofE do

10: if e1 ande2 are not parallelthen
11: Build the planesf1 andf2 parallel toe1 ande2, with e1 ⊂ f1 ande2 ⊂ f2
12: Compute the vectornf1 normal tof1 (and thus tof2) such thatf1 + nf1 = f2
13: if C is enclosed in the space between the planesf1 andf2 then
14: N =N ∪ {(f1, f2, nf1)}
15: vol_min= +∞
16: planes= ∅
17: for each(f1, f

′
1, n1) of N do

18: compatible(f1, f
′
1, n1) = ∅

19: for each(f1, f
′
1, n1) of N do

20: for each(f2, f
′
2, n2) of N do

21: if (f1, f
′
1, n1) and(f2, f

′
2, n2) satisfy Lemma 3then

22: compatible(f1, f
′
1, n1) = compatible(f1, f

′
1, n1) ∪ {(f2, f

′
2, n2)}

23: compatible(f2, f
′
2, n2) = compatible(f2, f

′
2, n2) ∪ {(f1, f

′
1, n1)}

24: for each(f1, f
′
1, n1) of N do

25: for each(f2, f
′
2, n2) of compatible(f1, f

′
1, n1) do

26: for each(f3, f
′
3, n3) of (compatible(f1, f

′
1, n1) ∩ compatible(f2, f

′
2, n2)) do

27: if n1 ∧ n2.n3 �= 0 then

28: vol= ∣∣ ‖n1‖2‖n2‖2‖n3‖2

n1∧n2.n3

∣∣
29: if vol < vol_min then
30: vol_min= vol
31: planes= {f1, f

′
1, f2, f

′
2, f3, f

′
3}

32: return planes

Algorithm 2. Compute a minimal volume parallelepiped enclosing the set of pointsS (optimized).
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Theoretical complexity
The worst case complexity of Algorithms 1 and 2 is obviously the same. If we study more carefully

the algorithm and denote byv the number of vertices of the convex hull, bye the number of faces built at
e
of

he 45
nt than
rison of

s its
s. As

nly had
for such
e result
n time
ph
to be
nlinear
steps 9 to 14, and byc the size of the largest of the sets “compatible(f1, f
′
1, n1)”. Then steps 4 to 7 hav

a complexity of O(v2), steps 9 to 14 have a complexity of O(v2), steps 19 to 23 have a complexity
O((v + e)2) (at least ifC is simplicial), and steps 24 to 31 have a complexity of O((v + e) × c2). Hence
the overall complexity of

O
(
n logn + (v + e)2 + v × c2

)
. (2)

4. Experiments

We first compare the two algorithms on our application: we run the two algorithms on all t
proteins we had. The results presented on Fig. 4 show that Algorithm 2 is significantly more efficie
Algorithm 1 even for small inputs. These results are confirmed by Fig. 5 which presents a compa
the two algorithms on larger and synthetic input sets (points randomly picked on a sphere).

Algorithm 2 being far more efficient, we focused on it. We wanted to determine what wa
complexity in practice. Thus we needed to run it on convex hulls with a large number of vertice
the proteins we had did not give us such examples—the convex hull of our worst-case protein o
94 vertices—we used synthetic data. We randomly picked points on the surface of a sphere as
sets of points the convex hull is almost equal to the number of points in the set. Fig. 6 shows th
of the experiment for convex hulls containing up to 10 000 vertices. The graph of the executio
Time(n) in function of the numbern of vertices of the convex hull “looks” quadratic. Indeed the gra
of Time(n)/n2 is almost a horizontal line (this graph is also displayed on Fig. 6 but scaled up
readable). To confirm this result we approximate the execution with a cubic function (using the no
least-squares Marquardt–Levenberg algorithm implemented in gnuplot [5]). We exactly found

Time(n) ≈ 2.15263× 10−11 × n3 + 2.09904× 10−06 × n2 − 0.00101368× n + 0.770604,

Fig. 4. Comparison of the execution time of the two
algorithms on 45 proteins.

Fig. 5. Comparison of the execution time of the two
algorithms on synthetic data.
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Fig. 6. Execution time of Algorithm 2 on 499 sets of points
randomly taken on a sphere.

Fig. 7. Execution time of Algorithm 2 on 248 sets of points
randomly taken on a sphere.

with an asymptotic error of 21.18% on the cubic term, and of 3.188% on the quadratic term. Th
corresponding graph is also drawn in Fig. 6 but is hardly seen as it is almost equal to theTime(n)

graph. Even if this function is cubic, its cubic term has almost no influence for convex hu
up to 105 vertices as, until then, the quadratic term is dominant. We tried to extend this res
running Algorithm 2 on larger sets. The result is presented on Fig. 7. There, the computed
approximation has an even less important cubic term ((8.66169× 10−14 ± 8.503× 10−13) × n3 for
(2.44779× 10−06 ± 5.343× 10−08) × n2). This is not really surprising as the experimental uncertain
are rather important compared to this cubic term. Furthermore, we only ran experiments up to
vertices as for such large convex hulls, the algorithm already takes around one hour to run
experimental platform (Intel Xeon CPU running at 1.80 GHz and 512 MB of memory, C++ pro
compiled with GNU g++ 3.0, the convex hulls being computed using the Qhull library [1]).

One can wonder whether these results are influenced by the type of synthetic data we used. T
we studied the execution time of Algorithm 2 on purely random sets of points containing up to 15
points. Fig. 8 presents the graphTime(n) in function of the numbern of vertices of the convex hull an
the graph ofTime(n)/n2 (scaled up). In this figure, the execution time does not take into account the
needed to compute the convex hull (when it is included in all other figures). The reason of this re
is quite simple: even with large sets of points, the size of the convex hull is rather small (less th
vertices) but most of the time is spent in its computation because of the size of the input sets. The
have the desired shape. But the convex hulls are too small for the graphs to be conclusive.

From our experiments we can conclude that Algorithm 2 has an apparent complexity of

O
(
n logn + v2),

wheren is the number of points in the setsS, andv is the number of vertices of the convex hull. Th
seems at least true for input sets whose convex hull has up to 105 vertices, which seems to be the on
input sets that may be processed in a reasonable time (we may even wonder whether so larg
hulls exist in practice). This result is quite coherent with Eq. (2) when we remark that in all our exa
we have found thate � v (with the notations of Section 3.2).
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Fig. 8. Execution time of Algorithm 2 on 15073 sets of random
points.

Fig. 9. The PPAR protein with its minimal
volume enclosing parallelepiped.

5. Application to proteins

Our initial motivation is to approximate the “surface” of a protein with a set of regular shape
hope to be able to discover, by this method, the “faces” of the protein responsible of its interactio
other biological objects, when such faces actually exist. Once we have approximated a protei
minimal volume enclosing parallelepiped, we consider the “composition” of each of the six faces
minimal volume enclosing parallelepiped.

A protein is a sequence of amino-acids. The two main characteristics of amino-acids are wheth
are electrically charged1 and whether they are attracted by water (hydrophilic amino-acids) or rep
(hydrophobic amino-acids).2 So we consider the composition of the faces of our parallelepiped in t
of electrically charged and hydrophobic amino-acids. The composition of a face is the set of the
acids whose center of gravity is close to the face (less than 2.4 Å away from the face in our mode

We chose to illustrate our work with a protein which is a nuclear receptor. A nuclear receptor in
the transcription of some part of the DNA when it is activated by a certain molecule called its l
More important for us, nuclear receptors are known to have a large interaction face: we want to
whether we are able to rediscover this interaction face.

We chose the nuclear receptor protein called PPAR (Peroxisome Proliferator-Activated Recepto).
This protein is involved in the metabolism of glucose, lipids and cholesterol. PPAR is presen
Fig. 9 with its minimal volume enclosing parallelepiped.3 The composition of the parallelepiped fac

1 The electrically charged amino-acids are: aspartic acid, glutamic acid, lysine, arginine, and histidine.
2 The hydrophobic amino-acids are: leucine, isoleucine, valine, methionine, phenylalanine, tyrosine, and tryptopha
3 We used the structure of PPAR proposed by Xu et al. [11] and denoted 1k74 in theProtein Data Base.
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Fig. 10. Numbering of the
faces.

Amino-acids\Face 1 2 3 4 5 6

Total number 32 19 18 13 8 4

Hydrophobic 6% 21% 22% 38% 0% 0%

Electrically charged 50% 47% 44% 38% 62% 75%

Fig. 11. Composition of the faces of the minimal volume parallelepiped
enclosing PPAR (cf. Fig. 9).

is summarized in Fig. 11 (the numbering of the parallelepiped faces is presented in Fig. 10)
biological considerations, faces 5 and 6 do not “contain” enough amino-acids to be significant. A
the remaining faces, Face 1 is the one containing the smallest percentage of hydrophobic am
and the one containing the biggest percentage of electrically charged amino-acids. Face 1 has
outstanding composition (the amino-acids belonging to Face 1 are drawn the darkest in Fig. 10). A
Face 1 corresponds to the dimerisation interface of PPAR: thanks to this interface, PPAR can
heterodimer with the protein RXR (Retinoid X Receptor). Therefore, we were able to re-discover PP
interface.

We do not claim from the above example that our method enables us to predict anything: w
presented this example to give an insight to our motivation and application. In the general ca
cut a protein in sub-pieces (if necessary) and we approximate each sub-piece with its minimal
enclosing parallelepiped. The whole description of this work goes far beyond the scope of this pa

6. Conclusion

We presented two mathematical properties of the minimal volume parallelepiped enclosing a
dimensional set of pointsS. Using these properties we designed two algorithms of theoretical comp
O(n6), wheren is the size ofS (the number of points it contains). Our experiments show that the pra
complexity of our quickest algorithm is O(n logn + v2), wheren is the size ofS andv the number of
vertices of its convex hull, at least whenv is smaller than 105. Finally, we applied our method to search f
the interaction faces of a protein, our initial goal. Although the application of this research to stru
biology is in the preliminary stages, the first results are promising.

Appendix A. An alternate formula for the volume of parallelepiped

Lemma A.1 (Alternate formula for the volume of parallelepiped).Let ABCDEFGH be a parallelepiped
Letn1 (respectivelyn2) (respectivelyn3) be a vector normal to the pair of planes((DAEH), (CBFG))

(respectively((DCGH), (ABFE))) (respectively((ABCD), (HEFG))) whose norm is equal to th
distance between these two planes. Then, the volume of the parallelepiped ABCDEFGH is equa

V =
∣∣∣∣‖n1‖2‖n2‖2‖n3‖2

n1 ∧ n2.n3

∣∣∣∣.
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Proof. The volumeV of the parallelepiped is equal to|(HG ∧ HE).HD|. We need to explicit the
values ofHG, HE and HD as functions ofn1, n2 and n3. We start withHD. Becausen1 and n2

are perpendicular toHD, the direction ofHD is equal to± n1∧n2
‖n1∧n2‖ . Let α be the angle defined by

tware

national

n, in:
da,

l. 317,

mputer

ctural
. 98
the vectorsHD and n3. As the triangle defined byH , D, andH + n3 is rectangle,‖HD‖ = ‖n3‖
|cosα| ,

henceHD = ± ‖n3‖
cosα

n1∧n2
‖n1∧n2‖ . Besides, cosα = n1∧n2

‖n1∧n2‖ .
n3

‖n3‖ , which impliesHD = ±‖n3‖2n1∧n2
n1∧n2.n3

. Similarly

we obtain the values ofHG and HE: HG = ±‖n1‖2n2∧n3
n1∧n2.n3

and HE = ±‖n2‖2n3∧n1
n1∧n2.n3

. Collecting these
results we have

V = ‖n1‖2‖n2‖2‖n3‖2|(n2 ∧ n3) ∧ (n3 ∧ n1).(n1 ∧ n2)|
|n1 ∧ n2.n3|3

= ‖n1‖2‖n2‖2‖n3‖2|[((n2 ∧ n3).n1)n3 − ((n2 ∧ n3).n3)n1].(n1 ∧ n2)|
|n1 ∧ n2.n3|3

= ‖n1‖2‖n2‖2‖n3‖2|[((n2 ∧ n3).n1)n3].(n1 ∧ n2)|
|n1 ∧ n2.n3|3

= ‖n1‖2‖n2‖2‖n3‖2

|n1 ∧ n2.n3|
(using the formulau ∧ (v ∧ w) = (u.w)v − (u.v)w). �
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