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Abstract

We investigate the problem of finding a minimal volume parallelepiped enclosing a given sethoée-
dimensional points. We give two mathematical properti¢ these parallelepipeds, from which we derive two
algorithms of theoretical complexity @°). Experiments show that in practice our quickest algorithm runs in
O(n?) (at least fom < 10°). We also present our application in structural biology.
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1. Introduction

It is sometimes useful to circumscribe a complex three-dimensional shape with a simpler shape, of
minimum volume. Solutions for this problem are known if one is looking for the minimal volume
enclosing ball or ellipsoid [10], cylinder [8], tetrahedron [12], or rectangular box [6]. Our original
motivation was to approximate the surface of a protein with a set of regular shapes in the hope of
finding some “outstanding faces” of the protein, e.g., responsible of interactions with other proteins.
From biological considerations, parallelepipeds seemed more suitable for our problem. So, in this paper
we show how to compute a parallelepiped of minimal volume enclosing a three-dimensional shape or set
of points. Our algorithms rely on mathematical properties inspired by the properties satisfied in the plane
by the minimal enclosing parallelogram [3,4,9].

In Section 2 we prove two mathematical properties of minimal enclosing parallelepipeds. From these
properties, we derive two algorithms in Section 3. In Section 4, we report the experiments we performed
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on these algorithms. Finally, in Section 5, we give an insight of our biological motivation: we apply our
technique to a protein and discuss the result.

2. Mathematical properties

First, we remark that the minimal volume parallelepiped enclosing & sftpoints is the minimal
volume parallelepiped enclosing the convex hullSofs the convex hull of is the smallest convex
enclosingS. Then, the first theorem states that each pair of opposite faces of the minimal enclosing
parallelepiped must flush a face or two edges of the convex hull (and not just a face as in 2D). In this
paper we never consider degenerated sets of points, i.e., included in a plane.

Theorem 1. For any set of points of convex hdllthere exists a minimal enclosing parallelepipBduch
that, for any pair of opposite faces #f, either one of the faces contains a fac& afr both faces contain
an edge ot’ and the two edges are not parallel.

Proof. We consider a set of points of convex hdlland one of its minimal enclosing parallelepipgd
Any faceF of P contains at least one vertex©f otherwise it would be possible to mo¥écloser to its
opposite face to obtain an enclosing parallelogram of smaller volume.

To prove the theorem, we suppose tfratloes not satisfy the property stated by the theorem and we
show that we can build an enclosing parallelogram satisfying the property and at least as $malsas
by hypothesisP does not satisfy the property stated by the theorem, there exist two oppositeFiaces
andF, of P such that none of them contain a faceCadind if both contain an edge 6f both edges are
parallel. We denote b, (respectivelyP,) the plane containing; (respectivelyr,).

A parallelepiped is defined by its eight vertices. It is also defined by the three pairs of parallel planes
that contain its faces. We will call these planesshpporting planed_et us consider a pair of supporting
planes,{p1, p»}, i.e., two supporting planes corresponding to opposite facgxs dfle take two parallel
lines, d; andds, the first included inp; and the second ip,. We rotatep; aroundd; and p, around
d, with a same angle. This way, we obtain a new pair of parallel planes which defines, with the four
remaining supporting planes &f, a new parallelepiped. This new parallelepiped may or may not be an
enclosing parallelepiped fat. We say that we have rotated the pair of supporting plépesps}.

We first study the freedom we have to rotate the pair of supporting pldhe®,} while the obtained
parallelepiped remains enclosing for

The possibility to rotate some supporting planes
We consider the number, of vertices ofC belonging to either of the two faces, and 7:

n, > 5: one of the two faces contains at least three vertices and thus a f@c&lois is impossible by
definition of 71 and .

n, =4: by definition of /1 and F>, both faces contain an edge ©fand these two edges are parallel.
We denote byi; (respectivelyd,) the line of Py (respectivelyP,) containing the edge af N 7
(respectivel\C N F3). Then one can (slightly) rotate, in any directign, andP, of a same angle
aroundd; andd, while transformingP into another parallelepiped enclosiggas long as the
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angle of the rotation remains small. Indeed, we can rotate the pair of supporting {fran®s}
until one of the rotated planes touches a new vertex of

n, = 3. because of our hypothesis, one face contains a single vergearaf the other one an edge(f
Without any loss of generality, we denote 5y the face containing the edge. We defifieas
previously andi, as the line ofP, containingC N F, and parallel taZ,. Then one can (slightly)
rotate, in any directionP; and P, of a same angle arountj andd,, under the same conditions
than previously.

n, = 2: each face contains exactly one vertexCofMe randomly peak any vectarin P; to define the
direction ofd; andd,: d; (respectivelyd,) is then the line ofP; (respectivelyP,) parallel tov
and containing’ N F; (respectively}C N F,). Then one can (slightly) rotate, in any direction,
and?P, of a same angle arount] andd,, under the same conditions than previously.

Building an enclosing parallelogram smaller théh

From what precedes, whatever the case, one can (slightly) rotate, in any dirétiand 7, of a
same angle around} andd, while transformingP into another parallelepipe®’, enclosingC. We now
compute the volume of the new parallelepig@dIn the following, given two pointg andJ, I J denotes
the vector from point to pointJ andlJ the algebraic measure.

Fig. 1 shows the original parallelepiped and the new fate- (B’ F'G’C’) obtained from the rotation
of P; by an angle o aroundd;. We use the notations defined in Fig.Sk,, (respectivelysS; ;) is the
intersection of/; with the line(BC) (respectively F G)). In order to ease the computations, we measure
the rotation around/; andd, not by an angle measured in a plane orthogonal;tbut in the plane
(ABCD). © is the angle defined by the vects$s,C and Sy ,C’.

The volume of the parallelepipe® is equal to: volP) = |(CB A CD).CG|. The volume ofP’ is
equal to: vo(P’) = |(C’'B’ A C'D’).C’G’|. To explicit the value of valP’), we need to explicit the
values ofC’'B’, C’D’ andC’G’. We start withC'D’.

The value ofC’D’. C'D'=C'C + CD + DD’. To compute the value af’ D’ we focus on Fig. 2,
which is a magnification of Fig. 1. We denote tythe angle defined by the vectafsB andC D. Then

Fig. 1. Original parallelepiped and the rotation.
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Fig. 2. Detail of Fig. 1.

CH; _ CH; . . . .
coSa — §) = & and co$d) = oo As the sum of the angles in a triangle is equaktos = % + @,
and

cog$) cos5 +O) sin(®)
~ cosa —9) “:cmua—@y—@C&J:_gma—@)
and,ucp denoting the unitary vector of same direction and orientation ¢Bn
sin(®)
~ sin(a — ©)

Symmetrically, we have foD D’ (S, , (respectivelysS, ;) being the intersection af, with the line(DA)
(respectivel HE))): DD’ = — 229 _Dg, ,.ucp. Gathering these two results, we obtain

T sine—0)
in(®
C'D'=C'C+CD+DD =CD + "9
sin(e — ®)

cc’

1,1

CC,= CSl,,.uCD.

(CS1: — DS21).ucp.

The values ofC’B’ and C'G’. C'B’ =C'C + CB + BB’. Thus, asC’C and BB’ are parallel
to ucp, there exists a value s.t. C'B’ = CB + x.ucp. Symmetrically, there exists a values.t.
C'G'=CG+y.ucp.
The volume of’. Collecting the previous results, we have

(C'B'AC'D).C'G’

sin(®
= ((CB +x.ucp) A (CD + #(CSM — DSz,,).uCD)).(CG + y.ucp)
sin(e — ®)
—CB/\CDCG—i-M(CS —DS)(CB A CcG)
= . sin@ — ©) 1,1 2.1 Ucp-
=(1 _&m@)(C&”_D&”)CBACDCG.
sinf — ®) ICD|
Therefore,
sin(@) (CSy, — DSz,)
(PHY=]|1 - - I(P). 1
vol(7) + sinfla — @) IC D] vol(P) @)

We have two cases to consider, depending wheisi , — DS, ) is null:

(1) CS1; — DSy, # 0. sinfw) is obviously non-null, knowing the definition af. For very small
values of®, sin(le — ®) has the same sign than &i). As we can choos® to be either strictly
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negative or strictly positive (see the discussion above), we chooge éovery small value such that
Osin(a)(CS1, — DS,,) <0. Then vol[P’) < vol(P) and we have built an enclosing parallelogram
of (strictly) smaller volume.

(2) CS1; — DSy, =0. ThenP andP’ are two enclosing parallelepipeds of same volume (whatever the
value of ®). We take for® the largest value possible. The two new fadgsand 7, contain by
definition ofd; andd; all the points ofF; andF, belonging toC. Because of the maximality @b,

JF1 U F, contains at least one more point@fand thus one more vertex 6) than 7, U . If P’
satisfies the property stated by the theorem, we are happy. Otherwise, we appltht process
we have applied t@ to obtain?’. This way we obtain a new enclosing parallelogr@&h As the
number of vertices,, of (F, U F,) NC is strictly increasing with this process, we shortly end up with
a parallelepiped of volume at most equal to (¥ and which satisfies the property stated by the
theorem. Indeed, any parallelepiped with> 5 satisfies this property (as we have shown above).

In both cases we obtain, maybe after a few iterations, a parallelepiped endosatisfying the desired
property, and whose volume is less than or equal to the volurfie of

Theorem 2. Let S be a set of points and its convex hull. Le® be a minimal volume parallelepiped
enclosingS and which satisfies the property stated by Theoteiret 7, and 7, be two opposite faces
of P. Then, the projection af; N C on F;, along the other faces d® has a non-null intersection with
FoNC.

Proof. We prove this result by contradiction. Thus we suppose Bhaa minimal volume enclosing
parallelepiped which satisfies the property stated by Theorem 1, does not satisfy the property stated by
Theorem 2. Then we show that we can build an enclosing parallelepiped of strictly smaller volume.
The proof relies on a careful study of Eq. (1). First, we remark that, because of its definition, the
anglex has a value strictly between 0 and Therefore sifw) is always (strictly) positive® will
be chosen small. Thu® and si®@) will have the same sign. Also sim — @) and sif«) will have
the same sign. ICSy; — DS, is not null and ifCSy, — DS, and sif®) have opposite signs, i.e.,
if Sin(®)(CS1, — DS,,) < 0, the volume ofP’ is strictly smaller than that oP. We now show that,
because of our hypotheses, there always exists a rotation satisfying this property.

Let P’ be projection ofF, N C on F; along the other faces @. By hypothesis, the intersection &f
andF1NC is empty.P’ andF; NC are polyhedra a1 NC (respectivelyF, NC) is either a single vertex,
an edge or a face @f. P’ andF; N C are two bounded (convex) polyhedra and, as their intersection is
empty, there exists a ling of P; (the plane containing;) which separates them strictly: ¥, P’ and
F1NC lie on either sides af, none of them having some points in common witffor a proof, see for
example [7, Theorem 2.39, p. 62]). We take &rthe line of P, parallel tod and containing a vertex
of F1 N C which is the closest t®’. We choose foi, the line of P, parallel tod and containing a
vertex of 7, N C whose projection otfF; is a vertex ofP’ which is the closest td; N C. We defineSy
andS,, from d; andd, as previously. Then?S; , and DS, cannot be equal. Otherwise, the projection
of d, on F; would be equal tel; which is impossible by definition af;, d» andd (d would have points
common toP” andF; N C).

Fig. 3 shows the case whe@S;, — DS,, > 0 (respectivelyCS;, — DS,, < 0). In this case,
one can rotate the pair of plan¢®,, P,} of a same angle?® < 0 (respectively® > 0) aroundd;
and d, respectively while the obtained parallelepiped remains enclosing, and while the volume of the
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Fig. 3. Case€’'Sy; — DS2; > 0 (left) andCSy ; — DS2; < 0 (right). The intersections @f and 771 and.F; are drawn in bold.
The projectionP’ of F» N C is drawn in dotted lines.

parallelepiped strictly decreasg€®S;, — DS,,) sin(®) < 0. Hence, the obtained parallelepiped has a
volume strictly smaller thaf?. O

The following lemma is a corollary of Theorem 2. This lemma states whether two pairs of planes
satisfying the condition of Theorem 1 can satisfy the condition of Theorem 2, in which case we speak of
compatiblepairs of planes. This lemma is thus a weak version of Theorem 2.

Lemma 3. LetS be a set of points and its convex hull. LefP;, P>} and{Ps, P4} be two pairs of planes
satisfying the property stated by Theorérfor S. LetV; = {v}, ..., vail} be the vertices oP; N C, for
anyi € [1; 4]. Letn » (respectively:s 4) be a vector normal t@; and P, (respectivelyP; and P,).

{P1, P2} and {P3, P4} can satisfy the property stated by Theorihand only if

H(Cl, b) € Vl X Vz, (b — a).n3,4 > 0, 3(6, d) S Vl X Vg, (d — c).n3,4 < 0,
3(6, f) S V3 X V4, (f — e).n1,2 > 0, El(g, h) € Vg X V4, (h — g).nl,z < 0.

This lemma just mathematically states that the pair of plgResP,} contains a direction which maps
a point of P; N C on a point ofP, N C, and reciprocally.

Proof. For the two pairs of parallel planes to have a chance to satisfy the property stated by Theorem 2,
there must exist a point in P, N C and a pointy in P, N C and a directiond in Pz such that the
projection ofx onP, alongd is equal toy. In other words, the vector— x must be parallel t@3, which
is equivalent ta(y — x).n3 4 = 0. We prove that this property is equivalent to the system of Lemma 3.

The points ofP; NC are exactly the convex combinations of the verticeBohC. We use this property
for the pointx of P, N C and also for the point of P, N C:

Vil Vil
120,30 20, Y a;=1 x=)» i} and
j=1 j=1

V2l V2
du1 =0, ..., 3y, =0, Z“" =1, yzz,ukv,f. Then
k=1 k=1
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V2 %1 Vol / V1] Wil / V2l
y—x= Z,ukv,f — Z)\jvjl» = Z(Z)\j)ukvf — Z(Zﬂk))‘jvjl'7 and thus
k=1 j=1

k=1 \ j=1 j=1 \ k=1
V2| (V1]

y—x=) Y k(v —v)),

k=1 j=1

and(y — x) is a convex combination of the values® — vjl.). We have three cases to consider:

e All the scalar productgv? — v}).n3,4 are (strictly) positive (respectively negative). Then, the scalar
product(y — x).n3 4 is also (strictly) positive (respectively negative) and the two pairs of parallel
planes cannot satisfy the property stated by Theorem 2.

e At least one of the scalar products is null: the two pairs of parallel planes can obviously satisfy the
property.

e No scalar product is null, but there exist some valkgg,, j; and j, such that:(v,fl - v}l).n3,4 >0
and (v7, — v}z).n3,4 < 0. We define the points andy as follows:

|(vg, = v3).n3.4lv], 4+ (V] —v]).n3alv],

(g, = v,)nz.al + |(vF, — v]).n34l
and
2 1 2 2 1 2
i, = vj,)-nz.alvi, + (v, —vj).n3alvy,

Y= 2 _ 1 2 _ .1
|(vi, — v3,)-n3.al + (v, — vj).nzal

One can check that belongs toP; N C, y to P, N C and that(y — x).n3 4 =0.

To obtain the desired property, we redo on the pair of plgfesP,} what we have done ofP,, P.}. O

3. Algorithms

Using Theorem 1 we derive a rather simple algorithm. Then we refine it using Lemma 3.

3.1. Afirst algorithm

Theorem 1 tells us that there is at least one minimal volume enclosing parallelepiped such that each
of its faces is either parallel to a face of the convex hull or to two non-parallel edges of this convex hull.
Then, Algorithm 1 simply enumerates all the possible triplets of orientation of the supporting planes,
and searches for one defining an enclosing parallelepiped of minimal volume. The algorithm is rather
straightforward: after the computation of the convex hull, we build the pairs of candidate supporting
planes defined by faces of the convex hull, then the pairs of candidate supporting planes defined by a
pair of edges of the convex hull, and we test all the triplets of pairs of candidate supporting planes. The
volumes of the parallelepipeds are computed using a formula proved in Appendix A (Lemma A.1).
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: Compute the convex hull of the set of pointsS

N=0 {The set of pairs of candidate supporting planes}

. Let F be the set of all the faces 6f

: for each facef of F do

Find the vertex of C which is the furthest frony

Associate tof the vectom ; normal to f and linking f andv (v 4 n ¢ is a point of f)
N=NU{(f. f—nys.np))

. Let& be the set of all the edges 6f

: for each pail{e1, e2} of elements of do

10: if e; ande are not parallethen

11: Build the planegi and f> parallel toe; andez, with e1 C f1 andea C f2

12: Compute the vectary, normal to f1 (and thus tof2) such thatfi +n s = fo
13: if C is enclosed in the space between the plafieand f> then

14: N =NU{(f1, f2.np))

15: vol_min=+o0

16: planes=¢

17: for each(f1, f;,n1) of N do

18:  for each(f2, f3,n2) of N do

19: for each(f3, f3,n3) of N do

20: if n1 Anz.nz+#0then
2 2 2
21: vol= | lnalPinz Pinal?|
22: if vol < vol_minthen
23: vol_min=vol
24: planes={f1. f{. f2. f3. f3. f3}

25: return planes

Algorithm 1. Compute a minimal volume parallelepiped enclosing the set of pSints

Theoretical complexity
Letn be the number of points i§. Its convex hullC containsv vertices withv < n. If C was enforced
to be simplicial, it contains exactlyv2- 4 faces and 3— 6 edges [2]. Then, the saf contains at most
O (w?) = O(n?) faces. Except for the loops, all the operations in this algorithm are performed in constant
time except for the steps 1, 5 and 13:

e Step 1: the computation of the convex hull cosia @gn) [2];

e Step 5: to find the vertex which is the furthest from a face of the convex hull, we need to scan all the
vertices which costs at worst(@);

e Step 13: for this test we simply check that the direction of edg@espectivelye,) has two scalar
products of opposite signs with the normals to the two faces of the convex hull containing
(respectivelyeq) (to see it, write that; A ez, the normal to the new plane, is a convex combination
of the normals to the two faces, and take the scalar producteyithe;); hence a cost of Q).

The overall theoretical complexity of this algorithm is thus at wor6t%, wheren is the number of
vertices ofS, because of the search on all the triplets of elementg.dflore precisely, the complexity of
this algorithm is in Qn logn + v®), wheren is the number of vertices df andv the number of vertices
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of its convex hull. We will see in Section 4 that the complexity is far better in practice. Nevertheless, we
now use Lemma 3 to speed-up our algorithm.

3.2. A second algorithm

We use Theorem 2 to refine Algorithm 1. Theorem 2 gives us a condition for a triplet of pairs of parallel
planes to be an actual candidate for a minimal volume enclosing parallelepiped. Of course, we do not
want to enumerate anymore any triplets of pairs of candidate parallel planes. Thus we use Lemma 3 to
check whether two pairs of candidate planes can be used together in a minimal enclosing parallelepiped.
This way we obtain Algorithm 2.

28:
29:
30:
31

32

: Compute the convex hull of the set of pointsS

N=0 {The set of candidate supporting planes}

. Let F be the set of all the faces 6f
: for each facef of F do

Find the vertex of C which is the furthest frony
Associate tof the vectom ¢ normalto f and linking f andv (v + n ¢ is a point of )

. Let& be the set of all the edges 6f
. for each paiffe1, e2} of elements of do

if e1 andey are not parallethen
Build the planegi and f> parallel toe; andez, with e1 C f1 andea C f2
Compute the vectory, normaltof1 (and thus tof2) such thatfi +np = fo
if C is enclosed in the space between the plafieand f> then
N =NU{(f1, f2.nf)}
> vol_min=+o0
. planes=¢
: for each( f1, f;,n1) of A" do
compatibléfi, fi,n1) =9
: for each(f1, f{,n1) of A" do
for each( f2, f}, n2) of N do
if (f1, f{,n1) and(f2, f,, n2) satisfy Lemma 3hen
compatiblefa, f1,n1) = compatiblé f1, f1,n1) U{(f2, £, n2)}
compatiblefz, f;,n2) = compatiblé f2, f5,n2) U{(f1, f1,n1)}
: for each(f1, f{,n1) of A" do
for each(f2, f;.n2) of compatiblé f1, f;,n1) do
for each(fs, f3,n3) of (compatiblé f1, f1,n1) N compatiblé f2, f5, n2)) do
if n1 Anz.nz#0then

2 2 2
vol = | I llnalinsl?)
niAn2.n3

if vol < vol_minthen
vol_min=vol

planes={f1, f1, f2. f2, f3 f3}
. return planes

Algorithm 2. Compute a minimal volume parallelepiped enclosing the set of pSifaptimized).
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Theoretical complexity

The worst case complexity of Algorithms 1 and 2 is obviously the same. If we study more carefully
the algorithm and denote hythe number of vertices of the convex hull, bthe number of faces built at
steps 9 to 14, and hythe size of the largest of the sets “compatilfie /], n1)”. Then steps 4 to 7 have
a complexity of Qu?), steps 9 to 14 have a complexity of @), steps 19 to 23 have a complexity of
O((v + e)?) (at least ifC is simplicial), and steps 24 to 31 have a complexity ¢fiO+ ¢) x c?). Hence
the overall complexity of

O(n logn + (v + €)? + v x 02). (2)

4. Experiments

We first compare the two algorithms on our application: we run the two algorithms on all the 45
proteins we had. The results presented on Fig. 4 show that Algorithm 2 is significantly more efficient than
Algorithm 1 even for small inputs. These results are confirmed by Fig. 5 which presents a comparison of
the two algorithms on larger and synthetic input sets (points randomly picked on a sphere).

Algorithm 2 being far more efficient, we focused on it. We wanted to determine what was its
complexity in practice. Thus we needed to run it on convex hulls with a large number of vertices. As
the proteins we had did not give us such examples—the convex hull of our worst-case protein only had
94 vertices—we used synthetic data. We randomly picked points on the surface of a sphere as for such
sets of points the convex hull is almost equal to the number of points in the set. Fig. 6 shows the result
of the experiment for convex hulls containing up to 10 000 vertices. The graph of the execution time
Timen) in function of the numbenr of vertices of the convex hull “looks” quadratic. Indeed the graph
of Time&(n)/n? is almost a horizontal line (this graph is also displayed on Fig. 6 but scaled up to be
readable). To confirm this result we approximate the execution with a cubic function (using the nonlinear
least-squares Marquardt—Levenberg algorithm implemented in gnuplot [5]). We exactly found

Timan) ~ 2.15263x 1071 x n® 4+ 2.09904x 107 x n? — 0.00101368x n + 0.770604

0.18 T T T T T 10

016 | Algorithm 1 —— ] Algorithm 1 ——
Algorithm2 ===~ Algorithm2 ===~
sl

Time in seconds
Time in seconds

0 L L L L L N T et
40 50 60 70 80 90 100 0 50 100 150 200 250 300
Number of vertices of the convex hull Number of vertices of the convex hull

Fig. 4. Comparison of the execution time of the twdig. 5. Comparison of the execution time of the two
algorithms on 45 proteins. algorithms on synthetic data.
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200 T T T T T T T T T 4500

Time(n) — 4000 |+ Time(n) —
Time(n)n®  ----- Time(n)n®  -----

150 b Approximation ~ ------- ] 3500 Approximation ~ +-+++-
3000 |-

2500 |
100 |

Time in seconds
Time in seconds

L L n L s L n L L L s L s ' L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Number (n) of vertices of the convex hull Number (n) of vertices of the convex hull

Fig. 6. Execution time of Algorithm 2 on 499 sets of pointSig. 7. Execution time of Algorithm 2 on 248 sets of points
randomly taken on a sphere. randomly taken on a sphere.

with an asymptotic error of 218% on the cubic term, and of.188% on the quadratic term. The
corresponding graph is also drawn in Fig. 6 but is hardly seen as it is almost equal Torte)

graph. Even if this function is cubic, its cubic term has almost no influence for convex hulls of
up to 1@ vertices as, until then, the quadratic term is dominant. We tried to extend this result by
running Algorithm 2 on larger sets. The result is presented on Fig. 7. There, the computed cubic
approximation has an even less important cubic tef@66169x 10714 4 8.503 x 10713 x »? for
(2.44779x 1079 4+ 5343 x 107%) x n?). This is not really surprising as the experimental uncertainties
are rather important compared to this cubic term. Furthermore, we only ran experiments up to 40 000
vertices as for such large convex hulls, the algorithm already takes around one hour to run on our
experimental platform (Intel Xeon CPU running at 1.80 GHz and 512 MB of memory, C++ program
compiled with GNU g++ 3.0, the convex hulls being computed using the Qhull library [1]).

One can wonder whether these results are influenced by the type of synthetic data we used. Therefore
we studied the execution time of Algorithm 2 on purely random sets of points containing up to 150 000
points. Fig. 8 presents the graphman) in function of the numbenr of vertices of the convex hull and
the graph offime(n) /n? (scaled up). In this figure, the execution time does not take into account the time
needed to compute the convex hull (when it is included in all other figures). The reason of this removal
is quite simple: even with large sets of points, the size of the convex hull is rather small (less than 250
vertices) but most of the time is spent in its computation because of the size of the input sets. The graphs
have the desired shape. But the convex hulls are too small for the graphs to be conclusive.

From our experiments we can conclude that Algorithm 2 has an apparent complexity of

O(n logn + v2),

wheren is the number of points in the sefs andv is the number of vertices of the convex hull. This
seems at least true for input sets whose convex hull has up’teetfices, which seems to be the only

input sets that may be processed in a reasonable time (we may even wonder whether so large conve
hulls exist in practice). This result is quite coherent with Eq. (2) when we remark that in all our examples
we have found that < v (with the notations of Section 3.2).
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Fig. 8. Execution time of Algorithm 2 on 15073 sets of random Fig. 9. The PPAR protein with its minimal
points. volume enclosing parallelepiped.

5. Application to proteins

Our initial motivation is to approximate the “surface” of a protein with a set of regular shapes. We
hope to be able to discover, by this method, the “faces” of the protein responsible of its interactions with
other biological objects, when such faces actually exist. Once we have approximated a protein by its
minimal volume enclosing parallelepiped, we consider the “composition” of each of the six faces of the
minimal volume enclosing parallelepiped.

A protein is a sequence of amino-acids. The two main characteristics of amino-acids are whether they
are electrically chargédand whether they are attracted by water (hydrophilic amino-acids) or repulsed
(hydrophobic amino-acid€)So we consider the composition of the faces of our parallelepiped in terms
of electrically charged and hydrophobic amino-acids. The composition of a face is the set of the amino-
acids whose center of gravity is close to the face (less than 2.4 A away from the face in our model).

We chose to illustrate our work with a protein which is a nuclear receptor. A nuclear receptor initiates
the transcription of some part of the DNA when it is activated by a certain molecule called its ligand.
More important for us, nuclear receptors are known to have a large interaction face: we want to check
whether we are able to rediscover this interaction face.

We chose the nuclear receptor protein called PPR&dqxisome Proliferator-Activated Receptor
This protein is involved in the metabolism of glucose, lipids and cholesterol. PPAR is presented in
Fig. 9 with its minimal volume enclosing parallelepipéd@he composition of the parallelepiped faces

1 The electrically charged amino-acids are: aspartic acid, glutamic acid, lysine, arginine, and histidine.
2 The hydrophobic amino-acids are: leucine, isoleucine, valine, methionine, phenylalanine, tyrosine, and tryptophan.
3 We used the structure of PPAR proposed by Xu et al. [11] and denoted 1k74Rmntiein Data Base
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Amino-acid§Face| 1 2 3 4 5 6
Total number 32 19 18 13 8 4
Hydrophobic 6% | 21% | 22% | 38% | 0% | 0%

Electrically charged 50% | 47% | 44% | 38% | 62% | 75%

Fig. 10. Numbering of the Fig. 11. Composition of the faces of the minimal volume parallelepiped
faces. enclosing PPAR (cf. Fig. 9).

is summarized in Fig. 11 (the numbering of the parallelepiped faces is presented in Fig. 10). From
biological considerations, faces 5 and 6 do not “contain” enough amino-acids to be significant. Among
the remaining faces, Face 1 is the one containing the smallest percentage of hydrophobic amino-acid
and the one containing the biggest percentage of electrically charged amino-acids. Face 1 has thus ai
outstanding composition (the amino-acids belonging to Face 1 are drawn the darkest in Fig. 10). Actually,
Face 1 corresponds to the dimerisation interface of PPAR: thanks to this interface, PPAR can form a
heterodimer with the protein RXRRgtinoid X Receptdr Therefore, we were able to re-discover PPAR
interface.

We do not claim from the above example that our method enables us to predict anything: we only
presented this example to give an insight to our motivation and application. In the general case, we
cut a protein in sub-pieces (if necessary) and we approximate each sub-piece with its minimal volume
enclosing parallelepiped. The whole description of this work goes far beyond the scope of this paper.

6. Conclusion

We presented two mathematical properties of the minimal volume parallelepiped enclosing a three-
dimensional set of pointS. Using these properties we designed two algorithms of theoretical complexity
O(1®), wheren is the size ofs (the number of points it contains). Our experiments show that the practical
complexity of our quickest algorithm is @logn + v?), wheren is the size ofS andv the number of
vertices of its convex hull, at least wheiis smaller than 1 Finally, we applied our method to search for
the interaction faces of a protein, our initial goal. Although the application of this research to structural
biology is in the preliminary stages, the first results are promising.

Appendix A. An alternate formula for the volume of parallelepiped

LemmaA.1 (Alternate formula for the volume of parallelepipet}t ABCDEFGH be a parallelepiped.
Letn, (respectively,) (respectivelyr3) be a vector normal to the pair of plané6€DAE H), (CBFG))
(respectively((DCGH), (ABFE))) (respectively((ABCD), (HEFG))) whose norm is equal to the
distance between these two planes. Then, the volume of the parallelepiped ABCDEFGH is equal to

In1l1lln2)?lln3)?
V= .

niAnpns
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Proof. The volumeV of the parallelepiped is equal 10HG A HE).HD|. We need to explicit the
values of HG, HE and H D as functions ofu,, n, andns. We start withH D. Becausen; andn,
are perpendicular td D, the direction ofHD is equal to+12"2- | et o be the angle defined by

lngAnz|

the vectorsH D andns. As the triangle defined byi, D, and H + ns is rectangle||HD| = =L

|cosa|’
. . . . 2 ..
henceH D = 41l _mre_ Begides, cog = 44%2 _s_ which impliesH D = +1%l71A2 - gimjjarly

cosx |[ngAnzll lnannzll " In3ll? niAnz.ng -’

we obtain the values oHG and HE: HG = ﬂ:“’:lll”fn+23”3 and HE = :I:“’r’fl”f’%. Collecting these
results we have

In1lI2In2l12lIn3l?[(n2 A ng) A (n3 A ng).(n A np)|
In1 Anz.nsl®
ll%ln2ll*llns 2 Ang).nyng — ((n2 Ang).nz)ng].(ny Anz
_InaliPlin2l2lnsl?I[((n2 A ng).n)ng — (na A ng).nzm)nal.(n1 A na)|
|fll/\l’12.l’13|3
_ Inal®linz2lnsl?|[((n2 A n3).n1)nzl.(n1 A no)|
|I’l1/\l’l2.l’l3|3

Y=

_lnalPlinal®lins)®

|n1 A na.ng|
(using the formula: A (v A w) = (w.w)v — (u.v)w). O

References

[1] C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Software
(TOMS) 22 (4) (1996) 469-483 ttp://www.geom.uiuc.@u/software/ghull/.

[2] J.-D. Boissonnat, M. Yvinec, Géométrie algorithmique, Ediscience international, 1995.

[3] C. Schwarz, J. Teich, E. Welzl, B. Evans, On finding a minimal enclosing parallelogram, Tech. Rep. 036, The International
Computer Science Institute, Berkeley, 1994.

[4] C. Schwarz, J. Teich, A. Vainshtein, E. Welzl, B.L. Evans, Minimal enclosing parallelogram with application, in:
Proceedings of the Eleventh Annual Symposium on CompmutakiGeometry, Vancouver, British Columbia, Canada,
ACM Press, New York, 1995, pp. 434-435.

[5] gnuplot, Htp://www.gnupbt.info/.

[6] J. O’Rourke, Finding minimal enclosing boxes, Internat. J. Comput. Inform. Sci. 14 (3) (1985) 183-199.

[7]1 R.T. Rockafellar, J.-B. Wets, Variational Analysis, in: Grundlehren der mathematischen Wissenschaften, vol. 317,
Springer-Verlag, Berlin, 1998.

[8] E. Schémer, J. Sellen, M. Teichmann, C. Yap, Smallest enclosing cylinders, Algorithmica 27 (2000) 170-186.

[9] A. Vainshtein, Finding minimal enclosing parallelograms, Diskretknaya Matematika 2 (1990) 72-81, in Russian.

[10] E. Welzl, Smallest enclosing disks (balls and ellipsoids), in: H. Maurer (Ed.), New Results and New Trends in Computer
Science, Lecture Notes in Comput. Sci., vol. 555, Springer-Verlag, Berlin, 1991, pp. 359-370.

[11] H. Xu, M. Lambert, V. Montana, K. Plunket, L. Moore, J. Collins, J. Oplinger, S. Kliewer, J. Gampe, D. McKee, Structural
determinants of ligand binding selectivity between the peroxigomkferator-activated receptors, Proc. Nat. Acad. Sci. 98
(2001) 13919-13924.

[12] Y. Zhou, S. Suri, Algorithms for minimum volume enclosing simpleRiﬁ SIAM J. Comput. 31 (2002) 1339-1357.



