
Inli'i'iiiifionul Jout'iuti <ff Pttrii/lcl P)'ognnntnittgt Vol. 25, N'o. 6, 1997

Optimal Fine and Medium Grain
Parallelism Detection in Polyhedral
Reduced Dependence Graphs1

Alain Darte2 and Frederic Vivien2

This papcr presents an optimal algorithm lor detecting line or medium grain
parallelism in nested loops whose dependences are described by an approximation
of distance vectors by polyhedra. In particular, this algorithm is optimal for the
classical approximation by direction sectors. This result gcncruli/es. to the case
of several statements. Wolf and Lam's algorithm which is optimal for a single
statement. Our algorithm relies on a dependence uniformi/ation process and on
paralleli/ation techniques related to system of uniform recurrence equations. It
can also be viewed as a combination of both Allen and Kennedy's algorithm
and Wolf and Lam's algorithm.

KEY WORDS: Automatic paralleli/ation: multi-dimensional schedule: loop
nest; system of uniform recurrence equations: dependence analysis: polyhedral
reduced dependence graph.

1. INTRODUCTION

Loop transformations are useful source to source transformations for
improving the performa-ice of programs, for detecting parallelism, and for
improving data locality. Year after year, a catalog of such transformations
has been developed (see for example the survey paper by Bacon et a/.'")
but how to combine these transformations to achieve some particular goal
remains a research topic. In the past ten years, many researchers have
proposed various algorithms and frameworks that unify (some of) these

' Supported by the C N R S - I N R I A project RcMaP.
2 Laboratoire LIP. URA C'NRS 1398. Ecole Normale Superieure de Lyon. F-69364 Lyon

Cedex 07.

447

828os :5 ft-!
OXSS745S l>~ I2(!U-(M4~SI- .? ' I (I © l997 Plamm P'ulihi.hiilL' Corptir.ilicm

code transformations: Allen and Kennedy's algorithm(2) for handling loop
distribution and loop fusion, Banerjee's framework(3) and Wolf and Lam's
algorithm(4) for handling unimodular transformations, i.e., combinations
of loop reversal, loop skewing and loop interchange, Kelly and Pugh's
framework(5) and Feautrier's algorithm for handling general affine transfor-
mations.(6)

Concerning this last framework, it is interesting to notice that
fundamental differences exist between Kelly and Pugh's approach and
Feautrier's approach: the first approach is a "try and test" heuristic, where
transformations are selected and analyzed in terms of granularity, data
locality, code complexity, while the second approach is a completely
specified algorithm whose only goal is to build as many parallel inner loops
as possible. Which approach is the best? Since none of them is implemented
in a real compiler, we can only give theoretical motivations. The strength
of Feautrier's approach is twofold: first, in a unified framework, it gives an
upper bound on the maximal theoretical parallelism that can be detected
by affine transformations, second its result can be reproduced by anybody
since the algorithm is fully specified. This second advantage is also its
weakness: it is not flexible enough to handle other objectives. For example,
there is no guarantee concerning the simplicity of the generated code, and
no clear way is given for increasing the granularity of the parallelized code.
On the other hand, even though these criteria can be taken into account
by Kelly and Pugh, they can miss a good solution found by Feautrier's
algorithm because of their heuristic strategy.

In fact, Kelly and Pugh prefer a heuristic approach because
parallelism detection is not the only issue. Among other criteria, simple
code generation also is fundamental, and we believe that it is important to
control the complexity of the transformations generated by a parallelizing
algorithm. With this idea in mind, we present a parallelization algorithm,
simpler than Feautrier's algorithm, which captures simultaneously loop
distribution, index-shift method, and unimodular transformations. It com-
bines techniques related to systems of uniform recurrence equations intro-
duced by Karp et a/.,(7) with the techniques involved in Allen and Kennedy's
algorithm (Allen-Kennedy for short) and Wolf and Lam's algorithm (Wolf-
Lam for short). Our algorithm is in the "approximated class" as it takes as
input an approximation of the dependences, called dependence polyhedra.
Dependence polyhedra are a generalization of direction vectors: roughly
speaking, dependence polyhedra are sort of direction vectors whose "direc-
tions" are not necessarily parallel to the axis of the basis. Thus, our algo-
rithm can also work with classical direction vectors. In fact, each time we
write "dependence polyhedra", the reader can read "direction vectors". We
present here the more general version of our algorithm, the one which

448 Darte and Vivien

works on polyhedral reduced dependence graphs, as the generalization
induces no overhead. Our algorithm has the following properties:

• It does not require an exact dependence analysis. It is optimal3 for
dependence graphs whose edges are labeled by a polyhedral
approximation of distance vectors. In particular, it is optimal for
level of dependences and direction vectors. Actually, it behaves exactly
as Allen-Kennedy when dependences are expressed by dependence
levels. Furthermore, when dependences are expressed by direction vec-
tors, it generalizes Wolf-Lam to the case of loop nests with multiple
statements (Wolf-Lam is optimal if there is only one statement).

• It points out precisely which dependences prevent the parallelization
or are responsible for a loss of parallelism. This property allows to
better understand the link between the maximal degree of paral-
lelism that can be detected and the accuracy of dependence abstrac-
tions. See Darte and Vivien(8) for a complete study of this topic. This
property also enables to use efficient techniques to remove disturbing
false dependences (see Calland et al.''").

• By construction, it can be naturally adapted to the search for maxi-
mal sets of fully permutable loops which is, in theory, an equivalent
problem, and is, in practice, a way to exploit medium-grain paral-
lelism (for a complete study see Darte et a/.(10).

• It produces schedules as regular as possible in order to generate
codes as simple as possible. Indeed, our algorithm rewrites the codes
using afline schedules, but, unlike Feautrier's algorithm, these affine
schedules are chosen such as as many statements as possible have
the same linear part: the code generation can then be viewed as a
sequence of partial unimodular transformations and loop distribu-
tions. As a result, our output codes are guaranteed to be simpler
than Feautrier's codes. Moreover, the complexity of the algorithm
itself is lower as demonstrated by the comparison study indepen-
dently done at the University of Passau.(11)

• It is based on the resolutions of linear programs that are similar to
those solved in Feautrier's algorithm. The only (through fundamen-
tal) difference is that we look for less general affine transformations.
Despite this difference, our optimality result gives some hints con-
cerning the optimality cases of Feautrier's algorithm that was first
presented as a "greedy heuristic."

Optimal Fine and Medium Grain Parallelism Detection 449

1 All the mentioned optimality results are true with respect to the dependence analysis. This
means that the algorithm is able to find all (he parallelism contained in the representation
of the dependences it lakes as input.

The rest of the paper is organized as follows. In Section 2, after a brief
survey of existing parallelizing algorithms, we motivate our work by
showing very simple (and real) code fragments for which neither Allen and
Kennedy's algorithm, nor Wolf and Lam's algorithm, is able to detect some
parallelism. In Section 3, we illustrate the use of a polyhedral approxima-
tion of the dependences. Then, we formally define polyhedral reduced
dependence graphs, and we demonstrate the expressive power of this
dependence abstraction. In Section 4, we give an overview of the different
steps of the parallelization algorithm, for perfectly nested loops. We
illustrate its capabilities on an ad-hoc example. The proofs of correctness
and optimality of the algorithm are detailed in the next two sections, which
form the heart of the paper. Section 5 is devoted to the problem of comput-
ability of the dependence graph and the study of its properties, Section 6
addresses the scheduling problem and the efficiency of our solution. These
two sections are fundamental to completely explain why the algorithm
actually works, and to make the paper self-contained. However, they can
be skipped at first reading. In Section 7, we discuss some implementation
strategies that enables to reduce the complexity of the algorithm. We run our
algorithm on a few examples to illustrate its power compared to existing
algorithms. Finally, we briefly show how it can be extended to nonperfect
loop nests, even though some work remains to be done in this area. We
conclude in Section 8.

2. MOTIVATION

We are interested in compilers which automatically translate sequen-
tial programs into parallel programs. We especially look at algorithms that
parallelize loop nests. These algorithms follow two different approaches.
In the first approach, called "exact", the algorithms work with an exact
representation of the dependences. In the second approach, called
"approximated", the algorithms work with a conservative approximation of
these dependences. We first survey these two approaches, exhibiting their
advantages and drawbacks.

2.1. The Exact Approach

In this first approach, the parallelization algorithms take as input an
exact representation of the dependences. The main algorithms are those
of Lamport,"-' Darte and Robert,(13,14) Feautrier,(6,15) and of Lim and
L a m : (1 6)

Lamport(12) proposed the hyperplane method that applies to a set of
perfectly nested loops whose dependences are all uniform (a perfect

450 Darte and Vivien

uniform loop nest). Such a loop nest with d loops always contains d— 1
degrees of parallelism. The parallelized code contains one outer sequential
loop and d— \ inner parallel loops.

Darte and Robert(13,14) look for an affine schedule for each statement
in the loop nest. AH dependences need to be uniform, and a quite large
linear system (obtained by the duality theorem of linear programming) has
to be solved. The schedule is selected as the minimal latency schedule
among all possible affine schedules. This algorithm is optimal in terms
of parallelism extraction: the latency of the selected schedule and the
latency of the best existing schedule are guaranteed to be asymptotically
equivalent(17,18) for strongly connected dependence graphs. The technique
can be extended to affine dependences (i.e., dependences expressed as affine
functions of loop counters) but the optimality is not guaranteed any
longer.

Feautrier(6,15) has proposed a technique similar to Darte and Robert's
technique for the one-dimensional case, except that the linear program is
obtained by the affine form of Farkas' lemma. However, Feautrier's algo-
rithm is more general since it is able to derive multi-dimensional affine
schedules when no one-dimensional schedule exists. So far, Feautrier's
algorithm is indeed the most powerful algorithm for inner parallelism
detection in nested loops, even if, until now, it can be applied only to static
control programs (see Feautier(19) for a definition). There are some
attempts to generalize this approach by weakening the constraints on the
input, using a Fuzzy Array Dataflow Analysis.(20) The only known
results9(17,18) concerning the efficiency of this algorithm are the optimality
cases of Darte and Robert's algorithm. However, there are no known
results for the multi-dimensional case. Actually, what we call "Feautrier's
algorithm" is named "greedy heuristic" by its author.(6)

Lim and Lam's(16) algorithm is a very recent extension of Feautrier's
algorithm which finds fully permutable loops and external parallel loops
(if any). The technique involves the affine form of Farkas' lemma and a
variation of Fourier-Motzkin elimination. This algorithm is also devoted
to programs where the array accesses are affine functions, but unlike the
earlier three algorithms, the goal is not to look for the transformation
which finds the maximal degree of parallelism, but to look for the affine
transformation, if any, which finds a given degree of parallelism while mini-
mizing the degree of synchronization. Their algorithm is said optimal under
some hypotheses (but optimality has a different meaning).

We call "exact" the approach used in these four algorithms because
they all rely on an exact dependence analysis and an exact representation
of the dependences. The main advantage of this approach is that the loss
of parallelism is never due to the computation of the dependences.

Optimal Fine and Medium Grain Parallelism Detection 451

However, some parallelism can be lost because of the parallelization algo-
rithms themselves, and therefore their efficiency must be considered. Darte
and Robert's algorithm, and in some cases Feautrier's algorithm, are
optimal. But they are only optimal for the classes of programs they are able
to process! All these algorithms require that exact dependence analysis is
feasible and that dependences are affine. This implies very strong
hypotheses on the original codes. Only programs with static control flow
and affine array accesses can be processed. And not all algorithms pre-
viously given will process all of them. The limitation on the algorithms'
inputs is the main drawback of this approach.

The exact approach is sometimes said to have another disadvantage:
its cost. Indeed, the exact computation of the dependences is often said to
be expensive. This can be discussed. What is sure however is that the exe-
cution time of Feautrier's algorithm, for example, is long as it requires
the resolution of large linear programs (see for example(11)for timing
reports). Finally and, in our view, more important, the code generated by
Feautrier's algorithm can be very complicated. Feautrier builds one multi-
dimensional affine schedule per statement in the loop nest. This enables
him to find schedules with theoretically efficient latencies... but the price to
pay is the complexity of the code that may induce a loss of efficiency at
run-time.

In conclusion, with the "exact" approach, no parallelism is lost because
of the dependences representation. But there are strong requirements on
the program to be parallelized. The efficiency of these parallelization algo-
rithms is not known in the most general cases. Furthermore, most of them
are computation expensive and the generated codes are complicated. Thus,
the dream is to find a parallelization algorithm which handles more general
programs and produces quickly simpler outputs, while having sufficient
guarantees on its efficiency,

2.2. The Approximated Approach

In this approach, the parallelization algorithms take as input a conser-
vative approximation of the dependences. The two main algorithms in this
category are those of Allen and Kennedy,(2) and Wolf and Lam:(4)

Allen and Kennedy(2) proposed an algorithm based on loop distribu-
tions which are done by an analysis of the strongly connected components
of the reduced dependence graph (RDG). Dependences are represented by
levels, which is a very rough representation, although often sufficient on
real codes. Allen and Kennedy's algorithm is known to be optimal(21) with
respect to its input. This means that a parallelization algorithm, which
takes as input a reduced dependence graph where the dependences are

452 Darte and Vivien

represented by levels, cannot find more parallelism than Allen and
Kennedy's algorithm does.

Wolf and Lam(4) algorithm is based on a cone separation technique,
adapted to the case of direction vectors, and used to detect fully per-
mutable loops. A set of d fully permutable loops can always be rewritten
as one sequential and d— \ parallel loops. The transformations used in
Wolf-Lam are unimodular transformations. The representation of the
dependences, by direction vectors, is sharper than in Allen-Kennedy.
However, the graph structure of the dependences is not taken into account.
Wolf-Lam is optimal(4) among unimodular transformations which take
direction vectors as input.

Unlike the "exact" approach, the "approximated" approach is able to
process more general loop nests. This is its main advantage. For example,
the parallelization algorithms in this category are able to handle codes con-
taining array accesses with indirections: ^4[B[/]]. Another advantage is
that they involve simpler techniques than the algorithms in the "exact"
approach. Consequently, they are easier to implement, they are quicker
and they generate simpler outputs. Furthermore, they have been proved
optimal with respect to the representation of the dependences they used
(see Refs. 21 and 22).

The problem of this approach is the cost, in terms of loss of
parallelism, of an approximation of the dependences. Indeed, the depen-
dences are conservatively approximated (over-approximated): the chosen
dependence abstraction may represent more dependences than there are in
the code. The additional dependences induce a greater apparent sequen-
tially of the original code, and this may cause a loss of parallelism. The
problem is to determine whether this loss of parallelism is affordable. The
fundamental question is: if the parallelization algorithm I used finds no
parallelism in the loop nest, would another technique find some? Right
now, there is no complete answer to this general question. However, a
comparison of Allen-Kennedy and Wolf-Lam gives some hints.

2.3. Allen-Kennedy vs. Wolf-Lam

None of these two algorithms subsumes the other and both are some-
times unable to find parallelism in cases where there is obviously some. We
illustrate these points with three real fragments of code, borrowed from
Refs. 23 and 24. We also explain why combining loop distribution with the
techniques involved in Wolf-Lam is not straightforward.

Example 1. (where Wolf-Lam beats Allen-Kennedy) Example 1,
depicted in Fig. 1, is the Gauss-Seidel iteration program.(23) There is in the

Optimal Fine and Medium Grain Parallelism Detection 453

dependence graph, Fig. 2, a dependence cycle at depth 1 and at depth 2.
Thus Allen-Kennedy finds no parallelism in this code. However, the
dependences are uniform and equal to (1 ,0) and (0, 1). Thus, Wolf-Lam
finds that the two loops are fully permutable and that this loop nest con-
tains some parallelism. This is the typical example where an algorithm such
as Allen-Kennedy fails.

Example 2. (where Allen-Kennedy beats Wolf-Lam) Example 2,
depicted in Fig. 3, is part of a linear equation solver based on matrix-vector
operations, written by Dongarra and Eisenstat.(24) Wolf-Lam algorithm, as
described by Wolf and Lam,(4) is only able to process perfectly nested loop
nests. Thus, we first transform the code into a perfect one, before applying
Wolf-Lam. There are many different solutions to this "perfectization"
problem. One of them is given on Fig. 4.

The corresponding reduced dependence graph, computed by Petit [see
Kelly et a/.(25)] (but in which redundant direction vectors have been
removed), is drawn on Fig. 5. Because of the direction vectors of weight
(1,0 —) and (0, +), among others, Wolf-Lam is not able to detect any
parallelism. However, there is clearly no cycle at depth 2 in the dependence
graph. Thus, with a simple loop distribution at depth 2, Allen-Kennedy
finds that the second loop can be made parallel. Actually, Allen-Kennedy
is able to retrieve the original nonperfect version, with a parallel i loop:
running Allen-Kennedy on the original code would lead to the same
parallelized code.

In this example, Wolf-Lam can be easily combined with Allen-Kennedy
as follows. Instead of completely ignoring the structure of the dependence
graph, we can apply a loop distribution before each recursive call to Wolf-
Lam. We can look for the first set of fully permutable loops, then apply
loop distribution, then call Wolf-Lam again on the remaining dependences,
etc. On this example, such a strategy enables us to find some parallelism
when the original Wolf-Lam algorithm fails. However, there are examples
where this simple modification is not sufficient to detect maximal
parallelism (see Example 6 in Section 7.2).

Example 3. (where Wolf-Lam needs a perfect loop nest) For
parallelizing Example 2, we first transformed the original code into a per-
fect code. One could argue that Wolf-Lam was not able to detect paral-
lelism because of this transformation, and that Wolf-Lam should be apply
on nonperfectly nested loops "set of perfectly nested loops" by "set of per-
fectly nested loops". Indeed, on Example 2, this modified version of Wolf-
Lam finds some parallelism. The first set of loops only includes the k loop,
which is detected as sequential. Then, the second set of loops only includes

454 Darte and Vivien

Fig. 4. A perfectly nested version of Example 2.

Fig. 5. Dependence graph of Dongarra and
Eisenstal's perfectly nested version (Example 2).

Optimal Fine and Medium Grain Parallelism Detection 455

Fig. I. Example I, Gauss Seidel.

Fig. 2. RDG. Example 1.

Fig. 3. Example 2. Dongarra Eisenslat.

Fig. 6. Example 3. Vandermonde kernel.

the i loop and the statement S2. The i loop contains no dependences and
then is found parallel. Thus, in this case, it was not a good idea to trans-
form the original nonperfect loop nest into a perfect one, before applying
Wolf-Lam. However, Example 3 shows that this is sometimes a good
idea.

Example 3 (see Fig. 6) is part of an algorithm to solve the Vandermonde
system: Vi = b.(23) Let us try to apply Wolf-Lam "set of perfectly nested
loops" by "set of perfectly nested loops". The first set of perfectly nested
loops only includes the k loop. This loop is obviously sequential as b(i) is
written at several different k iterations. For the second level, we have two
sets of perfectly nested loops to look at. The first i loop is parallel, as it
contains no dependences. The second i loop is sequential as the new value
of b(i) depends upon the old values of b(i+ 1). Thus the program paral-
lelized this way still contains two sequential nested loops as in the original
program. Allen-Kennedy finds the same parallelized code. However,
consider a perfectly nested version of this code as shown in Fig. 7. The
direction vectors are (+,0) , (0,1), (1,0), (+ ,1) , (+, -1), and (1, -1).
They are of course lexicographically positive. Furthermore their second

Fig. 7. A perfectly nested version of Example 3.

456 Darte and Vivien

component is always constant. Consequently, Wolf- Lam is able to find two
permutable loops and, thus, one degree of parallelism. Therefore, on this
example, transforming the code into perfectly nested loops and applying
Wolf-Lam enables us to find more parallelism.

In conclusion, these three examples show that sometimes Wolf-Lam
algorithm finds some parallelism when Allen-Kennedy only finds sequen-
tially, and vice versa. These examples also demonstrate that the basic
Wolf-Lam algorithm needs to be upgraded to handle loop distribution. We
proposed two new versions of Wolf-Lam in which we tried to combine
loop distribution techniques as in Allen-Kennedy. We have now four dif-
ferent algorithms and no one subsumes the others. This confusing situation
illustrates that combining unimodular transformations and loop distribu-
tion is not straightforward.

2.4. Our Goal

Schematically, we want an algorithm which works with an approxima-
tion of the dependences as we need to be able to process general loop nests;
we want to use techniques powerful enough to extract all the parallelism
described by the chosen representation of the dependences; we want to
generate codes as "simple" as possible. We would like this algorithm to be
able to detect some parallelism at least when Allen-Kennedy or Wolf-Lam
does. Of course, such an algorithm exists: the algorithm which tries Allen-
Kennedy and the different versions of Wolf-Lam and takes the "best"
answer! The way this algorithm is built shows its main weakness: it uses
either the dependence graph structure (Allen-Kennedy) or direction vec-
tors (Wolf-Lam), but never knowledge of both types at the same time. For
example, the simple Wolf-Lam extensions that we proposed earlier use the
dependence graph structure before or after the computation of a maximal
set of fully permutable loops, but never during this computation. The aim
of Wolf and Lam(4) was to "combine the mathematical rigor in the matrix
transformation model with the generality of the vectorizing and concurren-
tizing compiler approach". We have the same goal, except that we would
also like to exploit the structure of the dependence graph.

There is a large gap between the complexity of the algorithms in the
"approximated" and "exact" approaches, both in terms of dependence
abstraction and in terms of execution time. One of our goals is to fill this
gap and to propose an intermediate algorithm, thus of medium complexity,
but still optimal for all classical approximations of dependences. Moreover,

Optimal Fine and Medium Grain Parallelism Detection 457

we would like to generate "simple" codes, not to loose at running time
what we theoretically gained using a more powerful parallelization algo-
rithm. Thus, we want to use transformation techniques intermediate
between those used by Allen-Kennedy and Wolf-Lam, which generate very
simple codes, and those used by Feautrier's algorithm, which are far more
expressive but can generate complicated codes.

3. POLYHEDRAL APPROXIMATIONS OF DEPENDENCES

3.1. A Motivating Example

We first introduce the notion of polyhedral reduced dependence graph
(PRDG) on an ad-hoc example. PRDGs will be formally defined in Sec-
tion 3.2. We show that no parallelism can be detected on this example if
dependences are approximated by levels or direction vectors, but that an
exact representation of dependences is not needed: an approximation of
distance vectors by polyhedra is sufficient. We illustrate the underlying idea
of our parallelizing algorithm, the "uniformization" principle, that enables
us to capture PRDGs as if they were uniform dependence graphs.

Example 4. (use of polyhedral approximations) Example 4 is
given in Fig. 8. The exact dependences are listed in Fig. 9. Figure 10 shows
the corresponding (reduced) dependence graphs (RDGs) when dependence
edges are labeled respectively with (a) levels and (b) direction vectors. Let
us try to parallelize Example 4 with the algorithms described in Section 2:
the algorithms of Allen and Kennedy; Wolf and Lam; Darte and Robert;
and Feautrier.

• Allen-Kennedy The levels of the three dependences are respectively
2, 1, and 1. There is a dependence cycle at depth 1 and at depth 2.
Therefore, no parallelism is detected.

Fig. 8. Source code.

458 Darte and Vivien

• Wolf-Lam The dependence vectors are respectively (0, 1) , (+ , —) ,
and (+, —). In the second dimension, the "1" and the " — " prevent
to detect two fully permutable loops. Therefore, the code remains
unchanged, and no parallelism is detected.

• Darte-Robert One level of parallelism is detected with the valid
linear schedule T(i, j) = 2; + j

• Feautrier This algorithm finds the same schedule than Darte-Robert
(up to a constant): 7(i, j) = 2i + j— 3. One level of parallelism is
detected.

In this particular example, the representation of the dependences by
levels or by direction vectors is not accurate enough to reveal parallelism.
This is the reason why Allen-Kennedy and Wolf-Lam are not able to
detect any parallelism. Exact dependence analysis, associated to linear
programming methods that require to solve large4 parametric linear
programs, enables to reveal one degree of parallelism. The corresponding
parallelized code is given in Fig. 11.

However, in Example 4, an exact representation of the dependences is
not necessary to reveal some parallelism. Indeed, one can notice that there
is one uniform dependence u = (0, 1) and a set of distance vectors
{ (j — i , i — j) = (j — ') (1 . — 1) 1 1 <j — /'<« — I} that can be (over(-approxi-
mated by the set P = {(1. -!) + /.(!, -l)\/.^0}. P is a polyhedron with
one vertex v = (I, — 1) and one ray r = (1, — 1). Now, suppose that, as in
the "exact" algorithms, we are looking for a linear schedule T (i , j) =
xti + .x2j. Let X=(.\-|, AS). For T to be a valid schedule, we look for X
such that Xd^ 1 for any dependence vector d. Thus, X(0, 1) > 1 and Xp^ 1
for all peP. The latter inequality is equal to: X (1 , -1) + /.A'(1, -1)5= 1
with /,^0, which is equivalent to: X(\, -1)^1 and X(\. -1)>0, i.e..

4The number ol" inequalities and variables is related to the number of constraints that define
the \alidity domain of each dependence relation.

Optimal Fine and Medium Grain Parallelism Detection 459

Fig. 9). Exiicl dependence relations.

460 Darte and Vivien

Fig. 10. RDG for Example 4.

Xv > 1 and Xr > 0. Therefore, one has just to solve the three following
inequalities:

which leads, as before, to X= (2, 1). Thus, for this example, an approxima-
tion of the dependences by levels or even direction vectors is not sufficient
for the detection of parallelism. However, with an approximation of the
dependences by polyhedra, we find the same parallelism as with exact
dependence analysis, by solving a simpler set of inequalities.

What is important here is the "uniformization" which enables us to
go from the inequality on the set P to uniform inequalities on v and r.
Thanks to this uniformization, the affine constraints disappear and unlike
Feautrier's algorithm, we do not need to use Farkas' lemma. To better
understand the "uniformization" principle, think in terms of dependence
path. The idea is to consider an edge e, from statement 5 to statement T,
labeled by the distance vector p = v + Ar, as a path <f> that uses once the
"uniform" dependence vector v and /I times the "uniform" dependence
vector r. This simulation is summarized in Fig. 12: we introduce a new
node S' that enables to simulate ^ and a zero weight edge to go from S'
back to the initial node T. This "uniformization" principle is the underlying
idea of the loop parallelization algorithm proposed in this paper.

By uniformizing the dependences, we have in fact "uniformized" the
constraints and transformed the underlying affine scheduling problem into
a simple scheduling problem where all dependences are uniform (0, v, and

Fig. II. Example 4. parallelized version.

Optimal Fine and Medium Grain Parallelism Detection 461

Fig. 12. Simulation of an edge labeled by a polyhedron with one vertex and
one ray.

r in Fig. 12). However, there are two fundamental differences between this
framework and the classical framework of uniform loop nests:

• The uniform dependence vectors are not necessarily lexico-positive
(for example, a ray can be equal to (0, — 1)). Therefore, the scheduling
problem is more difficult. However, it can be solved by techniques
similar to those used io solve the problem of computability of systems
of uniform recurrence equations.(7,22)

• The constraint imposed on a ray r is weaker than the classical con-
straint: the constraint is indeed Xr^O instead of X r > l . This
freedom must be taken into account in the parallelization algorithm.

3.2. Dependence Abstractions

For the sake of clarity, we restrict ourselves to the case of perfectly
nested DO loops with affine loop bounds. Nonperfectly nested loops are
considered in Section 7.3. This restriction allows us to identify, as usual, the
iterations of n nested loops (n is called the depth of the loop nest) with
vectors in Z" (called the iteration vectors) contained in a finite convex
polyhedron (called the iteration domain) defined by the loop bounds. The
ith component of an iteration vector is the value of the ith loop counter
in the nest, counting from the outermost to the innermost loop. In the
sequential code, the iterations are therefore executed in the lexicographic
order of their iteration vectors. In the next sections, we denote by ® the
polyhedral iteration domain, by / and J n-dimensional iteration vectors
in <#, and by S, the ith statement in the loop nest. We write I>/J if / is
lexicographically greater than J and I^,Ji{I>/JorI — J.

Section 3.2.1 recalls the different concepts of dependence graphs:
expanded dependence graphs (EDG), reduced dependence graphs (RDG),
apparent dependence graphs (ADG) and the notion of distance sets. In

Section 3.2.2, we formally define what we call polyhedral reduced depen-
dence graphs (PRDG), i.e., reduced dependence graphs whose edges are
labeled by polyhedra. Finally, in Section 3.2.3, we show how the model of
PRDG generalizes classical dependence abstractions of distance sets.

3.2.1. Dependence Graphs and Distance Sets

Dependence relations between operations are defined by Bernstein's
conditions.(26) Briefly speaking, two operations are considered dependent if
both operations access the same memory location and if at least one of the
accesses is a write. The dependence is directed according to the sequential
order, from the first executed operation to the last. Depending on the order
of write(s) and/or read, the dependence corresponds to the so called flow
dependence, anti dependence or output dependence. [In some cases, output
and anti dependences can be removed by data renaming and data expan-
sion. See for example Feautier.(19)] We write: Sj(I)=>Sj(J if statement S,-
at iteration J depends on statement 5i at iteration /. The partial order
defined by => describes the expanded dependence graph (EDG). Note that
(J — I) is always lexicographically nonnegative when Si(I)=>Si(J).

In general, the EDG can not be computed at compile-time, either
because some information is missing (such as the values of size parameters
or even worse, precise memory accesses), or because generating the whole
graph is too expensive. Instead, dependences are captured through a
smaller (in general) cyclic directed graph, with s vertices, called the reduced
dependence graph (RDG) (or statement level dependence graph). The RDG
is a compression of the EDG. In the RDG, two statements S, and S, are
said dependent (we write S, - » S /) if there exists at least one pair (/, J) such
that S,(/) =>£,(/). Furthermore, the dependence Si-^ Si is labeled by the
set {(/, J)e&2 | S,(I) =>£,(./)}, or by an approximation D,, that contains
this set. The precision and representation of this approximation makes the
power of the dependence analysis. In other words, the RDG describes, in
a condensed manner, an iteration level dependence graph, called (maximal)
apparent dependence graph (ADG), that is a superset of the EDG. The
ADG and the EDG have the same vertices, but the ADG has more edges,
defined by:

462 Darte and Vivien

For a certain class of nested loops (see Feautier(19)), it is possible to
express exactly this set of pairs (/, J): in this case, / is given as an affine
function/- , of J where J varies in a polyhedron .^ ,:

When exact dependence analysis is feasible, Eq. 3.1 shows that the set of
distance vectors is the projection of the integer points of a polyhedron. This
set can be approximated by its convex hull or by a more or less accurate
description of a larger polyhedron (or a finite union of polyhedra). When
the set of distance vectors is represented by a finite union, the corresponding
dependence edge in the RDG is decomposed into multi-edges.

Note that the representation by distance vectors is not equivalent to
the representation by pairs (as in Eq. 3.1), since the information concerning
the location in the EDG of such a distance vector is lost. This may even be
the cause of a loss of parallelism. However, this representation remains
important, especially when exact dependence analysis is either too expen-
sive or not feasible.

Classical representations of distance sets (by increasing precision) are:

• level of dependence, introduced for Allen and Kennedy's parallelizing
algorithm.(2 27)

• direction vector, introduced by Wolfe, (28,29) and used in Wolf and
Lam's algorithm.(4)

• dependence polyhedron (and dependence cone), introduced in Ref. 30
and used in Irigoin and Triolet's supernode partitioning algo-
rithm.(31) We refer to the PIPS(32) software for more details on
dependence polyhedra. Dependence cones are particular cases of
dependence polyhedra.

We first define formally reduced dependence graphs whose edges are
labeled by dependence polyhedra and we show the expressive power of this
model.

3.2.2. Polyhedral Reduced Dependence Graphs (PRDG)

We first recall the mathematical definition of a polyhedron and how it
can be decomposed into vertices, rays, and lines.

Definition 1. (Polyhedron, polytope) A set P of vectors in Q" is
called a (convex) polyhedron if there exists an integral matrix A and an
integral vector b such that P = {.Y | x e Q", Ax < b]. A polytope is a bounded
polyhedron.

X2X 25 6-1

Optimal Fine and Medium Grain Parallelism Detection 463

In most dependence analysis algorithms however, rather than the set of
pairs (/, J), one computes the set E, , of all possible values (J — I). E,_, is
called the set of distance vectors, or distance set:

A polyhedron can always be decomposed as the sum of a (convex)
polytope and of a polyhedral cone (for more details see Ref. 33). A poly-
tope is defined by its vertices, and any point of the polytope is a non-
negative barycentric combination of the polytope vertices. A polyhedral
cone is finitely generated and can be defined by its rays and lines. Any
point of a polyhedral cone is the sum of a nonnegative combination of its
rays and of any combination of its lines. Therefore, a convex dependence
polyhedron P can be equivalently defined by a set of vertices (denoted by
{v,,..., v,,,}), a set of rays (denoted by {r,,..., rt,}), and a set of lines
(denoted by {/•,..., /.}). Then, P is the set of all vectors p such that:

464 Darte and Vivien

with^ ,eQ + , v ,eQ + , <f,eQ, and Z;i,/<,= l.
We now define what we call a polyhedral reduced dependence graph

(or PRDG), i.e., a reduced dependence graph labeled by dependence
polyhedra. Actually, we will be interested only in integral vectors that
belong to the dependence polyhedra, since dependence distances are always
integral vectors.

Definition 2. A polyhedral reduced dependence graph (PRDG) is
a RDG, for which each edge e: S,--> Sf is labeled by a dependence poly-
hedron P(e) that approximates the set of distance vectors: the associated
ADG contains an edge from instance / of node S, to instance J of node Sj
if and only if (j- /) e P(e).

The notion of dependence polyhedron is very close to the notion of
dependence convex hull(34) Indeed, a dependence convex hull is a particular
dependence polyhedron: the convex hull of the distance vectors. Here, we
make no assumptions on the dependence polyhedra we handle or on the
way they were computed.

In the rest of the paper, we explore this representation of dependences,
where distance sets are approximated by polyhedra, specified by their ver-
tices, rays, and lines. To avoid a possible confusion between the vertices of
a dependence graph and the vertices of a dependence polyhedron, we call
the first one nodes instead of vertices.

3.2.3. Simulation of Classical Dependence Representations

We now come back to more classical dependence abstractions: level of
dependence and direction vector. We recall their definition and show that
RDGs labeled by direction vectors or levels of dependence are actually par-
ticular cases of polyhedral reduced dependence graphs.

3.2.3.1. Direction Vectors. When the set of distance vectors is a
singleton, the dependence is said uniform and the only distance vector is
called a uniform dependence vector. Otherwise, the set of distance vectors
can still be represented by a n-dimensional vector (called the direction
vector), whose components belong to Zu {*} u(Z x {+,-}). Its ith
component is an approximation of the ith components of all possible dis-
tance vectors: it is equal to z+ (resp. z-) if all ith components are greater
(resp. smaller) than or equal to z. It is equal to * if the ith component may
take any value and to - if the dependence is uniform in this dimension with
unique value :. In general, + (resp. -) is used as shorthand for 1 + (resp.
(-1)-).

We denote by e,- the ith canonical vector, i.e., the n-dimensional vector
whose components are all zero except the ith component which is equal
to 1. Then, a direction vector is nothing but an approximation by a
polyhedron with a single vertex and whose rays and lines, if any, are
canonical vectors. Indeed, consider an edge e labeled by a direction vector
d and denote by I + , I-, and /* the sets of components of d which are
respectively equal to 5+ (for some integer z), z —, and *. Finally, denote
by d. the n-dimensional vector whose ith component is equal to z if the ith
component of d is equal to z, z + , or z—, and to 0 otherwise. Then, by
definition of the symbols +, —, and *, the direction vector d represents
exactly all n-dimensional vectors p for which there exist integers (v, v', £) in
^ ' ' ' xN" 'xZ 1 '* 1 such that:

Optimal Fine and Medium Grain Parallelism Detection 4B5

In other words, the direction vector d represents all integer points that
belong to the polyhedron defined by the single vertex d., the rays e, for
/e/ + , the rays —et for / e / " , and the lines e, for /e/*. For example, the
direction vector (2 + , * , — , 3) defines the polyhedron with the vertex
(2,0,-1,3), the two rays (1,0,0,0) and (0,0,-1,0), and the line
(0, 1, 0, 0).

3.2.3.2. Levels of Dependence. The representation by levels is the less
accurate (but still useful on real applications) dependence abstraction. In a
loop nest with n nested loops, the set of distance vectors is approximated
by an integer /, in [1,..., n] \j {oo}, defined as the largest integer such that
the /— 1 first components of the distance vectors are zero. A dependence at
level / ̂ n means that the dependence occurs at depth / of the loop nest, i.e.,
at a given iteration of the / — 1 outermost loops. In this case, one says that
the dependence is a loop carried dependence at level /. If /=oo, the
dependence occurs inside the loop body, between two different statements,
and is called a loop independent dependence.

Consider an edge e of level /. By definition of the level, the first non
zero component of the distance vectors is the lth component and it can
possibly take any positive integer value. Furthermore, we have no other
knowledge on the remaining components. Therefore, an edge of level /< oo
is equivalent to the direction vector (0,..., 0, 1 +, *,..., *) (with /— 1 leading
zeros) and an edge of level oo corresponds to the zero dependence vector.
As any direction vector admits an equivalent polyhedron, so does a
representation by levels. For example, level 2, in a three-dimensional loop
nest, means direction vector (0, 1+,*) which corresponds to the poly-
hedron with one vertex (0, 1, 0), one ray (0, 1, 0), and one line (0, 0, 1).

4. OVERVIEW OF THE PARALLELIZATION ALGORITHM

To help the reader follow, we first state the different steps of our
parallelization algorithm, without entering neither into implementation
details, nor into technical proofs. The detailed proofs of the correctness and
optimality of our algorithm are delayed until Sections 5 and 6. An optimized
version of the algorithm is presented in Section 7. Our parallelization algo-
rithm consists of two main steps, a "uniformization" step presented in Sec-
tion 4.1 and a "scheduling" step summarized in Section 4.2. We illustrate
both steps with synthetic Example 5.

Example 5. The code is given in Fig. 13. We assume that the edges
of the reduced dependence graph (see Fig. 14) are labeled by direction
vectors. This graph was built by the dependence analyzer Tiny.(35)

The reader can check that neither Allen and Kennedy's algorithm, nor
Wolf and Lam's algorithm, is able to find the full parallelism for this code:
the third statement seems to be purely sequential. However, the parallelism
detection algorithm that we propose in the next sections is able to build the
following multidimensional schedule: (2 i+ l ,2&) for the first statement,

466 Darte and Vivien

Fig. 13. Code for Example 5.

Optimal Fine and Medium Grain Parallelism Detection 467

(2i, j) for the second statement and (2i+ 1, 2k + 3) for the third statement.
This schedule corresponds to the code with explicit parallelism given
Fig. 15 (but in which no effort, such as loop peeling, has been made so as
to remove "if" tests). Thus, for each statement, one level of parallelism can
be detected.

This code has been generated with the help of the procedure
"codegen" of the Omega Calculator delivered with Petit.(25) The Omega
Calculator, developed by Bill Pugh's team, is a framework to compute
dependences, to check the validity of program transformations, and to
transform programs, once the transformation is given. It does not propose

Fig. 14. RDG with direction vectors. Example 5.

Fig. 15. Example 5, parallelized version.

the transformations to be applied. We plan to integrate our algorithm in
Petit as a transformation generator. We point out that the code proposed
above is a "virtual" code in the sense that it only reveals hidden
parallelism. We do not claim that it must be executed as such.

4.1. Uniformization Step

We first show how PRDGs (polyhedral reduced dependence graphs)
can be captured into an equivalent (but simpler to manipulate) structure,
the structure of uniform dependence graphs, i.e., graphs whose edges are
labeled by constant dependence vectors. This uniformization scheme is
achieved by the translation algorithm, given next.

To avoid possible confusions, the initial PRDG that describes the
dependences in the code to be parallelized is called the original graph and
denoted by G,, = (V, E). The uniform RDG, equivalent to G., and built by
the translation algorithm, is called the uniform graph or the translated of G,,
and is denoted by G,, = (W, F).

The translation algorithm builds G,, by scanning all edges of G,,. It
starts from Gu = (W , F) = (V,0), and, for each edge e of £, it adds to G,,
new nodes and new edges depending on P(e), the dependence polyhedron
associated to e. We call virtual nodes the nodes that are created as opposed
to actual nodes which correspond to nodes of G,,.

Let e be an edge of E. We denote by xc and yc, respectively the tail
and head of e, i.e., the nodes that e respectively leaves and enters: .x(, -^» yt,.
This definition is generalized to paths: the head (resp. tail) of a path is the
head (resp. tail) of its last (resp. first) edge.

We follow the notations introduced in Section 3.2.2: we denote respec-
tively by co, p, and X the number of vertices vi, rays ri, and lines li of the
polyhedron P(e).

4.1.1. Translation Algorithm

• Let W= V and F=0
• For e: ,xc. -» ve e E do

(i) I f / ? = 0, 2 = 0, and w=l (the polyhedron is a singleton, the
dependence is uniform)

— Add to F an edge of weight v1 directed from xc to yt..

(ii) I f /^Oor A ^ 0 o r c o > l

— Add to W a new virtual nod «(.,
— Add to Fco edges of weights v1,v2..., v,,, directed from xt. to ne,
— Add to F p self-loops around nc, of weights r1, r2,..., rp.

468 Darte and Vivien

— Add to F A self-loops around ne. of weights /1, /2,..., /.,
— Add to F X self-loops around nc. of weights — / , , — /2,..., —/ ; ,
— Add to F a zero weight edge directed from «,. to yt..

Back to Example 5. The PRDG of Example 5 was depicted in
Fig. 14. Figure 16 shows the uniform dependence graph associated to it. It
has three new nodes (i.e., virtual nodes) that correspond to the symbol
" + " and the two symbols " —" in the initial direction vectors.

4.2. Scheduling Step

The scheduling step takes as input the translated dependence graph G,,
and builds a multi-dimensional schedule for each actual node, i.e., for each
node of G,, that corresponds to a node of G,,. G,, is assumed to be strongly
connected (otherwise, the algorithm is called for each strongly connected
component of G,,).

This is a recursive algorithm. Each step of the recursion builds a par-
ticular subgraph G' of the current graph G being processed. Once G' is
built, a set of linear constraints is derived and a valid schedule that satisfies
all dependence edges not in G' can be computed. Then, the algorithm keeps
working on the remaining edges, i.e. the edges of G' (more precisely G' and
some additional edges, see later). Intuitively, the principle of the algorithm
is to define a new order of computations (i.e., a loop transformation) such
that as many dependence vectors as possible are carried by the outermost

F'ig. 16. Translated uniform reduced dependence
graph for Example 5.

Optimal Fine and Medium Grain Parallelism Detection 469

loop after transformation, then as many remaining dependence vectors as
possible are carried by the second outermost loop, and so on.

G is defined as the subgraph of G generated by all the edges of G that
belong to at least one multi-cycle of zero weight. A multi-cycle is a union
of cycles, not necessarily connected, and the weight of a union of cycles is
the sum of the weights of its constitutive cycles. G' is built by the resolution
of a linear program (see Section 6.1 for details).

The scheduling step can be summarized by the recursive algorithm
given later. The initial call is DARTE-VIVIEN(G,,, 1). The algorithm
builds, for each actual node S of G,, a sequence of vectors Xls,..., X'£ and
a sequence of constants pls,..., p'l? that define a valid multi-dimensional
schedule.

4.2.1. DARTE-VIVIEN(G.k) /* builds the kth component of the
schedule */

(i) Build G' the subgraph of G generated by all edges that belong
to at least one zero weight multi-cycle of G.

(ii) Add in G' all edges from xc to ye and all self-loops on if
e — (xi,, yc,) is an edge already in G', from an actual node xc to
a virtual node ye.

(iii) Select a vector X and, for each node S in G, a constant ps such
that:

(e = (xc, yf) e G' or xf, is a virtual node => Xw(e) + p,v — pXe ^ 0
\e = (xf., yc) $ G' and xe is an actual node => Xw(e) + pVe — pXe > 1

For all actual nodes S of G, let pks = ps and Xks = X.
(iv) If G' is empty or has only virtual nodes, return.

(v) If G' is strongly connected and has at least one actual node, G
is not computable (and the initial PRDG G,, is not consistent),
return.

(vi) Otherwise, decompose G' into its strongly connected com-
ponents G, and for each G,, that has at least one actual node,
call DARTE-VIVIEN(G,, k 4-1).

Remarks.

• We will see that Step (ii) is necessary only for general PRDGs: for
example, it could be removed for RDGs labeled by direction vectors
(see Section 6). In this case, the two steps, Step (i) and Step (iii), can
be solved simultaneously by the resolution of a single linear
program.

470 Darte and Vivien

471

« In Step (iii), we do not specify, on purpose, how the vector X and
the constants p are selected, so as to allow various selection criteria.
We refer to Section 7 for more details. For example, a maximal set
of linearly independent vectors X can be selected if the goal is to
derive fully permutable loops (see Darte et al.(10)).

Back to Example 5. Consider the uniform dependence graph of
Fig. 16. There are two elementary cycles of weights (1,0, 1) and (0, 1,1),
and five self-loops of weights (0,0, 1), (0,0, -1), (0, 1,0) (twice), and
(0, —1,0). Therefore, all edges (except the edges that only belong to the
cycle of weight (1,0, 1)) belong to a multi-cycle of zero weight. The sub-
graph G is depicted in Fig. 17.

The constraints coming from edges in G' imply that X= (x, y, z) must
be orthogonal to the weight of all cycles of G'. Therefore, y = z = 0. Finally,
considering the other constraints, we find the solution X=(2,0,0),
Ps, =Psi — 1 and Ps-> = 0, for example if we minimize x.

In G', there remain four strongly connected components, and two of
them are not considered since they only have virtual nodes. The two other
components have no zero weight multi-cycles. The strongly connected com-
ponent with the single node S2 can be scheduled with the vector X= (0, 1, 0),
whereas studying the other strongly connected component leads, among
other solutions, to X= (0,0, 2), ps, = 0 and ps3 = 3.

Finally, summarizing the results, we find, as claimed in the beginning
of Section 4, the two-dimensional schedules: (2i, j) for S2, (2i+ I, 2k) for
S, and (2 i+ l ,2A: + 3) for 5,.

Fig. 17. Subgraph of zero weight multi-cycles for
Example 5.

Optimal Fine and Medium Grain Parallelism Detection

We are now ready to explain in full details the different steps of this
parallelization algorithm. It is based on scheduling techniques that we pre-
viously developed for systems of uniform recurrence equations. Therefore,
we will frequently refer to Darte and Vivien.(22)

5. COMPUTABILITY OF A PRDG

In this section, we study the theoretical properties of PRDGs, in terms
of computability, with the same spirit as in Karp et al.(7) paper. Section 6
will show how computable PRDGs can be scheduled.

A dependence graph that defines exactly the dependences of a loop
nest is always computable since, for example, the sequential ordering (the
ordering of the initial non parallelized loop nest) defines a valid schedule.
However, if dependences are given by an approximation, the dependence
graph may describe a structure of computations that is not computable.
For example, the PRDG of Fig. 18a is computable (even if the direction
vector (0, *) could be refined in the case of nested loops) whereas the
PRDG of Fig. 18b is not computable, i.e., can not be scheduled. This
comes from the fact that there is a dependence cycle of zero weight in the
second PRDG, but not in the first one.

Therefore, before even thinking of parallelization, we need to check if
a PRDG is computable or not. This section shows how it can be done.
In Section 5.1, we explore the links between G,, and its translated G,r
Following the results of this study, we are able to manipulate Gu, that has
a more classical structure, instead of G,,. Indeed, G,, is very similar to a
reduced dependence graph associated to a system of uniform recurrence
equations, i.e., a graph whose edges are labeled by integral vectors. We
show how well-known results for systems of uniform recurrence equations
can be adapted to G,,. Section 5.2 is devoted to the computability problem.
Section 5.3 focuses on the length of the longest paths described by G,,. We

Fig. 18. Two different PRDGs: (a) computable:
(b) not computable.

472 Darte and Vivien

give lower bounds on the length of these paths. These bounds are really
important since lower bounds on the length of dependence paths are upper
bounds on the parallelism in the dependence graphs (see Darte and
Vivien(21) for a sharp definition of degree of parallelism).

From now on, we assume that the PRDG G,, is strongly connected
(and so is G,,). Otherwise, the results presented hereafter are true for each
of the strongly connected components of G,,.

5.1. Correspondence Between a PRDG G0 and Its Translated Gu

Recall that edges in G,, are labeled, not by a particular weight (as in G,,),
but by a polyhedron, i.e., a set of vectors. To avoid a possible confusion
between edges labeled by a polyhedron and edges labeled by an integral
vector, we call polyhedral edge e an edge of G,, labeled by a polyhedron
P(e), and dependence edge e an edge of G,, labeled by an integral vector
w(e) such that w(e) e P(e). In other words, a polyhedral edge e corresponds
to as many dependence edges as there are integral vectors in P(e}: a
dependence edge is an instantiation of a polyhedral edge. We define a
dependence path as a sequence of adjacent dependence edges. The weight
of a dependence path is the sum of the weights of its edges.

We now show the links between paths in Gu and dependence paths
in G,,.

5.1.1. From Gu to G0

Note first the particular structure of G,,. There is no edge between dis-
tinct virtual nodes. Thus, any path between two distinct virtual nodes has
to pass through an actual node. Furthermore, any path between two actual
nodes whose intermediate nodes are all virtual nodes, visits only one vir-
tual node, possibly many times: we call such a path a basic path. The link
between basic paths in G,, and edges in G,, is straightforward, given by the
following lemma and corollary:

Lemma 1. A basic path 77,, of G,, corresponds to a unique poly-
hedral edge e of G,, and the total weight of 77,, is a vector that belongs to
the polyhedron P(e) associated to e.

Proof. The proof is straightforward, by construction of G,,. A detailed
proof is given in Darte and Vivien.(36)

Corollary 1. A path 77,, of G,,, from an actual node to an actual
node, defines an equivalent dependence path 77,, in G,,: each basic sub-path

Optimal Fine and Medium Grain Parallelism Detection 473

of 77,, corresponds exactly to a polyhedral edge e of G,, whose dependence
polyhedron contains the weight of the basic sub-path.

5.1.2. From G0 to Gu

Lemma 1 (and a fortiori Corollary 1) is in general not a strict equiv-
alence: it is not always possible to build an equivalent basic path in G,, for
any dependence edge of G,,, since an integral vector in P(e) may be a
rational (but not integral) linear combination of vertices, rays and/or lines
of P(e). However, when the dependence path is a cycle, there is still a
correspondence as stated in Lemma 2. In the following, if # is a cycle,
mft> denotes the cycle formed by m times the cycle <€.

Lemma 2. Let ^ be a dependence cycle of G,,, i.e., a cycle of
dependence edges. Then, for some integer m, the cycle m^ is equivalent to
a cycle <€u in Gu of same structure and same weight.

Proof. The proof is not difficult. One has just to decompose each
polyhedral edge on the vertices, rays and lines of the corresponding poly-
hedron. If some components are not integral, we multiply (i.e., we use several
times the cycle) all the components by a suitably large integer so that they
all become integral. Details can be found in Darte and Vivien.(16) D

5.1.3. Computability Condition

In the case of bounded iteration domains, a reduced dependence graph
is computable if and only if the apparent dependence graph it describes is
acyclic, i.e., if there is no dependence path from an instance of a statement
to the same instance of the same statement. In other words, a PRDG G,,
is computable if and only if it has no dependence cycle of zero weight.
According to Corollary 1 and Lemma 2, the computability of G,, is trans-
lated into Gu as follows:

Theorem 1. G,, is computable if and only if G,, contains no zero
weight cycle with at least one actual node.

5.2. Computability of the Translated Graph Gu

In the previous section, we moved the computability problem from G,,
to G,,. Now, checking the existence of zero weight cycles in G,, is simpler
than in G,, since G,, is nothing but the reduced dependence graph of a
system of uniform recurrence equations, except that some nodes are called
actual and some other virtual. We can thus apply all techniques developed

474 Darte and Vivien

for system of uniform recurrence equations (see Refs. 7 and 22), with a
slight modification so as to take into account the fact that some nodes in
G,, are virtual nodes and exist only to simulate dependences in G,,.

Many algorithms that check the computability of systems of uniform
recurrence equations have been proposed,(7,22-37 39) the first one being
Karp et al. decomposition.(7) However, we suggest the reader to refer to the
algorithm formulation and proofs proposed by Darte and Vivien,(22)

because they have been developed with the scheduling problem (more than
with the computability problem) in mind, which is more interesting from
the point of view of parallelization.

The basic algorithm looks for zero weight cycles in a uniform reduced
dependence graph G. It is a recursive algorithm, based on the search for
zero weight multi-cycles (i.e., union of cycles, not necessarily connected).
However, in our case (cf. Theorem 1), we are not interested in all zero
weight cycles, but only in zero weight cycles which contain an actual node.
We have thus to refine the decomposition algorithm. This leads to the
following algorithm which enables us to determine the computability of G,,
via Gu. The only modification we make compared to Karp et al. decomposi-
tion(7) is to not consider subgraphs of Gu that have only virtual vertices.
Therefore, the correctness of this new algorithm is a direct consequence of
the correctness of Karp et al. decomposition.

5,2.1. Decomposition Algorithm: DA

A denotes the logical AND.

5.2.7.7. Boolean DA(G)

(i) Build G' the subgraph of G generated by all the edges that
belong to a zero weight multi-cycle of G.

(ii) Compute the strongly connected components of G' and let G\,
G'2,..., G' be the s components that have at least one actual node.

• If G' is empty or has only virtual nodes, return TRUE.

• If G' is strongly connected and has at least one actual node,
return FALSE.

• Otherwise, return A'J=|DA(G;.).

Then, G,, has no cycle of zero weight containing an actual node if and
only if DA(GJ = TRUE. Therefore, a PRDG G,, is computable if and only
if DA(G,,) = TRUE.

Optimal Fine and Medium Grain Parallelism Detection 475

Definition 3. For a graph G,,, we define the depth of G,, (denoted
by d(G,,) or simply d) as the maximal number of recursive calls generated
by the initial call DA(G,,) (counting the first one), except if G,, is acyclic,
in which case we let J(G,,) = 0.

For systems of uniform recurrence equations, the depth of the decom-
position algorithm is a measure of the degree of parallelism described by its
dependence graph.(16) We will see that this result still holds for PRDGs and
the depth d defined for algorithm DA.

5.2.2. Dependence Polyhedra Considered to be Atomic: Algorithm DA*

For technical reasons that will become clear in the scheduling section
(Section 6), we need to slightly modify the decomposition algorithm DA.

Remember how G,, was built (refer to the translation algorithm in Sec-
tion 4.1). We want to keep together, during the decomposition algorithm,
all edges that come from the translation of the same dependence poly-
hedron P(e), as soon as one of the vertices of P(e) is kept in G'. For that,
we add in G' all edges from xc to ye, and all self-loops on yc if e = (xe, yc)
is an edge already in G', from an actual node xe to a virtual node yc. This
leads to the following algorithm:

5.2.2.7. Boolean DA*(G)

(i) Build G' the subgraph of G generated by all the edges that
belong to at least one zero weight multi-cycle of G.

(ii) Add in G', all edges from xc to yt. and all self-loops on if
e = (xe, yc) is an edge already in G', from an actual node to
a virtual node yr.

(iii) Compute the strongly connected components of G' and let
G',, G'2,..., G'v be the s components that have at least one actual
node.

• If G' is empty or has only virtual nodes, return TRUE.
• If G' is strongly connected and has at least one actual node,

return FALSE.
• Otherwise, return A;=1DA*(G;).

Note that the edges we add to G' do not change the structure of
strongly connected components of G', since we add edges only between
nodes that already belong to the same strongly connected component of G'.
Furthermore, in each strongly connected component, the structure of zero
weight multi-cycles is also unchanged since we add only edges that do not
belong to a zero weight multi-cycle. Therefore, both algorithms DA* and
DA have exactly the same behavior (in terms of nodes).

476 Darte and Vivien

5.3. Longest Dependence Paths in G0

Once we know whether a polyhedral reduced dependence graph is
computable, it is interesting to give an estimate on the length of the longest
path in its apparent dependence graph. This length gives a lower bound on
the sequentiality described by the PRDG, and thus, gives an upper bound
on the parallelism it contains.

In Darte et al.(17) it is shown that, for a single uniform recurrence
equation (i.e., a uniform reduced dependence graph with a single node),
this length is equivalent to the latency of the optimal linear schedule, for
full dimensional polyhedral iteration domains whose size tends to infinity.
Remember that the latency of a linear schedule is nothing but the number
of sequential iterations. To say it briefly, on domains of size parameterized
by N, the latency of the optimal linear schedule is equivalent to AN for
some constant A and so does the length of the longest dependence path.
Both are in N and the multiplicative constants are the same. This result has
been extended in Ref. 18, for strongly connected uniform dependence
graphs, if a "shifted linear" schedule exists.

In our case, which is similar to the case of general uniform dependence
graphs, one-dimensional affine schedules may not exist and the length of
the longest path is not necessarily O(N) anymore, it can be equivalent to
kN1' for some constants k and p. We will not try to be precise on the multi-
plicative constant k, we will just focus on p the power of N.

Actually, for a system of uniform recurrence equations, it has been
shown that this power is equal to the depth of Karp et al. decomposition(7)

as recalled by the following theorem (Theorem 2). Indeed, if d is the depth
of G for Karp et al. decomposition, there exists a path in the apparent
dependence graph of length Q(N''}. A complete proof of this result can be
found in Darte and Vivien.(40) The iteration domain is supposed to contain
(resp. to be contained in) a full dimensional cube of size Q(N) (resp.
O(N)). Actually, we have the following stronger result:

Theorem 2. Let G be the dependence graph of a system of uniform
recurrence equations. For each node S of G, let ds be the depth where S
is removed, in Karp et al. decomposition.(7) Then, for each strongly con-
nected component G' of G, there exists a path in the apparent dependence
graph of G whose projection in G is a cycle that visits fl(W'<) times each
node 5 of G'.

A similar theorem can be stated for PRDGs:

Theorem 3. Let G,, be a PRDG, and G,, the corresponding trans-
lated graph. For each node S of G,,, let ds be the depth where the node S

Optimal Fine and Medium Grain Parallelism Detection 477

is removed, in the decomposition algorithm DA (or equivalently DA*)
applied to G,,. Then, for each strongly connected component G'n of G,,,
there exists a path in the apparent dependence graph of G,, whose projec-
tion in G,, is a cycle that visits Q(N'I:<) times each node of G',,.

Proof. Note first that for each actual node of G,, the depth for Karp
et ai decomposition(7) (in which actual nodes and virtual nodes are not
distinguished) and the depth for Algorithm DA are equal. We can thus
apply Theorem 2 which gives, for each strongly connected component G'u
of G,,, a path in the apparent dependence graph of G,,, whose projection
in G,, visits Q(N''*) times each node S of GJ,. Furthermore, the projection
in G,, is a cycle with at least one actual node. We then use Corollary 1 to
obtain an equivalent path in G,,. Lemma 1 ensures that the number of
occurrences of an actual node in both paths are equal. D

6. SCHEDULING A PROG

In this section, we detail the scheduling algorithm for PRDGs intro-
duced in Section 4.2. In particular, we show how to find the vector X and
the constants ps. We also prove that our algorithm is able to find all the
parallelism contained in a PRDG. In Section 6.1, we recall how G' can be
computed and the link with "shifted-linear" schedules. In Section 6.2, we
show that the scheduling algorithm is correct, i.e., that it produces a
schedule that respect all dependences. Finally, in Section 6.3, we show the
optimality of the scheduling algorithm.

6.1. Construction of G'and Related Properties

In this section, we recall how to build G', the subgraph of zero weight
multi-cycles. We also recall why it is closely related to the construction of
separating hyperplanes and, thus, to the construction of multidimensional
schedules.

Step (i) of the decomposition algorithm (DA or DA*), devoted to the
construction of G', can be implemented by the resolution of a single linear
program. Indeed, it has been shown (see Darte and Vivien(22) that the
edges of G' are exactly the edges e for which vc = 0 in any optimal solution
of the following linear program:

478 Darte and Vivien

where C is the connection matrix of G (with as many rows as nodes in G,
and as many columns as edges in G) and W the dependence matrix
(i.e., whose columns are the weights of edges of G). This linear program
(Program 6.1) is linked to the computability problem, whereas its dual
(Program 6.2) is linked to the scheduling problem:

Lemma 3 shows that considering the dual provides separating hyper-
planes, which are strictly separating hyperplanes for the edges not in G
and weakly separating hyperplanes for edges in G'. Furthermore, any
optimal solution of the dual program provides a separating hyperplane
that is a strictly separating hyperplane simultaneously for all edges of G'.
In particular if G' is empty, Lemma 3 enables to build a "shifted linear"
schedule.

6.2. Correctness of the Scheduling Algorithm

We are now ready to prove that the scheduling algorithm proposed in
Section 4.2 is correct.

Note first that the skeleton of Algorithm DARTE-VIVIEN is nothing
but Algorithm DA*, whose correctness has already been studied in Sec-
tion 5.2.2. Therefore, it remains to prove two things:

• that Step (iii) is feasible, i.e., that it is possible to define a vector X
and some constants ps satisfying the desired inequalities.

Optimal Fine and Medium Grain Parallelism Detection 479

The relation between both programs is the following. Consider the set
£ defined by:

The set £ 's fundamental for deriving fully permutable loops nests (see
Darte et al..(10) Edges of G' are characterized by the following lemma:

Lemma 3.

828 25 6-3

480 Darte and Vivien

• that, as claimed in Section 4.2, the sequence of vectors A'!,,,..., X'!?
and the sequence of constants ^1,.,..., p^ define a valid multi-dimen-
sional schedule.

The first point is clear. Indeed, from Lemma 3, we know that there
exists a vector X and some constants ps (for example, any optimal solution
of the dual program (Program 6.2)) such that:

Therefore, the constraints of Step (iii) can be satisfied since they are weaker
(some inequalities ^ 1 are relaxed to inequalities ^0).

For making the proof of the second point simpler, we complete each
sequence of vectors X's with null vectors and each sequence of constants p's
with null constants so as to define sequences of same length d (remember
that d is the depth of the decomposition algorithm DA on G,,).

Lemma 4. If G,, = (V,E) is computable, the multi-dimensional
scheduling function T:

defines a valid multi-dimensional schedule for G,,.

Proof. A multi-dimensional scheduling function defines, for each
statement 5 (i.e., each node of G,,) and for each iteration vector Ie3>,
a multi-dimensional vector T(S, I). Then, computations are scheduled by
lexicographic order of the T(S, I). Therefore, in order to prove that T is a
valid schedule, we need to prove that all dependence distances remain
lexico-positive, i.e., that for all edges e = (xc, yt.) of G,,, for any weight w(e)
in P(e), and for all point / of the domain D, we have T(yl.,I)>l

1\xc,I—w(e)) where </ denotes the strict lexicographic order (see Sec-
tion 3.2). Actually, we prove a bit stronger property: there exists an integer
fce[l,rf such that

which will imply the desired property T(yt., /)>, T(xc, l-w(e)).

Remember that all possible values of w(e) are given by Eq. (3.2):
>Kf) = Z/ri"Ay»y + Zyri'v/o + E/rf {//, with /*,.eQ+, v,eQ + ,«?,6Q and
£/"!"/</ = 1. We built G,, the following way. For each edge e = (,x(,, j>,,), we
introduced a new node «,,. In G,,, all edges from xc to n(, correspond to
vertices of P(e), all self-loops on n(, correspond to rays or lines, and there
is a zero weight edge from «(, to >',,.

If G,, is computable, all recursive calls in the decomposition algorithm
DA end because the current G' is empty or has only virtual nodes. Thus,
each edge from x,, to «(, is removed from the graph (i.e., do not belong to
the current G') at some level of the decomposition. We denote by k the
level where all edges that correspond to a vertex of P(e) (i.e., edges from
,v,, to «,,) have been finally removed. Because of Step (ii) of algorithm DA*
(equivalent to Step (ii) of the scheduling algorithm), all edges that
correspond to P(e) are actually kept together in the graph, until level k.
More precisely, they are kept together in the same strongly connected com-
ponent until level k, as well as the zero weight edge from «,, to ye.

Therefore, the sequences of vectors A"j , A"Y<. and A'',,, are equal until
level k: we can thus skip the subscript and we simply write X1. The system
6 is reduced to:

Now, refer to Step (ii i) of the scheduling algorithm. Until level k, we have:

Thus, with the definition of w(e), we get the desired result: all constraints
of System 6.4 are satisfied and are obtained by summing these inequalities
in a suitable way. D

Remark. The modification we made to keep together all edges corre-
sponding to the polyhedron P(e) becomes clear. It enables to ensure that

Optimal Fine and Medium Grain Parallelism Detection 481

all constraints of System 6.3 are satisfied, even if w(e) is a rational com-
binations of vertices, rays, and lines of P(e). Actually, if for all integral vec-
tors w(e)eP(e), the decomposition of Eq. (3.2) is a decomposition with
integral (instead of rationals) coefficients—in this case, one says that P(e)
is decomposed on a Hilbert basis, see Schrijver(33)—then, the algorithm can
be refined: edges / in G,, corresponding to P(e) and for which Xw(f) +
P\- ~P\ ^ 1 m Step (iii) do not have to be kept in G'. This enables to relax
constraints for the next levels. This is the case for example for direction
vectors. The decomposition proposed in Section 3.2.3 is indeed a decom-
position on a Hilbert basis.

6.3. Optimality of the Multi-Dimensional Schedule

Now that we have a multi-dimensional schedule T, we prove its
optimality in terms of degree of parallelism. We want to show that for each
statement S (i.e., for each node of G,,), the number of instances of S that
are sequentialized by T is of the same order as the number of instances of
S that are inherently sequentialized by the dependences.

The latency of T is the number of sequential steps induced by the
order defined by T. In order to be more precise, we define for a statement
S, the S-latency of T as the number of instances of S sequentialized by T.
If the iteration domain S is contained in a n-dimensional cube of size
O(N), then the S-latency of T is O(NJs) since instances of 5 are scheduled
by a ds -dimensional schedule. Similarly the latency of T is O(N''). We
define the S-length of a dependence path 3f in the apparent dependence
graph associated to G,, as the number of vertices in 3P that correspond to
instances of S. Therefore, the S-length of a dependence path & is the number
of instances of S in 8P that are inherently sequentialized by the dependences.
Theorem 3 shows that there is a dependence path whose S-length is £2(N'ls)
if the iteration domain 3i contains a «-dimensional cube of size £2(N). This
proves the following result:

Theorem 4. The scheduling algorithm is nearby optimal: if the
iteration domain contains (resp. is contained in) a full dimensional cube of
size Q(N) (resp. O(N)), and if d is the depth of the decomposition algo-
rithm, then, the latency of the schedule is O(N'') and the length of the
longest dependence path is Q(N''). More precisely, after code generation,
each statement S is surrounded by exactly ds sequential loops and these
loops are inherently sequential.

482 Darte and Vivien

The most time consuming steps of the scheduling algorithm presented
in Section 4.2 are the resolutions of the different linear programs of Steps
(i) and (iii). In order to speed up the algorithm, we replace the linear
programs previously described by some equivalent linear programs with
fewer variables and fewer equations.

Consider the constraints of Step (iii). It turns out that they are equiv-
alent to the constraints Xw(C}^l(C) for all elementary cycles C where
l(C) denotes the number of edges e = (xc, >',,) of C that do not belong to
G and for which ,v,, is an actual node. Furthermore, once the constraints
on cycles are satisfied, the different constants p can be computed by a
technique similar to the Bellman-Ford algorithm, less expensive than the
resolution of a linear program.

This remark would enable to reduce the number of variables in the
linear programs. Unfortunately, it would increase the number of con-
straints, since the number of elementary cycles in the graph may be
exponential in the number of edges. Therefore, computing the weight of all
cycles in the PRDG may not be always reasonable. To avoid this problem,
we use a basis of cycles, instead of considering all cycles. This technique
enables to reduce both the number of constraints and the number of
variables in the linear program of Step (iii). Later, we only give an idea of
this technique. Details can be found in Darte and Vivien.(36)

Definition 4. A basis of cycles &F& of G is a family of independent
cycles5 C,,..., C,,, such that for each cycle C in G, there exists some
rationals A,,..., A,,, such that: C = £/"=i /./€/.

We refer to Gondran and Minoux141' for a more precise definition of
basis of cycles and of cyclomatic number.

7.1.1. Computation of the Vector X

For each edge e = (xc, yc) of G, we define an integer <5,, equal to 0 if
e is in G or if xe is a virtual statement, and equal to 1 otherwise, i.e., if e

5 Actually, in such "cycles." edges can be traversed backwards. Except in this definition, all
cycles used in the rest of ihe paper are "true" cycles, i.e., cycles for which edges are always
traversed forwards.

Optimal Fine and Medium Grain Parallelism Detection 483

7. IMPLEMENTATION, EXAMPLES, AND EXTENSIONS

7.1. Implementation Strategies

Actually, this system is only a set of constraints, with no objective function.
This allows us to define many objective functions so as to optimize the
choice of X. Currently, we minimize its norm £"=, \X,\. This is done by the
following linear program:

In the following, we assume that we have a solution (X, x) of the
linear program 7.1.

7.1.2. Computation of the Constants p

To compute the constants p, we use the Bellman-Ford algorithm(42)

which solves the single-source shortest-path problem. The Bellman-Ford
algorithm determines whether or not there is a negative-weight cycle that
is reachable from the source. If there is no such cycle, the algorithm
produces the shortest paths and their weights. It runs in time O(\ V |[E\).

We build a copy H of the graph G. For each edge e of G, we replace
its distance vector weight w(e) by the induced delay w'(e) defined by
w'(e) = Xw(e)~<5(,. As we want to use the Bellman-Ford algorithm on H,
we need to prove that // contains no negative-weight (true) cycles.

Lemma 5. The weight of any (true) cycle ^ in H is nonnegative.

Proof. Consider a true cycle <# in H: %'^0. Decompose # on the
basis of cycle ^#: <€ = QK for some vector L The weight of <g in H is:

484 Darte and Vivien

is not in G' and if xe is an actual statement. Then, the constraints to solve
are:

Since both vectors x and ^ are nonnegative by definition, x%> is non-
negative, n

Then, we use the Bellman-Ford algorithm on H to produce the
shortest paths and their weights. We denote by ps the opposite of the
weight of the shortest path to the node S.

Optimal Fine and Medium Grain Parallelism Detection 485

Fig. 19. Code of Example 6.

Lemma 6. The vector X and the constants ps satisfy the conditions
of Step (iii) of the scheduling algorithm.

Proof. Let e = (x f , v,,) be an edge of G. The delay induced on e by
(X , p ,) is equal to Xw(e) + pl. —pXf. By definition of a shortest path, we
have:

Fig. 20. RDG for Example 6.

which is the desired inequality. D

This two steps strategy, computing X first by a linear programming
approach, and then the constants p by a graph-based technique, is the way
we implemented the scheduling algorithm. It is not clear from a practical
point of view if it really speeds up the linear program resolutions. However,
its main interest is that it enables to guarantee that the constants p are simple
if the vector X is simple. This property is highly desirable for code generation.
Furthermore, the constraints on X expressed with a basis of cycles are useful
to build the set of independent vectors needed for tiling."01

7.2. Examples

We illustrate our algorithm on two synthetic examples so as to
illustrate the different cases that, at least in theory, may occur. Example 6

Fig. 21. Example 6, parallelized version.

can be scheduled with a single sequential loop, what Allen-Kennedy and
Wolf-Lam fail to find. This example is presented with direction vectors.
Example 7 is an example that cannot be parallelized successfully if
dependences are approximated by direction vectors.

Example 6. (with direction vectors) Example 6 is the code of
Fig. 19. Its reduced dependence graph, with direction vectors, is given in
Fig. 20. In this example, the extension of Wolf-Lam with loop distribution
proposed in Section 2 only finds one degree of parallelism, when one can

Fig. 22. Transformed RDG, Example 6.

486 Darte and Vivien

find two degrees. Indeed, for Wolf-Lam, because of the two dependences
with a component equal to " — ", the first set of fully permutable loops only
contains the i loop. Only one dependence is removed from the RDG and
the graph remains strongly connected. The second set of fully permutable
loops only contains the j loop. Two dependences are removed and the
graph is no more strongly connected. A loop distribution can be applied.
Then the third loop is found to be parallel. Thus, Wolf-Lam finds one
degree of parallelism.

We now apply our algorithm. The transformed RDG is given in
Fig. 22. It has 4 vertices (two of them are virtual). The weights of elemen-
tary cycles are (0, 0, -1) and (0, -1, 0) for the self-loops and (1,0, -1),
(1,-1, 1), (0,2,-3), and (0, 1,-1) for the other elementary cycles.
Therefore, one can find a one-dimensional schedule, for example X=
(4, 0, — 2), />, =0 and /02 = 3. Two degrees of parallelism can be exposed:
the resulting code is given in Fig. 21.

Example 7. (with dependence polyhedra) We now illustrate our
technique with the example of Fig. 23 in which the maximal parallelism can
be detected only if dependences are approximated by a more accurate
PRDG than a RDG labeled by direction vectors. Furthermore, both Allen-

Fig. 24. RDG with direction vectors tor Example?.

Optimal Fine and Medium Grain Parallelism Detection 487

Fig. 23. Code of Example 7.

488 Darte and Vivien

Kennedy and Wolf-Lam find that at least one of the statements must be fully
sequentialized. With dependence polyhedra and our algorithm, the resulting
S: -latency is O(N), the 52-latency is O(N2), for a loop nest of depth 3.

The graph G,,, depicted in Fig. 24 has been found by the dependence
analyzer Tiny.(35)

The uniformization step transforms G,, into G,, which is depicted in
Fig. 25.

There is a multi-cycle of zero weight generated by all edges whose
weight is orthogonal to (1, 0,0) (see Fig. 25). In G', the strongly connected
component that contains 5, and S2 still has a multi-cycle of zero weight
that visits an actual node (S2). S, is removed at depth 2 but S2 is only
removed at depth 3. Thus, S2 is purely sequential, whereas one degree of
parallelism is detected for St. The multi-dimensional schedules are (i,2j)
for S, and (i,2j+l,k) for S2. The resulting code is therefore the code
given Fig. 26.

Note that this is exactly what Allen and Kennedy's algorithm would
find. However, if direction vectors are refined by more accurate dependence
tests, one can find that the dependences can be approximated by the
PRDG of Fig. 27. The reference to array b generates indeed two dependences,
a flow dependence whose dependence polyhedron has one vertex (0, 1,0) and
one ray (1, —1,0) , and an anti dependence whose dependence polyhedron
has one vertex (1, —2,0) and the same ray than the flow dependence
(1,-1,0).

Note in Fig. 27 how this modification changes the structure of G". S^
is now removed at depth 1 and S2 at depth 2. For both statements, one
more level of parallelism has been detected. The multi-dimensional
schedules are (4i + 2/) for 5, and (4i + 2j+ 1, k) for S2. The resulting code
is given in Fig. 28.

Fig. 26. Example 7, first parallelized version.

Optimal Fine and Medium Grain Parallelism Detection 489

490 Darte and Vivien

Fig. 28. Example 7, second parallelized version.

7.3. Extension to Nonperfectiy Nested Loops

As proved in the previous sections, our scheduling algorithm is per-
fectly adapted to a description of distance vectors. When the loops are non-
perfectly nested, the distance vector J-I between two statements S1 and S2

is defined only for the first dimensions that correspond to common loops,
i.e., loops that surround both S, and S2.

Therefore, a natural way of extending the algorithm to nonperfect
loop nests is to ignore, in each strongly connected component that appears
during the decomposition, all dimensions that are not common dimensions.
In other words, at a given depth of the algorithm, we truncate all vectors
to the same dimensions6 and we apply on the truncated vectors the same
technique as for perfectly nested loops. Finally, we complete each derived
vector X with ending zeros so that it fits the right dimension.

It turns out that this strategy remains nearly optimal, as long as no
information is given on the noncommon dimensions. However, if at each
level the code is nonperfectly nested then this algorithm is not more power-
ful than Allen and Kennedy's algorithm, since there is only one common
dimension at each step.

To avoid this problem, we suggest another approach that enables to
exploit the information on noncommon dimensions, and to benefit from
the power of our algorithm for perfectly nested loops. As we did in
Example 3, we first transform the code into perfectly nested loops, by loop
fusions or more complex techniques, possibly introducing "if" tests. Then,

Optimal Fine and Medium Grain Parallelism Detection 491

'' All vectors are truncated to the smallest dimension of a distance vector.

the scheduling algorithm is applied on the transformed nest, reasoning on
its dependence graph. Hereafter is an example, borrowed from the examples
proposed in Petit,(25) where the code is nonperfect at each level. Nevertheless,
we point out that this technique is not general enough yet, and finding the
adequate "perfectization" is not straightforward, if feasible...

492 Darte and Vivien

In Example 8, the dependence graph has two strongly connected com-
ponents, one with S,, the other one with S2 and S3. We can thus apply a
loop distribution to separate 5, from S2 and 5V Furthermore, we integrate
53 into the second loop, so as to obtain only perfect loops nests. We get
the code of Fig. 29.

Applying our scheduling algorithm, we find that the vector X=(x, y)
has to satisfy the constraints y^l,x +y^2, x^O, and y^O. We find
X= (0, 2) and ps, = 1 and pS) = 0 which corresponds to the code of Fig. 30
(once again without any effort to remove "if" tests).

Fig. 29. Perfectly nested version of Example 8.

Fig. 30. Example 8, parallelized version.

8. CONCLUSIONS

We have presented an original scheduling algorithm to parallelize loops
whose dependences are described through polyhedral reduced dependence
graphs, i.e., reduced dependence graphs whose edges are labeled by an
approximation of distance vectors by polyhedra. This representation of
dependences is a generalization of direction vectors.

Our algorithm is nearly optimal, in the sense that it detects the maxi-
mal number of parallel loops that can be found, i.e., the minimal number
of nested sequential loops (up to loop coalescing), as long as the only infor-
mation available is the polyhedral reduced dependence graph. In particular,
our algorithm is optimal for direction vectors, which generalizes Wolf and
Lam's algorithm to the case of multiple statements.

We illustrated its power on several examples, examples with direction
vectors as well as examples with more general polyhedral representations of
distance vectors. All examples have been derived automatically with the
algorithm we implemented and with the help of tools such as Tiny or Petit.

Our algorithm, like Feautrier's algorithm, was implemented at the
Passau University, Germany, in the LooPo project. They compared the
two algorithms on four codes."" Both parallelization algorithms output
the same result, but our algorithm was quicker, and especially on the more
complex codes (at least 10 times quicker on the three more complex codes).
This experimentation does not prove that "the Darte-Vivien scheduler
clearly outperforms the Feautrier scheduler on complex input programs,"
as it is written in Ref. 11. However, it shows that techniques as complex as
Feautrier's ones are not always necessary to parallelize real codes.

Optimal Fine and Medium Grain Parallelism Detection 493

Some work remains for handling nonperfect loop nests. Our algorithm
is indeed mainly well adapted for perfectly nested loops, or for common
loops in nonperfect codes. However, to better exploit information on non
common loops, a promising approach is to develop a method to transform
nonperfect loop nests into perfect loop nests. This transformation remains
to be fully automated.

Some work remains also to be done for exploiting the parallelism that
has been detected. Indeed, a parallelizing algorithm only enhances opera-
tions that can be carried concurrently. It does not precise where these
operations can be efficiently performed: automatic data mapping remains a
crucial issue.

ACKNOWACKNOWLEDGMENTSLEDGMENTS

We would like to thank the anonymous referees for their careful reading
and helpful comments. We also wish to give special thanks to Paul Feautrier
for many fruitful discussions that made clearer the link between the different
parallelization algorithms, and to Francois Irigoin for his wise advice and
his always pertinent remarks.

REFERENCES

1. David F. Bacon, Susan L. Graham, and Oliver J. Sharp, Compiler Transformations for
High-Performance Computing ACM Computing Surreys 26(41:345-420 (1994).

2. John R. Allen and Ken Kennedy, Automatic Translation of Fortran Programs to Vector
Form, A CM Trims. Program. Lang. Sys. 9(41:491-542 (October 1987).

3. Utpal Banerjee. A Theory of Loop Permutations, in D. Gelernter, A. Nicolau, and
D. Padua, (eds.). Languages amd Compilers for Parallel Computing. MIT Press. (1990).

4. Michael E. Wolf and Monica S. Lam, A Loop Transformation Theory and an Algorithm
to Maximize Parallelism, IEEE Trans. Parallel Dislrihut. Syxt. 2(4):452 471 (October
1991).

5. Wayne Kelly and William Pugh, A Framework for Unifying Reordering Transformations,
Technical Report CS-TR-3193. University of Maryland (April 1993).

6. Paul Feautrier, Some Efficient Solutions to the Affine Scheduling Problem, Part II: Mult t-
Dimensional Time, IJPP 21(61:389-420 (December 1992).

7. R. M. Karp. R. E. Miller, and S. Winograd, The Organization of Computations for
Uniform Recurrence Equations, J. ACM 14(3):563 590 (July 1967).

8. Alain Darte and Frederic Vivien, A Classification of Nested Loops Parallelization Algo-
rithms. 1NRIA-IEEE Symp. on Emerging Technologies anil Factory Automation IEEE
Computer Society Press, pp. 217-224 (1995). Will also appear in PPL. Special issue
(1997).

9. Pierre-Yves Calland, Alain Darte, Yves Robert, and Frederic Vivien. Plugging Anti and
Output Dependence Removal Techniques into Loop Parulleli/ation Algorithms. Parallel
Computing 23(1, 21:251 266 (1997).

494 Darte and Vivien

10. Alain Darte, Georges-Andre Silber. and Frederic Vivien, Combining Retiming and
Scheduling Techniques Cor Loop Paralleli/ation and Loop Tiling. Parallel Professing
Letters (1997). Special issue, to appear. Also available as Technical Report LIP. ENS-
Lyon, RR96-34.

11. Wolfgang Meisl. Practical Methods for Scheduling and Allocation in the Polylope Model.
World Wide Web document. URL:hup: brahins.t'mi.uni-passau.de cl loopo doc.

12. Leslie Lamport. The Parallel Execution ol' DO Loops. Coiiiinnn. ACM 17(2):83 93.
(February 1974).

13. Alain Dane and Yves Robert. Constructive Methods lor Scheduling Uniform Loop Nests.
IEEE Trims. Parallel Disirihiu. Sy.it. 5(8):8I4 822 (1994).

14. Alain Dane and Yves Robert. AITine-by-Statemem Scheduling of Uniform and AITine Loop
Nests over Parametric Domains. J. Parallel ami Distributed Computing 29:43 59 (1995).

15. Paul Feautrier. Some Efficient Solutions to the AITine Scheduling Problem. Part 1: One-
Dimensional Time. IJPP 21(5):313 348 (October 1992).

16. Amy W. Lim and Monica S. Lam. Maximizing Parallelism and Minimi/ing Synchroniza-
tion with AITine Transforms, Proe. 24ili Ann. ACM SIG PLAN-SIG ACT Symp. Principles
<ij' Progr. Lang, (.lanuary 1997).

17. Alain Dane. Leonid Khachiyan, and Yves Robert. Linear Scheduling is Nearly Optimal.
Parallel Processing Letters 1(2):73 81 (1991).

IX. Patrick Le Goueslier d'Argence. An Asymptotically Optimal AITine Schedule on Bounded
Convex Polyhedric Domains. Proc. Euro-Pur "96 Parallel Processing. Vol. 1124 of LNCS.
Springer-Verlag (August 1996).

19. Paul Feautrier. Dataflow Analysis of Array and Scalar References. Int. JPP 20(11:23 51
(1991).

20. Jean-Francois Coltard. Denis Barlhou. and Paul Feauirier. Fuzzy Array Dataflow
Analysis. Proc. 5l/i ACM SICPLAN Symp. on Principles and Practice of Parallel Program-
ming. Santa Barbara, California (July 1995).

21. Alain Darte and Frederic Vivien. On the Optimally of Alien and Kennedy's Algorithm
for Parallelism Extraction in Nested Loops. Jounuil of Parallel Algorithms and Applications
1211 31:83 112 (1997). Special issue on Optimizing Compilers for Parallel Languages.

22. Alain Darte and Frederic Vivien. Revisiting the Decomposition of Karp. Miller, and
Winograd. Parallel Processing Letters 5(4):55! 562 (December 1995).

23. Gene H. Golub and Charles F. Van Loan. Matrix Compulations. Johns Hopkins. Second
Edition (1989).

24. Jack J. Dongarra and Stanley C. Eiscnstat, lud. World Wide Web document. URL:
hup: .nellib.bell-labs.com nellib benchmark index, html.

25. W. Kelly, V. Maslov. W. Pugh, l£. Rosser. T. Shpeisman. and D. Wonnacott. New User
Interface for Petit and Oilier Interfaces: User Guide. University of Maryland (June
19951.

26. Arthur J. Bernstein. Analysis of Programs for Parallel Processing. IEEE Trans. Electronic
Computers 15:757 762 (October 1966).

27. John R. Allen and Ken Kennedy, PFC: A program to convert Fortran to Parallel Form.
Technical Report MASC-TR82-6, Rice University. Houston, Texas. (1982).

28. Michael Wolfe. Optimising Supercompilers for Supercomputers Ph.D. Thesis. Department
of Computer Science, University of Illinois at Urbana-Champaign (October 1982|.

29. Michael Wolfe, Optimizing Supercoinpilers for Supercomputers. MIT Press, Cambridge
Massachusetts (1989).

30. Francois Irigoin and Remy Triolet, Computing Dependence Direction Vectors and
Dependence Cones with Linear Systems, Technical Report ENSMP-CAI-87-E94, Ecole
des Mines de Paris, Fontainebleau, France (1987).

Optimal Fine and Medium Grain Parallelism Detection 495

K2X 25 6-4

31. Francois Irigoin and Remy Triolet, Supernode Partitioning, Proc \5tli Ann. ACM Syinp.
Principles of Progr. Lang.. San Diego, California, pp. 319 329 (January 1988).

32. Francois Irigoin, Pierre Jouvelot, and Remy Triolet, Semantical Interprocedural
Parallelization: An overview of the PIPS Project, Proc. ACM Int. Conf. Supercomputing,
Cologne, Germany (June 1991).

33. Alexander Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons,
New York (1986).

34. Francois Irigoin and Remy Triolet, Dependence Approximation and Global Parallel Code
Generation for Nested Loops, Pmc. int. Workshop on Parallel and Distributed Algorithms
(October 1988).

35. Michael Wolfe, TINY, a Loop Restructuring Research Tool, Oregon Graduate Institute of
Science and Technology (December 1990).

36. Alain Darte and Frederic Vivien, Optimal Fine and Medium Grain Parallelism Detection
in Polyhedral Reduced Dependence Graphs, Technical Report 96-06, LIP. ENS-Lyon,
France (April 1996).

37. Sailesh K. Rao, Regular Iterative Algorithms and their Implementations on Processor
Arrays, Ph.D. Thesis, Stanford University (October 1985).

38. Vwani P. Roychowdhury. Derivation, Extensions and Parallel Implementation of Regular
Iterative Algorithms, Ph.D. Thesis, Stanford University, December 1988.

39. S. Rao Kosaraju and Gregory F. Sullivan. Detecting Cycles in Dynamic Graphs in Poly-
nomial Time (preliminary version), Proc. 20th Ann. ACM Srmpoa. Theorv of Computing,
pp. 398-406 (May 1988).

40. Alain Darte and Frederic Vivien, Automatic Parallelization based on Multi-Dimensional
Scheduling. Technical Report 94-24, LIP. ENS-Lyon, France (September 1994).

41. M. Gondran and M. Minoux, Giaplix ami Algorithms. John Wiley and Sons (1984).
42. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to Algo-

rithms. MIT Press (1990).

496 Oarte and Vivien

