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Abstract We compare three nested loops parallelization algorithms (Allen and Kennedy’s 
algorithm, Wolf and Lam’s algorithm and Darte and Vivien’s algorithm) that use different 
representations of distance vectors as input. We identify the concepts that make them 
similar or different. We study the optimality of each with respect to the de:pendence 
analysis it uses. We propose well-chosen examples that illustrate the power and limitations 
of the three algorithms. This study permits to identify which algorithm is the most suitable 
for a given representation of dependences. 

1 Introduction 
Loop transformations have been shown to be useful for extractingparallelism fromregular 
nested loops for a large class of machines, from vector machines and VLIW machines to 
multi-processors architectures. Of course, to each type of machine corresponds a different 
optimized code: depending on the memory hierarchy of the target, the granularity of the 
generated code must be carefully chosen so that memory accesses are optimized. Fine- 
grain parallelism is efficient for vector machines, whereas for shared-memory ]machines, 
coarse-grain parallelism (obtained by tiling or blocking techniques) is preferable and 
permits the reduction of inter-processor communications. 

However, detecting parallelism (i.e. transforming DO loops into DOALL loops), and 
understanding parallelism (i.e. detecting which dependences are responsible for the 
sequentiality in the code) is independent of the target architecture. It only depends on the 
structure of the sequential code to be parallelized. This is certainly one of the reasons 
why a large amount of algorithms have been proposed for detecting DOALL loops, as a 
first step in the pardlelization process. First, one studies the problem of parallelization 
on an ideal machine (a PRAM for example), and then, further optimizations are taken 
into account (depending on the machine for which the code is to be compibd) such as 
the choice of granularity, the data distribution, the optimization of communications. This 
two-step approach is the most often used and not only in the field of automatic nested 
loops parallelization: this is also the case, among others, for general task scheduling or 
software pipelining. 
This paper studies different parallelism detection algorithms based an: 

1. a simple decomposition of the dependence graph into its stronsly connected com- 
ponents such as Allen and Kennedy’s algorithm [AKS7]. 

2. unimodular loop transformations, either ad-hoc transformations such as Baner- 
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3. 

jee’s algorithm [BanW], or generated automatically such as Wolf and Lam’s algo- 
rithm [WL91]. 

schedules, either mono-dimensional schedules [KMW67, DKR91, Fea92al (a par- 
ticular case being the hyperplane method [Lam74]) or multi-dimensional sched- 
ules [DV94, Fea92bl. 

These algorithms seem very different not only by the techniques they use (graph algorithms 
for (l),matrixcomputationsfor (2),linearprogra”ingfor (3))’but also by thedescription 
of dependences they work with (graph description and level of dependences for (l), 
direction vectors for (2), description of dependences by polyhedra for (3)). Nevertheless, 
we try to identify the concepts that make these algorithms different or similar and we 
discuss their respective power and limitations. 
Our main result is that all parallelizing algorithms, that use information only on distance 
vectors, can be subsumed by a general algorithm, based on an algorithm first proposed 
by Karp, Miller and Winograd [KMW67] in the context of uniform recurrence equations. 
This algorithm has three main properties: 

e it can be adapted to all usual representations of distance vectors; 

0 it can be proven optimal with respect to the representation of dependences it works 
with; 

0 it points out exactly which dependences are responsible for a loss of parallelism. 

Furthermore, we show that Allen and Kennedy’s algorithm and Wolf and Lam’s algorithm 
are particular implementations of this algorithm for less accurate dependence representa- 
tions. As a consequence, they can also be proven optimal with respect to the dependence 
representation they use. 
This study permits to characterize exactly which algorithm is the most suitable for a 
given representation of dependences. No need to use a sophisticated dependence analysis 
algorithm if the parallelization algorithm can not use the precision of its result. Conversely, 
no need to use a sophisticated parallelization algorithm if the dependence representation 
is not precise enough. 

2 Input and output of parallelization algorithms 
Nested DO loops are one of the code structures that permit to describe a set of computa- 
tions, whose size is not proportional to the code size. For example, n nested loops whose 
loop counters describe a n-cube of size N ,  correspond to a set of computations of size 
Nn.  Furthermore, it often happens that such loop nests contain a non trivial degree of 
parallelism (i.e. sets of independent computations of size O( N‘) for r 2 1). 
This aspect makes the parallelization of nested loops a very challenging problem: a 
compiler-parallelizer must be able to detect, ifpossible, a non trivial degree of parallelism 
with a compilation time no? proportional to the sequential execution time of the loops. To 
make this possible, efficient parallelization algorithms must be proposed with a comnplexir?,, 
an input size and an oufpu? size that depend only on n but certainly not on A T ,  i.e. that 
only depend on the size of the sequential code and not on the number of computations it 
describes. The input of parallelization algorithms is a description of the dependences that 
link the different computations generated by the loop nest, the output is a description of 
an equivalent code with explicit parallelism. 
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2.1 Input: reduced dependence graph 
Each iteration of the loops that surround a statement corresponds to a particular execution 
of the statement, that we call an operation. The dependences between operations are 
represented by a directed acyclic graph that has as many vertices as operations: the 
expanded dependence graph (EDG). Executing the operations of the loop nest while 
respecting the partial order specified by the EDG guarantees that the result of the loop 
nest is preserved. Detecting parallelism in the loop nest means detecting anti-chains in 
the EDG. 
Unfortunately, in general, the EDG can not be used as an input for parallelization algo- 
rithms, since it is too large (it has as many vertices as operations described by the loop 
nest) and may not be described exactly at compile-time. One prefers to manipulate the 
reduced dependence graph (RDG) which is a representation, in a condensed form, of an 
approximate EDG. This approximation must be a superset of the EDG so that dependence 
relations are preserved. The RDG has as one vertex per statement in the loop nest and its 
edges are labelled in a way depending on the chosen approximation (we will recall how 
in section 2.3). See [ZC90] for a survey on dependence tests such as gcd test, power test, 
omega test, lambda test, and [Fea91] for more details on exact dependence analysis. 
Since its input is the RDG and not the EDG, a parallelization algorithm is not able to 
distinguish between two different EDGs which have the same RDG. The parallelism that 
can be detected is then the parallelism contained in the RDG. Thus, the quality of a 
parallelization algorithm must be studied with respect to the dependence analysis. 

c 

2.2 Output: nested loops 
The size of the parallelized code, as noticed before, should not depend on the number of 
operations it describes. This is the reason why the output of a parallelization algorithm 
must always be described by a set of loops '. 
For the sake of clarity, we restrict ourselves to the case of perfectly nested DO loops with 
affine loop bounds, even if the algorithms presented in the next sections can be: extended 
to more complicated nested loops. This permits to identify, as usual, the iterations of 
n nested loops ( n  is called the depth of the loop nest) with vectors in Zn (called the 
iteration vectors) contained in a finite convex polyhedron bounded by the loop bounds 
(called the iteration domain). The i-th component of an iteration vector is the value of 
the i-th loop counter in the nest, counting from the outermost to the innermost loop. In the 
sequential code, the iterations are therefore executed in the lexicographic order of their 
iteration vectors. 
In the next sections, we will denote by P,  the polyhedral iteration domain, by I and J ,  
n-dimensional iteration vector in P,  and by Si, the i-th statement in the loop nest. We 
will write I > r  J if I is lexicographically greater than J and I Lr J if I >I  J or I = J .  
There are at least three ways to define a new order on the operations of a loop nest (i.e. 
three ways to define the output of the parallelization algorithm), that can be exlpressed by 
nested loops: 

0 to use elementary loop transformations as basic steps for the algorithm, such as loop 

lhese loops can be arbitrary complicated, as long as their complexity only depends on the size of the 
initial code. Obviously, the simpler the result, thebetta. But, in this context, the meaning of "simple" is not 
clear: it depends on the optimizations that may follow. We consider that structural simplicity is preferable, 
but this can be discussed. 
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i‘ distribution (as in Allen and Kennedy’s algorithm), or loop interchange and loop 
skewing (as in Banerjee’s algorithm); 

to apply a linear change of basis on the iteration domain, i.e. to apply a unimodular 
transformation on the iteration vectors (as in Wolf and Lam’s algorithm). 

to define a d-dimensional schedule, i.e. to apply an affine transformation from Z” to 
Zd and to interpret the transformation as a multi-dimensional timing function. Each 
component will correspond to a sequential loop, the missing ( n  - d )  bmensions will 
correspond to DOALL loops (as in Feautrier’s algorithm and Darte and Vivien’s 
algorithm). 

These three transformation schemes can be described by loop nests after more or less 
complicated rewriting processes (see m 9 1 ,  DR94, Xue94, CFR94, Co1941). We will 
not discuss them here. We will rather study the link between the loops transformations 
involved (the output) and the dependences representation (the input), our goal being to 
characterize, for a given dependences representation, which algorithm is optimal, i.e. 
exhibits the maximal number of parallel loops. 

2.3 Representations of dependences 
In all dependence analysis methods, dependence relations between operations are defined 
by Bemstein’s conditions [Ber66]. Briefly speaking, two operations are considered de- 
pendent if both access the same memory location and if at least one access is a write. 
Furthermore, this dependence is directed according to the sequential order. Depending 
on the order of write(s) and/or read, this dependence corresponds to the so called flow 
dependence, anti dependence or output dependence. We write: S , ( I )  a S,( J )  if 
statement S, at iteration J depends on statement S, at iteration I .  The partial order defined 
by describes the EDG ’. Note that ( J  - I )  is always lexicographically non negative 
when S , ( I )  & S, (J ) .  
The RDG is a compression of the EDG. In the RDG, two statements S, and S, are 
said dependent (we write S, t S,) if there exists at least one pair ( I ,  J )  such that 
S, ( I )  ==+ S, ( J ) .  Furthermore, the dependence SI t S, is labelled by the set { ( I ,  J )  E 
P 2  I S, ( I )  d S, ( J ) } ,  or by an approximation that contains this set. The precision and 
representation of this approximation makes the power of the dependence analysis. 
For a certain class of nested loops, it is possible to express exactly this set of pairs ( I .  J )  
(see [Fea91]): I is given as an affine function frf of J where J varies in a polyhedron 

(1) 

In most dependence analysis algorithms however, rather than the set of pairs (I, J ) ,  one 
computes the set of values ( J  - I ) .  This latter is called the set of distance vectors, or 
dependence vectors. When exact dependence analysis is feasible, equation 1 shows that 
the set of distance vectors is the projection of the integer points of a polyhedron. This set 
can be approximated by its convex hull or by a more or less accurate description of a larger 
polyhedron (or a finite union of polyhedra). When the set of distance vectors is represented 
by a finite union, the corresponding dependence edge in the RDG is decomposed into multi- 
edges. We give below usual representations of the set of distance vectors (by decreasing 
precision). 

Pt ,, : 
((1, J )  E P 2  I S t ( I )  + S,(J>) = { ( f t , j ( J > , J >  I J Pr,J c P )  

21nsomecases, output and antidepeadencescanberemovedbydataexpansion. Seefor example m911. 
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Rays and vertices A dependence analysis algorithm such as [IT871 provides a description 
of a dependence polyhedron by its vertices and rays 3. A dependence polyhedron 
with no vertices (or whose vertices have been converted to rays) is called a de- 
pendence cone. The dependence polyhedron has often a single vertex but many 
rays. 

Direction vectors When the set of distance vectors is a singleton, the dependence is 
said uniform and the only distance vector is called a uniform dependense vector. 
Otherwise, the set of distance vectors can sti l l  be represented by a n-dimensional 
vector (called the direction vector), whose components belong to Z U { *} U (Z x 
{+, -}). Its i-th component is an approximation of all possible i-th cornponents 
of distance vectors: it is equal to z+ (resp. z-) if all i-th components are greater 
than (resp. smaller than) or equal to z. It is equal to * if the i-th component takes 
any value and to z if the dependence is uniform in this dimension with unique 
value 2. In general, + (resp. -) is used as shorthand for 1+ (resp. (-1) -). Note 
that a direction vector can always be decomposed into several lexicographically non 
negative direction vectors. For example, the direction vector (O+, *) is decomposed 
into (+, *) and (0, 0+) since the distance vectors (0, -) do not exist. Hereafter, we 
will thus assume that all direction vectors are lexicographically non negative. 

Level of dependence The coarsest representation of dependences is the representation 
by level. The set of distance vectors is represented by an integer p ,  in [ 1 . . ( n  + 1 )], 
defined as the largest integer such that the p - 1 first components of the: distance 
vectors are zero. A dependence at level p 5 n means that the dependence occurs at 
depth p of the loop nest, i.e. at a given iteration of the p - 1 outermost loops. In 
this case, one says that the dependence is a loop carried dependence at level p or 
that the dependence is carried at level p .  If p = 12 + 1, the dependence occurs inside 
the loop body, but between two different statements. 

Note that the representation by distance vectors is not equivalent to the representation 
by pairs (as in equation l), since the information concerning the location in the EDG 
of such a distance is lost. This may even be the cause of a loss of paralleXsm (see 
section 3.3.3). However, this representation remains important, especially when exact 
dependence analysis is either too expensive or not feasible. 

3 A study of different loops parallelization algorithms 
In this section, we present the main ideas of Allen and Kennedy’s algorithm, Wolf and 
Lam’s algorithm, and Darte and Vivien’s algorithm. For each algorithm, we give an 
example that illustrates its power and an example that illustrates its limitations. 

3.1 Allen and Kennedy’s algorithm 
Allen and Kennedy’s algorithm [AK87] is based on the following facts: 

1. An outermost loop is parallel if it has no loop carried dependence, i.e. if there is no 
dependence with level 1. 

30ne could argue that the polyhedron is always bounded and thus has no rays. However. sinice loops are 
often parametrized. some parametrized vertices are converted to non parametrized vertices andl rays. 
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2. All iterations of a statement SI can be carried out before any iteration of a statement 
Sz if there is no dependence in the RDG from Sa to SI. 

Property (1)  permits to mark a loop as a DOALL or a DOSEQ loop, whereas property (2) 
suggests that the parallelism detection can be done independently in each strongly con- 
nected component of the RDG. The input of the algorithm is a description of the RDG 
whose edges are labelled by the levels of dependences. Parallelism extraction is done by 
loop distribution. 
For a dependence graph G, we denote by G( I C )  the subgraph of G in which all dependences 
at level strictly smaller than IC have been removed. Here is a sketch of the algorithm in its 
most basic formulation. The initial call is ALLEiN-KENNEDY(RDG, 1). 

ALLEN-KENNEDY(G, I C )  

0 If k > n,  stop. 

0 Decompose G ( k )  into its strongly connected components Gi and sort them topo- 
logically. 

0 Rewrite code so that each G; belongs to a different loop nest (at level k) and the 
order on the G; be preserved (distribution of loops at level 3 k). 

0 For each Gi, mark the loop at level I; as a DOALL loop if G; has no edge at level 
I;. Otherwise mark the loop as a DOSEQ loop. 

0 For each G;, call ALLEN-KENNEDY( G; , k + 1). 

Example 1 

The dependence graph G = G(1) drawn on figure 1 has only on, strongly connected 
component (and at least one edge at level l), thus the first call has no effect. However, at 
level 2 (the edge at level 1 isnot considered), G(2) has two strongly connected components: 
all computations on array b can be carried out before any computation on array a .  With a 
loop distribution at level 2 and 3, we get: 

ms4 1 i = 1, 
D O S E Q 2 j = l , n  

D O A L L 2 k =  1 , n  
b(i,j, k) = b(i, j - 1, k + j )  + a(i - 1, j ,  k) 

2 CONTINUE 
mALL3j = 1 ,n  

D O S E Q 3 k = l , n  
a(i. j .  k) = a(i - 1, j + i. k) + a(i, j ,  k - 1) + b(i, j - 1, k) 

3 C 0 " u E  
1 C0"UE 
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/ . Property 1 Algorithm ALLEN-KENNEDY is optimal among all parallelism d'etectioii 
algorithm whose input is a RDG labelled by the level of dependences. 

Proof: The proof is based on the fact that algorithm ALLEN-KENNEDY has the same 
behaviour as Darte and Vivien's algorithm [DV94] for the particular case of a RDG 
labelled by the level of dependences, if all DOALL loops are made innermost. The 
optimality of algorithm ALLEN-KENNEDY is then a consequence of the optinnality of 

0 
Property 1 shows that algorithm ALLEW-KEmDY is well adapted to a representation 
of dependences by level of dependences. Therefore, to detect more parallelism than 
found by algorithm ALLEN-KENNEDY, is possible only if more precision is given on the 
dependences. A classic example for which it is possible to overcome algorithm ALLEN- 
KENNEDY is an example where a simple interchange (example 2) or a simple skew and 
an interchange (example 3) reveal parallelism (see dependence graphs on figure 2). 

Examples 2 and 3 

Darte and Vivien's algorithm in the general case precised by property 3. 

3.2 Wolf and Lam's algorithm 
Examples 2 and 3 contain parallelism. However, as shown by property 1, this parallelism 
can not be extracted if the dependences are represented by level of dependences only. To 
remedy this limitation, Wolf and Lam [WL91] proposed an algorithm that uses direction 
vectors as input. Their work unified all previous algorithms based on elementary matrix 
operations such as loop skewing, loop interchange, loop reversal, in a unique fra.mework, 
the framework of valid unimodular transformations. 
Looking for unimodular transformations is of practical interest since they are (1) linear, 
(2) invertible in Z". Given a unimodular transformation T ,  property (1) permits to check 
if T is valid (T is valid if Td > I  0 for all non zero distance vectors d) and property (2) 
permits to rewrite easily the code (simple change of basis in Zn). In general, since Td >I 0 
can not be checked for all distance vectors, one tries to guarantee Td > I  0 for all non 
zero direction vectors, with the usual arithmetic conventions in Z U { *) U (Z x { +, -}). 
In the following, we consider only non zero direction vectors that we can thus assume 
lexicographically positive (see section 2.3). 
Denote by t (  l), . . . , t (n) ,  the rows of T .  For a direction vector d: 

This means that the dependences represented by d are carried at loop level kd. If k d  = 1 
for all direction vectors d ,  then all dependences are carried by the first Poop, and all inner 
loops are DOALL loops. t( 1) is then called a timing vector or separating hylperplane. 
Such a timing vector exists if and only if I?, the closure of the cone generated by all 
direction vectors, is pointed. This is also equivalent to the fact that the cone I'+ - defined 
by I? = {y I Vx E I?, y.x 2 0) - is full-dimensional (see [Sch86] for more details on 
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cones and related notions). Building T from n linearly independent vectors of I'+ permits 
to transform the loops into n fully permutable loops. 
The notion of timing vector is in the heart of the hyperplane method and its variants 
(see [Lam74, DKR91]), which are particularly interesting for exposing fine-grain par- 
allelism, whereas the notion of fully permutable loops is the base of all tiling tech- 
niques [IT88, SD90, BDRR94, WL911, which are used for exposing coarse-grain paral- 
lelism. As said before, both formulations are equivalent when reasoning on r+. 
When the cone has a dimension r ,  1 5 T < n, T = n - s where 5 
is the dimension of the lineality space of r. With r linearly independent vectors of I?, 
one can transform the loop nest so that the r outermost loops are fully permutable. Then, 
one can recursively apply the same technique for transforming the n - r innermost loops, 
by considering the direction vectors not already carried by at least one of the T outermost 
loops (i.e that belong to the lineality space of I?). This is the general idea of Wolf and 
Lam's algorithm even if it is not explicitely described in these terms in [WL91]. This can 
be summarized by algorithm WOLF-LAM given below. Algorithm WOLF-LAM takes 
as input a set of direction vectors D and a sequence of linearly independent vectors E 
(initialized to void) from which the transformation matrix is built: 

is not pointed, 

WOLF-LAM( D, E )  

e 

e 

e 

e 

e 

Now, 

0 

0 

e 

e 

Define as the closure of the cone generated by the direction vectors of D. 

Define rs = {y I Vx E r: y.a: 2 0} and let r be the dimension of 

Complete E into a set E' of r linearly independent vectors of r+ (by construction, 
E c r+). 
Let D' be the subset of D defined by d E D' 
D n ElL = D n lin.space( r)). 

Vu f E', v.d = 0 (i.e. D' = 

Call WOLF-LAM( D', E'). 

building the desired unimodular matrix T can be done as follows: 

Let D be the set of direction vectors. Set E = 0 and call WOLF-LAM(D, E).  

Build a non singular matrix TI whose first rows are the vectors of E (in the same 
order). Let 7'2 = pTT' where p is chosen so that Tz is an integral matrix. 

Compute the left Hermite form of T2, T2 = Q H ,  where H is non negative, lower 
triangular and Q is unimodular. 

Q-' is the desired transformation matrix (since pQ-'D = HTl 0). 

Remark: This algorithm is not exactly the original Wolf and Lam's algorithm, but the 
general principle is similar. Wolf and Lam build the matrix T ,  step by step, during the 
algorithm, as a product of unimodular matrices. Furthermore, they do not compute exactly 
r+ but they propose heuristics and special algorithms for some particular cases. 

224 

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore.  Restrictions apply. 



Example 4 . 
mi= 1,n 
Doj = 1,n 

D O k  = 1,n 
a(i. j, k) = a(i - 1. j + i. k) + a(i. j ,  k - 1) + a(i, j - 1. k + 1) 

CONTINUE 

The set of directionvectorsis D = {(I, -,(I), (O,O, 1)) ( O , 1 ,  -1)) (see figure3). Thelin- 
eality spaceof r ( D )  istwo-dimensional(generatedb (0,1,0) and (O,O, 1)). Thus, r 
isonedimensionalandgeneratedbyEl = { ( l , O ) O r ) .  ThenD’= {(O,O,l),(O~,l,-l) 
and r (D’ )  is pointed. We complete El by two vectors of I‘+(D’), for example by 
E2 = ((0, l , O ) ,  (0,1,1)). In this particular example, the transformation matrix whose 
rows are E l ,  E2 is already unimodular and corresponds to a simple loop skewing. For 
exposing DOALL loops, we choose the first vector of E2 in the relative interior of r+, for 
example E2 = {(0,2, l ) ,  (0, 1 ,O) ) .  This corresponds in terms of loops transfomiations to 
skew the loop k by factor 2 and then to interchange loops j and I C :  

DosEQi= 1 ,n  
DOSEQ k = 3 , 3  * n 

DoALLj = max(1, [ V l ) , m i n ( n ,  L ~ J )  
a(i. j .  k - 2 * j) = a(i - 1, j + i. k - 2 * j) + a k j .  k - 2 * j - 1) + a ( i , j  - 1. k - 2 * j  + 1) 

CONTINUE 

Wolf and Lam showed that this methodology is optimal (Theorem B.6. in [WL,91]): “an 
algorithm that finds the maximum coarse grain parallelism, and then recursively calls itself 
on the inner loops, produces the maximum degree of parallelism possible”. Strangely, 
they gave no hypothesis for such a theorem. However, once again, this theorem has to be 
understood with respect to the dependence analysis that is used: here,, direction vectors 
but with no information on the structure of the dependence graph. A correct formulation 
is the following: 

Property 2 Algorithm WOLF-LAM is optimal among all parallelism detectioii allgorithins 
whose iiipiit is a set of directioii vectors (irnplicitely, oite thus considers that the loop iiest 
has oidy one statement or that all statements form an atomic block). 

Proof: Once again, we use the optimality of Darte and Vivien’s algorithm: on EL loop nest 
whose body has only one statement, and whose dependences are represented by direction 
vectors, Darte and Vivien’s algorithm has the same behaviour as algorithm WOLF-LAM. 
0 

Therefore, as for algorithm ALLEN-KENNEDY, the sub-optimality of algorithm WOLF- 
LAM in the general case has to be found, not in the algorithm methodology, but in 
the weakness of its input: the fact that the structure of the RDG in terms of strongly 
connected components is not exploited results in a loss of parallelism. For example, 
algorithm WOLF-LAM finds no parallelism in example 1 because of the direction vectors 
( ~ , - , ~ ~ , ~ ~ , ~ , - ) , ( ~ , ~ , ~ ~  (see figure4). 

3.3 Darte and Vivien’s algorithm 
One can imagine to combine algorithms WOLF-LAM and ALLEN-KENNEDIY, so as to 
exploit simultaneously the structure of the RDG and the structure of the directicon vectors: 
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0 

first, compute the cone generated by the direction vectors and transform the loop nest to 
expose the largest outermost fully permutable loop nest; then, consider the subgraph of 
the RDG, formed by the direction vectors that are not carried by the outermost loops and 
compute its strongly connected components; finally, apply a loop distribution in order to 
separate these components and apply the same technique, recursively on each component. 
Such a strategy permits to expose more parallelism by combining unimodular transfor- 
mations and loop distribution. However, it is not optimal as example 5 illustrates. We 
will indeed see that the key concept is not the cone generated by the direction vectors (i.e. 
the weights of the edges of the RDG), but the cone generated by the weights of fhe cycles 
of the RDG. This remark leads to the multi-dimensional scheduling algorithm of Darte 
and Vivien [DV94] that can be seen as a combination of unimodular tranformations, loop 
distribution, and index-shift method. 
Example 5 

Doi = 1 , n  
Doj = l , n  

D o k  = l , n  
a(i, j ,  k) = b(i - 1, j + i, k) + b(i, j - 1, k + 2) 
b(i, j ,  k) = a(i ,  j - 1, k + j )  + a(i, j .  k - 1) 

CONTlNUE 

On this example (whose RDG is given on figure S), combining algorithms ALLEN- 
KENNEDY and WOLF-LAM, as proposed above, finds only one degree of parallelism 
(since at the second phase the RDG remains strongly connected). This is not better than the 
basic algorithm ALLEN-KENNEDY However, one can find two degrees of parallelism 
in example 5 (see below). 
Darte and Vivien's first motivation was to find an algorithm: 

that is flexible enough to support all representations of distance vectors based on a 
polyhedral representation. 

0 that detects the maximal degree of parallelism contained in the RDG. 

3.3.1 

The first point is that any RDG, whose edges are labelled by a polyhedral representation of 
the distance vectors, can be simulated by a RDG, whose edges are labelled by dependence 
vectors. 
Consider the particular case of a dependence between two statements S1 and S2 whose 
associated distance vectors are represented by a polyhedron with a single vertex zc and a 
single ray r. This means that, in the RDG, one considers that all distance vectors of the 
form w + Xr (with X 1 0) exist, and that, in the EDG, there is a dependence path of length 
1, from SI (I) to S,(I + w + h), for all X 1 0 and for all I in P (the iteration domain) 
such that ( I  + w + Xr) belongs to P. 
Thus, the situation is the same as if there were a virtual statement V, with a uniform self- 
dependence r ,  and two uniform dependences, w from SI to V and 0 from \ /  to S2. For 
simulating the distance vector w + Xr, use once the edge from S1 to V ,  then turn X times 
around I/, and finally go to SZ. However, this simulation corresponds to a dependence 
path of length X + 2 instead of 1. To suppress this difference, one assigns a delay to each 

Canonical representation of the RDG 
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edge, 1 to the edge labelled by w and 0 to the others. The length of a simulated path is 
then the sum of the delays along the edges it uses. 
This simulation is the base of Darte and Vivien’s algorithm whose first phase consists in 
transforming a RDG, whose edges are labelled by polyhedra, into an equivalent RDG, 
whose edges are labelled by weights (dependence vectors) and delays (0 or l), and whose 
vertices form two classes: the actual vertices and the virtual vertices. This phase is done 
by the algorithm TRANSFORM: 

TRANSFORM(G) 

0 Mark all vertices of G as actual vertices. 

0 For all edges e = (ze, ge) of G, create a virtual vertex V,. 

0 If e is labelled by a polyhedron with vertices VI,. . . , Uj, rays T I , .  . . , T j  and lines 
l l , . . . , l k ,  

- suppress the edge e. 

- create i edges from 2, to I/, labelled by vl, . . . , U,, with a delay 1. 
- create j self-loops around I/, labelled by rl , . . . , r j ,  with a delay 0. 
- create 2b self-loops around I$ labelled by ll,. . . , l k  and - I l , .  . . , - l k ,  with a 

- create one edge from V ,  to ve labelled by the null vector 0, with a delay 0. 
delay 0. 

0 Return the transformed graph. 

Remark: when the polyhedron that labels an edge e has neither rays, nor lines, it is not 
necessary to create a virtual vertex. One can create edges directly from 2, to ye. 

For example, a representation of dependences by level correspond to a particular repre- 
sentation by direction vectors: a dependence at level p 5 n is equivalent to the: direction 

vector (0,. . . , 0 , l :  *, . . . , *). A representation by direction vectors is equivalent to a 
representation with uniform dependences and virtual vertices. For example, the direc- 
tion vector (0, 1, 0-) corresponds to a polyhedron with one vertex (0, 1,O) artd one ray 
(O,O, -1), whereas the polyhedron that corresponds to (1,2$, *) has one vertex (1.2.0), 
one ray (0,1,0)  and one line (O ,O,  1). 

3.3.2 Scheduling a system of uniform recurrence equations 

Note that a RDG built by the algorithm TRANSFORM does not always correspond to 
the RDG of a loop nest since dependence vectors are not anymore lexicographically non 
negative. In fact, (if one forgets that some vertices are virtual and that some edges have 
delay 0), this is the RDG of a system of uniform recurrence equations (SURE), introduced, 
in a seminal paper, by Karp, Miller and Winograd [I(Mw67]. 
Karp, Miller and Winograd studied the problem of computability of a SURE: they showed 
that it is linked to the problem of detecting cycles of null weight in the reduced dependence 
graph G, and that it can be solved by a recursive decomposition of the graph, based on the 
detection of multi-cycles (i.e. union of cycles) of null weight. The key structure of their 
algorithm is G‘, the subgraph of G generated by the edges that belong to a mu1 ti-cycle of 
null weight. 

P- 1 n - p  -* 
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i 
Darte and Vivien (see [DV95]) showed that G’ can be efficiently built by the resolution 
of a simple linear program (program 2 or its dual program 3). This resolution permits to 
design a parallelization algorithm, whose principle is dual to Karp, Miller and Winograd’s 
algorithm. 

max { C e  ze I z 2 0, 0 I ze 5 1, x w ( e >  + ~ y ,  - pz, 2 ze } (3) 

Without entering the details, X is a n-dimensional vector and there is one variable p per 
vertex of the RDG and one variable z per edge of the RDG. The edges of G’ (resp. G \ G’) 
are the edges e = (2,,ye) for which z ,  = 0 (resp. z ,  = 1) in the optimal solution of 
the dual (program 3), and equivalently, for which U, = 0 (resp. we = 1) in the primal 
(program 2). When summing inequations X w ( e )  + py, - plc 2 ze on a cycle C of G, 
one finds that X w ( C )  = 0 if C is a cycle of G’ and X w ( C )  2 1(C) > 0 otherwise ( I (C)  
is the length of the cycle C). 
In other words and to see the link with algorithm WOLF-LAM, when considering the 
cone r generated by the iveiglits ofthe cycles (and not the weights of the edges), G’ is the 
subgraph whose cycle weights generate the lineality space lin.space( r) of I’ and X is a 
vector of the relative interior of r+. However, there is no need to build r effectively for 
building G’. This is one of the interest of linear programs 2 and 3. 
These are the main ideas of Darte and Vivien’s algorithm. The rest are technical mod- 
ifications that are needed to distinguish between virtual and actual vertices, to take into 
account the delay of the edges and and the nature of the edges (vertices, rays or lines of 
a dependence polyhedron). The general principle of Darte and Vivien’s algorithm is the 
following: 

0 Apply a global loop distribution for separating the different strongly connected 
components G; of the RDG G. 

0 For each component G; that has at least one edge, compute its transformed graph 
H ,  = TRANSFORM(G,) and call DARTE-VNIEN(H;, 1). 

Algorithm DARTE-VIVIEN is given below. It takes as input a transformed RDG, strongly 
connected, with at least one edge, and it returns a so called multi-dimensional schedule, 
i.e, for each actual vertex U ,  a set of d, n-dimensional vectors XP,.. . , Xiv and d,, 
constants py, . . . , p:,, such that computing the iteration I of the statement S, at the multi- 
dimensional step (Xr .1  + py, .  . . ,Xz,.I + & )  leads to a valid schedule (if these steps 
are lexicographically ordered). 

DARTE-VIVIEN(G, k) 

0 Build G‘, the subgraph of G generated by the edges that belong to a multi-cycle of 
null weight. 

e For a given dependence polyhedron, add in G’ all the edges that simulate this 
polyhedron, if at least one of the edges that correspond to its vertices is already in 
G’ (technical modification). 
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Find a vector X and constants pu, such that: 

Xw(e) + py, - px, 2 0 for all edges e = (ze, Ye)  E G' { Xw( e)  + py, - px, 2 de for all edges e = (z,, ye) $ G' with delay de 

For all actual vertices of G, let p;l. = pu and X,V = A'. 

0 If G' is empty, return. 

0 If G' is strongly connected and has at least one actual vertex, G is not computable 
(and the initial RDG is not consistent). 

0 Otherwise, decompose G' into its strongly connected components G; and for each 
Gi that has at least one actual vertex, call DARTE-VIVIEN(G;, IC + 1). 

We now go back to example 5. The transformed RDG is given on figure 6. It has 1 
vertices (two of them are virtual). The weights of elementary cycles are (0, 0, -1) and 
(0, -1,O) for the self-loops and ( l , O ,  -l), (1, -1, l), (0,2, -3), (O,l,-1) for the other 
elementary cycles. Therefore, I' is pointed and one can find a one-dimensional schedule, 
for example given by A' = (4,0, -2), pa = 0 and f b  = 3. Two degrees of paralklism can 
be exposed and the resulting code is then: 

DOSEQ 1 k = 2 - n , 2 *  n 

DOALL2 j = l , n  
DoALL2i = mas(1, [ Y l ) , m i n ( n ,  L ~ J )  

a(i,j.  -k + 2 * i) = b(i - 1.j + i, -k + 2 * i)+ b(i,j - 1, -k + 2 * i +  2) 
2 CO" 

DOALL 3 i = max(1, [$I ) ,  min(n,  [VI) 
DoALL3j = 1 , n  

b ( i , j , - b + 2 * i + l ) = a ( i , j -  1 , - I ; + 2 * i +  j + l ) + a ( i , j , - k + 2 * i )  
3 C0"UE 
1 CONTINUE 

Property 3 Algorithm DARTE-VWIEN is optimal attzoiig all parallelism detecrioii algo- 
rithms whose input is a graph whose edges are labelled by a polyhedral represerlitatioii of 
distance vectors. 

Proof: Consider a loop nest whose reduced dependence graph is G. Let H be the 
transformed graph ( H  = TRANSFORM(G)) and d = max{d, I v actual vertex of H }  
where d, has been given by algorithm DARTEGVIVIEN for each actual vertex of H ,  
thus for each vertex of G. d is the recursion depth of algorithm DARTE-VIVIEN. 
The transformed code contains at most d nested sequential loops ((n - d )  degrees of 
parallelism are exposed). Furthermore, for a loop nest whose iteration domairi contains 
(resp. is contained in) a n-dimensional cube of size N (resp. AN for some X 2 l), one 
can build a dependence path of length R(Nd) in the EDG that corresponds to G (this is 
the difficult part of the proof). Therefore, any parallelization algorithm would expose a 
sequentiality of fl( N d ) .  Since the sequentiality exposed by algorithm DARE-VIVIEN 

U 
Studying the transformed RDG of examples 1 to 4 permits to better understand why 
parallelism were (or were not) found by the previous algorithms. The dependences 
that are responsible for the inherent sequentiality of the loop nest are exactly those that 
correspond to edges of G'. This has two consequences: 

is O( N d ) ,  it is optimal. 
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0 If G’ has only flow dependences, there is no need to transform the code into single 
assignment form since this would not increase the degree of parallelism in the code. 

0 If the dependence analysis is not exact, G’ shows which edges deserve a more 
accurate dependence analysis for detecting more parallelism. There is no need to 
give a more precise description of edges in G‘ \ G’ since they are not responsible for 
the loss of parallelism. 

3.3.3 Limitations of Darte and Vivien’s algorithm 

Darte and Vivien’s algorithm is optimal for any polyhedral representation of distance 
vectors (Property 3). However, it may not be optimal if more information is given 
on the pairs of iteration vectors that induce a dependence. This comes from the fact 
that the set of distance vectors ( ( J  - I )  I &(I) + S 2 ( J ) }  is the projection of the set 
{ ( J  - I ,  J )  I & ( I )  3 S 2 ( J ) }  (which is as precise as the set of pairs { ( I ,  J )  I S I ( I )  + 
S z ( J ) } ) .  Therefore, the projection makes us believe that the distance vectors can take 
place anywhere in the iteration domain even if this is not true. This loss of precision may 
be the cause of a loss of parallelism as example 6 illustrates. 
Example 6 

Do;= 1.72 

m j  = i , n  
a(;, j )  = b(i - 1, j + i) + a(i, j - 1) 
b(i, j )  = a(; - 1, j - i) + b(i, j - 1) 

CONTINUE 

If the dependences are described by distance vectors, the RDG (see figure 7) has two 
self-dependences ( 0 , l )  and two edges labelled by polyhedra, both with one vertex and 
one ray (respectively ( 0 , l )  and (0, -1)). Therefore, there exists a multi-cycle of null 
weight. Furthermore, the two actual vertices belong to G’. Thus, the depth of algorithm 
DARE-VIVIEN is 2 and no parallelism can be found. However, computing iteration 
( i , j )  of the first statement (resp. the second statement) at step 2i + j (resp. i + j ) ,  leads 
to a valid schedule that exposes one degree of parallelism ‘. 
The technique used here consists in looking for multi-dimensional schedules whose linear 
parts (the vectors X) may be different for different statements even iftliey belong to the 
same strongly connected component. This is the base of Feautrier’s algorithm [Fea92b] 
whose fundamental mathematical tool is the affine form of Farkas lemma. Property 3 
however, shows that there is no need to look for different linear parts (whose construction 
is more expensive and lead to more complicated rewriting processes) in a given strongly 
connected component of the current subgraph G‘, as long as dependences are given by 
distances vectors. On the other hand, example 6 shows that it can be useful when a more 
accurate dependence analysis is available. Now, the only remaining open question con- 
cerns the optimality of Feautrier’s algorithm: for which representation of the dependences 
is Feautrier ’s algorithm optimal? 

4 Conclusion 
Our study offers a classification of loops parallelkation algorithms. Our main results 
are the following: Allen and Kennedy’s algorithm is optimal for a representation of 

write. 
4The schedules L$i + j + $1 and L i i  + j ]  minimize the latency but the code is more complicated to 
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dependences by level and Wolf and Lam’s algorithm is optimal for a representation by 
direction vectors (but for a loop nest with only one statement). Neither of them subsumes 
the other one, since each uses information that can not be exploited by the other (graph 
structure for the first one, direction vectors structure for the second one). H.owever, 
both are subsumed by Darte and Vivien’s algorithm that is optimal for any polyhedral 
representation of distance vectors. Feautrier’s algorithm is an extension of this latter, but 
the characterization of its optimality remains open. 
We believe this classification of practical interest, since it permits a compiler-pwallelizer 
to choose, depending on the dependence analysis at its disposal, the simplest and cheapest 
parallelization algorithm that remains optimal, i.e the algorithm that is the most appro- 
priate to the available representation of dependences. Future work will try to answer the 
remaining open question concerning the optimality of Feautrier’s algorithm. 
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Figure 1: Reduced Dependence Graph for Example 1 (with level of dependences) 

I:Co3: 
Figure 2: Reduced Dependence Graphs for Examples 2 and 3 

0 
1-1 1 

Figure 3: Reduced Dependence Graph for Example 4 (with direction vectors) 

Figure 4: Reduced Dependence Graph for Example 1 (with direction vectors) 

0 la I: 
Figure 5: Reduced Dependence Graph for Example 5 (with direction vectors) 
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Figure 6: Transformed Reduced Dependence Graph for Example 5 

Figure 7: Reduced Dependence Graph for Example 6 (with direction vectors) 
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