
A CLASSIFICATION OF NESTED LOOPS PARALLELIZPLTION
ALGORITHMS

Alaiii Darte and Frkdkric Vivien

UP, CNRS URA 1398, Ecole Normale Supkrieure de Lyon, Lyon, France
e-mail: [darte, fvivien]@lip.ens-1yor1.fr

Abstract We compare three nested loops parallelization algorithms (Allen and Kennedy’s
algorithm, Wolf and Lam’s algorithm and Darte and Vivien’s algorithm) that use different
representations of distance vectors as input. We identify the concepts that make them
similar or different. We study the optimality of each with respect to the de:pendence
analysis it uses. We propose well-chosen examples that illustrate the power and limitations
of the three algorithms. This study permits to identify which algorithm is the most suitable
for a given representation of dependences.

1 Introduction
Loop transformations have been shown to be useful for extractingparallelism fromregular
nested loops for a large class of machines, from vector machines and VLIW machines to
multi-processors architectures. Of course, to each type of machine corresponds a different
optimized code: depending on the memory hierarchy of the target, the granularity of the
generated code must be carefully chosen so that memory accesses are optimized. Fine-
grain parallelism is efficient for vector machines, whereas for shared-memory]machines,
coarse-grain parallelism (obtained by tiling or blocking techniques) is preferable and
permits the reduction of inter-processor communications.

However, detecting parallelism (i.e. transforming DO loops into DOALL loops), and
understanding parallelism (i.e. detecting which dependences are responsible for the
sequentiality in the code) is independent of the target architecture. It only depends on the
structure of the sequential code to be parallelized. This is certainly one of the reasons
why a large amount of algorithms have been proposed for detecting DOALL loops, as a
first step in the pardlelization process. First, one studies the problem of parallelization
on an ideal machine (a PRAM for example), and then, further optimizations are taken
into account (depending on the machine for which the code is to be compibd) such as
the choice of granularity, the data distribution, the optimization of communications. This
two-step approach is the most often used and not only in the field of automatic nested
loops parallelization: this is also the case, among others, for general task scheduling or
software pipelining.
This paper studies different parallelism detection algorithms based an:

1. a simple decomposition of the dependence graph into its stronsly connected com-
ponents such as Allen and Kennedy’s algorithm [AKS7].

2. unimodular loop transformations, either ad-hoc transformations such as Baner-

0-7803-2535-4/95 $4.00 @ 1995 I E E E

217

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

mailto:fvivien]@lip.ens-1yor1.fr

3.

jee’s algorithm [BanW], or generated automatically such as Wolf and Lam’s algo-
rithm [WL91].

schedules, either mono-dimensional schedules [KMW67, DKR91, Fea92al (a par-
ticular case being the hyperplane method [Lam74]) or multi-dimensional sched-
ules [DV94, Fea92bl.

These algorithms seem very different not only by the techniques they use (graph algorithms
for (l),matrixcomputationsfor (2),linearprogra”ingfor (3))’but also by thedescription
of dependences they work with (graph description and level of dependences for (l),
direction vectors for (2), description of dependences by polyhedra for (3)). Nevertheless,
we try to identify the concepts that make these algorithms different or similar and we
discuss their respective power and limitations.
Our main result is that all parallelizing algorithms, that use information only on distance
vectors, can be subsumed by a general algorithm, based on an algorithm first proposed
by Karp, Miller and Winograd [KMW67] in the context of uniform recurrence equations.
This algorithm has three main properties:

e it can be adapted to all usual representations of distance vectors;

0 it can be proven optimal with respect to the representation of dependences it works
with;

0 it points out exactly which dependences are responsible for a loss of parallelism.

Furthermore, we show that Allen and Kennedy’s algorithm and Wolf and Lam’s algorithm
are particular implementations of this algorithm for less accurate dependence representa-
tions. As a consequence, they can also be proven optimal with respect to the dependence
representation they use.
This study permits to characterize exactly which algorithm is the most suitable for a
given representation of dependences. No need to use a sophisticated dependence analysis
algorithm if the parallelization algorithm can not use the precision of its result. Conversely,
no need to use a sophisticated parallelization algorithm if the dependence representation
is not precise enough.

2 Input and output of parallelization algorithms
Nested DO loops are one of the code structures that permit to describe a set of computa-
tions, whose size is not proportional to the code size. For example, n nested loops whose
loop counters describe a n-cube of size N , correspond to a set of computations of size
Nn. Furthermore, it often happens that such loop nests contain a non trivial degree of
parallelism (i.e. sets of independent computations of size O(N‘) for r 2 1).
This aspect makes the parallelization of nested loops a very challenging problem: a
compiler-parallelizer must be able to detect, ifpossible, a non trivial degree of parallelism
with a compilation time no? proportional to the sequential execution time of the loops. To
make this possible, efficient parallelization algorithms must be proposed with a comnplexir?,,
an input size and an oufpu? size that depend only on n but certainly not on A T , i.e. that
only depend on the size of the sequential code and not on the number of computations it
describes. The input of parallelization algorithms is a description of the dependences that
link the different computations generated by the loop nest, the output is a description of
an equivalent code with explicit parallelism.

21 8

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

2.1 Input: reduced dependence graph
Each iteration of the loops that surround a statement corresponds to a particular execution
of the statement, that we call an operation. The dependences between operations are
represented by a directed acyclic graph that has as many vertices as operations: the
expanded dependence graph (EDG). Executing the operations of the loop nest while
respecting the partial order specified by the EDG guarantees that the result of the loop
nest is preserved. Detecting parallelism in the loop nest means detecting anti-chains in
the EDG.
Unfortunately, in general, the EDG can not be used as an input for parallelization algo-
rithms, since it is too large (it has as many vertices as operations described by the loop
nest) and may not be described exactly at compile-time. One prefers to manipulate the
reduced dependence graph (RDG) which is a representation, in a condensed form, of an
approximate EDG. This approximation must be a superset of the EDG so that dependence
relations are preserved. The RDG has as one vertex per statement in the loop nest and its
edges are labelled in a way depending on the chosen approximation (we will recall how
in section 2.3). See [ZC90] for a survey on dependence tests such as gcd test, power test,
omega test, lambda test, and [Fea91] for more details on exact dependence analysis.
Since its input is the RDG and not the EDG, a parallelization algorithm is not able to
distinguish between two different EDGs which have the same RDG. The parallelism that
can be detected is then the parallelism contained in the RDG. Thus, the quality of a
parallelization algorithm must be studied with respect to the dependence analysis.

c

2.2 Output: nested loops
The size of the parallelized code, as noticed before, should not depend on the number of
operations it describes. This is the reason why the output of a parallelization algorithm
must always be described by a set of loops '.
For the sake of clarity, we restrict ourselves to the case of perfectly nested DO loops with
affine loop bounds, even if the algorithms presented in the next sections can be: extended
to more complicated nested loops. This permits to identify, as usual, the iterations of
n nested loops (n is called the depth of the loop nest) with vectors in Zn (called the
iteration vectors) contained in a finite convex polyhedron bounded by the loop bounds
(called the iteration domain). The i-th component of an iteration vector is the value of
the i-th loop counter in the nest, counting from the outermost to the innermost loop. In the
sequential code, the iterations are therefore executed in the lexicographic order of their
iteration vectors.
In the next sections, we will denote by P, the polyhedral iteration domain, by I and J ,
n-dimensional iteration vector in P, and by Si, the i-th statement in the loop nest. We
will write I > r J if I is lexicographically greater than J and I Lr J if I >I J or I = J .
There are at least three ways to define a new order on the operations of a loop nest (i.e.
three ways to define the output of the parallelization algorithm), that can be exlpressed by
nested loops:

0 to use elementary loop transformations as basic steps for the algorithm, such as loop

lhese loops can be arbitrary complicated, as long as their complexity only depends on the size of the
initial code. Obviously, the simpler the result, thebetta. But, in this context, the meaning of "simple" is not
clear: it depends on the optimizations that may follow. We consider that structural simplicity is preferable,
but this can be discussed.

219

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

i‘ distribution (as in Allen and Kennedy’s algorithm), or loop interchange and loop
skewing (as in Banerjee’s algorithm);

to apply a linear change of basis on the iteration domain, i.e. to apply a unimodular
transformation on the iteration vectors (as in Wolf and Lam’s algorithm).

to define a d-dimensional schedule, i.e. to apply an affine transformation from Z” to
Zd and to interpret the transformation as a multi-dimensional timing function. Each
component will correspond to a sequential loop, the missing (n - d) bmensions will
correspond to DOALL loops (as in Feautrier’s algorithm and Darte and Vivien’s
algorithm).

These three transformation schemes can be described by loop nests after more or less
complicated rewriting processes (see m 9 1 , DR94, Xue94, CFR94, Co1941). We will
not discuss them here. We will rather study the link between the loops transformations
involved (the output) and the dependences representation (the input), our goal being to
characterize, for a given dependences representation, which algorithm is optimal, i.e.
exhibits the maximal number of parallel loops.

2.3 Representations of dependences
In all dependence analysis methods, dependence relations between operations are defined
by Bemstein’s conditions [Ber66]. Briefly speaking, two operations are considered de-
pendent if both access the same memory location and if at least one access is a write.
Furthermore, this dependence is directed according to the sequential order. Depending
on the order of write(s) and/or read, this dependence corresponds to the so called flow
dependence, anti dependence or output dependence. We write: S , (I) a S,(J) if
statement S, at iteration J depends on statement S, at iteration I . The partial order defined
by describes the EDG ’. Note that (J - I) is always lexicographically non negative
when S , (I) & S, (J) .
The RDG is a compression of the EDG. In the RDG, two statements S, and S, are
said dependent (we write S, t S,) if there exists at least one pair (I , J) such that
S, (I) ==+ S, (J) . Furthermore, the dependence SI t S, is labelled by the set { (I , J) E
P 2 I S, (I) d S, (J) } , or by an approximation that contains this set. The precision and
representation of this approximation makes the power of the dependence analysis.
For a certain class of nested loops, it is possible to express exactly this set of pairs (I . J)
(see [Fea91]): I is given as an affine function frf of J where J varies in a polyhedron

(1)

In most dependence analysis algorithms however, rather than the set of pairs (I, J) , one
computes the set of values (J - I) . This latter is called the set of distance vectors, or
dependence vectors. When exact dependence analysis is feasible, equation 1 shows that
the set of distance vectors is the projection of the integer points of a polyhedron. This set
can be approximated by its convex hull or by a more or less accurate description of a larger
polyhedron (or a finite union of polyhedra). When the set of distance vectors is represented
by a finite union, the corresponding dependence edge in the RDG is decomposed into multi-
edges. We give below usual representations of the set of distance vectors (by decreasing
precision).

Pt ,, :
((1, J) E P 2 I S t (I) + S,(J>) = { (f t , j (J > , J > I J Pr,J c P)

21nsomecases, output and antidepeadencescanberemovedbydataexpansion. Seefor example m911.

220

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

Rays and vertices A dependence analysis algorithm such as [IT871 provides a description
of a dependence polyhedron by its vertices and rays 3. A dependence polyhedron
with no vertices (or whose vertices have been converted to rays) is called a de-
pendence cone. The dependence polyhedron has often a single vertex but many
rays.

Direction vectors When the set of distance vectors is a singleton, the dependence is
said uniform and the only distance vector is called a uniform dependense vector.
Otherwise, the set of distance vectors can sti l l be represented by a n-dimensional
vector (called the direction vector), whose components belong to Z U { *} U (Z x
{+, -}). Its i-th component is an approximation of all possible i-th cornponents
of distance vectors: it is equal to z+ (resp. z-) if all i-th components are greater
than (resp. smaller than) or equal to z. It is equal to * if the i-th component takes
any value and to z if the dependence is uniform in this dimension with unique
value 2. In general, + (resp. -) is used as shorthand for 1+ (resp. (-1) -). Note
that a direction vector can always be decomposed into several lexicographically non
negative direction vectors. For example, the direction vector (O+, *) is decomposed
into (+, *) and (0, 0+) since the distance vectors (0, -) do not exist. Hereafter, we
will thus assume that all direction vectors are lexicographically non negative.

Level of dependence The coarsest representation of dependences is the representation
by level. The set of distance vectors is represented by an integer p , in [1 . . (n + 1)],
defined as the largest integer such that the p - 1 first components of the: distance
vectors are zero. A dependence at level p 5 n means that the dependence occurs at
depth p of the loop nest, i.e. at a given iteration of the p - 1 outermost loops. In
this case, one says that the dependence is a loop carried dependence at level p or
that the dependence is carried at level p . If p = 12 + 1, the dependence occurs inside
the loop body, but between two different statements.

Note that the representation by distance vectors is not equivalent to the representation
by pairs (as in equation l), since the information concerning the location in the EDG
of such a distance is lost. This may even be the cause of a loss of paralleXsm (see
section 3.3.3). However, this representation remains important, especially when exact
dependence analysis is either too expensive or not feasible.

3 A study of different loops parallelization algorithms
In this section, we present the main ideas of Allen and Kennedy’s algorithm, Wolf and
Lam’s algorithm, and Darte and Vivien’s algorithm. For each algorithm, we give an
example that illustrates its power and an example that illustrates its limitations.

3.1 Allen and Kennedy’s algorithm
Allen and Kennedy’s algorithm [AK87] is based on the following facts:

1. An outermost loop is parallel if it has no loop carried dependence, i.e. if there is no
dependence with level 1.

30ne could argue that the polyhedron is always bounded and thus has no rays. However. sinice loops are
often parametrized. some parametrized vertices are converted to non parametrized vertices andl rays.

22 1

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

2. All iterations of a statement SI can be carried out before any iteration of a statement
Sz if there is no dependence in the RDG from Sa to SI.

Property (1) permits to mark a loop as a DOALL or a DOSEQ loop, whereas property (2)
suggests that the parallelism detection can be done independently in each strongly con-
nected component of the RDG. The input of the algorithm is a description of the RDG
whose edges are labelled by the levels of dependences. Parallelism extraction is done by
loop distribution.
For a dependence graph G, we denote by G(I C) the subgraph of G in which all dependences
at level strictly smaller than IC have been removed. Here is a sketch of the algorithm in its
most basic formulation. The initial call is ALLEiN-KENNEDY(RDG, 1).

ALLEN-KENNEDY(G, I C)

0 If k > n, stop.

0 Decompose G (k) into its strongly connected components Gi and sort them topo-
logically.

0 Rewrite code so that each G; belongs to a different loop nest (at level k) and the
order on the G; be preserved (distribution of loops at level 3 k).

0 For each Gi, mark the loop at level I; as a DOALL loop if G; has no edge at level
I;. Otherwise mark the loop as a DOSEQ loop.

0 For each G;, call ALLEN-KENNEDY(G; , k + 1).

Example 1

The dependence graph G = G(1) drawn on figure 1 has only on, strongly connected
component (and at least one edge at level l), thus the first call has no effect. However, at
level 2 (the edge at level 1 isnot considered), G(2) has two strongly connected components:
all computations on array b can be carried out before any computation on array a . With a
loop distribution at level 2 and 3, we get:

ms4 1 i = 1,
D O S E Q 2 j = l , n

D O A L L 2 k = 1 , n
b(i,j, k) = b(i, j - 1, k + j) + a(i - 1, j , k)

2 CONTINUE
mALL3j = 1 ,n

D O S E Q 3 k = l , n
a(i. j . k) = a(i - 1, j + i. k) + a(i, j , k - 1) + b(i, j - 1, k)

3 C 0 " u E
1 C0"UE

222

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

/ . Property 1 Algorithm ALLEN-KENNEDY is optimal among all parallelism d'etectioii
algorithm whose input is a RDG labelled by the level of dependences.

Proof: The proof is based on the fact that algorithm ALLEN-KENNEDY has the same
behaviour as Darte and Vivien's algorithm [DV94] for the particular case of a RDG
labelled by the level of dependences, if all DOALL loops are made innermost. The
optimality of algorithm ALLEN-KENNEDY is then a consequence of the optinnality of

0
Property 1 shows that algorithm ALLEW-KEmDY is well adapted to a representation
of dependences by level of dependences. Therefore, to detect more parallelism than
found by algorithm ALLEN-KENNEDY, is possible only if more precision is given on the
dependences. A classic example for which it is possible to overcome algorithm ALLEN-
KENNEDY is an example where a simple interchange (example 2) or a simple skew and
an interchange (example 3) reveal parallelism (see dependence graphs on figure 2).

Examples 2 and 3

Darte and Vivien's algorithm in the general case precised by property 3.

3.2 Wolf and Lam's algorithm
Examples 2 and 3 contain parallelism. However, as shown by property 1, this parallelism
can not be extracted if the dependences are represented by level of dependences only. To
remedy this limitation, Wolf and Lam [WL91] proposed an algorithm that uses direction
vectors as input. Their work unified all previous algorithms based on elementary matrix
operations such as loop skewing, loop interchange, loop reversal, in a unique fra.mework,
the framework of valid unimodular transformations.
Looking for unimodular transformations is of practical interest since they are (1) linear,
(2) invertible in Z". Given a unimodular transformation T , property (1) permits to check
if T is valid (T is valid if Td > I 0 for all non zero distance vectors d) and property (2)
permits to rewrite easily the code (simple change of basis in Zn). In general, since Td >I 0
can not be checked for all distance vectors, one tries to guarantee Td > I 0 for all non
zero direction vectors, with the usual arithmetic conventions in Z U { *) U (Z x { +, -}).
In the following, we consider only non zero direction vectors that we can thus assume
lexicographically positive (see section 2.3).
Denote by t (l), . . . , t (n) , the rows of T . For a direction vector d:

This means that the dependences represented by d are carried at loop level kd. If k d = 1
for all direction vectors d , then all dependences are carried by the first Poop, and all inner
loops are DOALL loops. t(1) is then called a timing vector or separating hylperplane.
Such a timing vector exists if and only if I?, the closure of the cone generated by all
direction vectors, is pointed. This is also equivalent to the fact that the cone I'+ - defined
by I? = {y I Vx E I?, y.x 2 0) - is full-dimensional (see [Sch86] for more details on

223

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

cones and related notions). Building T from n linearly independent vectors of I'+ permits
to transform the loops into n fully permutable loops.
The notion of timing vector is in the heart of the hyperplane method and its variants
(see [Lam74, DKR91]), which are particularly interesting for exposing fine-grain par-
allelism, whereas the notion of fully permutable loops is the base of all tiling tech-
niques [IT88, SD90, BDRR94, WL911, which are used for exposing coarse-grain paral-
lelism. As said before, both formulations are equivalent when reasoning on r+.
When the cone has a dimension r , 1 5 T < n, T = n - s where 5
is the dimension of the lineality space of r. With r linearly independent vectors of I?,
one can transform the loop nest so that the r outermost loops are fully permutable. Then,
one can recursively apply the same technique for transforming the n - r innermost loops,
by considering the direction vectors not already carried by at least one of the T outermost
loops (i.e that belong to the lineality space of I?). This is the general idea of Wolf and
Lam's algorithm even if it is not explicitely described in these terms in [WL91]. This can
be summarized by algorithm WOLF-LAM given below. Algorithm WOLF-LAM takes
as input a set of direction vectors D and a sequence of linearly independent vectors E
(initialized to void) from which the transformation matrix is built:

is not pointed,

WOLF-LAM(D, E)

e

e

e

e

e

Now,

0

0

e

e

Define as the closure of the cone generated by the direction vectors of D.

Define rs = {y I Vx E r: y.a: 2 0} and let r be the dimension of

Complete E into a set E' of r linearly independent vectors of r+ (by construction,
E c r+).
Let D' be the subset of D defined by d E D'
D n ElL = D n lin.space(r)).

Vu f E', v.d = 0 (i.e. D' =

Call WOLF-LAM(D', E').

building the desired unimodular matrix T can be done as follows:

Let D be the set of direction vectors. Set E = 0 and call WOLF-LAM(D, E).

Build a non singular matrix TI whose first rows are the vectors of E (in the same
order). Let 7'2 = pTT' where p is chosen so that Tz is an integral matrix.

Compute the left Hermite form of T2, T2 = Q H , where H is non negative, lower
triangular and Q is unimodular.

Q-' is the desired transformation matrix (since pQ-'D = HTl 0).

Remark: This algorithm is not exactly the original Wolf and Lam's algorithm, but the
general principle is similar. Wolf and Lam build the matrix T , step by step, during the
algorithm, as a product of unimodular matrices. Furthermore, they do not compute exactly
r+ but they propose heuristics and special algorithms for some particular cases.

224

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

Example 4 .
mi= 1,n
Doj = 1,n

D O k = 1,n
a(i. j, k) = a(i - 1. j + i. k) + a(i. j , k - 1) + a(i, j - 1. k + 1)

CONTINUE

The set of directionvectorsis D = {(I, -,(I), (O,O, 1)) (O , 1 , -1)) (see figure3). Thelin-
eality spaceof r (D) istwo-dimensional(generatedb (0,1,0) and (O,O, 1)). Thus, r
isonedimensionalandgeneratedbyEl = { (l , O) O r) . ThenD’= {(O,O,l),(O~,l,-l)
and r (D’) is pointed. We complete El by two vectors of I‘+(D’), for example by
E2 = ((0, l , O) , (0,1,1)). In this particular example, the transformation matrix whose
rows are E l , E2 is already unimodular and corresponds to a simple loop skewing. For
exposing DOALL loops, we choose the first vector of E2 in the relative interior of r+, for
example E2 = {(0,2, l) , (0, 1 ,O)) . This corresponds in terms of loops transfomiations to
skew the loop k by factor 2 and then to interchange loops j and I C :

DosEQi= 1 ,n
DOSEQ k = 3 , 3 * n

DoALLj = max(1, [V l) , m i n (n , L ~ J)
a(i. j . k - 2 * j) = a(i - 1, j + i. k - 2 * j) + a k j . k - 2 * j - 1) + a (i , j - 1. k - 2 * j + 1)

CONTINUE

Wolf and Lam showed that this methodology is optimal (Theorem B.6. in [WL,91]): “an
algorithm that finds the maximum coarse grain parallelism, and then recursively calls itself
on the inner loops, produces the maximum degree of parallelism possible”. Strangely,
they gave no hypothesis for such a theorem. However, once again, this theorem has to be
understood with respect to the dependence analysis that is used: here,, direction vectors
but with no information on the structure of the dependence graph. A correct formulation
is the following:

Property 2 Algorithm WOLF-LAM is optimal among all parallelism detectioii allgorithins
whose iiipiit is a set of directioii vectors (irnplicitely, oite thus considers that the loop iiest
has oidy one statement or that all statements form an atomic block).

Proof: Once again, we use the optimality of Darte and Vivien’s algorithm: on EL loop nest
whose body has only one statement, and whose dependences are represented by direction
vectors, Darte and Vivien’s algorithm has the same behaviour as algorithm WOLF-LAM.
0

Therefore, as for algorithm ALLEN-KENNEDY, the sub-optimality of algorithm WOLF-
LAM in the general case has to be found, not in the algorithm methodology, but in
the weakness of its input: the fact that the structure of the RDG in terms of strongly
connected components is not exploited results in a loss of parallelism. For example,
algorithm WOLF-LAM finds no parallelism in example 1 because of the direction vectors
(~ , - , ~ ~ , ~ ~ , ~ , -) , (~ , ~ , ~ ~ (see figure4).

3.3 Darte and Vivien’s algorithm
One can imagine to combine algorithms WOLF-LAM and ALLEN-KENNEDIY, so as to
exploit simultaneously the structure of the RDG and the structure of the directicon vectors:

225

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

0

first, compute the cone generated by the direction vectors and transform the loop nest to
expose the largest outermost fully permutable loop nest; then, consider the subgraph of
the RDG, formed by the direction vectors that are not carried by the outermost loops and
compute its strongly connected components; finally, apply a loop distribution in order to
separate these components and apply the same technique, recursively on each component.
Such a strategy permits to expose more parallelism by combining unimodular transfor-
mations and loop distribution. However, it is not optimal as example 5 illustrates. We
will indeed see that the key concept is not the cone generated by the direction vectors (i.e.
the weights of the edges of the RDG), but the cone generated by the weights of fhe cycles
of the RDG. This remark leads to the multi-dimensional scheduling algorithm of Darte
and Vivien [DV94] that can be seen as a combination of unimodular tranformations, loop
distribution, and index-shift method.
Example 5

Doi = 1 , n
Doj = l , n

D o k = l , n
a(i, j , k) = b(i - 1, j + i, k) + b(i, j - 1, k + 2)
b(i, j , k) = a(i , j - 1, k + j) + a(i, j . k - 1)

CONTlNUE

On this example (whose RDG is given on figure S), combining algorithms ALLEN-
KENNEDY and WOLF-LAM, as proposed above, finds only one degree of parallelism
(since at the second phase the RDG remains strongly connected). This is not better than the
basic algorithm ALLEN-KENNEDY However, one can find two degrees of parallelism
in example 5 (see below).
Darte and Vivien's first motivation was to find an algorithm:

that is flexible enough to support all representations of distance vectors based on a
polyhedral representation.

0 that detects the maximal degree of parallelism contained in the RDG.

3.3.1

The first point is that any RDG, whose edges are labelled by a polyhedral representation of
the distance vectors, can be simulated by a RDG, whose edges are labelled by dependence
vectors.
Consider the particular case of a dependence between two statements S1 and S2 whose
associated distance vectors are represented by a polyhedron with a single vertex zc and a
single ray r. This means that, in the RDG, one considers that all distance vectors of the
form w + Xr (with X 1 0) exist, and that, in the EDG, there is a dependence path of length
1, from SI (I) to S,(I + w + h), for all X 1 0 and for all I in P (the iteration domain)
such that (I + w + Xr) belongs to P.
Thus, the situation is the same as if there were a virtual statement V, with a uniform self-
dependence r , and two uniform dependences, w from SI to V and 0 from \ / to S2. For
simulating the distance vector w + Xr, use once the edge from S1 to V , then turn X times
around I/, and finally go to SZ. However, this simulation corresponds to a dependence
path of length X + 2 instead of 1. To suppress this difference, one assigns a delay to each

Canonical representation of the RDG

226

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

edge, 1 to the edge labelled by w and 0 to the others. The length of a simulated path is
then the sum of the delays along the edges it uses.
This simulation is the base of Darte and Vivien’s algorithm whose first phase consists in
transforming a RDG, whose edges are labelled by polyhedra, into an equivalent RDG,
whose edges are labelled by weights (dependence vectors) and delays (0 or l), and whose
vertices form two classes: the actual vertices and the virtual vertices. This phase is done
by the algorithm TRANSFORM:

TRANSFORM(G)

0 Mark all vertices of G as actual vertices.

0 For all edges e = (ze, ge) of G, create a virtual vertex V,.

0 If e is labelled by a polyhedron with vertices VI,. . . , Uj, rays T I , . . . , T j and lines
l l , . . . , l k ,

- suppress the edge e.

- create i edges from 2, to I/, labelled by vl, . . . , U,, with a delay 1.
- create j self-loops around I/, labelled by rl , . . . , r j , with a delay 0.
- create 2b self-loops around I$ labelled by ll,. . . , l k and - I l , . . . , - l k , with a

- create one edge from V , to ve labelled by the null vector 0, with a delay 0.
delay 0.

0 Return the transformed graph.

Remark: when the polyhedron that labels an edge e has neither rays, nor lines, it is not
necessary to create a virtual vertex. One can create edges directly from 2, to ye.

For example, a representation of dependences by level correspond to a particular repre-
sentation by direction vectors: a dependence at level p 5 n is equivalent to the: direction

vector (0,. . . , 0 , l : *, . . . , *). A representation by direction vectors is equivalent to a
representation with uniform dependences and virtual vertices. For example, the direc-
tion vector (0, 1, 0-) corresponds to a polyhedron with one vertex (0, 1,O) artd one ray
(O,O, -1), whereas the polyhedron that corresponds to (1,2$, *) has one vertex (1.2.0),
one ray (0,1,0) and one line (O ,O, 1).

3.3.2 Scheduling a system of uniform recurrence equations

Note that a RDG built by the algorithm TRANSFORM does not always correspond to
the RDG of a loop nest since dependence vectors are not anymore lexicographically non
negative. In fact, (if one forgets that some vertices are virtual and that some edges have
delay 0), this is the RDG of a system of uniform recurrence equations (SURE), introduced,
in a seminal paper, by Karp, Miller and Winograd [I(Mw67].
Karp, Miller and Winograd studied the problem of computability of a SURE: they showed
that it is linked to the problem of detecting cycles of null weight in the reduced dependence
graph G, and that it can be solved by a recursive decomposition of the graph, based on the
detection of multi-cycles (i.e. union of cycles) of null weight. The key structure of their
algorithm is G‘, the subgraph of G generated by the edges that belong to a mu1 ti-cycle of
null weight.

P- 1 n - p -*

227

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

i
Darte and Vivien (see [DV95]) showed that G’ can be efficiently built by the resolution
of a simple linear program (program 2 or its dual program 3). This resolution permits to
design a parallelization algorithm, whose principle is dual to Karp, Miller and Winograd’s
algorithm.

max { C e ze I z 2 0, 0 I ze 5 1, x w (e > + ~ y , - pz, 2 ze } (3)

Without entering the details, X is a n-dimensional vector and there is one variable p per
vertex of the RDG and one variable z per edge of the RDG. The edges of G’ (resp. G \ G’)
are the edges e = (2,,ye) for which z , = 0 (resp. z , = 1) in the optimal solution of
the dual (program 3), and equivalently, for which U, = 0 (resp. we = 1) in the primal
(program 2). When summing inequations X w (e) + py, - plc 2 ze on a cycle C of G,
one finds that X w (C) = 0 if C is a cycle of G’ and X w (C) 2 1(C) > 0 otherwise (I (C)
is the length of the cycle C).
In other words and to see the link with algorithm WOLF-LAM, when considering the
cone r generated by the iveiglits ofthe cycles (and not the weights of the edges), G’ is the
subgraph whose cycle weights generate the lineality space lin.space(r) of I’ and X is a
vector of the relative interior of r+. However, there is no need to build r effectively for
building G’. This is one of the interest of linear programs 2 and 3.
These are the main ideas of Darte and Vivien’s algorithm. The rest are technical mod-
ifications that are needed to distinguish between virtual and actual vertices, to take into
account the delay of the edges and and the nature of the edges (vertices, rays or lines of
a dependence polyhedron). The general principle of Darte and Vivien’s algorithm is the
following:

0 Apply a global loop distribution for separating the different strongly connected
components G; of the RDG G.

0 For each component G; that has at least one edge, compute its transformed graph
H , = TRANSFORM(G,) and call DARTE-VNIEN(H;, 1).

Algorithm DARTE-VIVIEN is given below. It takes as input a transformed RDG, strongly
connected, with at least one edge, and it returns a so called multi-dimensional schedule,
i.e, for each actual vertex U , a set of d, n-dimensional vectors XP,.. . , Xiv and d,,
constants py, . . . , p:,, such that computing the iteration I of the statement S, at the multi-
dimensional step (Xr .1 + py, . . . ,Xz,.I + &) leads to a valid schedule (if these steps
are lexicographically ordered).

DARTE-VIVIEN(G, k)

0 Build G‘, the subgraph of G generated by the edges that belong to a multi-cycle of
null weight.

e For a given dependence polyhedron, add in G’ all the edges that simulate this
polyhedron, if at least one of the edges that correspond to its vertices is already in
G’ (technical modification).

228

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

Find a vector X and constants pu, such that:

Xw(e) + py, - px, 2 0 for all edges e = (ze, Ye) E G' { Xw(e) + py, - px, 2 de for all edges e = (z,, ye) $ G' with delay de

For all actual vertices of G, let p;l. = pu and X,V = A'.

0 If G' is empty, return.

0 If G' is strongly connected and has at least one actual vertex, G is not computable
(and the initial RDG is not consistent).

0 Otherwise, decompose G' into its strongly connected components G; and for each
Gi that has at least one actual vertex, call DARTE-VIVIEN(G;, IC + 1).

We now go back to example 5. The transformed RDG is given on figure 6. It has 1
vertices (two of them are virtual). The weights of elementary cycles are (0, 0, -1) and
(0, -1,O) for the self-loops and (l , O , -l), (1, -1, l), (0,2, -3), (O,l,-1) for the other
elementary cycles. Therefore, I' is pointed and one can find a one-dimensional schedule,
for example given by A' = (4,0, -2), pa = 0 and f b = 3. Two degrees of paralklism can
be exposed and the resulting code is then:

DOSEQ 1 k = 2 - n , 2 * n

DOALL2 j = l , n
DoALL2i = mas(1, [Y l) , m i n (n , L ~ J)

a(i,j. -k + 2 * i) = b(i - 1.j + i, -k + 2 * i)+ b(i,j - 1, -k + 2 * i + 2)
2 CO"

DOALL 3 i = max(1, [$I) , min(n, [VI)
DoALL3j = 1 , n

b (i , j , - b + 2 * i + l) = a (i , j - 1 , - I ; + 2 * i + j + l) + a (i , j , - k + 2 * i)
3 C0"UE
1 CONTINUE

Property 3 Algorithm DARTE-VWIEN is optimal attzoiig all parallelism detecrioii algo-
rithms whose input is a graph whose edges are labelled by a polyhedral represerlitatioii of
distance vectors.

Proof: Consider a loop nest whose reduced dependence graph is G. Let H be the
transformed graph (H = TRANSFORM(G)) and d = max{d, I v actual vertex of H }
where d, has been given by algorithm DARTEGVIVIEN for each actual vertex of H ,
thus for each vertex of G. d is the recursion depth of algorithm DARTE-VIVIEN.
The transformed code contains at most d nested sequential loops ((n - d) degrees of
parallelism are exposed). Furthermore, for a loop nest whose iteration domairi contains
(resp. is contained in) a n-dimensional cube of size N (resp. AN for some X 2 l), one
can build a dependence path of length R(Nd) in the EDG that corresponds to G (this is
the difficult part of the proof). Therefore, any parallelization algorithm would expose a
sequentiality of fl(N d) . Since the sequentiality exposed by algorithm DARE-VIVIEN

U
Studying the transformed RDG of examples 1 to 4 permits to better understand why
parallelism were (or were not) found by the previous algorithms. The dependences
that are responsible for the inherent sequentiality of the loop nest are exactly those that
correspond to edges of G'. This has two consequences:

is O(N d) , it is optimal.

229

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

0 If G’ has only flow dependences, there is no need to transform the code into single
assignment form since this would not increase the degree of parallelism in the code.

0 If the dependence analysis is not exact, G’ shows which edges deserve a more
accurate dependence analysis for detecting more parallelism. There is no need to
give a more precise description of edges in G‘ \ G’ since they are not responsible for
the loss of parallelism.

3.3.3 Limitations of Darte and Vivien’s algorithm

Darte and Vivien’s algorithm is optimal for any polyhedral representation of distance
vectors (Property 3). However, it may not be optimal if more information is given
on the pairs of iteration vectors that induce a dependence. This comes from the fact
that the set of distance vectors ((J - I) I &(I) + S 2 (J) } is the projection of the set
{ (J - I , J) I & (I) 3 S 2 (J) } (which is as precise as the set of pairs { (I , J) I S I (I) +
S z (J) }) . Therefore, the projection makes us believe that the distance vectors can take
place anywhere in the iteration domain even if this is not true. This loss of precision may
be the cause of a loss of parallelism as example 6 illustrates.
Example 6

Do;= 1.72

m j = i , n
a(;, j) = b(i - 1, j + i) + a(i, j - 1)
b(i, j) = a(; - 1, j - i) + b(i, j - 1)

CONTINUE

If the dependences are described by distance vectors, the RDG (see figure 7) has two
self-dependences (0 , l) and two edges labelled by polyhedra, both with one vertex and
one ray (respectively (0 , l) and (0, -1)). Therefore, there exists a multi-cycle of null
weight. Furthermore, the two actual vertices belong to G’. Thus, the depth of algorithm
DARE-VIVIEN is 2 and no parallelism can be found. However, computing iteration
(i , j) of the first statement (resp. the second statement) at step 2i + j (resp. i + j) , leads
to a valid schedule that exposes one degree of parallelism ‘.
The technique used here consists in looking for multi-dimensional schedules whose linear
parts (the vectors X) may be different for different statements even iftliey belong to the
same strongly connected component. This is the base of Feautrier’s algorithm [Fea92b]
whose fundamental mathematical tool is the affine form of Farkas lemma. Property 3
however, shows that there is no need to look for different linear parts (whose construction
is more expensive and lead to more complicated rewriting processes) in a given strongly
connected component of the current subgraph G‘, as long as dependences are given by
distances vectors. On the other hand, example 6 shows that it can be useful when a more
accurate dependence analysis is available. Now, the only remaining open question con-
cerns the optimality of Feautrier’s algorithm: for which representation of the dependences
is Feautrier ’s algorithm optimal?

4 Conclusion
Our study offers a classification of loops parallelkation algorithms. Our main results
are the following: Allen and Kennedy’s algorithm is optimal for a representation of

write.
4The schedules L$i + j + $1 and L i i + j] minimize the latency but the code is more complicated to

230

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

dependences by level and Wolf and Lam’s algorithm is optimal for a representation by
direction vectors (but for a loop nest with only one statement). Neither of them subsumes
the other one, since each uses information that can not be exploited by the other (graph
structure for the first one, direction vectors structure for the second one). H.owever,
both are subsumed by Darte and Vivien’s algorithm that is optimal for any polyhedral
representation of distance vectors. Feautrier’s algorithm is an extension of this latter, but
the characterization of its optimality remains open.
We believe this classification of practical interest, since it permits a compiler-pwallelizer
to choose, depending on the dependence analysis at its disposal, the simplest and cheapest
parallelization algorithm that remains optimal, i.e the algorithm that is the most appro-
priate to the available representation of dependences. Future work will try to answer the
remaining open question concerning the optimality of Feautrier’s algorithm.

References
[AK87] J.R. Allen and Ken Kennedy. Automatic translations of fortran programs to

vector form. ACM Toplas, 9:491-542,1987.

[Ban901 Utpal Banerjee. A theory of loop permutations. In Gelemter, Nicolau, and
Padua, editors, Laiigiiages and Compilers for Parallel Cownyiitiiig. ‘The MIT
Press, Cambridge, Massachusetts, 1990.

[BDRR94] Pierre Boulet, Main Darte, Tanguy Risset, and Yves Robert. (pen)-ultimate

[B er 661

[CFR94]

[CO1941

[DKR91]

[DR94]

[DV94]

[DV95]

[Fea91]

tiling ? Integration, the VLSI Journal, 17:33-51, 1994.

A. J. Bemstein. Analysis of programs for parallel processing. In IEEE Trails.
on El. Computers, EC-15, 1966.

Jean-Franqois Collard, Paul Feautrier, and Tanguy Risset. Construction of do
loops from systems of affine constraints. Parallel Processing Letters, 1994.
to appear.

Jean-Franqois Collard. Code generation in automatic parallelizers. Ih Claude
Girault, editor, Proc. Int. Conf. on Application in Parallel and Distributed
Coniputing. IFIP WG 10.3, pages 185-194. North Holland,, April 1‘994.

Main Darte, Leonid Khachiyan, and Yves Robert. Linear scheduling is nearly
optimal. Parallel Processing Letters, 1(2):73-81,1991.

Alain Darte and Yves Robert. Mapping uniform loop nests onto distributed
memory architectures. Parallel Computing, 20:679-7 10, 1994.

Alain Darte and F r a b i c Vivien. Automatic parallelization based on
multi-dimensional scheduling. Technical Report 94-24, Laboratoire de
1’Informatique du Parallblisme, Bole Normale Superieure de Lyon, France,
September 1994.

Alain Darte and FrkdCric Vivien. Revisiting the decomposition of kiup, miller
and winograd. In Application Specific Array Processors 9.5. IEEE Computer
Society Press, 1995. to appear.

Paul Feautrier. Dataflow analysis of array and scalar references. 1nr.J. Parallel
Programming, 20(1):23-51,1991.

23 1

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

[Fea92a]

[Fe a92 b]

11~871

[IT881

Paul Feautrier. Some efficient solutions to the affine scheduling problem,
part I, one-dimensional time. In?. J . Parallel Programming, 21(5):3 13-348,
October 1992. Available as Technical Report 92-28, Laboratoire MASI,
UniversitC Pierre et Marie Curie, Paris, May 1992.

Paul Feautrier. Some efficient solutions to the affine scheduling problem, part
11, multi-dimensional time. Int. J . Parallel Programming, 2 1(6):389-420,
December 1992. Available as Technical Report 92-78, Laboratoire MASI,
UniversitC Pierre et Marie Curie, Paris, October 1992.

E Irigoin and R. Triolet. Computing dependence direction vectors and de-
pendence cones with linear systems. Technical Report ENSMP-CAI-87-E94,
b o l e des Mines de Paris, Fontainebleau (France), 1987.

E Irigoin and R. Triolet. Supemode partitioning. In Proc. 15th Aiiiiual ACM
Symp. Principles of Programming Languages, pages 3 19-329, San Diego,
CA, January 1988.

[KMW67] R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations

[Lam741

[S ch 861

[SD90]

[WL9 11

[Xue94]

[zcso]

for uniform recurrence equations. Journal of the ACM, 14(3):563-590, July
1967.

Leslie Lamport. The parallel execution of DO loops. Coi?ii?zziizicatioizs oftlie
ACM, 17(2):83-93, February 1974.

Alexander Schrijver. Theory of Linear and Integer Programzing. John Wiley
and Sons, New York, 1986.

R. Schreiber and Jack J. Dongarra. Automatic blocking of nested loops.
Technical Report 90-38, The University of Tennessee, Knoxville, TN, August
1990.

Michael E. Wolf and Monica S. Lam. A loop transformation theory and an
algorithm to maximize parallelism. IEEE Trans. Parallel Distribiired System,
2(4):452-47 1, October 199 1.

Jingling Xue. Automatic non-unimodular transformations of loop nests. Pnr-
allel Coinpitirig, 20(5):7 11-728, May 1994.

Hans Zima and Barbara Chapman. Sitpercompilers for Parallel and Vector
Computers. ACM Press, 1990.

232

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

1

193

2

Figure 1: Reduced Dependence Graph for Example 1 (with level of dependences)

I:Co3:
Figure 2: Reduced Dependence Graphs for Examples 2 and 3

0
1-1 1

Figure 3: Reduced Dependence Graph for Example 4 (with direction vectors)

Figure 4: Reduced Dependence Graph for Example 1 (with direction vectors)

0 la I:
Figure 5: Reduced Dependence Graph for Example 5 (with direction vectors)

233

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

Figure 6: Transformed Reduced Dependence Graph for Example 5

Figure 7: Reduced Dependence Graph for Example 6 (with direction vectors)

234

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on December 22, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

