
Scheduling Tasks Sharing Files
on Heterogeneous Clusters

Arnaud Giersch1, Yves Robert2, and Frédéric Vivien2

1 ICPS/LSIIT, UMR CNRS-ULP 7005, Strasbourg, France
2 LIP, UMR CNRS-INRIA 5668, École Normale Supérieure de Lyon, France

Abstract. This paper is devoted to scheduling a large collection of independent
tasks onto heterogeneous clusters. The tasks depend upon (input) files which ini-
tially reside on a master processor. A given file may well be shared by several
tasks. The role of the master is to distribute the files to the processors, so that
they can execute the tasks. The objective for the master is to select which file to
send to which slave, and in which order, so as to minimize the total execution
time. The contribution of this paper is twofold. On the theoretical side, we estab-
lish complexity results that assess the difficulty of the problem. On the practical
side, we design several new heuristics, which are shown to perform as efficiently
as the best heuristics in [3,2]although their cost is an order of magnitude lower.

1 Introduction

In this paper, we are interested in scheduling independent tasks onto heterogeneous
clusters. These independent tasks depend upon files (corresponding to input data, for
example), and difficulty arises from the fact that some files may well be shared by
several tasks. This paper is motivated by the work of Casanova et al. [3, 2], who target
the scheduling of tasks in APST, the AppLeS Parameter Sweep Template [1]. Typically,
an APST application consists of a large number of independent tasks, with possible
input data sharing. When deploying an APST application, the intuitive idea is to map
tasks that depend upon the same files onto the same computational resource, so as to
minimize communication requirements. Casanova et al. [3, 2] have considered three
heuristics designed for completely independent tasks (no input file sharing) that were
proposed in [5]. They have modified these three heuristics (originally called Min-min,
Max-min, and Sufferage in [5]) to adapt them to the additional constraint that input files
are shared between tasks. As was already pointed out, the number of tasks to schedule
is expected to be very large, and special attention should be devoted to keeping the cost
of the scheduling heuristics reasonably low.

We restrict to the same special case of the scheduling problem as Casanova et al. [3,
2]: we assume the existence of a master processor, which serves as the repository for all
files. The role of the master is to distribute the files to the processors, so that they can
execute the tasks. The objective for the master is to select which file to send to which
slave, and in which order, so as to minimize the total execution time. The contribution of
this paper is twofold. On the theoretical side, we establish complexity results that assess
the difficulty of the problem. On the practical side, we design several new heuristics,
which are shown to perform as efficiently as the best heuristics in [3, 2] although their
cost is an order of magnitude lower.

J. Dongarra, D. Laforenza, S. Orlando (Eds.): Euro PVM/MPI 2003, LNCS 2840, pp. 657–660, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

658 A. Giersch, Y. Robert, and F. Vivien

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

F1 F9F8F7F6F5F4F3F2

T1 T2 T3 T4 T6 T7 T8 T9 T10T5 T11 T12 T13

File

Task

Fig. 1. Bipartite graph gathering the relations between the files and the tasks.

2 Framework

The problem is to schedule a set of n tasks T = {T1, T2, . . . , Tn}. Theses tasks have
different sizes: the weight of task Tj is tj , 1 ≤ j ≤ n. There are no dependence
constraints between the tasks, so they can be viewed as independent. However, the
execution of each task depends upon one or several files, and a given file may be shared
by several tasks. Altogether, there are m files in the set F = {F1, F2, . . . , Fm}. The
size of file Fi is fi, 1 ≤ i ≤ m. We use a bipartite graph (see Figure 1 for an example)
to represent the relations between files and tasks. Intuitively, a file Fi linked by an edge
to a task Tj corresponds to some data that is needed for the execution of Tj to begin.

The tasks are scheduled and executed on a master-slave heterogeneous platform,
with a master-processor P0 and p slaves Pi, 1 ≤ i ≤ p. Each slave Pq has a (relative)
computing power wq: it takes tj .wq time-units to execute task Tj on processor Pq . The
master processor P0 initially holds all the m files in F . The slaves are responsible for
executing the n tasks in T . Before it can execute a task Tj , a slave must have received
from the master all the files that Tj depends upon. For communications, we use the one-
port model: the master can only communicate with a single slave at a given time-step.
We let cq denote the inverse of the bandwidth of the link between P0 and Pq , so that
fi.cq time-units are required to send file Fi from the master to slave Pq . We assume that
communications can overlap computations on the slaves: a slave can process one task
while receiving the files necessary for the execution of another task.

The objective is to minimize the total execution time. The schedule must decide
which tasks will be executed by each slave, and it must determine the ordering in which
the master sends the files to the slaves. Some files may well be sent several times, so
that several slaves can independently process tasks that depend upon these files. Also,
a file sent to some processor remains available for the rest of the schedule: if two tasks
depending on the same file are scheduled on the same processor, the file must only be
sent once.

3 Complexity

See the extended version [4] for a survey of existing results, and for the proof that the
restricted instance of the problem with two slaves, and where all files and tasks have
unit size (tj = fi = 1 for all j, i), remains NP-complete. Note that in that case, the
heterogeneity only comes from the computing platform.

Scheduling Tasks Sharing Files on Heterogeneous Clusters 659

4 Heuristics

We compare our new heuristics to the three reference heuristics Min-min, Max-Min
and Sufferage presented by Casanova et al. [3, 2]. All the reference heuristics are built
on the following model: for each remaining task Tj , loop over all processors Pi and
evaluate OBJECTIVE(Tj , Pi); pick the “best” task-processor pair (Tj , Pi) and schedule
Tj on Pi as soon as possible. Here, OBJECTIVE(Tj , Pi) is the minimum completion
time of task Tj if mapped on processor Pi, given the scheduling decisions that have
already been made. The heuristics only differ by the definition of the “best” couple (Tj ,
Pi). For instance in Min-min, the “best” task Tj is the one minimizing the objective
function when mapped on its most favorable processor: The computational complexity
is at least O(p.n2 + p.n.|E|), where E is the set of the edges in the bipartite graph.

When designing new heuristics, we took special care to decreasing the computa-
tional complexity. In order to avoid the loop on all the pairs of processors and tasks in
the reference heuristics, we need to be able to pick (more or less) in constant time the
next task to be scheduled. Thus we decided to sort the tasks a priori according to an
objective function. However, since our platform is heterogeneous, the task characteris-
tics may vary from one processor to the other. Therefore, we compute one sorted list
of tasks for each processor. This sorted list is computed a priori and is not modified
during the execution of the heuristic. Once the sorted lists are computed, we still have
to map the tasks to the processors and to schedule them. The tasks are scheduled one-
at-a-time. When we want to schedule a new task, on each processor Pi we evaluate the
completion time of the first task (according to the sorted list) which has not yet been
scheduled. Then we pick the pair task/processor with the lowest completion time. This
way, we obtain an overall execution time reduced to O(p.n.(log n + |E|)).

Six different objective functions, and three refinement policies are described in [4],
for a total of 48 variants. Here is a brief description of those that appear in Table 1
below:

– Computation: execution time of the task as if it was not depending on any file
– Duration: execution time of the task as if it was the only task to be scheduled on

the platform
– Payoff: ratio of task duration over the sum of the sizes of its input files (when

mapping a task, the time spent by the master to send the required files is payed by
all the waiting processors, but the whole system gains the completion of the task)

The readiness refinement policy states to give priority to tasks whose input files are all
already available at a given processor location, even though they are not ranked high in
the priority list of that processor.

5 Experimental Results

Table 1 summarizes all the experiments. In this table, we report the best ten heuristics,
together with their cost. This is a summary of 12, 000 random tests (1, 000 tests over
four graph types and three communication-to-computation cost ratios for the platforms,
each with 20 heterogeneous processors and communication links). Each test involves 53
heuristics (5 reference heuristics and 48 combinations for our new heuristics). For each

660 A. Giersch, Y. Robert, and F. Vivien

Table 1. Relative performance and cost of the best ten heuristics.

Heuristic Relative Standard Relative Standard
performance deviation cost deviation

Sufferage 1.110 0.1641 376.7 153.4
Min-min 1.130 0.1981 419.2 191.7
Computation+readiness 1.133 0.1097 1.569 0.4249
Computation+shared+readiness 1.133 0.1097 1.569 0.4249
Duration+locality+readiness 1.133 0.1295 1.499 0.4543
Duration+readiness 1.133 0.1299 1.446 0.3672
Payoff+shared+readiness 1.138 0.126 1.496 0.6052
Payoff+readiness 1.139 0.1266 1.246 0.2494
Payoff+shared+locality+readiness 1.145 0.1265 1.567 0.5765
Payoff+locality+readiness 1.145 0.1270 1.318 0.2329

test, we compute the ratio of the performance of all heuristics over the best heuristic.
The best heuristic differs from test to test, which explains why no heuristic in Table 1
can achieve an average relative performance exactly equal to 1. In other words, the best
heuristic is not always the best of each test, but it is closest to the best of each test in the
average. The optimal relative performance of 1 would be achieved by picking, for any
of the 12, 000 tests, the best heuristic for this particular case.

We see that Sufferage gives the best results: in average, it is within 11% of the op-
timal. The next nine heuristics closely follow: they are within 13% to 14.5% of the
optimal. Out of these nine heuristics, only Min-min is a reference heuristic. In Table 1,
we also report computational costs (CPU time needed by each heuristic). The theo-
retical analysis is confirmed: our new heuristics are an order of magnitude faster than
the reference heuristics. We report more detailed performance data in [4]. As a con-
clusion, given their good performance compared to Sufferage, we believe that the eight
new variants listed in Table 1 provide a very good alternative to the costly reference
heuristics.

References

1. F. Berman. High-performance schedulers. In I. Foster and C. Kesselman, editors, The Grid:
Blueprint for a New Computing Infrastructure, pages 279–309. Morgan-Kaufmann, 1999.

2. H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Using Simulation to Evaluate
Scheduling Heuristics for a Class of Applications in Grid Environments. Research Report
99-46, Laboratoire de l’Informatique du Paralllisme, ENS Lyon, Sept. 1999.

3. H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for Scheduling Parame-
ter Sweep Applications in Grid Environments. In Ninth Heterogeneous Computing Workshop,
pages 349–363. IEEE Computer Society Press, 2000.

4. A. Giersch, Y. Robert, and F. Vivien. Scheduling tasks sharing files on heterogeneous
clusters. Research Report RR-2003-28, LIP, ENS Lyon, France, May 2003. Available at
www.ens-lyon.fr/˜yrobert.

5. M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, and R. Freund. Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous computing systems. In Eight
Heterogeneous Computing Workshop, pages 30–44. IEEE Computer Society Press, 1999.

	1 Introduction
	2 Framework
	3 Complexity
	4 Heuristics
	5 Experimental Results
	References

