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Abstract. This paper is devoted to mapping iterative algorithms onto heteroge-
neous clusters. The application data is partitioned over the processors, which are
arranged along a virtual ring. At each iteration, independent calculations are car-
ried out in parallel, and some communications take place between consecutive
processors in the ring. The question is to determine how to slice the application
data into chunks, and to assign these chunks to the processors, so that the total
execution time is minimized. One major difficulty is to embed a processor ring
into a network that typically is not fully connected, so that some communication
links have to be shared by several processor pairs. We establish a complexity re-
sult that assesses the difficulty of this problem, and we design a practical heuristic
that provides efficient mapping, routing, and data distribution schemes.

1 Introduction

We investigate the mapping of iterative algorithms onto heterogeneous clusters. Such
algorithms typically operate on a large collection of application data, which is parti-
tioned over the processors. At each iteration, some independent calculations are carried
out in parallel, and then some communications take place. This scheme encompasses a
broad spectrum of scientific computations, from mesh based solvers to signal process-
ing, and image processing algorithms. An abstract view of the problem is the follow-
ing: the iterative algorithm repeatedly operates on a rectangular matrix of data samples.
This matrix is split into vertical slices that are allocated to the computing resources.
At each step of the algorithm, the slices are updated locally, and then boundary infor-
mation is exchanged between consecutive slices. This geometrical constraint advocates
that processors be organized as a virtual ring. Then each processor only communicates
twice, once with its predecessor in the ring, and once with its successor. There is no
reason to restrict to a uni-dimensional partitioning of the data, and to map it onto a uni-
dimensional ring of processors. But uni-dimensional partitionings are very natural for
most applications, and we show that finding the optimal one is already very difficult.

The target architecture is a fully heterogeneous cluster, composed of different-speed
processors that communicate through links of different bandwidths. On the architecture
side, the problem is twofold: (i) select the processors that participate in the solution
and decide for their ordering (which defines the ring); (ii) assign communication routes
between each pair of consecutive processors in the ring. One major difficulty of this
ring embedding process is that some of the communication routes will (most probably)
have to share some physical communication links: indeed, the communication networks
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of heterogeneous clusters typically are far from being fully connected. If two or more
routes share the same physical link, we have to decide which fraction of the link band-
width is assigned to each route. Once the ring and the routing have been decided, there
remains to determine the best partitioning of the application data. Clearly, the quality
of the final solution depends on many application and architecture parameters.

To assess the impact of sharing the link bandwidths, we deal with the simplified
version of the problem where we view the target interconnection network as fully con-
nected: between any node pair, the routing is fixed (shortest paths in terms of band-
width), and the bandwidth is assumed to be that of the slowest link in the routing path.
This model is not very realistic, as no link contention is taken into account, but it will
lead to a solution ring that can be compared to that obtained with link sharing, providing
a way to evaluate the significance of the different hypotheses on the communications.

The rest of the paper is organized as follows. Section 2 is devoted to the precise and
formal specification of the previous optimization problem, denoted as SHAREDRING.
We also specify the simplified version of the problem denoted as SLICERING. We show
that the decision problem associated to SHAREDRING is NP-complete. Section 3 deals
with the design of polynomial-time heuristics to solve the SHAREDRING optimization
problem. Section 4 is the counterpart for the SLICERING problem. We report some
experimental data in Section 5. We state some concluding remarks in Section 6. Due to
the lack of space, we refer the reader to [4, 3] for a survey of related papers.

2 Framework

2.1 Modeling the Platform Graph

Computing Costs. The target computing platform is modeled as a directed graph G =
(P, E). Each node Pi in the graph, 1 ≤ i ≤ |P | = p, models a computing resource,
and is weighted by its relative cycle-time wi: Pi requires wi time-steps to process a
unit-size task. Of course the absolute value of the time-unit is application-dependent,
what matters is the relative speed of one processor versus the other.

Communication Costs. Graph edges represent communication links and are labeled
with available bandwidths. If there is an oriented link e ∈ E from Pi to Pj , be denotes
the link bandwidth. It takes L/be time-units to transfer one message of size L from Pi to
Pj using link e. When several messages share the link, each of them receives a fraction
of the available bandwidth. The fractions of the bandwidth allocated to the messages
can be freely determined by the user, except that the sum of all these fractions cannot
exceed the total link bandwidth. The eXplicit Control Protocol XCP [2] does enable to
implement a bandwidth allocation strategy that complies with our hypotheses.

Routing. We assume we can freely decide how to route messages between processors.
Assume we route a message of size L from Pi to Pj , along a path composed of k edges
e1, e2, . . . , ek. Along each edge em, the message is allocated a fraction fm of the band-
width bem . The communication speed along the path is bounded by the link allocating
the smallest bandwidth fraction: we need L/b time-units to route the message, where
b = min1≤m≤k fm. If several messages simultaneously circulate on the network and
happen to share links, the total bandwidth capacity of each link cannot be exceeded.
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Application Parameters: Computations. W is the total size of the work to be performed
at each step of the algorithm. Processor Pi performs a share αi.W , where αi ≥ 0 for
1 ≤ i ≤ p and

∑p
i=1 αi = 1. We allow αj = 0, meaning that processor Pj do not

participate: all resources are not involved if extra communications incurred by adding
more processors slow down the whole process, despite the increased cumulated speed.

Application Parameters: Communications in the Ring. We arrange the participating
processors along a ring. After updating its data slice, each active processor sends a
message of fixed length H to its successor. To illustrate the relationship between W
and H , we can view the original data matrix as a rectangle composed of W columns
of height H , so that one single column is exchanged between consecutive processors in
the ring.

Let succ(i) and pred(i) denote the successor and the predecessor of Pi in the virtual
ring. There is a communication path Si from Pi to Psucc(i) in the network: let si,m be
the fraction of the bandwidth bem of the physical link em that is allocated to the path
Si. If a link er is not used in the path, then si,r = 0. Let ci,succ(i) = 1

minem∈Si
si,m

: Pi

requires H.ci,succ(i) time-units to send its message of size H to its successor Psucc(i).
Similarly, we define the path Pi from Pi to Ppred(i), the bandwidth fraction pi,m of em

allocated to Pi, and ci,pred(i) = 1
minem∈Pi

pi,m
.

Objective Function. The total cost of one step in the iterative algorithm is the maxi-
mum, over all participating processors, of the time spent computing and communicat-
ing:

Tstep = max
1≤i≤p

I{i}[αi.W.wi + H.(ci,pred(i) + ci,succ(i))]

where I{i}[x] = x if Pi is involved in the computation, and 0 otherwise. In summary,
the goal is to determine the best way to select q processors out of the p available, to
assign them computational workloads, to arrange them along a ring and to share the
network bandwidth so that the total execution time per step is minimized.

2.2 The SHAREDRING Optimization Problem

Definition 1 (SHAREDRING(p,wi,E,bem ,W ,H)). Given p processors Pi of cycle-
times wi and |E| communication links em of bandwidth bem , given the total workload
W and the communication volume H at each step, minimize

Tstep =min
1≤q≤p

min
σ ∈ Θq,p∑q
i=1 ασ(i)=1

max
1≤i≤q

(
ασ(i).W.wσ(i)+H.(cσ(i),σ(i−1 mod q)+cσ(i),σ(i+1 mod q))

)
(1)

In Equation 1, Θq,p denotes the set of one-to-one functions σ : [1..q] → [1..p] which
index the q selected processors that form the ring, for all candidate values of q between
1 and p. For each candidate ring represented by such a σ function, there are constraints
hidden by the introduction of the quantities cσ(i),σ(i−1 mod q) and cσ(i),σ(i+1 mod q),
which we gather now. There are 2q communicating paths, the path Si from Pσ(i) to
its successor Psucc(σ(i)) = Pσ(i+1 mod q) and the path Pi from Pσ(i) to its predecessor
Ppred(σ(i)) = Pσ(i−1 mod q), for 1 ≤ i ≤ q. For each link em in the interconnection
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network, let sσ(i),m (resp. pσ(i),m) be the fraction of the bandwidth bem that is allocated
to the path Sσ(i) (resp. Pσ(i)). We have the equations:
{

1≤ i≤q, 1≤m≤E, sσ(i),m≥0, pσ(i),m≥0,
∑q

i=1(sσ(i),m + pσ(i),m)≤bem

1≤ i≤q, cσ(i),succ(σ(i)) = 1
minem∈Sσ(i) sσ(i),m

, cσ(i),pred(σ(i)) = 1
minem∈Pσ(i) pσ(i),m

Since each communicating path Sσ(i) or Pσ(i) will typically involve a few edges, most
of the quantities sσ(i),m and pσ(i),m will be zero. In fact, we have written em ∈ Sσ(i) if
the edge em is actually used in the path Sσ(i), i.e. if si,m is not zero.

From Equation 1, we see that the optimal solution involves all processors as soon as
the ratio W

H is large enough: then the impact of the communications becomes small in
front of the cost of the computations, and the computations should be distributed to all
resources. Even in that case, we have to decide how to arrange the processors along a
ring, to construct the communicating paths, to assign bandwidths ratios and to allocate
data chunks. Extracting the “best” ring seems to be a difficult combinatorial problem.

2.3 The SLICERING Optimization Problem

We denote by SLICERING the simplified version of the problem without link sharing.
The SLICERING problem is exactly given by Equation 1 with an important simplifica-
tion concerning routing paths and communication costs: the routing path between any
node pair is fixed, as well as its bandwidth. This amounts to assuming a fully connected
interconnection network where the bandwidth between Pi and Pj has a constant value.
Given a “real” network, we define ci,j as the inverse of the smallest link bandwidth
of a path of maximal bandwidth that goes from Pi to Pj . This construction does not
take contentions into account: if the same link is shared by several paths, the available
bandwidth for each path is over-estimated.

We summarize the construction of the simplified problem as follows: take the actual
network as input, and compute shortest paths (in terms of bandwidths) between all
processor pairs. This leads to a (fake) fully connected network. Now in Equation 1, the
cost of all communication paths is given. But there remains to determine the optimal
ring, and to assign computing workloads to the processors that belong to the ring.

2.4 Complexity

The following result states the intrinsic difficulty of the SHAREDRING problem (the
same result holds for the simplified SLICERING problem; see [3, 4] for the proofs):

Theorem 1. The decision problem associated to the SHAREDRING optimization prob-
lem is NP-complete.

3 Heuristic for the SHAREDRING Problem

We describe, in three steps, a polynomial-time heuristic to solve SHAREDRING: (i)
the greedy algorithm used to construct a solution ring; (ii) the strategy used to assign
bandwidth fractions during the construction; and (iii) a final refinement.
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Fig. 1. Summary of computation and communication times with q = 5 processors.

3.1 Ring Construction

We consider a solution ring involving q processors, numbered from P1 to Pq . Ideally,
all these processors should require the same amount of time to compute and commu-
nicate: otherwise, we would slightly decrease the computing load of the last processor
and assign extra work to another one (we are implicitly using the “divisible load” frame-
work [3]). Hence (see Figure 1) we have for all i (indices being taken modulo q):

Tstep = αi.W.wi + H.(ci,i−1 + ci,i+1). (2)

Since
∑q

i=1 αi = 1,
∑q

i=1
Tstep−H.(ci,i−1+ci,i+1)

W.wi
= 1. With wcumul = 1∑ q

i=1
1

wi

:

Tstep = W.wcumul

(

1 +
H

W

q∑

i=1

ci,i−1 + ci,i+1

wi

)

(3)

We use Equation 3 as a basis for a greedy algorithm which grows a solution ring it-
eratively, starting with the best pair of processors. Then, it iteratively includes a new
node in the current solution ring. Assume we already have a ring of r processors. We
search where to insert each remaining processor Pi in the current ring: for each pair
of successive processors (Pj , Pk) in the ring, we compute the cost of inserting Pi be-
tween Pj and Pk. We retain the processor and pair that minimize the insertion cost. To
compute the cost of inserting Pi between Pj and Pk, we resort to another heuristic to
construct communicating paths and allocate bandwidth fractions (see Section 3.2) in
order to compute the new costs ck,j (path from Pk to its successor Pj), cj,k, ck,i, and
ci,k. Once we have these costs, we compute the new value of Tstep as follows:

– We update wcumul by adding the new processor Pk into the formula.
– In

∑r
s=1

cσ(s),σ(s−1)+cσ(s),σ(s+1)

wσ(s)
, we suppress the two terms corresponding to the

two paths between Pi to Pj and we insert the new terms ck,j+ck,i

wk
, cj,k

wj
and ci,k

wi
.

This step of the heuristic has a complexity proportional to (p − r).r times the cost
to compute four communicating paths. Finally, we grow the ring until we have p
processors. We return the minimal value obtained for Tstep. The total complexity is



Mapping and Load-Balancing Iterative Computations on Heterogeneous Clusters 591

∑p
r=1(p−r)rC = O(p3)C, where C is the cost of computing four paths in the network.

Note that it is important to try all values of r, because Tstep may not vary monotonically
with r.

3.2 Bandwidth Allocation

We now assume we have a r-processor ring, a pair (Pi, Pj) of successive processors in
the ring, and a processor Pk to be inserted between Pi and Pj . Together with the ring,
we have built 2r communicating paths to which a fraction of the initial bandwidth has
been allocated. To build the four paths involving Pk, we use the graph G = (V, E, b)
where b(em) is what has been left by the 2r paths of the bandwidth of edge em. First
we re-inject the bandwidths fractions used by the communication paths between Pi and
Pj . Then to determine the four paths, from Pk to Pi and Pj and vice-versa:

– We independently compute four paths of maximal bandwidth, using a standard
shortest path algorithm in G.

– If some paths happen to share some links, we use a brute force analytical method
to compute the bandwidth fractions minimizing Equation 3 to be allocated.

Then we can compute the new value of Tstep as explained above, and derive the values
of the workloads αi. The cost C of computing four paths in the network is O(p + E).

3.3 Refinements

Schematically, the heuristic greedily grows a ring by peeling off the bandwidths to
insert new processors. To diminish the cost of the heuristic, we never re-calculate the
bandwidth fractions that have been previously assigned. When the heuristic ends, we
have a q-processor ring, q workloads, 2q communicating paths, bandwidth fractions and
communication costs for these paths, and a feasible value of Tstep. As the heuristic could
appear over-simplistic, we have implemented two variants aimed at refining its solution.
The idea is to keep everything but the bandwidth fractions and workloads. Once we have
selected the processor and the pair minimizing the insertion cost in the current ring, we
perform the insertion and recompute all bandwidth fractions and workloads. We can
re-evaluate bandwidth fractions using a global approach (see [3] for details):

Method 1: Max-min fairness. We compute the bandwidths fractions using the tradi-
tional bandwidth-sharing algorithm [1] which maximizes the minimum bandwidth
allocated to a path. Then we compute the αi so as to equate all execution times
(computations followed by communications), thereby minimizing Tstep.

Method 2: quadratic resolution using the KINSOL software. Once we have a ring
and all the communicating paths, the program to minimize Tstep is quadratic in the
unknowns αi, si,j and pi,j . We use the KINSOL library [5] to solve it.

4 Heuristic for the SLICERING Problem

The greedy heuristic for the SLICERING problem is similar to the previous one. It starts
by selecting the fastest processor and iteratively includes a new node in the current
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Fig. 2. Topology of the Lyon platform. Fig. 3. Abstraction of the Lyon platform.

Table 1. Processor cycle-times (in seconds per megaflop) for the Lyon and Strasbourg platforms.

solution ring. Assume we have a ring of r processors. For each remaining processor
Pi, for each pair of successive processors (Pj , Pk) in the ring, we compute the cost of
inserting Pi between Pj and Pk . We retain the processor and the pair minimizing the
insertion cost. This step of the heuristic has a complexity proportional to (p− r).r. We
grow the ring until we have p processors, and we return the minimal value obtained for
Tstep. The total complexity is

∑p
r=1(p − r)r = O(p3). It is important to try all values

of r as Tstep may not vary monotically with r. See [4] for further details.

5 Experimental Results

5.1 Platform Description

We experimented with two platforms, one located in ENS Lyon and the other one in the
University of Strasbourg. Figures 2 and 3 show the Lyon platform which is composed
of 14 computing resources and 3 routers. In Figure 3, circled nodes 0 to 13 are the
processors, and diamond nodes 14 to 16 are the routers. Edges are labeled with link
bandwidths. Similarly,the Strasbourg platform is composed of 13 computing resources
and 6 routers. Processor cycle-times for both platforms are gathered in Table 1.

5.2 Results

For both topologies, we evaluate the impact of link sharing as follows. In the first heuris-
tic, we build the solution ring without taking link sharing into account. Using the ab-
stract graph in Figure 3, we run an all-pair shortest distance algorithm to determine the
bandwidth between any pair of nodes, thereby simulating a fully connected intercon-
nection network. Then we return the solution ring computed by the greedy heuristic
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Table 2. Tstep/W for each heuristic for the Lyon and Strasbourg platforms respectively.

for the SLICERING problem, as described in Section 4. The value of Tstep achieved by
the heuristic may well not be feasible, as the actual network is not fully connected.
Therefore, we keep the ring and the communicating paths between adjacent processors
in the ring, and we compute feasible bandwidth fractions using the quadratic program-
ming software. The second heuristic is the greedy heuristic designed in Section 3 for
the SHAREDRING problem, using the quadratic programming refinement. The major
difference between the two heuristics is that the latter takes link contention into account
when building up the solution ring. To compare the value of Tstep

W returned by both
algorithms, we use various communication-to-computation ratios. Table 2 shows these
values for each platform. From these experiments we conclude that:

– When the impact of communication costs is low, the main goal is to balance com-
putations, and both heuristics are equivalent.

– When the communication-to-computation ratio becomes more important, the effect
of link contention becomes clear, and the second heuristic’s solution is much better.

As a conclusion, we point out that an accurate modeling of the communications has a
dramatic impact on the performance of the load-balancing strategies.

6 Conclusion

The major limitation to programming heterogeneous platforms arises from the addi-
tional difficulty of balancing the load. Data and computations are not evenly distributed
to processors. Minimizing communication overhead becomes a challenging task. In this
paper, the major emphasis was towards a realistic modeling of concurrent communica-
tions in cluster networks. One major result is the NP-completeness of the SHAREDRING

problem. Rather than the proof, the result itself is interesting, because it provides yet an-
other evidence of the intrinsic difficulty of designing heterogeneous algorithms. But this
negative result should not be over-emphasized. Indeed, another important contribution
of this paper is the design of an efficient heuristic, that provides a pragmatic guidance
to the designer of iterative scientific computations. The importance of an accurate mod-
eling of the communications, that takes contentions into full account, has been made
clear by the experimental results. Our heuristic makes it possible to efficiently imple-
ment iterative computations on commodity clusters made up of several heterogeneous
resources, which is a promising alternative to using costly supercomputers.
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