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Abstract .  We explore the link between dependence abstractions and 
maximal parallelism extraction in nested loops. Our goal is to find, for 
each dependence abstraction, the minima] transformations needed for 
maximal parallelism extraction. The result of this paper is that Allen 
and Kennedy's algorithm is optimal when dependences are approximated 
by dependence levels. This means that even the most sophisticated algo- 
rithm cannot detect more parallelism than found by Allen and Kennedy's 
algorithm, as long as dependence level is the only information available. 

1 I n t r o d u c t i o n  

Many automatic loop parallelization techniques have been introduced over the 
last 30 years, starting from the early work of Karp, Miller and Winograd [12] 
in 1967 who studied the structure of computations in repetitive codes called 
systems of uniform recurrence equations. This work defined the foundation of 
today's loop compilation techniques. It has been widely exploited and extended 
in the systolic array community, as well as in the compiler-parallelizer commu- 
nity: Lamport  [14] proposed a parallel scheme - the hyperplane method - in 1974, 
then several loop transformations were introduced (loop distribution/fusion, loop 
skewing, loop reversal, loop interchange, . . .  ) for vectorizing computations, max- 
imizing parallelism, maximizing locality and/or minimizing synchronizations. 
These techniques have been used as basic tools for optimizing algorithms, the 
most two famous being certainly Allen and Kennedy's algorithm [1], designed at 
Rice in the Fortran D compiler, and Wolf and Lam's algorithm [18], designed at 
Stanford in the SUIF compiler. 

At the same time, dependence analysis has been developed so as to provide 
sufficient information for checking the legality of these loop transformations, 
in the sense that  they do not change the final result of the program. Differ- 
ent abstractions of dependences have been defined (among others dependence 
distance [16], dependence level [1], dependence direction vector [19], dependence 
polyhedron or cone [1i], . . . ) ,  and more and more accurate tests for dependence 
analysis have been designed (among others Banerjee's tests [2], I test [13], A 
test [9], A test [15], PIP test [7], PIPS test [10], Omega test [17], . . . ) .  

* Supported by the CNRS-INRIA project ReMaP. 
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In general, dependence abstractions and dependence tests have been intro- 
duced with some particular loop transformations in mind. For example, the 
dependence level was designed for Allen and Kennedy's algorithm, whereas the 
PIP test is the main tool for Feautrier's method for array expansion [7] and 
parallelism extraction by affine schedules [8]. However, very few authors have 
studied, in a general manner, the links between both theories, dependence anal- 
ysis and loop restructurations, and have tried to answer the following two dual 
questions: 

- What is the minimal dependence abstraction needed for checking the regality 
of a given transformation? 

- What is the simplest algorithm that exploits all information provided by a 
given dependence abstraction at best? 

With the answer to the first question, we can adapt the dependence analysis 
to the parallelization algorithm, and avoid implementing an expensive depen- 
dence test if it is not needed. This question has been deeply studied in Yang's 
thesis [21], and summarized in Yang, Ancourt and Irigoin's paper [20]. 

Conversely, with the answer to the second question, we can adapt the par- 
allelization algorithm to the dependence analysis, and avoid using an expensive 
parallel~zation algorithm, if a simpler algorithm extracts the same degree of 
parallelism. This question ha.s been addressed by Darte and Vivien in [6] for de- 
pendence abstractions based on a polyhedral approximation of distance vectors. 

Completing this previous work, we propose a more precise study of the link 
between dependence abstractions and pm'allelism extraction in the particular case 
of dependence levels. Our main result is that, in this context, Allen and Kennedy's 
parallelization algorithm is optimal for parallelism extraction, which means that 
even the most sophisticated algorithm cannot detect more parallel loops than 
Allen and Kennedy's algorithm does, as long as dependence level is the only 
information available. In other words, loop distribution is sufficient for detecting 
maximal parallelism in dependence graphs with dependence levels. There is no 
need to use more complicated transformations such as loop interchange, loop 
skewing, or any other transformations that could be invented, because there is 
an intrinsic limitation in the dependence level abstraction that prevents detecting 

more parallelism. 
The paper is organized as follows. In Section 2, we explain what we call 

maximal parallelism extraction for a given dependence abstraction. In Section 3, 
we recall the definition of dependence levels and we present Allen and Kennedy's 
algorithm in its simplest form, which is sufficient for what we want to prove. 
In Section 4~ we build a set of loops that are equivalent to the loops to be 
parallelized, in the sense that they have the same dependence graph. These 
loops contain exactly the degree of parallelism found by Allen and Kennedy's 
algorithm which proves the optimality (however, as the proof is quite long, we 
refer Go [5] for an extended version). FinMty, Section 5 summarizes the paper. 
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2 Theoret ical  framework 

2.1 Notations 

The notations used in the following sections are: 

- f ( N )  = O(N)  if 3 k > 0 such that  f ( N )  <_ k N  for all sufficiently large N. 
- f ( N )  = S2(N) if 3 k > 0 such that  I ( N )  >_ k N  for all sufficiently large N. 
- f ( N )  = O(N)  if f ( N )  = O(N)  and f ( N )  = ~2(N). 
- If X is a finite set, IX I denotes the number of elements in X. 
- G = (V, E) denotes a directed graph with vertices V and edges E. 
- e = (x, y) denotes an edge from vertex r to vertex y. 

2.2 D e p e n d e n c e  g r a p h s  

We restrict to the case of perfectly nested loops for making the discussion simpler. 
The structure of perfectly nested loops can be captured by an ordered set of 
statements S1 , . . . ,S~  (with Si textually before Sj if i < j)  and an iteration 
domain ~9 C ~ '~  that  describes the values of the loops counters (n is the number 
of nested loops). Given a statement S, to each n-dimensional vector I E l) 
corresponds a particular execution (called instance) of S, denoted by S(I) .  

Dependences between instances of statements define the e x p a n d e d  d e p e n -  
d e n c e  g r a p h  ( E D G ) .  The vertices of the EDG are all possible instances 
{(Si , I )  J l  < i < s and I C 9} .  There is an edge from (S,',I) to (Sb, J)  (de- 
noted by Si(I) ~ Sj (J)) if executing instance Sj (J) before instance Si (I) may 
change the result of the program. For all 1 < i, j _< s, one defines the distance 
set E~,j as follows: 

Ei,j : { (J  - I) I S{(I) ~ Sj(J )}  (Ei,i C ~ )  (1) 

In general, the EDG (and the distance sets) cannot be computed at compile- 
time, either because some information is missing (such as the values of size 
parameters or the exact accesses to memory),  or because generating the whole 
graph is too expensive. Instead, dependences are captured through a smaller, 
(in general) cyclic directed (multi) graph, with s vertices, called the r e d u c e d  
dependence g r a p h  ( R D G ) .  Each edge e has a label w(e). This label has a 
different meaning depending upon the dependence abstraction that is used: it 
represents 2 a set D,  C Z~ '~ such that: 

Vi, j, 1 < i , j  < s, Ei,j C (U~=(s,..~)D~.) t%~ 

In other words, the RDG describes, in a condensed manner, a superset of the 
EDG, called the apparent dependence g r a p h  ( A D G ) .  The ADG and the 
EDG have the same vertices, but the ADG has more edges, defined by: 

(Si, I) :=* (Sj, J) in the ADG r B e = (Si, Sj) in the RDG I ( J - I )  E D~ (3) 

Equations ] and 2 ensure that  the EDG: is a subset of the ADG. 

except for exact dependence analysis where it defines a subset of ~ "  • ~ .  
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2.3 M a x i m a l  deg ree  of  pa r a l l e l i sm  

We now define what we call maximal parallelism extraction in reduced depen- 
dence graphs. We consider that  the only information available for extracting 
parallelism in a set of loops L is the RDG associated to L. Any parallelization 
algorithm that  transforms L into an equivalent code Lt has to preserve all de- 
pendences summarized in the RDG, i.e. all dependences described in the ADG 
(and not in the EDG which is not known!). If (Si, I) ==~ (Sj, J) in the ADG 
then (Si, I) must be computed before (Sj, J) in the transformed code Lt. 

D e f i n i t i o n 1 .  For a given statement S in L, we define the S - l a t ency  of the 
transformed code Lt as the minimal number of clock cycles needed to execute 
Lt if: 1) an unbounded number of processors is available; 2) executing an instance 
of S requires one clock cycle; 3) any other operation requires zero clock cycle. 
The latency of Lt is defined as the sum of all S-lateneies. 

Since two instances linked by an edge in the ADG cannot be computed at 
the same clock cycle in the transformed code Lt, the latency of Lt, whatever 
the parallelization algorithm, is larger than the length of the longest path in the 
ADG. With this simple remark, we can define a theoretical framework in which 
the optimality of parallelization algorithms, with respect to a given dependence 
abstraction, can be discussed. In the following definitions, the RDGs are sup- 
posed to be labeled with a fixed dependence abstraction and the optimality is 
defined with respect to this abstraction. 

D e f i n i t i o n 2 .  Let G be a RDG and ~ be the n-dimensional cube of size N. Let 
d be the smallest non negative integer such that  the length of the longest path in 
the ADG, is O(Nd). Then, we say that  the deg ree  o f  ( in t r ins ic )  p a r a l l e l i s m  
in G is (n - d) or that  G contains (n - d) degrees of parallelism. 

D e f i n i t i o n 3 .  Let L be a set of n nested loops and G its RDG. Apply a paral- 
lelization algorithm A to G and suppose that  7) is the n-dimensional cube of size 
N. The de g re e  o f  pa r a l l e l i sm  e x t r a c t i o n  for A is (n - d) if d is the smallest 
non negative integer such that  the latency of the transformed code is O(Nd). 

D e f i n i t i o n 4 .  An algorithm A performs maximal parallelism extraction (or is 
said o p t i m a l  for  pa r a l l e l i sm  e x t r a c t i o n )  if for each RDG G, the degree of 
parallelism extraction is equal to the degree of intrinsic parallelism. 

Then the optimality of a parallelization algorithm A can be proved as follows. 
Let L be a set of n nested loops, G its RDG, and Ga the corresponding ADG. 
Let (n - d) be the degree of parallelism extraction for A in G. Then, we have at 
least two ways for proving the optimality of A: 

1. Build in Ga a dependence path whose length is not O(Na-1).  
2. Build a set of loops L ~ whose RDG is also G and whose EDG contains a 

dependence path whose length is not O(N e-l). 



383 

Note that (2) implies (1) since the EDG of L' is included in G~ (L and L' have 
the same RDG). Therefore, proving (2) is more powerful. It reveals the intrinsic 
limitations due to the dependence abstraction itself: even if their EDGs may 
be different, L and L / cannot be distinguished by the parallelization algorithm, 
since they have the same RDG. Therefore, since L' is parallelized optimally, the 
algorithm is considered optimal with respect to the dependence abstraction that 
is used. Figure 1 recalls the links between L, L' and their EDG, RDG and ADG. 
The loops L I are called appa ren t  nes ted  loops. 

Initial loops L Apparent loops L' 

EDG C ADG D EDG 

contains ~ dependence p~th  

R D G  w~ose length is not  O(N d-l) 

Transformed loops 
with (n-d) degrees of parallelism extracted 

Fig. 1. Links between L, L' and their EDG, ADG and RDG 

One can define a more precise notion of optimality by using the notion of S- 
latency instead of latency. The S-latency is related to the S-length of the longest 
path in the ADG, where the S-length of a path P is the number of vertices in P 
that are instances of S. Similarly, we define the S-degree of parallelism extraction 
in Lt, and the S-degree of intrinsic parallelism in a RDG. Finally, we have the 
following notion of optimality: 

Def ini t ion 5. An algorithm A performs maximal parallelism extraction (or is 
said op t ima l  for para l le l ism ext rac t ion)  if for each RDG G and for each 
statement S of G, the S-degree of parallelism extraction for A in G is equal to 
the S-degree of intrinsic parallelism in G. 

With this definition, we can discuss the quality of parallelizing algorithms even 
for statements that do not belong to the most sequential part of the code. Note 
that this definition of optimality is more precise than Definition 4 since the 
degree of intrinsic parallelism (resp. of parallelism extraction) in G is the minimal 
S-degree of intrinsic parallelism (resp. of parallelism extraction) in G. 

One could argue that the latency and the S-latency of a transformed code are 
not easy to compute. Indeed, in the general case, the latency can be computed 
only by executing the transformed code with a fixed value of N. However, for 
most known parallelizing algorithms, the degree of parallelism extraction (but 
not necessarily the latency) can be computed simply by examining the structure 
of the transformed code, as shown by Lemma 6. 
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L e m m a  6. In addition to the hypotheses of Definition 3, assume that each state- 
ment S of the initial code L appears only once in the transformed code Lt and 
is surrounded by exactly n loops. Furthermore, assume that the iteration domain 
T)t described by these n loops contains a n-cube of size $2(N) and is contained 
in a n-cube of size O(N).  Then, the number of parallel loops that surrounds S 
is the S-degree of parallelism extraction and the minimal S-degree of parallelism 
extraction is the degree of parallelism extraction. 

We now discuss, within this theoretical framework, the optimality of Allen 
and Kennedy's algorithm with respect to the dependence level abstraction. A 
similar study for other dependence abstractions can be found in [4] 

3 A l l e n  a n d  K e n n e d y ' s  a l g o r i t h m  

Allen and Kennedy's algorithm has first been designed for vectorizing loops. 
Then, it has been extended so as to maximize the number of parallel loops and 
to minimize the number of synchronizations in the transformed code. It has been 
shown (see details in [3, 22]) that  for each statement of the initial code, as many 
surrounding loops as possible are detected as parallel loops. Therefore, one could 
think that  what we want to prove in this paper has been already proved! 

However, looking precisely into the details of Allen and Kennedy's proof 
reveals that  what has actually been proved is the following: consider a statement 
S of the initial code and Li one of the surrounding loops. Then Li is marked as 
parallel if and only if there is no dependence at level i between two instances 
of S. This result proves that  the algorithm is optimal among all parallelization 
algorithms that  describe, in the transformed code, the instances of S with exactly 
the same loops as in the initial code. This does not prove a general optimality 
property. In particular, this does not prove that it is not possible to detect more 
parallelism with more sophisticated techniques than loop distribution and loop 
fusion. This paper gives an answer to this question. 

We first recall the definition of dependence level, the dependence approx- 
imation used by Allen and Kennedy's algorithm. Then, we recall Allen and 
Kennedy's algorithm, in its simplest form, which is sufficient for discussing the 
optimality for parallelism extraction. 

The d e p e n d e n c e  level  associated to a dependence distance J - 1 where 
Si (I) ~ Sj (J) is either c~ if J -  I = 0 or the smallest integer l, 1 < l < n, such 
that  the l-th component of Y - I is non zero (and thus positive). A r e d u c e d  
l eve led  d e p e n d e n c e  g r a p h  ( R L D G )  is a reduced dependence graph whose 
edges are labeled by dependence levels. The level  l(G) of a RLDG G is the 
minimal level of an edge of G: l(G) = min{/(e) [ e e G}. 

We need to recall some graphs definitions: a s t r o n g l y  c o n n e c t e d  c o mp o -  
n e n t  of a directed graph G is a maximal subgraph of G in which for any vertices 
p and q (p r q) there is a path from p to q. The acycl ic  c o n d e n s a t i o n  of a 
graph G is the acyclic graph whose nodes are the strongly connected components 
]21,.. . ,  ];~ of G and there is an edge from ~i to ])j if there is an edge e = (xi, yj) 
in G such that  x~ G ~21 and yj E "12j. 
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To apply Allen and Kennedy's  algorithm to a RLDG G, call AK(G, 1) where: 

A K ( H ,  l) 
- H ' = g \ { e l l ( e ) < l }  

- Build H"  the acyclic condensation of H I, and number its vertices 1;1, . . . ,  Vc in a 
topological sort order. 

- For i =  1 t o c d o  
1. I f  )21 is reduced to a single statement S, with no edge, then  generate parallel 

DO loops (DOALL) in all remaining dimensions (i.e. for levels I to n) and 
generate code for S. 

2. Otherwise, let k = t(];~). Generate parallel DO loops (DOALL) for levels from 
l to k - 1, and a sequential DO loop (DOSEQ) for level k. Call AK(I;~, k + 1). 

4 Loop nest generation algorithm 

In this section, we present a systematic procedure, called LGA (for Loops Gen- 
eration Algorithm),  tha t  builds, f rom a RLDG G, a perfect loop nest L I whose 
RLDG is exactly G. L ~ are the desired apparent  loops (see Section 2) that  we use 
to prove the opt imal i ty  of Algorithm AK (see Theorem 7). The construction of 
L ~ is based on the notion of critical edges. These edges are built in Section 4.1. 
The exact formulat ion of Procedure LGA is given in Section 4.2. Finally, in 
Section 4.3, we show that  the RLDG associated to L ~ is G, as desired. 

4.1 C r i t i c a l  e d g e s  

The procedure Critical given below defines a set of edges E~, called c r i t i c a l  
edges, that  we need for defining the apparent  loops L/. We call Critieal(Gi) for 
each strongly connected component  Gi of the RLDG G which contains at least 
one edge. 

Critical(H) 
1. l +-- l(H). 
2. Select an edge f of H with level I. Call f the eritleal  edge of H. Er +- Ec U {f}. 
3. H'  = H \ {e I I(e) < l}. 
4. Let H i , . . . ,  Hc be the strongly connected components of H t. 
5. Call Critical(Hi) for each Hi that has at least one edge. 

4.2  G e n e r a t i o n  o f  a p p a r e n t  n e s t e d  l o o p s  

Let G = (E, V) be a RLDG. We assume that  G has been built in a consistent 
way from some nested loops. Therefore, vertices can be numbered according to 
the topological order defined by the edges whose level is co: vi ~ )  vj ~ i < j .  
We denote by d the d i m e n s i o n  of G: d = max(/(e)  I e E E and l(e) < oc}. The 
apparent  loops L t corresponding to G will consist of d perfectly nested loops, 
with IV I s tatements .  Each s ta tement  will be of the form ai[I] = rhs(i) where ai 
is a d-dimensional array and rhs(i) is the right-hand side that  defines array ai. 
In the following, E~ is the set of critical edges of G (defined in Section 4.1) and 
"@" denotes the operator of expression concatenation. 
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L G A ( G )  

Initialization: 
For i = 1 to Ivl do rhs(i) e- "1" 

Computation of the statements of L': 
For each e = (vi, vj) E E do 
i l l (e)  = oe then  rhs(j) +-- rhs(j) @ "+ai[It, . . . ,  Id]" 
i l l (e)  < co and e ~ Ec 

t hen  rhs(j) e- rhs(j) @ "+ai[h, . . . ,  Iz(~)-t, I~(r - 1, I~(~)+~ . . . .  , In]" 
if  e e E~ then  rhs(j) +- rhs(j) @ "+ai[I~,..., II(~)-~, I~(~) - 1, N , . . . ,  N]" 

a-z(~) 
Code generation for L~: 
For i = 1 to d do  generate ("For Ii = 1 to N do") 
For i = 1 to IVI do generate ("ai[I1,. . . ,  Ie] :=" @ rhs(i)) 

4.3  O p t i m a l i t y  resul t  

The following results are detailed in [5]. Let L be a set of n perfectly nested 
loops whose RLDG is G. Use Algorithm LGA to generate the apparent loops 
L ~. The RLDG of L ~ is G by construction. Let ds be the number of calls to 
Procedure Critical that  concern Statement S: n - ds is also equM to the degree 
of parallelism extraction for Allen and Kennedy's algorithm. Furthermore: 

T h e o r e m  7. For each strongly connected component Gi of G, there is a path in 
the EDG of L I which visits, s d*) times, each statement S in Gi. 

The proof is long, technical and painful. The fundamental corollary is: 

Coro l la ry  8. Allen and Kennedy's algorithm is optimal for parallelism extrac- 
tion in reduced leveled dependence graphs (optimal in the sense of Definition 5). 

We illustrate the optimality theorem through the following example: 

For i = 1 to  N do 3~ oo 5~ 
For j = I to N do / - ' ~  ~ t " - - ' - " - . ~ / - x  

St : a(i,j) := l + a ( i , j - 1 )  + b(i - l , j )  2 ~ . . ~ ~ ~ )  1 
$2 : b(i, j)  := 1 + a(i, j )  + b(i - 1, j)  1 

(a) Original loop nest L (b) RLDG 

The RLDG is strongly connected and contains one edge at level 1. Thus, 
the first loop is marked sequential. At level 2, each statement is in a separate 
strongly connected component and, after loop distribution, the second loop is 
marked sequential for $1 and parallel for $2. Indeed, one can check that  L 
and the apparent loops L' have the same RLDG and that  L ~ contains an exact 
dependence path  including O(N  2) instances of S1 and O(N)  instances of $2. 
This proves the optimality of Algorithm AK in our example even if the original 
program contains only uniform dependences, and, therefore, can be scheduled 
with a single sequential loop using the hyperplane method. 
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For i - - l t o  N d o  
For j = l t o N d o  

$1 : a ( i , j ) : = l + a ( i , j - 1 ) + b ( i - l , N )  
$2 : b( i , j ) :=  l + a ( i , j ) + b ( i -  1,j) 

Apparent loops L ~ 

5 C o n c l u s i o n  

We have introduced a theoretical framework in which the optimality of algo- 
rithms that detect parallelism in nested loops can be discussed. We have for- 
malized the notions of degree of parallelism extraction (with respect to a given 
dependence abstraction) and of degree of intrinsic parallelism (contained in a 
reduced dependence graph). This study explains the impact of a given depen- 
dence abstraction on the maximal parallelism that can be detected: it determines 
whether the limitations of a parallelization algorithm are due to the algorithm 
itself or are due to the weaknesses of the dependence abstraction. 

In this framework, we have studied more precisely the link between depen- 
dence abstractions and parallelism extraction in the particular case of dependence 
level. Our main result is the optimality of Allen and Kennedy's algorithm for 
parallelism extraction in reduced leveled dependence graphs. This means that 
even the most sophisticated algorithm cannot detect more parallelism, as long 
as dependence level is the only information available. In other words, loop distri- 
bution is sufficient for detecting maximal parallelism in dependence graphs with 
levels. 

The proof is based on the following fact: given a set of loops L whose de- 
pendences are specified by levels, we are able to systematically build a set of 
loops L ~ that cannot be distinguished from L (i.e. they have the same reduced 
dependence graph) and that contains exactly the degree of parallelism found 
by Allen and Kennedy's algorithm. We call these loops the apparent loops. We 
believe this construction is of interest because it better explains why some loops 
appear sequential when considering the reduced dependence graph while they 
actually may contain some parallelism. 
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