
On the Optimality of Allen and Kennedy's Algorithm
for Parallelism Extraction in Nested Loops

Alain Darte and Fr4d4ric Vivien*

LIP, URA CNRS 1398, ENS-Lyon, F - 69364 LYON Cedex 07, France
e-mail : [Alain. Darte, Frederic. givien] @lip. ens-lyon, fr

Abstract . We explore the link between dependence abstractions and
maximal parallelism extraction in nested loops. Our goal is to find, for
each dependence abstraction, the minima] transformations needed for
maximal parallelism extraction. The result of this paper is that Allen
and Kennedy's algorithm is optimal when dependences are approximated
by dependence levels. This means that even the most sophisticated algo-
rithm cannot detect more parallelism than found by Allen and Kennedy's
algorithm, as long as dependence level is the only information available.

1 I n t r o d u c t i o n

Many automatic loop parallelization techniques have been introduced over the
last 30 years, starting from the early work of Karp, Miller and Winograd [12]
in 1967 who studied the structure of computations in repetitive codes called
systems of uniform recurrence equations. This work defined the foundation of
today's loop compilation techniques. It has been widely exploited and extended
in the systolic array community, as well as in the compiler-parallelizer commu-
nity: Lamport [14] proposed a parallel scheme - the hyperplane method - in 1974,
then several loop transformations were introduced (loop distribution/fusion, loop
skewing, loop reversal, loop interchange, . . .) for vectorizing computations, max-
imizing parallelism, maximizing locality and/or minimizing synchronizations.
These techniques have been used as basic tools for optimizing algorithms, the
most two famous being certainly Allen and Kennedy's algorithm [1], designed at
Rice in the Fortran D compiler, and Wolf and Lam's algorithm [18], designed at
Stanford in the SUIF compiler.

At the same time, dependence analysis has been developed so as to provide
sufficient information for checking the legality of these loop transformations,
in the sense that they do not change the final result of the program. Differ-
ent abstractions of dependences have been defined (among others dependence
distance [16], dependence level [1], dependence direction vector [19], dependence
polyhedron or cone [1i], . . .) , and more and more accurate tests for dependence
analysis have been designed (among others Banerjee's tests [2], I test [13], A
test [9], A test [15], PIP test [7], PIPS test [10], Omega test [17], . . .) .

* Supported by the CNRS-INRIA project ReMaP.

380

In general, dependence abstractions and dependence tests have been intro-
duced with some particular loop transformations in mind. For example, the
dependence level was designed for Allen and Kennedy's algorithm, whereas the
PIP test is the main tool for Feautrier's method for array expansion [7] and
parallelism extraction by affine schedules [8]. However, very few authors have
studied, in a general manner, the links between both theories, dependence anal-
ysis and loop restructurations, and have tried to answer the following two dual
questions:

- What is the minimal dependence abstraction needed for checking the regality
of a given transformation?

- What is the simplest algorithm that exploits all information provided by a
given dependence abstraction at best?

With the answer to the first question, we can adapt the dependence analysis
to the parallelization algorithm, and avoid implementing an expensive depen-
dence test if it is not needed. This question has been deeply studied in Yang's
thesis [21], and summarized in Yang, Ancourt and Irigoin's paper [20].

Conversely, with the answer to the second question, we can adapt the par-
allelization algorithm to the dependence analysis, and avoid using an expensive
parallel~zation algorithm, if a simpler algorithm extracts the same degree of
parallelism. This question ha.s been addressed by Darte and Vivien in [6] for de-
pendence abstractions based on a polyhedral approximation of distance vectors.

Completing this previous work, we propose a more precise study of the link
between dependence abstractions and pm'allelism extraction in the particular case
of dependence levels. Our main result is that, in this context, Allen and Kennedy's
parallelization algorithm is optimal for parallelism extraction, which means that
even the most sophisticated algorithm cannot detect more parallel loops than
Allen and Kennedy's algorithm does, as long as dependence level is the only
information available. In other words, loop distribution is sufficient for detecting
maximal parallelism in dependence graphs with dependence levels. There is no
need to use more complicated transformations such as loop interchange, loop
skewing, or any other transformations that could be invented, because there is
an intrinsic limitation in the dependence level abstraction that prevents detecting

more parallelism.
The paper is organized as follows. In Section 2, we explain what we call

maximal parallelism extraction for a given dependence abstraction. In Section 3,
we recall the definition of dependence levels and we present Allen and Kennedy's
algorithm in its simplest form, which is sufficient for what we want to prove.
In Section 4~ we build a set of loops that are equivalent to the loops to be
parallelized, in the sense that they have the same dependence graph. These
loops contain exactly the degree of parallelism found by Allen and Kennedy's
algorithm which proves the optimality (however, as the proof is quite long, we
refer Go [5] for an extended version). FinMty, Section 5 summarizes the paper.

381

2 Theoret ical framework

2.1 Notations

The notations used in the following sections are:

- f (N) = O(N) if 3 k > 0 such that f (N) <_ k N for all sufficiently large N.
- f (N) = S2(N) if 3 k > 0 such that I (N) >_ k N for all sufficiently large N.
- f (N) = O(N) if f (N) = O(N) and f (N) = ~2(N).
- If X is a finite set, IX I denotes the number of elements in X.
- G = (V, E) denotes a directed graph with vertices V and edges E.
- e = (x, y) denotes an edge from vertex r to vertex y.

2.2 D e p e n d e n c e g r a p h s

We restrict to the case of perfectly nested loops for making the discussion simpler.
The structure of perfectly nested loops can be captured by an ordered set of
statements S1 , . . . ,S~ (with Si textually before Sj if i < j) and an iteration
domain ~9 C ~ '~ that describes the values of the loops counters (n is the number
of nested loops). Given a statement S, to each n-dimensional vector I E l)
corresponds a particular execution (called instance) of S, denoted by S(I) .

Dependences between instances of statements define the e x p a n d e d d e p e n -
d e n c e g r a p h (E D G) . The vertices of the EDG are all possible instances
{(Si , I) J l < i < s and I C 9} . There is an edge from (S,',I) to (Sb, J) (de-
noted by Si(I) ~ Sj (J)) if executing instance Sj (J) before instance Si (I) may
change the result of the program. For all 1 < i, j _< s, one defines the distance
set E~,j as follows:

Ei,j : { (J - I) I S{(I) ~ Sj(J)} (Ei,i C ~) (1)

In general, the EDG (and the distance sets) cannot be computed at compile-
time, either because some information is missing (such as the values of size
parameters or the exact accesses to memory), or because generating the whole
graph is too expensive. Instead, dependences are captured through a smaller,
(in general) cyclic directed (multi) graph, with s vertices, called the r e d u c e d
dependence g r a p h (R D G) . Each edge e has a label w(e). This label has a
different meaning depending upon the dependence abstraction that is used: it
represents 2 a set D, C Z~ '~ such that:

Vi, j, 1 < i , j < s, Ei,j C (U~=(s,..~)D~.) t%~

In other words, the RDG describes, in a condensed manner, a superset of the
EDG, called the apparent dependence g r a p h (A D G) . The ADG and the
EDG have the same vertices, but the ADG has more edges, defined by:

(Si, I) :=* (Sj, J) in the ADG r B e = (Si, Sj) in the RDG I (J - I) E D~ (3)

Equations] and 2 ensure that the EDG: is a subset of the ADG.

except for exact dependence analysis where it defines a subset of ~ " • ~ .

382

2.3 M a x i m a l deg ree of pa r a l l e l i sm

We now define what we call maximal parallelism extraction in reduced depen-
dence graphs. We consider that the only information available for extracting
parallelism in a set of loops L is the RDG associated to L. Any parallelization
algorithm that transforms L into an equivalent code Lt has to preserve all de-
pendences summarized in the RDG, i.e. all dependences described in the ADG
(and not in the EDG which is not known!). If (Si, I) ==~ (Sj, J) in the ADG
then (Si, I) must be computed before (Sj, J) in the transformed code Lt.

D e f i n i t i o n 1 . For a given statement S in L, we define the S - l a t ency of the
transformed code Lt as the minimal number of clock cycles needed to execute
Lt if: 1) an unbounded number of processors is available; 2) executing an instance
of S requires one clock cycle; 3) any other operation requires zero clock cycle.
The latency of Lt is defined as the sum of all S-lateneies.

Since two instances linked by an edge in the ADG cannot be computed at
the same clock cycle in the transformed code Lt, the latency of Lt, whatever
the parallelization algorithm, is larger than the length of the longest path in the
ADG. With this simple remark, we can define a theoretical framework in which
the optimality of parallelization algorithms, with respect to a given dependence
abstraction, can be discussed. In the following definitions, the RDGs are sup-
posed to be labeled with a fixed dependence abstraction and the optimality is
defined with respect to this abstraction.

D e f i n i t i o n 2 . Let G be a RDG and ~ be the n-dimensional cube of size N. Let
d be the smallest non negative integer such that the length of the longest path in
the ADG, is O(Nd). Then, we say that the deg ree o f (in t r ins ic) p a r a l l e l i s m
in G is (n - d) or that G contains (n - d) degrees of parallelism.

D e f i n i t i o n 3 . Let L be a set of n nested loops and G its RDG. Apply a paral-
lelization algorithm A to G and suppose that 7) is the n-dimensional cube of size
N. The de g re e o f pa r a l l e l i sm e x t r a c t i o n for A is (n - d) if d is the smallest
non negative integer such that the latency of the transformed code is O(Nd).

D e f i n i t i o n 4 . An algorithm A performs maximal parallelism extraction (or is
said o p t i m a l for pa r a l l e l i sm e x t r a c t i o n) if for each RDG G, the degree of
parallelism extraction is equal to the degree of intrinsic parallelism.

Then the optimality of a parallelization algorithm A can be proved as follows.
Let L be a set of n nested loops, G its RDG, and Ga the corresponding ADG.
Let (n - d) be the degree of parallelism extraction for A in G. Then, we have at
least two ways for proving the optimality of A:

1. Build in Ga a dependence path whose length is not O(Na-1).
2. Build a set of loops L ~ whose RDG is also G and whose EDG contains a

dependence path whose length is not O(N e-l).

383

Note that (2) implies (1) since the EDG of L' is included in G~ (L and L' have
the same RDG). Therefore, proving (2) is more powerful. It reveals the intrinsic
limitations due to the dependence abstraction itself: even if their EDGs may
be different, L and L / cannot be distinguished by the parallelization algorithm,
since they have the same RDG. Therefore, since L' is parallelized optimally, the
algorithm is considered optimal with respect to the dependence abstraction that
is used. Figure 1 recalls the links between L, L' and their EDG, RDG and ADG.
The loops L I are called appa ren t nes ted loops.

Initial loops L Apparent loops L'

EDG C ADG D EDG

contains ~ dependence p~th

R D G w~ose length is not O(N d-l)

Transformed loops
with (n-d) degrees of parallelism extracted

Fig. 1. Links between L, L' and their EDG, ADG and RDG

One can define a more precise notion of optimality by using the notion of S-
latency instead of latency. The S-latency is related to the S-length of the longest
path in the ADG, where the S-length of a path P is the number of vertices in P
that are instances of S. Similarly, we define the S-degree of parallelism extraction
in Lt, and the S-degree of intrinsic parallelism in a RDG. Finally, we have the
following notion of optimality:

Def ini t ion 5. An algorithm A performs maximal parallelism extraction (or is
said op t ima l for para l le l ism ext rac t ion) if for each RDG G and for each
statement S of G, the S-degree of parallelism extraction for A in G is equal to
the S-degree of intrinsic parallelism in G.

With this definition, we can discuss the quality of parallelizing algorithms even
for statements that do not belong to the most sequential part of the code. Note
that this definition of optimality is more precise than Definition 4 since the
degree of intrinsic parallelism (resp. of parallelism extraction) in G is the minimal
S-degree of intrinsic parallelism (resp. of parallelism extraction) in G.

One could argue that the latency and the S-latency of a transformed code are
not easy to compute. Indeed, in the general case, the latency can be computed
only by executing the transformed code with a fixed value of N. However, for
most known parallelizing algorithms, the degree of parallelism extraction (but
not necessarily the latency) can be computed simply by examining the structure
of the transformed code, as shown by Lemma 6.

384

L e m m a 6. In addition to the hypotheses of Definition 3, assume that each state-
ment S of the initial code L appears only once in the transformed code Lt and
is surrounded by exactly n loops. Furthermore, assume that the iteration domain
T)t described by these n loops contains a n-cube of size $2(N) and is contained
in a n-cube of size O(N). Then, the number of parallel loops that surrounds S
is the S-degree of parallelism extraction and the minimal S-degree of parallelism
extraction is the degree of parallelism extraction.

We now discuss, within this theoretical framework, the optimality of Allen
and Kennedy's algorithm with respect to the dependence level abstraction. A
similar study for other dependence abstractions can be found in [4]

3 A l l e n a n d K e n n e d y ' s a l g o r i t h m

Allen and Kennedy's algorithm has first been designed for vectorizing loops.
Then, it has been extended so as to maximize the number of parallel loops and
to minimize the number of synchronizations in the transformed code. It has been
shown (see details in [3, 22]) that for each statement of the initial code, as many
surrounding loops as possible are detected as parallel loops. Therefore, one could
think that what we want to prove in this paper has been already proved!

However, looking precisely into the details of Allen and Kennedy's proof
reveals that what has actually been proved is the following: consider a statement
S of the initial code and Li one of the surrounding loops. Then Li is marked as
parallel if and only if there is no dependence at level i between two instances
of S. This result proves that the algorithm is optimal among all parallelization
algorithms that describe, in the transformed code, the instances of S with exactly
the same loops as in the initial code. This does not prove a general optimality
property. In particular, this does not prove that it is not possible to detect more
parallelism with more sophisticated techniques than loop distribution and loop
fusion. This paper gives an answer to this question.

We first recall the definition of dependence level, the dependence approx-
imation used by Allen and Kennedy's algorithm. Then, we recall Allen and
Kennedy's algorithm, in its simplest form, which is sufficient for discussing the
optimality for parallelism extraction.

The d e p e n d e n c e level associated to a dependence distance J - 1 where
Si (I) ~ Sj (J) is either c~ if J - I = 0 or the smallest integer l, 1 < l < n, such
that the l-th component of Y - I is non zero (and thus positive). A r e d u c e d
l eve led d e p e n d e n c e g r a p h (R L D G) is a reduced dependence graph whose
edges are labeled by dependence levels. The level l(G) of a RLDG G is the
minimal level of an edge of G: l(G) = min{/(e) [e e G}.

We need to recall some graphs definitions: a s t r o n g l y c o n n e c t e d c o mp o -
n e n t of a directed graph G is a maximal subgraph of G in which for any vertices
p and q (p r q) there is a path from p to q. The acycl ic c o n d e n s a t i o n of a
graph G is the acyclic graph whose nodes are the strongly connected components
]21,.. . ,];~ of G and there is an edge from ~i to])j if there is an edge e = (xi, yj)
in G such that x~ G ~21 and yj E "12j.

385

To apply Allen and Kennedy's algorithm to a RLDG G, call AK(G, 1) where:

A K (H , l)
- H ' = g \ { e l l (e) < l }

- Build H" the acyclic condensation of H I, and number its vertices 1;1, . . . , Vc in a
topological sort order.

- For i = 1 t o c d o
1. I f)21 is reduced to a single statement S, with no edge, then generate parallel

DO loops (DOALL) in all remaining dimensions (i.e. for levels I to n) and
generate code for S.

2. Otherwise, let k = t(];~). Generate parallel DO loops (DOALL) for levels from
l to k - 1, and a sequential DO loop (DOSEQ) for level k. Call AK(I;~, k + 1).

4 Loop nest generation algorithm

In this section, we present a systematic procedure, called LGA (for Loops Gen-
eration Algorithm), tha t builds, f rom a RLDG G, a perfect loop nest L I whose
RLDG is exactly G. L ~ are the desired apparent loops (see Section 2) that we use
to prove the opt imal i ty of Algorithm AK (see Theorem 7). The construction of
L ~ is based on the notion of critical edges. These edges are built in Section 4.1.
The exact formulat ion of Procedure LGA is given in Section 4.2. Finally, in
Section 4.3, we show that the RLDG associated to L ~ is G, as desired.

4.1 C r i t i c a l e d g e s

The procedure Critical given below defines a set of edges E~, called c r i t i c a l
edges, that we need for defining the apparent loops L/. We call Critieal(Gi) for
each strongly connected component Gi of the RLDG G which contains at least
one edge.

Critical(H)
1. l +-- l(H).
2. Select an edge f of H with level I. Call f the eritleal edge of H. Er +- Ec U {f}.
3. H' = H \ {e I I(e) < l}.
4. Let H i , . . . , Hc be the strongly connected components of H t.
5. Call Critical(Hi) for each Hi that has at least one edge.

4.2 G e n e r a t i o n o f a p p a r e n t n e s t e d l o o p s

Let G = (E, V) be a RLDG. We assume that G has been built in a consistent
way from some nested loops. Therefore, vertices can be numbered according to
the topological order defined by the edges whose level is co: vi ~) vj ~ i < j .
We denote by d the d i m e n s i o n of G: d = max(/(e) I e E E and l(e) < oc}. The
apparent loops L t corresponding to G will consist of d perfectly nested loops,
with IV I s tatements . Each s ta tement will be of the form ai[I] = rhs(i) where ai
is a d-dimensional array and rhs(i) is the right-hand side that defines array ai.
In the following, E~ is the set of critical edges of G (defined in Section 4.1) and
"@" denotes the operator of expression concatenation.

386

L G A (G)

Initialization:
For i = 1 to Ivl do rhs(i) e- "1"

Computation of the statements of L':
For each e = (vi, vj) E E do
i l l (e) = oe then rhs(j) +-- rhs(j) @ "+ai[It, . . . , Id]"
i l l (e) < co and e ~ Ec

t hen rhs(j) e- rhs(j) @ "+ai[h, . . . , Iz(~)-t, I~(r - 1, I~(~)+~ , In]"
if e e E~ then rhs(j) +- rhs(j) @ "+ai[I~,..., II(~)-~, I~(~) - 1, N , . . . , N]"

a-z(~)
Code generation for L~:
For i = 1 to d do generate ("For Ii = 1 to N do")
For i = 1 to IVI do generate ("ai[I1,. . . , Ie] :=" @ rhs(i))

4.3 O p t i m a l i t y resul t

The following results are detailed in [5]. Let L be a set of n perfectly nested
loops whose RLDG is G. Use Algorithm LGA to generate the apparent loops
L ~. The RLDG of L ~ is G by construction. Let ds be the number of calls to
Procedure Critical that concern Statement S: n - ds is also equM to the degree
of parallelism extraction for Allen and Kennedy's algorithm. Furthermore:

T h e o r e m 7. For each strongly connected component Gi of G, there is a path in
the EDG of L I which visits, s d*) times, each statement S in Gi.

The proof is long, technical and painful. The fundamental corollary is:

Coro l la ry 8. Allen and Kennedy's algorithm is optimal for parallelism extrac-
tion in reduced leveled dependence graphs (optimal in the sense of Definition 5).

We illustrate the optimality theorem through the following example:

For i = 1 to N do 3~ oo 5~
For j = I to N do / - ' ~ ~ t " - - ' - " - . ~ / - x

St : a(i,j) := l + a (i , j - 1) + b(i - l , j) 2 ~ . . ~ ~ ~) 1
$2 : b(i, j) := 1 + a(i, j) + b(i - 1, j) 1

(a) Original loop nest L (b) RLDG

The RLDG is strongly connected and contains one edge at level 1. Thus,
the first loop is marked sequential. At level 2, each statement is in a separate
strongly connected component and, after loop distribution, the second loop is
marked sequential for $1 and parallel for $2. Indeed, one can check that L
and the apparent loops L' have the same RLDG and that L ~ contains an exact
dependence path including O(N 2) instances of S1 and O(N) instances of $2.
This proves the optimality of Algorithm AK in our example even if the original
program contains only uniform dependences, and, therefore, can be scheduled
with a single sequential loop using the hyperplane method.

387

For i - - l t o N d o
For j = l t o N d o

$1 : a (i , j) : = l + a (i , j - 1) + b (i - l , N)
$2 : b(i , j) := l + a (i , j) + b (i - 1,j)

Apparent loops L ~

5 C o n c l u s i o n

We have introduced a theoretical framework in which the optimality of algo-
rithms that detect parallelism in nested loops can be discussed. We have for-
malized the notions of degree of parallelism extraction (with respect to a given
dependence abstraction) and of degree of intrinsic parallelism (contained in a
reduced dependence graph). This study explains the impact of a given depen-
dence abstraction on the maximal parallelism that can be detected: it determines
whether the limitations of a parallelization algorithm are due to the algorithm
itself or are due to the weaknesses of the dependence abstraction.

In this framework, we have studied more precisely the link between depen-
dence abstractions and parallelism extraction in the particular case of dependence
level. Our main result is the optimality of Allen and Kennedy's algorithm for
parallelism extraction in reduced leveled dependence graphs. This means that
even the most sophisticated algorithm cannot detect more parallelism, as long
as dependence level is the only information available. In other words, loop distri-
bution is sufficient for detecting maximal parallelism in dependence graphs with
levels.

The proof is based on the following fact: given a set of loops L whose de-
pendences are specified by levels, we are able to systematically build a set of
loops L ~ that cannot be distinguished from L (i.e. they have the same reduced
dependence graph) and that contains exactly the degree of parallelism found
by Allen and Kennedy's algorithm. We call these loops the apparent loops. We
believe this construction is of interest because it better explains why some loops
appear sequential when considering the reduced dependence graph while they
actually may contain some parallelism.

R e f e r e n c e s

1. J.R. Allen and K. Kennedy. Automatic translations of Fortran programs to vector
form. ACM Toplas, 9:491-542, 1987.

2. U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-
lishers, Norwell, MA, 1988.

3. D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis, Dept. of
Computer Science, Rice University, Houston, TX, 1987.

4. Alain Darte and Frederic Vivien. A classification of nested loops parallelization
algorithms. In INRIA-IEEE Symposium on Emerging Technologies and Factory
Automation, pages 217-224. IEEE Computer Society Press, 1995.

388

5. Alain Darte and Frederic Vivien. On the optimality of Allen and Kennedy's al-
gorithm for parallelism extraction in nested loops. Technical Report 96-05, LIP,
ENS-Lyon, France, February 1996. Extended version of Europar'96.

6. Alain Darte and Fr6d6ric Vivien. Optimal fine and medium grain parallelism in
polyhedral reduced dependence graphs. In Proceedings of PACT'96, Boston, MA,
October 1996. IEEE Computer Society Press. To appear.

7. Paul Feautrier. Dataflow analysis of array and scalar references. Int. J. Parallel
Programming, 20(1):23-51, 1991.

8. Paul Feautrier. Some efficient solutions to the affine scheduling problem, part II,
multi-dimensional time. Int. J. Parallel Programming, 21(6):389-420, December
1992.

9. G. Goff, K. Kennedy, and C.W. Tseng. Practical dependence testing. In Pro-
ceedings of A CM SIGPLAN'91 Conference on Programming Language Design and
Implementation, Toronto, Canada, June 1991.

10. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization:
an overview of the PIPS project. In Proceedings of the 1991 ACM International
Conference on Supercomputing, Cologne, Germany, June 1991.

11. F. Irigoin and R. Triolet. Computing dependence direction vectors and dependence
cones with linear systems. Technical Report ENSMP-CAI-87-E94, Eeole des Mines
de Paris, Fontainebleau (France), 1987.

12. R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations for
uniform recurrence equations. Journal of the ACM, i4(3):563-590, July 1967.

13. X.Y. Kong, D. Klappholz, and K. Psarris. The I test: a new test for subscript
data dependence. In Padua, editor, Proceedings of 1990 International Conference
of Parallel Processing, August 1990.

14. Leslie Lamport. The parallel execution of DO loops. Communications of the ACM,
17(2):83-93, February 1974.

15. Z.Y. Li, P.-C. Yew, and C.Q. Zhu. Data dependence analysis on multi-dimensional
array references. In Proceedings of the 1989 ACM International Conference on
Supercomputing, pages 215-224, Crete, Greece, June 1989.

16. Y. Muraoka. ParaUelism exposure and exploitation in programs. PhD thesis, Dept.
of Computer Science, University of Illinois at Urbana-Champaign, February 1971.

17. William Pugh. The Omega test: a fast and practical integer programming algo-
rithm for dependence analysis. Communications of the ACM, 8:102-114, August

1992.
18. Michael E. Wolf and Monica S. Lain. A loop transformation theory and an al-

gorithm to maximize parallelism. IEEE Trans. Parallel Distributed Systems,
2(4):452-471, October 1991.

19. Michael Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cam-

bridge MA, 1989.
20. Y.-Q. Yang, C. Ancourt~ and F. trigoin. Minimal data dependence abstractions for

loop transformations. International Journal of Parallel Programming, 23(4):359-
388, August 1995.

21. Yi-Qing Yang. Tests des ddpendances et transformations de programme. PhD
thesis, Ecole Nationale Sup~rieure des Mines de Paris, Fontainebleau, France, 1993.

22. Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Com-

puters. ACM Press, 1990.

