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Abstract. This paper is devoted to static load balancing techniques for
mapping iterative algorithms onto heterogeneous clusters. The applica-
tion data is partitioned over the processors. At each iteration, indepen-
dent calculations are carried out in parallel, and some communications
take place. The question is to determine how to slice the application data
into chunks, and to assign these chunks to the processors, so that the
total execution time is minimized. We establish a complexity result that
assesses the difficulty of this problem, and we design practical heuristics
that provide efficient distribution schemes.

1 Introduction

In this paper, we investigate static load balancing techniques for iterative algo-
rithms that operate on a large collection of application data. The application
data will be partitioned over the processors. At each iteration, some indepen-
dent calculations will be carried out in parallel, and then some communications
will take place. This scheme is very general, and encompasses a broad spectrum
of scientific computations, from mesh based solvers to signal processing, and
image processing algorithms. The target architecture is a fully heterogeneous
cluster, composed of different-speed processors that communicate through links
of different capacities. The question is to determine the best partitioning of the
application data. The difficulty comes from the fact that both the computation
and communication capabilities of each resource must be taken into account.

An abstract view of the problem is the following: the iterative algorithm
repeatedly operates on a large rectangular matrix of data samples. This data
matrix is split into vertical slices that are allocated to the computing resources
(processors). At each step of the algorithm, the slices are updated locally, and
then boundary information is exchanged between consecutive slices. This (vir-
tual) geometrical constraint advocates that processors be organized as a virtual
ring. Then each processor will only communicate twice, once with its (virtual)
predecessor in the ring, and once with its successor. There is no reason a priori
to restrict to a uni-dimensional partitioning of the data, and to map it onto
a uni-dimensional ring of processors: more general data partitionings, such as
two-dimensional, recursive, or even arbitrary slicings into rectangles, could be
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considered. But uni-dimensional partitionings are very natural for most applica-
tions, and, as will be shown in this paper, the problem to find the optimal one
is already very difficult.

We assume that the target computing platform can be modeled as a complete
graph:

– Each vertex in the graph models a computing resource Pi, and is weighted
by the relative cycle-time of the resource. Of course the absolute value of
the time-unit is application-dependent, what matters is the relative speed of
one processor versus the other.

– Each edge models a communication link, and is weighted by the relative
capacity of the link. Assuming a complete graph means that there is a virtual
communication link between any processor pair Pi and Pj . Note that this
link does not necessarily need to be a direct physical link. There may be a
path of physical communication links from Pi to Pj : if the slowest link in the
path has maximum capacity ci,j , then the weight of the edge will be ci,j .

We suppose that the communication capacity ci,j is granted between Pi and
Pj (so if some communication links happen to be physically shared, we assume
that a fraction of the total capacity, corresponding to the inverse of ci,j , is
available for messages from Pi to Pj). This assumption of a fixed capacity link
between any processor pair makes good sense for interconnection networks based
upon high-speed switches like Myrinet [2].

Given these hypotheses, the optimization problem that we want to solve
is the following: how to slice the matrix data into chunks, and assign these
chunks to the processors, so that the total execution time for a given sweep step,
namely a computation followed by two neighbor communications, is minimized?
We have to perform resource selection, because there is no reason a priori that
all available processors will be involved in the optimal solution (for example
some fast computing processor may be left idle because its communication links
with the other processors are too slow). Once some resources have been selected,
they must be arranged along the best possible ring, which looks like a difficult
combinatorial problem. Finally, once a ring has been set up, there remains to
load-balance the workloads of the participating resources.

The rest of the paper is organized as follows. In Section 2, we formally state
the previous optimization problem, which we denote as SliceRing. If the net-
work is homogeneous (all links have same capacity), then SliceRing can be
solved easily, as shown in Section 3. But in the general case, SliceRing turns
out to be a difficult problem: we show in Section 4 that the decision problem
associated to SliceRing is NP-complete, as could be expected from its combi-
natorial nature. We derive in Section 5 a formulation of the SliceRing problem
in terms of an integer linear program, thereby providing a (costly) way to deter-
mine the optimal solution. In Section 6, we move to the design of polynomial-time
heuristics, and we report some experimental data. We survey related work in Sec-
tion 7, and we provide a brief comparison of static versus dynamic strategies.
Finally, we state some concluding remarks in Section 8.
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2 Framework

In this section, we formally state the optimization problem to be solved. As
already said, the target computing platform is modeled as a complete graph
G = (P, E). Each node Pi in the graph, 1 ≤ i ≤ |P | = p, models a computing
resource, and is weighted by its relative cycle-time wi: Pi requires S.wi time-
units to process a task of size S. Edges are labeled with communication costs:
the time needed to transfer a message of size L from Pi to Pj is L.ci,j , where ci,j

is the capacity of the link, i.e. the inverse of its bandwidth. The motivation to use
a simple linear-cost model, rather than an affine-cost model involving start-ups,
both for the communications and the computations, is the following: only large-
scale applications are likely to be deployed on heterogeneous platforms. Each
step of the algorithm will be both computation- and communication-intensive,
so that start-up overheads can indeed be neglected. Anyway, most of the results
presented here extend to an affine cost modeling, τi +S.wi for computations and
βi,j + L.ci,j for communications.

Let W be the total size of the work to be performed at each step of the
algorithm. Processor Pi will accomplish a share αi.W of this total work, where
αi ≥ 0 for 1 ≤ i ≤ p and

∑p
i=1 αi = 1. Note that we allow αj = 0 for some index

j, meaning that processor Pj do not participate in the computation. Indeed,
there is no reason a priori for all resources to be involved, especially when the
total work is not so large: the extra communications incurred by adding more
processors may slow down the whole process, despite the increased cumulated
speed.

We will arrange the participating processors along a ring (yet to be deter-
mined). After updating its data slice, each active processor Pi sends some bound-
ary data to its neighbors: let pred(i) and succ(i) denote the predecessor and the
successor of Pi in the virtual ring. Then Pi requires H.ci,succ(i) time-units to
send a message of size H to its successor, plus H.ci,pred(i) to receive a message of
same size from its predecessor. In most situations, we will have symmetric costs
(ci,j = cj,i) but we do not make this assumption here. To illustrate the rela-
tionship between W and H, we can view the original data matrix as a rectangle
composed of W columns of height H, so that one single column is exchanged be-
tween any pair of consecutive processors in the ring (but clearly, the parameter
H can represent any fixed volume of communication).

The total cost of a single step in the sweep algorithm is the maximum, over
all participating processors, of the time spent computing and communicating:

Tstep = max
1≤i≤p

I{i}[αi.W.wi + H.(ci,succ(i) + ci,pred(i))]

where I{i}[x] = x if Pi is involved in the computation, and 0 otherwise. In
summary, the goal is to determine the best way to select q processors out of the
p available, and to arrange them along a ring so that the total execution time
per step is minimized. We formally state this optimization problem as follows:
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Definition 1 (SliceRing(p,wi,ci,j,W ,H)). Given p processors of cycle-times
wi and p(p−1) communication links of capacity ci,j, given the total workload W
and the communication volume H at each step, determine

Tstep = min
1≤q≤p

min
σ ∈ Sq,p∑q

i=1 ασ(i) = 1

max
1≤i≤q

(
ασ(i).W.wσ(i) + H.(cσ(i),σ(i−1modq) + cσ(i),σ(i+1modq))

)
(1)

Here Sq,p denotes the set of one-to-one functions σ : [1..q] → [1..p] which index
the q selected processors, for all candidate values of q between 1 and p.

From Equation 1, we see that the optimal solution will involve all processors
as soon as the ratio W

H is large enough: in that case, the impact of the commu-
nications becomes smaller in front of the cost of the computations, and these
computations should be distributed to all resources. But even in that case, we
still have to decide how to arrange the processors along a ring. Extracting the
“best” ring out of the interconnection graph seems to be a difficult combinato-
rial problem. Before assessing this result (see Section 4), we deal with the much
easier situation when the network is homogeneous (see Section 3).

To conclude this section, we point out that this framework is more general
than iterative algorithms: in fact, our approach applies to any problem where
independent computations are distributed over heterogeneous resources. The
only hypothesis is that the communication volume is the same between adjacent
processors, regardless of their relative workload.

3 Homogeneous Networks

Solving the optimization problem, i.e. minimizing expression (1), is easy when
all communication times are equal. This corresponds to a homogeneous network
where each processor pair can communicate at the same speed, for instance
through a bus or an Ethernet backbone.

Let us assume that ci,j = c for all i and j, where c is a constant. There are only
two cases to consider: (i) only the fastest processor is active; (ii) all processors are
involved. Indeed, as soon as a single communication occurs, we can have several
ones for the same cost, and the best is to divide the computing load among all
resources. In the former case (i), we derive that Tstep = W.wmin, where wmin is
the smallest cycle-time. In the latter case (ii), the load is most balanced when
the execution time is the same for all processors: otherwise, removing a small
portion of the load of the processor with largest execution time, and giving it
to a processor finishing earlier, would decrease the maximum computation time.
This leads to αi.wi = Constant for all i, with

∑p
i=1 αi = 1. We derive that

Tstep = W.wcumul + 2H.c, where wcumul = 1∑p
i=1

1
wi

. We summarize these results:
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Proposition 1. The optimal solution to SliceRing(p,wi,c,W ,H) is

Tstep = min {W.wmin, W.wcumul + 2H.c}
where wmin = min1≤i≤p wi and wcumul = 1∑p

i=1
1

wi

.

If the platform is given, there is a threshold, which is application-dependent,
to decide whether only the fastest computing resource, as opposed to all the
resources, should be involved. Given H, the fastest processor will do all the job
for small values of W , namely W ≤ H. 2c

wmin−wcumul
. Otherwise, for larger values

of W , all processors should be involved.

4 Complexity

The decision problem associated to the SliceRing optimization problem is:

Definition 2 (SliceRingDec(p,wi,ci,j,W ,H,K)). Given p processors of cycle-
times wi and p(p − 1) communication links of capacity ci,j, given the total work-
load W and the communication volume H at each step, and given a time bound
K, is it possible to find an integer q ≤ p, a one-to one mapping σ : [1..q] → [1..p],
and nonnegative rational numbers αi with

∑q
i=1 ασ(i) = 1, such that

Tstep = max
1≤i≤q

{
ασ(i).W.wσ(i) + H.(cσ(i),σ(i−1modq) + cσ(i),σ(i+1modq))

} ≤ K?

The following result states the intrinsic difficulty of the problem (see [9] for
the proof):

Theorem 1. SliceRingDec(p,wi,ci,j,W ,H,K) is NP-complete.

5 ILP Formulation

When the network is heterogeneous, we face a complex situation: how to deter-
mine the number of processors that should take part to the computation already
is a difficult question.

In this section, we express the solution to the SliceRing optimization prob-
lem, in terms of an Integer Linear Programming (ILP) problem. Of course the
complexity of this approach may be exponential in the worst case, but it will
provide useful hints to design low-cost heuristics. We start with the case where
all processors are involved in the optimal solution. We extend the approach to
the general case later on.

5.1 When All Processors Are Involved

Assume first that all processors are involved in an optimal solution. All the
p processors require the same amount of time to compute and communicate:
otherwise, we would slightly decrease the computing load of the last processor to
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Fig. 1. Summary of computation and communication times with p processors.

complete its assignment (computations followed by communications) and assign
extra work to another one. Hence (see Figure 1 for an illustration) we have

Tstep = αi.W.wi + H.(ci,i−1 + ci,i+1) (2)

for all i (indices in the communication costs are taken modulo p). As
∑p

i=1 αi =1,
we derive that

∑p
i=1

Tstep−H.(ci,i−1+ci,i+1)
W.wi

= 1. Defining wcumul = 1∑p
i=1

1
wi

as

before, we have:

Tstep

W.wcumul
= 1 +

H

W

p∑

i=1

ci,i−1 + ci,i+1

wi
. (3)

Therefore, Tstep will be minimal when
∑p

i=1
ci,i−1+ci,i+1

wi
is minimal. This will

be achieved for the ring that corresponds to the shortest Hamiltonian cycle in
the graph G = (P, E), where each edge ei,j is given the weight di,j = ci,j+cj,i

wi
.

Once we have this path, we derive Tstep from Equation 3, and then we determine
the load αi of each processor using Equation 2.

To summarize, we have the following result:

Proposition 2. When all processors are involved, finding the optimal solution
is equivalent to solving the Traveling Salesman Problem (TSP) in the weighted
graph (P, E, d), di,j = ci,j+cj,i

wi
.

Of course we are not expecting any polynomial-time solution from this result,
because the decision problem associated to the TSP is NP-complete [6] (even
worse, because the distance d does not satisfy the triangle inequality, there is
no polynomial-time approximation [1]), but this equivalence gives us two lines
of action:

– For platforms of reasonable size, the optimal solution can be computed using
an integer linear program that returns the optimal solution to the TSP

– For very large platforms, we can use well-established heuristics which approx-
imate the solution to the TSP in polynomial time, such as the Lin-Kernighan
heuristic [8,7].
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The following result (see [9] for a proof) solves the problem whenever all
processors are involved:

Proposition 3. When all processors are involved, finding the optimal solution
is equivalent to solving the following integer linear program:

TSP integer linear programming formulation
Minimize

∑p
i=1
∑p

j=1 di,j .xi,j ,

subject to




(1)
∑p

j=1 xi,j = 1 1 ≤ i ≤ p

(2)
∑p

i=1 xi,j = 1 1 ≤ j ≤ p
(3) xi,j ∈ {0, 1} 1 ≤ i, j ≤ p
(4) ui − uj + p.xi,j ≤ p − 1 2 ≤ i, j ≤ p, i �= j
(5) ui integer, ui ≥ 0 2 ≤ i ≤ p

5.2 General Case

How to extend the ILP formulation to the general case? For each possible value
of q, 1 ≤ q ≤ p, we will set up an ILP problem giving the optimal solution
with exactly q participating resources. Taking the smallest solution among the
p values returned by these ILP problems will lead to the optimal solution.

For a fixed value of q, 1 ≤ q ≤ p, we use a technique similar to that of
Section 5.1, but we need additional variables. Here is the ILP (see [9] for the
proof that the solution is a ring of q participating resources):

q-ring integer linear programming formulation
Minimize T,
subject to




(1) αi.wi+
H

W

p∑

j=1

(xi,jci,j + xj,icj,i) ≤ T +

(

1−
p∑

i=1

xj,i

)

.K 1 ≤ i ≤ p

(2)
∑p

i=1 xi,j =
∑p

i=1 xj,i 1 ≤ j ≤ p
(3)

∑p
i=1 xi,j ≤ 1 1 ≤ j ≤ p

(4)
∑p

i=1
∑p

j=1 xi,j = q

(5) xi,j ∈ {0, 1} 1 ≤ i, j ≤ p
(6)

∑p
i=1 yi = 1

(7) − p.yi − p.yj + ui − uj + q.xi,j ≤ q − 1 1 ≤ i, j ≤ p, i �= j
(8) yi ∈ {0, 1} 1 ≤ i ≤ p
(9) ui integer, ui ≥ 0 1 ≤ i ≤ p

where K = max1≤j≤p wi,j + 2 H
W . max1≤j≤p ci,j . In any optimal solution of this

linear program, T = Tstep
W and, because of the term (1 −∑p

i=1 xj,i).K, the con-
straints (1), for 1 ≤ i ≤ p, induce constraints on T only for resources participat-
ing in the solution ring.

Proposition 4. The SliceRing optimization problem can be solved by com-
puting the solution of p integer linear programs, where p is the total number of
resources.
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6 Heuristics and Experiments

After the previous theoretically-oriented results, we adopt a more practical ap-
proach in this section. We aim at deriving polynomial-time heuristics for solving
the SliceRing optimization problem.

Having expressed the problem in terms of a collection of integer linear pro-
grams enables us to try to compute the optimal solution with softwares like
PIP [4,3] (at least for reasonable sizes of the target computing platforms). We
compare this optimal solution with that returned by two polynomial-time heuris-
tics, one that approximates the TSP problem (but only returns a solution where
all processors are involved), and a greedy heuristic that iteratively grows the
solution ring.

6.1 TSP-Based Heuristic

The situation where all processors are involved in the optimal solution is very
important in practice. Indeed, only very large applications are likely to be de-
ployed on distributed heterogeneous platforms. And when W is large enough,
we know from Equation 1 that all processors will be involved.

From Section 5.1 we know that the optimal solution, when all processors are
involved, corresponds to the shortest Hamiltonian cycle in the graph (P, E, d),
with di,j = ci,j+cj,i

wi
. We use the well-known Lin-Kernighan heuristic [8,7] to

approximate this shortest path. By construction, the TSP-based heuristic always
returns a solution where all processors are involved. Of course, if the optimal
solution requires fewer processors, the TSP-based heuristic will fail to find it.

6.2 Greedy Heuristic

The greedy heuristic starts by selecting the fastest processor. Then, it iteratively
includes a new node in the current solution ring. Assume that we have already
selected a ring of r processors. For each remaining processor Pi, we search where
to insert it in the current ring: for each pair of successive processors (Pj , Pk) in
the ring, we compute the cost of inserting Pi between Pj and Pk in the ring. We
retain the processor and the pair that minimize the insertion cost, and we store
the value of Tstep. This step of the heuristic has a complexity proportional to
(p − r).r.

Finally, we grow the ring until we have p processors and we return the mini-
mal value obtained for Tstep. The total complexity is

∑p
r=1(p−r)r = O(p3). Note

that it is important to try all values of r, because Tstep may not vary monotically
with r.

6.3 Platform Description

We experimented with two platforms, one located in ENS Lyon and the other
in the University of Strasbourg, which are represented in Figure 2. The Lyon
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platform is composed of 14 processors, whose cycle-times are described in Ta-
ble 1. Table 2 shows the capacity of the links, i.e. the inverse of the bandwidth,
between each processor pair (Pi, Pj). The Strasbourg platform is composed of
13 processors, whose cycle-times are described in Table 3, while Table 4 shows
the capacity of the links.

Fig. 2. Topology of the Lyon and Strasbourg platforms.

Table 1. Processor cycle-times (in seconds per megaflop) for the Lyon platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

0.0291 0.00874 0.0206 0.0451 0.0206 0.0291 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206

6.4 Results

For both topologies, we compared the greedy heuristic against the optimal solu-
tion obtained with ILP software, when available. Tables 5 and 6 show the differ-
ence between the greedy heuristic and the optimal solution (computed with PIP)
on the Lyon and Strasbourg platforms. The numbers in the tables represent the
minimal cost of a path of length q on the platform, i.e. the value of the objective
function of the ILP program of Section 5.2 (multiplied by a scaling factor 6000,
because PIP needs a matrix of integers).

PIP is able to compute the optimal solution only when all processors are
involved (note that we used a machine with two gigabytes of RAM!). When all
processors are involved, we also tried the LKH heuristic: for both platforms,
it returns the optimal result. The conclusions that can be drawn from these
experiments are the following:

– the greedy heuristic is fast (and seems efficient)
– the LKH heuristic is very reliable, but its application is limited to the case

where all resources are involved
– ILP softwares rapidly fail to compute the optimal solution.
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Table 2. Capacity of the links (time in seconds to transfer a 1 Mb message) for the
Lyon platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

P0 0.198 1.702 1.702 0.262 0.198 1.702 1.702 0.262 0.262 0.262 0.262 0.262 0.262
P1 0.198 1.702 1.702 0.262 0.198 1.702 1.702 0.262 0.262 0.262 0.262 0.262 0.262
P2 1.702 1.702 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P3 1.702 1.702 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P4 0.262 0.262 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P5 0.198 0.198 1.702 1.702 0.262 1.702 1.702 0.262 0.262 0.262 0.262 0.262 0.262
P6 1.702 1.702 0.248 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P7 1.702 1.702 0.248 0.248 0.248 1.702 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P8 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P9 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P10 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P11 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P12 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248
P13 0.262 0.262 0.248 0.248 0.248 0.262 0.248 0.248 0.248 0.248 0.248 0.248 0.248

Table 3. Processor cycle-times (in seconds per megaflop) for the Strasbourg platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

0.00874 0.00874 0.0102 0.00728 0.00728 0.0262 0.00583 0.016 0.00728 0.00874 0.0131 0.00583 0.0131

We considered the number popt of processors in the best solution found by
the greedy heuristic as a function of the ratio W/H. As expected, when this ratio
grows (meaning more computations per communication), more and more pro-
cessors are used in the optimal solution, and the value of popt increases. Because
the interconnection network of the Lyon platform involves links of similar capac-
ities, the value of popt jumps from 1 (sequential solution) to 14 (all processors
participate). The big jump from 1 to 14 is easily explained: once there is enough
work to make a communication affordable, rather use many communications for
the same price, thereby better sharing the load.

Table 4. Capacity of the links (time in seconds to transfer a one-megabit message) for
the Strasbourg platform.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

P0 0.048 0.019 0.017 0.019 0.147 0.151 0.154 0.147 0.048 0.017 0.016 0.151
P1 0.048 0.048 0.048 0.048 0.147 0.151 0.154 0.147 0.017 0.048 0.048 0.151
P2 0.019 0.048 0.019 0.019 0.147 0.151 0.154 0.147 0.048 0.019 0.019 0.151
P3 0.017 0.048 0.019 0.019 0.147 0.151 0.154 0.147 0.048 0.017 0.018 0.151
P4 0.019 0.048 0.019 0.019 0.147 0.151 0.154 0.147 0.048 0.019 0.019 0.151
P5 0.147 0.147 0.147 0.147 0.147 0.151 0.154 0.147 0.147 0.147 0.147 0.151
P6 0.151 0.151 0.151 0.151 0.151 0.151 0.154 0.151 0.151 0.151 0.151 0.151
P7 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154
P8 0.147 0.147 0.147 0.147 0.147 0.147 0.151 0.154 0.147 0.147 0.147 0.151
P9 0.048 0.017 0.048 0.048 0.048 0.147 0.151 0.154 0.147 0.048 0.048 0.151
P10 0.017 0.048 0.019 0.017 0.019 0.147 0.151 0.154 0.147 0.048 0.018 0.151
P11 0.016 0.048 0.019 0.018 0.019 0.147 0.151 0.154 0.147 0.048 0.018 0.151
P12 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.154 0.151 0.151 0.151 0.151
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Table 5. Comparison between the greedy heuristic and PIP for the Lyon platform.

���������Heuristics
Processors

3 4 5 6 7 8 9 10 11 12 13 14

Greedy 1202 556 1152 906 2240 3238 4236 5234 6232 7230 8228 10077

PIP
out of out of out of out of out of out of out of out of out of out of out of

9059memory memory memory memory memory memory memory memory memory memory memory

Table 6. Comparison between the greedy heuristic and PIP for the Strasbourg plat-
form.

���������Heuristics
Processors

3 4 5 6 7 8 9 10 11 12 13

Greedy 1520 2112 3144 3736 4958 5668 7353 8505 10195 12490 15759

PIP
out of out of out of out of out of out of out of out of out of out of

14757memory memory memory memory memory memory memory memory memory memory

The interconnection network of the Strasbourg platform is more heteroge-
neous, and there the value of popt jumps from 1 (sequential solution) to 10, 11
and 13 (all processors participate).
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Fig. 3. Optimal number of processors for the Lyon and Strasbourg platforms according
to the greedy heuristic.

7 Related Work

Due to the lack of space, see [9].

8 Conclusion

The major limitation to programming heterogeneous platforms arises from the
additional difficulty of balancing the load. Data and computations are not evenly
distributed to processors. Minimizing communication overhead becomes a chal-
lenging task.
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Load balancing techniques can be introduced dynamically or statically, or a
mixture of both. On one hand, we may think that dynamic strategies are likely
to perform better, because the machine loads will be self-regulated, hence self-
balanced, if processors pick up new tasks just as they terminate their current
computation. However, data dependencies, in addition to communication costs
and control overhead, may well lead to slow the whole process down to the pace
of the slowest processors. On the other hand, static strategies will suppress (or
at least minimize) data redistributions and control overhead during execution.
Furthermore, in the context of a scientific library, static allocations seem to
be necessary for a simple and efficient memory allocation. We agree, however,
that targeting larger platforms such as distributed collections of heterogeneous
clusters, e.g. available from the metacomputing grid [5], may well enforce the
use of dynamic schemes.

One major result of this paper is the NP-completeness of the SliceRing
problem. Rather than the proof, the result itself is interesting, because it pro-
vides yet another evidence of the intrinsic difficulty of designing heterogeneous
algorithms. But this negative result should not be over-emphasized. Indeed, an-
other important contribution of this paper is the design of efficient heuristics,
that provide a pragmatic guidance to the designer of iterative scientific com-
putations. Implementing such computations on commodity clusters made up of
several heterogeneous resources is a promising alternative to using costly super-
computers.
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